JP2006219767A - Method for removing unsaturated uronic acid in chemical pulp for papermaking - Google Patents

Method for removing unsaturated uronic acid in chemical pulp for papermaking Download PDF

Info

Publication number
JP2006219767A
JP2006219767A JP2005032317A JP2005032317A JP2006219767A JP 2006219767 A JP2006219767 A JP 2006219767A JP 2005032317 A JP2005032317 A JP 2005032317A JP 2005032317 A JP2005032317 A JP 2005032317A JP 2006219767 A JP2006219767 A JP 2006219767A
Authority
JP
Japan
Prior art keywords
pulp
bleaching
glucuronidase
enzyme
uronic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005032317A
Other languages
Japanese (ja)
Other versions
JP2006219767A5 (en
Inventor
Hiroshi Oi
洋 大井
Shigeki Yoshida
滋樹 吉田
Yuko Aoki
優子 青木
Yasuyuki Kawabata
康之 川端
Tomoya Yokoyama
朝哉 横山
Tsutomu Ikeda
努 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
University of Tsukuba NUC
Original Assignee
Mitsubishi Gas Chemical Co Inc
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc, University of Tsukuba NUC filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005032317A priority Critical patent/JP2006219767A/en
Priority to EP06002054A priority patent/EP1688535A1/en
Priority to US11/347,324 priority patent/US20060177921A1/en
Priority to CA002535519A priority patent/CA2535519A1/en
Priority to BRPI0600247-1A priority patent/BRPI0600247A/en
Publication of JP2006219767A publication Critical patent/JP2006219767A/en
Publication of JP2006219767A5 publication Critical patent/JP2006219767A5/ja
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/22Proteins
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method by which pulp viscosity is held and an unsaturated uronic acid in the pulp is reduced to improve discoloring properties of the pulp while suppressing bleaching cost for problems in deteriorating the discoloring properties of completed bleached pulp in an ECF (elementary chlorine free) or a TCF (totally chlorine free) bleaching method of chemical pulp for papermaking without using molecular chlorine. <P>SOLUTION: The method for removing the unsaturated uronic acid in the pulp comprises adding glucuronidase in the method for removing the unsaturated uronic acid in the chemical pulp for papermaking. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、製紙用化学パルプの処理に関し、さらに詳しくは、化学パルプ中の不飽和ウロン酸の除去に関する方法である。   The present invention relates to the treatment of chemical pulp for papermaking, and more particularly relates to the removal of unsaturated uronic acid in chemical pulp.

製紙用化学パルプの漂白は多段にわたる漂白処理により実施されている。従来より、この多段漂白には漂白剤として塩素系漂白薬品が使用されている。具体的には、塩素(C)、次亜塩素酸塩(H)、二酸化塩素(D)の組み合わせにより、たとえば、C−E−H−D、C/D−E−H−E−D(C/Dは塩素と二酸化塩素の併用漂白段、Eはアルカリ抽出段、−は洗浄処理)などのシーケンスによる漂白が行われてきた。   Bleaching of chemical pulp for papermaking is carried out by a multi-stage bleaching process. Conventionally, chlorine bleaching chemicals have been used as bleaching agents in this multistage bleaching. Specifically, the combination of chlorine (C), hypochlorite (H), and chlorine dioxide (D), for example, C-E-H-D, C / D-E-H-E-D ( Bleaching by a sequence such as C / D is a combined bleaching stage of chlorine and chlorine dioxide, E is an alkali extraction stage, and-is a washing treatment).

しかし、これらの塩素系漂白薬品は漂白時に環境に有害な有機塩素化合物を副生し、この有機塩素化合物を含む漂白廃水の環境汚染が問題になっている。有機塩素化合物は一般にAOX法、たとえば米国環境庁(EPA METHOD−9020号)によって分析、評価される。   However, these chlorine bleaching chemicals produce organic chlorine compounds that are harmful to the environment during bleaching, and environmental pollution of bleaching wastewater containing these organic chlorine compounds has become a problem. Organochlorine compounds are generally analyzed and evaluated by AOX methods such as the US Environmental Agency (EPA METHOD-9020).

有機塩素化合物の副生を低減・防止するには、塩素系薬品の使用量を低減するか、ないしは使用しない事が最も効果的であり、特に初段に分子状塩素を使用しないことが最も有効な方法である。この方法で製造されたパルプはECF(エレメンタリークロリンフリー)パルプと呼ばれ、更に塩素系薬品を全く用いずに製造されたパルプはTCF(トータリークロリンフリー)と呼ばれている。   It is most effective to reduce or prevent the use of chlorinated chemicals in order to reduce or prevent organochlorine by-products. Especially, it is most effective not to use molecular chlorine in the first stage. Is the method. Pulp produced by this method is called ECF (elementary chlorin free) pulp, and pulp produced without using any chlorinated chemicals is called TCF (totally chlorin free).

蒸解−酸素脱リグニン処理したパルプを初段に分子状塩素を用いない漂白方法として、初段に二酸化塩素を用いたD−Eo−D或いは、D−Eo−D−Dシークエンス、またアルカリ段に過酸化水素を用いたD−Eop−D、D−Eop−P−D、D−Eo−P−Dシークエンスによる漂白が一般に知られている(非特許文献1)。   Cooking-Oxygen delignified pulp is bleached without molecular chlorine in the first stage, D-Eo-D or D-Eo-DD sequence using chlorine dioxide in the first stage, or peroxidized in the alkali stage Bleaching by D-Eop-D, D-Eop-PD, and D-Eo-PD sequences using hydrogen is generally known (Non-patent Document 1).

しかしながら、二酸化塩素は従来用いられていた塩素と比べると、ヘキセンウロン酸(以下、「HexA」と称することがある)の除去能力が低いために、漂白後のパルプに多量のHexAが残存する。この残存HexAがECFあるいはTCF漂白パルプの褪色性悪化の原因となっている(非特許文献2)。   However, since chlorine dioxide has a lower ability to remove hexeneuronic acid (hereinafter sometimes referred to as “HexA”) than chlorine conventionally used, a large amount of HexA remains in the bleached pulp. This residual HexA is a cause of deterioration of the fading of ECF or TCF bleached pulp (Non-patent Document 2).

HexAとは、パルプ中に存在するヘミセルロースであるキシランの末端が、蒸解行程にて脱メタノールする事により生じる物質である。パルプの白色度への影響は小さいものの、分子内に二重結合を有するため、過マンガン酸カリと反応し、K価あるいはkappa価としてカウントされる(非特許文献2)。   HexA is a substance produced by demethanolation of the end of xylan, which is hemicellulose present in pulp, in the cooking process. Although the influence on the whiteness of the pulp is small, it has a double bond in the molecule, so it reacts with potassium permanganate and is counted as a K value or a kappa value (Non-patent Document 2).

この褪色性悪化を改善するために、二酸化塩素あるいはオゾンの使用量を増やし、HexAを除去する方法がある。しかし、HexAは分子内の二重結合によりこれら酸化剤を消費するために、従来の塩素に比べ高価であるこれら酸化剤の使用量を増やすことは、漂白コストを大幅に高くするとの問題を生じる。   In order to improve this fading deterioration, there is a method of increasing HexA by increasing the amount of chlorine dioxide or ozone used. However, since HexA consumes these oxidants due to intramolecular double bonds, increasing the amount of these oxidizers that are more expensive than conventional chlorine causes the problem of significantly increasing the bleaching cost. .

非特許文献3には、高温酸処理でHexAを除去する方法が開示されている。その条件としては、90℃−180分、pH3程度の酸処理において、HexAを酸加水分解除去する方法が提案されている。この方法は、安価な酸によるpH調整だけでHexAを除去できることから有効な方法であるが、多量の蒸気を必要とするために、やはり漂白コストの増大は免れない。また、蒸気コストを下げるために、処理温度を70℃程度とすると、HexAは殆ど除去されない。また、高温で酸処理をするために装置材質として腐食につよいハステロイなどの高価な材質が必要になるとの問題点がある。   Non-Patent Document 3 discloses a method for removing HexA by high-temperature acid treatment. As the condition, a method of acid-hydrolyzing and removing HexA in an acid treatment at about 90 ° C. to 180 minutes and a pH of about 3 has been proposed. This method is effective because HexA can be removed only by pH adjustment with an inexpensive acid. However, since a large amount of steam is required, an increase in bleaching cost is inevitable. Further, if the processing temperature is about 70 ° C. in order to reduce the steam cost, HexA is hardly removed. In addition, there is a problem that an expensive material such as Hastelloy, which is resistant to corrosion, is required as an apparatus material for acid treatment at a high temperature.

さらに非特許文献3には、二酸化塩素処理条件を強化してHexAを除去する方法が開示されている。すなわち、漂白温度90℃、pH3、処理時間120分〜180分の処理でHexAを除去する方法である。この方法は、高温酸処理と二酸化塩素処理を組み合わせた方法であり、酸処理と同様多量の蒸気を必要とすること、高温で二酸化塩素処理を行うため通常の二酸化塩素処理に比べ、白色度の向上が劣るなどの問題点がある。また、高温で処理するため装置材質として高価な材質が必要となるとの問題点がある。   Further, Non-Patent Document 3 discloses a method of removing HexA by strengthening chlorine dioxide treatment conditions. That is, it is a method of removing HexA by a bleaching temperature of 90 ° C., a pH of 3, and a treatment time of 120 minutes to 180 minutes. This method is a combination of high-temperature acid treatment and chlorine dioxide treatment, which requires a large amount of steam as in the case of acid treatment. There are problems such as poor improvement. Moreover, since it processes at high temperature, there exists a problem that an expensive material is needed as an apparatus material.

非特許文献4には、広葉樹キシランから4−O−メチル−D−グルクロン酸を遊離するα−(1→2)−グルクロニダーゼを生産する微生物の探索を行っている。この研究の目的は、α−グルクロニダーゼで4−O−メチル−D−グルクロン酸(飽和ウロン酸)を除去して、広葉樹キシランを糖化することを目的としている。本発明者等は、蒸解処理後酸素漂白した広葉樹パルプ中のキシランに結合したヘキセンウロン酸(不飽和ウロン酸)を除去する事を目的としており、非特許文献4に本発明に関する示唆はまったく開示されていない。   Non-Patent Document 4 searches for microorganisms that produce α- (1 → 2) -glucuronidase that releases 4-O-methyl-D-glucuronic acid from hardwood xylan. The purpose of this study is to remove 4-O-methyl-D-glucuronic acid (saturated uronic acid) with α-glucuronidase to saccharify hardwood xylan. The present inventors aim to remove hexeneuronic acid (unsaturated uronic acid) bonded to xylan in hardwood pulp bleached with oxygen after cooking, and Non-Patent Document 4 does not disclose any suggestions regarding the present invention. Not.

特許文献1には、パルプを漂白用酵素で処理し、その酵素を回収・再利用する方法が記載されている。漂白酵素の1種としてヘミセルラーゼを使用すること、そのヘミセルラーゼの例としてグルクロニダーゼが記載されているが、発明法であるα−グルクロニダーゼによる不飽和ウロン酸の除去については全く開示されていない。   Patent Document 1 describes a method of treating pulp with a bleaching enzyme and recovering and reusing the enzyme. The use of hemicellulase as one of the bleaching enzymes and glucuronidase as an example of the hemicellulase are described, but the removal of unsaturated uronic acid by α-glucuronidase, which is the inventive method, is not disclosed at all.

非特許文献4、特許文献1にはグルクロニダーゼについての検討が記載されているが、該酵素は一般に飽和ウロン酸の除去に用いられる酵素である。従って、本発明で見いだされたようにα−グルクロニダーゼが不飽和ウロン酸を除去できることは驚くべきことである。   Non-patent document 4 and Patent document 1 describe studies on glucuronidase, which is an enzyme generally used for removing saturated uronic acid. Thus, it is surprising that α-glucuronidase can remove unsaturated uronic acid as found in the present invention.

特開平5−247865号公報JP-A-5-247865 Chlorine Dioxide in Delignification ,Pulp & Paper ,University of TorontoChlorine Dioxide in Delignification, Pulp & Paper, University of Toronto Tappi Journal May 2003、vol.2、No.5Tappi Journal May 2003, vol.2, No.5 Papehi ja Puu−Paper and Timber Vol.86 No.1 2004Papehi ja Puu-Paper and Timber Vol.86 No.1 2004 森林総合研究所研究報告 第359号 141〜157Forestry Research Institute Research Report No. 359 141-157

本発明の目的は、製紙用化学パルプの製造で、初段に分子状塩素を用いないECF漂白あるいはTCF漂白において、漂白コストの増大を最小限にとどめ、かつパルプ粘度を維持しながら、パルプ中に残存するHexAを除去する方法を提供することである。   The object of the present invention is to produce chemical pulp for papermaking. In ECF bleaching or TCF bleaching without molecular chlorine in the first stage, the increase in bleaching cost is minimized and the viscosity of the pulp is maintained. It is to provide a method for removing residual HexA.

本発明者等は、蒸解−酸素脱リグニン処理したパルプの、酵素処理について鋭意検討した結果、微生物として担子菌、糸状菌を培養して得られるグルクロニダーゼが、パルプ粘度を保持しながらパルプ中に残存しているHexAを除去できることを見いだし、本発明を完成させた。すなわち、本発明は、製紙用化学パルプ中の不飽和ウロン酸を除去する方法において、グルクロニダーゼを添加することを特徴とするパルプ中の不飽和ウロン酸の除去方法に関するものである。ここで、グルクロニダーゼとして、α―グルクロニダーゼが好適である。   As a result of diligent study on enzyme treatment of pulp subjected to digestion-oxygen delignification treatment, the present inventors have found that glucuronidase obtained by culturing basidiomycetes and filamentous fungi as microorganisms remains in the pulp while maintaining pulp viscosity. The present invention has been completed by finding that HexA can be removed. That is, the present invention relates to a method for removing unsaturated uronic acid in pulp, which comprises adding glucuronidase in a method for removing unsaturated uronic acid in chemical pulp for papermaking. Here, α-glucuronidase is suitable as the glucuronidase.

本発明によれば、二酸化塩素主体の無塩素漂白における完成漂白パルプの褪色性が悪化するとの問題に対して、高価な二酸化塩素やオゾンを増量することなく、また新たに加温する必要もなく従来の漂白工程の温度でパルプ中のHexAを除去することが可能となる。その結果、優れたパルプ物性を保持しながら、かつ漂白コストを低く押さえながら、分子状塩素を用いないECFあるいはTCF漂白方法で製造されたパルプの熱褪色性を改善できる。   According to the present invention, there is no need to increase the amount of expensive chlorine dioxide or ozone, or to newly heat, for the problem that the bleaching quality of the finished bleached pulp deteriorates in chlorine-free bleaching mainly composed of chlorine dioxide. HexA in the pulp can be removed at the temperature of the conventional bleaching process. As a result, it is possible to improve the thermal fading properties of pulp produced by an ECF or TCF bleaching method that does not use molecular chlorine while maintaining excellent pulp physical properties and keeping the bleaching cost low.

本発明において処理されるパルプは、ポリサルファイドを含む、もしくは通常のクラフトパルプ化法(KP)、サルファイドパルプ化法(SP)、アルカリパルプ化法(AP)等のケミカルパルプ化法由来のパルプが好ましく、より好ましくはクラフトパルプ化法によって得られたパルプである。また、パルプ化に用いられる木本植物、草本植物については特に限定されるものではない。また、処理されるパルプは、前処理としてカッパー価20以下になるように公知の酸素脱リグニン処理を行ったものであり、好ましくはカッパー価12以下のものである。   The pulp to be treated in the present invention is preferably a pulp containing polysulfide, or a pulp derived from a chemical pulping method such as an ordinary kraft pulping method (KP), a sulfide pulping method (SP), or an alkali pulping method (AP). More preferably, it is a pulp obtained by a kraft pulping method. Moreover, it does not specifically limit about the woody plant and herbaceous plant used for pulping. In addition, the pulp to be treated has been subjected to a known oxygen delignification treatment so as to have a kappa number of 20 or less as a pretreatment, and preferably has a kappa number of 12 or less.

本発明で使用されるグルクロニダーゼ、またはキシロシダーゼ若しくはキシラナーゼを含有するグルクロニダーゼは、担子菌類、糸状菌から生産される。担子菌類としては、Agrocybe cylindracea、Anellaria semiovata、Asterophora lycoperdoides、Auricularia auricular-judae、Auriscalpium vulgare、Bondarezewia montana、Chlorosplenium aeruginosumのようなChlorosplenium属、Clitocybe acromelalga、Clitocybe nebularis、Coriolus consors、Coriolus hirsutus、Coriolus pubescens、Coriolus versicilor、Cortinarius cinnamomeus、Crinipellis stipitaria、Cryptoporus volvatus、Cyathus stercoreus、Cyclomyces fuscus、Cymatoderma elegans、Daedaleopsis tricolor、Daldinia concentrica、Favolus arcularius、Filoboletus manipularis、Flammulina velutipes、Formes formentarius、Fomitopsis pinicola、Hebeloma radicosum、Hirschioporus abietinus、Inonotus cuticularis、Irepex lacteus、Lactarius chrisorheus、Laetiporus sulphureus、Lampteromyces japonicus、Lentinus edodes、Lentinus lepideus、Lenzites betulina、Lepista nuda、Lyophyllum shmeji、Macrolepiota procera、Merurius tremellosus、Naematoloma sublaterritium、Onnia orientalis、Oudemansiella mucida、Oudemansiella radicata、Panellus serotinus、Panus rudis、Phanerochaete chrysosporium、Pholiota adipose、Pholiota aurivella、Pholiota nameko、Pleurotus ostreatus、Podostroma cornu-damae、Polyporellus brumalis、Polyporus tuberaster、Porodisculus Pendulus、Pseudohiatula ohshimae、Psilocybe argentipes、Pycnoporus coccineus、Schizophyllum commune、Stereum annosum、Stereum frustulosum、Stereum hirsutum、Stereum roseum、Stropharia aeruginosa、Trametes albida、Trametes gibbosa、Tremella foliacea、Tremella fuciformis、Urnula craterium、wynnea giganteaなどがあり、Chlorosplenium aeruginosumwが好適である。   The glucuronidase or glucuronidase containing xylosidase or xylanase used in the present invention is produced from basidiomycetes or filamentous fungi. Basidiomycetes include Agrocybe cylindracea, Anellaria semiovata, Asterophora lycoperdoides, Auricularia auricular-judae, Auriscalpium vulgare, Bonderzewia montana, Chlorosplenium aercynos , Cortinarius cinnamomeus, Crinipellis stipitaria, Cryptoporus volvatus, Cyathus stercoreus, Cyclomyces fuscus, Cymatoderma elegans, Daedaleopsis tricolor, Daldinia concentrica, Favolus arcularius, Filoboletus manipularis, lutlamus lacteus, Lactarius chrisorheus, Laetiporus sulphureus, Lampteromyces japonicus, Lentinus edodes, Lentinus lepideus, Lenzites betulina, Lepista nuda, Lyophyllum shmeji, Macrolepiota procera, Merurius tremellosus, Naematol, Naematol entalis, Oudemansiella mucida, Oudemansiella radicata, Panellus serotinus, Panus rudis, Phanerochaete chrysosporium, Pholiota adipose, Pholiota aurivella, Pholiota nameko, Pleurotus ostreatus, Podostroma cornu-damae, Polyporellus Preferred are coccineus, Schizophyllum commune, Stereum annosum, Stereum frustulosum, Stereum hirsutum, Stereum roseum, Stropharia aeruginosa, Trametes albida, Trametes gibbosa, Tremella foliacea, Tremella fuciformis, Urnula craterium, and Wynnea agrumino.

糸状菌類としては、Aspergillus niger、Aspergillus japonicus、Aspergillus pulverulentus、Aspergillus terreus、Aspergillus versicolorのようなAspergillus属、Trichoderma aureoviride、Trichoderma hamatum、Trichoderma harzianum、Trichoderma koningii、Trichoderma longibrachitum、Trichoderma viride、Trichoderma reeseiのようなTrichoderma属などがあり、Aspergillus nigerが好適である。   The fungi include Aspergillus niger, Aspergillus japonicus, Aspergillus pulverulentus, Aspergillus terreus, Aspergillus genus such as Aspergillus versicolor, Trichoderma aureoviride, Trichoderma hamatum, Trichoderma harzianum, Trichoderma dercho, Trichoderma dercho Aspergillus niger is preferable.

グルクロニダーゼは、担子菌類、糸状菌から生産された後、精製していない粗製のものを使用することもできる。また、キシラナーゼなどのキシラン分解酵素にグルクロニダーゼを添加・混合したものを使用することもできる。グルクロニダーゼとして、Snail(カタツムリ)が出すものも使用できる。   Glucuronidase can also be a crude product that is produced from basidiomycetes or filamentous fungi and is not purified. Further, xylanase or other xylan-degrading enzyme added with and mixed with glucuronidase can also be used. A glucuronidase produced by Snail (snail) can also be used.

例えば生産菌としてAspergillus nigerを使用した場合は、2%キシランを炭素源とする含む液体培地で35℃、24時間培養する。この培養液を濾過し、得られた菌体を破砕後、0.1M酢酸緩衝液(pH5)で抽出したグルクロニダーゼ含有粗製酵素をえる。次いで、この酵素をイオン交換クロマトグラフィー及びゲルクロマトグラフィーにより精製し、グルクロニダーゼを得る。また、精製しない粗酵素を使用してもよい。  For example, when Aspergillus niger is used as a production bacterium, it is cultured at 35 ° C. for 24 hours in a liquid medium containing 2% xylan as a carbon source. This culture solution is filtered, and the obtained bacterial cells are crushed, and a glucuronidase-containing crude enzyme extracted with 0.1 M acetate buffer (pH 5) is obtained. The enzyme is then purified by ion exchange chromatography and gel chromatography to obtain glucuronidase. Moreover, you may use the crude enzyme which does not refine | purify.

本発明において行われる酵素処理は、グルクロニダーゼの添加量としてパルプg当り4〜4万ユニット、処理pH2.0〜7.0、処理時間は1〜12時間である。処理温度は30〜90℃、パルプ濃度は3〜30%である。添加場所として酸素漂白後の未晒しパルプ、各種ECF漂白段の中間部および漂白終了後に添加されるが、グルクロニダーゼの処理条件に合うところであれば、いずれの場所でもよい。   In the enzyme treatment performed in the present invention, the amount of glucuronidase added is 40 to 40,000 units per g of pulp, the treatment pH is 2.0 to 7.0, and the treatment time is 1 to 12 hours. The treatment temperature is 30 to 90 ° C., and the pulp concentration is 3 to 30%. As addition sites, unbleached pulp after oxygen bleaching, intermediate portions of various ECF bleaching stages, and after completion of bleaching, any location may be used as long as it meets the processing conditions of glucuronidase.

酵素処理後は、洗浄無しで、または洗浄を行って、次段のECFあるいはTCF漂白シークエンスへ送られる。分子状塩素を用いない漂白シークエンスとしては、D−Ep−D、D−Eop−D、D−Ep−P−D、D−Eop−P−D、D−Ep−D−D、D−Eop−D−D,D−Ep−D−P,D−Eop−D−Pのような二酸化塩素主体のECFシークエンスがある。また、Z−Ep−D、Z−Eop−D、Z−Ep−P−D、Z−Eop−P−D、Z−Ep−D−D、Z−Eop−D−D,Z−Ep−D−P、ZD−Eop−D−Pのようなオゾン主体のECFシークエンスや、Z/D−Ep−D、Z/D−Eop−D、Z/D−Ep−P−D、Z/D−Eop−P−D、Z/D−Ep−D−D、Z/D−Eop−D−D,Z/D−Ep−D−P、Z/D−Eop−D−Pのようなオゾンと二酸化塩素を併用したECFシークエンスがある。さらには、Z−Ep−P、Z−Eop−P、Z−Ep−P−P、Z−Eop−P−P、Z−Ep−Q−P、Z−Eop−Q−PのようなTCFシークエンスがある。これらの漂白シークエンスの如何は、本発明をいささかも制限するものではない。ここで、グルクロニダーゼの添加場所として、上記漂白シーケンスの中間段および漂白終了後の完成パルプに添加してもよい。   After the enzyme treatment, it is sent to the next ECF or TCF bleaching sequence without washing or after washing. As bleaching sequences not using molecular chlorine, D-Ep-D, D-Eop-D, D-Ep-P-D, D-Eop-P-D, D-Ep-D-D, D-Eop There are chlorine dioxide based ECF sequences such as -DD, D-Ep-DP, and D-Eop-DP. Moreover, Z-Ep-D, Z-Eop-D, Z-Ep-PD, Z-Eop-PD, Z-Ep-DD, Z-Eop-DD, Z-Ep- OCF-based ECF sequences such as DP and ZD-Eop-DP, Z / D-Ep-D, Z / D-Eop-D, Z / D-Ep-PD, Z / D Ozone such as Eop-PD, Z / D-Ep-DD, Z / D-Eop-DD, Z / D-Ep-DP, Z / D-Eop-DP And ECF sequences that use chlorine dioxide together. Further, TCF such as Z-Ep-P, Z-Eop-P, Z-Ep-P-P, Z-Eop-P-P, Z-Ep-Q-P, Z-Eop-Q-P There is a sequence. These bleaching sequences do not limit the invention in any way. Here, the addition site of glucuronidase may be added to the intermediate stage of the bleaching sequence and to the finished pulp after completion of bleaching.

本発明においてはパルプを酵素で処理することにより、ECF漂白またはTCF漂白パルプの褪色性を改善する方法の第一の特徴は、酵素反応は非常に選択性が高く、褪色に問題となるHexAのみを除去するため、パルプ物性に全く影響せず優れたパルプを製造できることである。   In the present invention, the first feature of the method for improving the discoloration of ECF bleached or TCF bleached pulp by treating the pulp with an enzyme is that the enzyme reaction is very selective and only HexA, which is a problem with discoloration, is used. Therefore, an excellent pulp can be produced without affecting the physical properties of the pulp at all.

第二の特徴としては、オゾン、二酸化塩素等の酸化剤はHexAの除去のみではなく、パルプ中のリグニン、糖類等を過度に除去するため、パルプの粘度等の物性が低下するのみだけではなく廃水CODが増大するとの環境上好ましくない面があるが、本発明法の酵素を使用すればそのようなことはほとんどなくパルプを製造することができる。   The second feature is that not only the removal of HexA, but also the oxidants such as ozone and chlorine dioxide not only remove lignin and saccharides in the pulp excessively, but the physical properties such as the viscosity of the pulp are not only lowered. Although there is an environmentally unfavorable aspect that wastewater COD increases, if the enzyme of the method of the present invention is used, there is almost no such thing and pulp can be produced.

第三の特徴は、二酸化塩素、オゾンはそれを製造するために多量のエネルギーが必要であるが、本発明の酵素は微生物が生産するため非常に少ないエネルギーで生産できる。   The third feature is that chlorine dioxide and ozone require a large amount of energy to produce them, but the enzyme of the present invention can be produced with very little energy because microorganisms produce it.

すなわち、本発明の特徴は通常のECF漂白、TCF漂白シーケンスに酵素処理を導入することにより、従来HexA除去は難しいと言われた40℃〜70℃の低温処理において、パルプ粘度を保持しながら、HexAを除去できることである。更に、HexA以外の物質へのダメージが少ないことから、排水COD値を上昇させることなく実施できることである。また、本発明法の酵素を利用することにより、化学薬品の使用を極力抑えた漂白パルプの製造プロセスが可能となすため、環境面において非常に優れたパルプの製造方法となる。   That is, the feature of the present invention is that by introducing an enzyme treatment into a normal ECF bleaching and TCF bleaching sequence, while maintaining a pulp viscosity in a low temperature treatment of 40 ° C. to 70 ° C., which has been conventionally difficult to remove HexA, HexA can be removed. Furthermore, since there is little damage to substances other than HexA, it can be implemented without increasing the wastewater COD value. In addition, the use of the enzyme of the present invention makes it possible to produce a bleached pulp that minimizes the use of chemicals, so that the pulp is extremely excellent in terms of environment.

次に実施例により本発明を具体的に説明する。なお、以下に示す実施例は、本発明を具体的に説明するために示すものであり、何ら本発明を制限するものではない。   Next, the present invention will be described specifically by way of examples. In addition, the Example shown below is shown in order to demonstrate this invention concretely, This invention is not restrict | limited at all.

1.基質の調整
カッパー価10の広葉樹材酸素漂白クラフトパルプ(LOKP)30gをセルラーゼ「オノズカ」3Sで処理した。パルプ濃度は5%とした。得られた可溶部(糖化液)をバッチ式で活性炭処理し,活性炭に酵素,着色物質,および分子量の大きい生成物を吸着させ,活性炭をろ別してこれらを除去した。ろ液を活性炭入りのカラムに流入した。カラムに水を流して無機塩類と単糖を溶出させた。つぎに,40%エチルアルコール・60%水混液を流してオリゴ糖を溶出させた。糖化液600gからオリゴ糖5.3gが得られた。オリゴ糖には,酸性糖と中性糖が含まれていた。
1. Preparation of Substrate 30 g of hardwood oxygen bleached kraft pulp (LOKP) having a copper number of 10 was treated with cellulase “Onozuka” 3S. The pulp concentration was 5%. The obtained soluble part (saccharified solution) was treated with activated carbon in a batch manner, and the activated carbon was adsorbed with enzymes, colored substances, and products having a large molecular weight, and the activated carbon was filtered off to remove them. The filtrate flowed into a column containing activated carbon. Water was passed through the column to elute inorganic salts and monosaccharides. Next, a 40% ethyl alcohol / 60% water mixture was poured to elute oligosaccharides. From 600 g of the saccharified solution, 5.3 g of oligosaccharide was obtained. Oligosaccharides contained acidic and neutral sugars.

陰イオン交換樹脂(Dowex IX2)を0.1M酢酸水溶液で平衡化し,酢酸型にしてカラムに詰めた。一方,オリゴ糖の水溶液をNaOHでpH8〜9に調整し,1時間放置してラクトン環を開環した。これをカラムに流入した。カラムに0.1M酢酸水溶液を流して中性糖を溶出させた。つぎに,2M酢酸水溶液を流して酸性糖を溶出させた。酸性糖溶液をNaOHで中和し,電気透析を行い,凍結乾燥した。凍結乾燥した試料の主成分は,キシロース4量体(X4)にヘキセンウロン酸1つ(Δ)が結合した5量体の酸性糖オリゴマー(Δ−X4)であった。   Anion exchange resin (Dowex IX2) was equilibrated with 0.1 M aqueous acetic acid solution, converted into acetic acid form, and packed in a column. On the other hand, the aqueous solution of oligosaccharide was adjusted to pH 8-9 with NaOH and allowed to stand for 1 hour to open the lactone ring. This flowed into the column. Neutral sugars were eluted by flowing 0.1 M acetic acid aqueous solution through the column. Next, 2M acetic acid aqueous solution was flowed to elute the acidic sugar. The acidic sugar solution was neutralized with NaOH, electrodialyzed, and lyophilized. The main component of the freeze-dried sample was a pentamer acidic sugar oligomer (Δ-X4) in which one hexeneuronic acid (Δ) was bound to xylose tetramer (X4).

2.酵素液の調整
酵素の調製には6種の微生物を用いた。Irpex lacteus,Chlorosplenium aeruginosum,Merulius tremellosus,Coriolus pubescens,Coriolus versicolor は,1%広葉樹キシランを炭素源とする液体培地で25℃,7日間液体培養し,Aspergillus niger は2%キシランを含む培地で35℃,24時間培養した。それぞれの培養液をろ過し,ろ液を菌体外酵素とし,得られた菌体を破砕後,0.1M酢酸緩衝液(pH5.0)で抽出した。この酵素は粗製酵素として使用した。この酵素中には,α―グルクロニダーゼ,β―キシロシダーゼ,およびβ―キシラナーゼ含まれていた。この粗製酵素からイオン交換クロマトグラフィー及びゲルクロマトグラフィーにより精製α―グルクロニダーゼを得た。
3.分析法
酵素反応生成物は糖質の蛍光標識電気泳動法(FACE)で分析した。
2. Preparation of enzyme solution Six types of microorganisms were used for enzyme preparation. Irpex lacteus, Chlorosplenium aeruginosum, Merulius tremellosus, Coriolus pubescens, Coriolus versicolor were liquid cultured in a liquid medium containing 1% broad-leaved xylan at 25 ° C. for 7 days, and Aspergillus niger was cultured in a medium containing 2% xylan at 35 ° C. Cultured for 24 hours. Each culture solution was filtered, the filtrate was used as an extracellular enzyme, and the obtained cells were disrupted and extracted with 0.1 M acetate buffer (pH 5.0). This enzyme was used as a crude enzyme. This enzyme contained α-glucuronidase, β-xylosidase, and β-xylanase. From this crude enzyme, purified α-glucuronidase was obtained by ion exchange chromatography and gel chromatography.
3. Analysis Method Enzyme reaction products were analyzed by carbohydrate fluorescent labeling electrophoresis (FACE).

実施例1、2
LOKPから取り出したΔ−X4の2mM 溶液50μl に,pH5の酢酸緩衝液20μl,菌体内酵素液30 μlを加え,40℃で24時間反応させた。酵素反応生成物は糖質の蛍光標識電気泳動法(FACE)で分析した。
Aspergillus niger、Chlorosplenium aeruginosumが生産した粗製酵素は,Δ−X4に対して活性を示した。結果について表1に示した。
Examples 1 and 2
To 50 μl of a 2 mM solution of Δ-X4 taken out from LOKP, 20 μl of pH 5 acetate buffer and 30 μl of intracellular enzyme solution were added and reacted at 40 ° C. for 24 hours. Enzyme reaction products were analyzed by carbohydrate fluorescent labeling electrophoresis (FACE).
The crude enzyme produced by Aspergillus niger and Chlorosplenium aeruginosum showed activity against Δ-X4. The results are shown in Table 1.

比較例1〜4
実施例1、2の微生物の代わりに、Irpex lacteus 、Coriolus pubescens 、Coriolus versicolor 、Merulius tremellosus から生産した粗製酵素を、同様にLOKPから取り出したΔ−X4と反応させた。結果について表1に示した。
Comparative Examples 1-4
In place of the microorganisms of Examples 1 and 2, a crude enzyme produced from Irpex lacteus, Coriolus pubescens, Coriolus versicolor, Merulius tremellosus was reacted with Δ-X4 similarly extracted from LOKP. The results are shown in Table 1.

Figure 2006219767
各酵素のΔ−X4のキシロース4量体とヘキセンウロン酸1つの結合部位を切断する力
+:切断される −:切断されない
Figure 2006219767
Ability to cleave the binding site of one enzyme Δ-X4 xylose tetramer and hexeneuronic acid
+: Disconnected-: Not disconnected

すなわち、Aspergillus nigerおよびChlorosplenium aeruginosumの菌体内酵素は、Δ−X4のキシロース4量体とヘキセンウロン酸1つの結合部位を切り、ヘキセンウロン酸を除去することができた。その結果、キシロース4量体(X4)が生成した。X4の結合はβ―キシロシダーゼとβ―キシラナーゼによって容易に切れ,キシロースを生成した。Irpex lacteus、Coriolus pubescens、Coriolus versicolor、Merulius tremellosusの菌体内酵素は、キシロース4量体とヘキセンウロン酸1つの結合部位を切ることはできなかった。   That is, intracellular enzymes of Aspergillus niger and Chlorosplenium aeruginosum were able to cut the binding site of Δ-X4 xylose tetramer and hexeneuronic acid and remove hexeneuronic acid. As a result, xylose tetramer (X4) was produced. X4 binding was easily broken by β-xylosidase and β-xylanase to produce xylose. The intracellular enzymes of Irpex lacteus, Coriolus pubescens, Coriolus versicolor, and Merulius tremellosus were unable to cut the binding site of xylose tetramer and hexeneuronic acid.

実施例3〜5
次に、広葉樹パルプの実施例について記す。各薬品の使用量は絶乾パルプ当たりの重量%で示し、過酸化水素の使用量は100%換算である。使用したパルプは、クラフト蒸解−酸素脱リグニン後のL材パルプAを用いた。また、分析評価は下記の方法によった。
Examples 3-5
Next, examples of hardwood pulp will be described. The amount of each chemical used is indicated by weight% per dry pulp, and the amount of hydrogen peroxide used is 100% equivalent. The pulp used was L-wood pulp A after kraft cooking-oxygen delignification. Moreover, the analysis evaluation was based on the following method.

パルプ種
A;ハンター白色度 50.1%、K価 6.64、粘度 28.9mPa・s 、HexA:39.8μmol/g
・白色度:JIS−P8123(ハンター白色度法)
・K価 :TAPPI K価法
・粘度 :J.TAPPI No.44法
・HexA量:絶乾量1gのパルプを、パルプ濃度1%に希釈し、蟻酸にてpH3.0に調製後90℃−240分加熱して、HexAを2−フランカルボン酸と5−ホルミル−2−フランカルボン酸に加水分解する。冷却後パルプと水に分離し、水中の2−フランカルボン酸と5−ホルミル−2−フランカルボン酸を液クロにより、UV265nmの検出器を用いて定量し、その合算をHexA量とした。
・褪色テスト:85℃−65%RH、24時間
・PC価:褪色度の度合いの尺度
PC=100(褪色度のK/S−褪色前のK/S)
K/S=(1―白色度)2/(2白色度)
Pulp type A: Hunter whiteness 50.1%, K value 6.64, viscosity 28.9 mPa · s, Hex A: 39.8 μmol / g
・ Whiteness: JIS-P8123 (Hunter whiteness method)
-K value: TAPPI K value method-Viscosity: J.P. TAPPI No. Method 44-Amount of HexA: Pulp having an absolute dry amount of 1 g was diluted to a pulp concentration of 1%, adjusted to pH 3.0 with formic acid and then heated at 90 ° C for 240 minutes to convert HexA to 2-furancarboxylic acid and 5- Hydrolyzes to formyl-2-furancarboxylic acid. After cooling, it was separated into pulp and water, and 2-furancarboxylic acid and 5-formyl-2-furancarboxylic acid in water were quantified by liquid chromatography using a UV265 nm detector, and the total was taken as the amount of HexA.
-Fading test: 85 ° C-65% RH, 24 hours-PC value: A measure of the degree of fading
PC = 100 (K / S for fading-K / S before fading)
K / S = (1-whiteness) 2 / (2 whiteness)

クラフト蒸解−酸素脱リグニン後のL材パルプA20gにAspergillus nigerが生産した粗酵素を,10ユニット、20ユニット、30ユニット添加し、パルプ濃度10%、pH5、温度40℃の条件で180分処理した。反応終了後、冷水にてパルプ濃度2.5%に希釈し、パルプ濃度20%まで脱水して酵素処理パルプを得た。結果を表2に示した。   10 units, 20 units and 30 units of crude enzyme produced by Aspergillus niger were added to 20 g of L-wood pulp A after kraft cooking-oxygen delignification and treated for 180 minutes under the conditions of pulp concentration 10%, pH 5 and temperature 40 ° C. . After completion of the reaction, it was diluted with cold water to a pulp concentration of 2.5% and dehydrated to a pulp concentration of 20% to obtain an enzyme-treated pulp. The results are shown in Table 2.

実施例6
Aspergillus nigerが生産した粗製酵素に別途精製したα−グルクロニダーゼを20ユニット添加した以外は実施例3と同様に行った。結果を表2に示した。
Example 6
The same procedure as in Example 3 was performed except that 20 units of separately purified α-glucuronidase was added to the crude enzyme produced by Aspergillus niger. The results are shown in Table 2.

比較例5
実施例3において酵素を添加しかった以外は同様に処理した。結果を表2に示した。
Comparative Example 5
The same treatment was carried out except that the enzyme was added in Example 3. The results are shown in Table 2.

Figure 2006219767
Figure 2006219767

すなわち、未晒パルプに本発明の酵素を添加することにより、HexAを除去できた。さらに、実施例6に示したように、実施例3の粗酵素にAspergillus nigerが生産した酵素を精製して得たα−グルクロニダーゼを添加・混合して使用したところ、同一の酵素ユニットで大幅にHexAを除去できた。   That is, HexA could be removed by adding the enzyme of the present invention to unbleached pulp. Further, as shown in Example 6, when α-glucuronidase obtained by purifying the enzyme produced by Aspergillus niger was added to and mixed with the crude enzyme of Example 3, it was greatly reduced in the same enzyme unit. HexA could be removed.

実施例7
クラフト蒸解後酸素漂白を行ったパルプAを用い、初段に酵素処理を導入したG−D−Eop−Dの漂白シーケンスによる漂白を行った。酵素はAspergillus nigerが生産した粗酵素を使用した。
G(酵素処理):PC10%、pH5、40℃、180分 酵素:100ユニット
初段D:PC10%、60℃、30分、ClO/0.9%
Eop:PC10%、60℃、90分、NaOH/0.8%、O/0.15%
0.3%
D:PC10%、70℃、120分、ClO/0.4%
洗浄条件:各段の反応終了後、パルプ濃度2.5%に希釈し、パルプ濃度20%に脱水し、次段に移行した。結果を表3に記した。
Example 7
Using pulp A that had been subjected to oxygen bleaching after kraft cooking, bleaching was performed by a bleaching sequence of GD-Eop-D in which enzyme treatment was introduced in the first stage. The enzyme used was a crude enzyme produced by Aspergillus niger.
G (enzyme treatment): PC 10%, pH 5, 40 ° C., 180 minutes Enzyme: 100 units First stage D: PC 10%, 60 ° C., 30 minutes, ClO 2 /0.9%
Eop: PC 10%, 60 ° C., 90 minutes, NaOH / 0.8%, O 2 /0.15%
H 2 O 2 0.3%
D: PC 10%, 70 ° C., 120 minutes, ClO 2 /0.4%
Washing conditions: After completion of the reaction at each stage, the pulp was diluted to a pulp concentration of 2.5%, dehydrated to a pulp concentration of 20%, and transferred to the next stage. The results are shown in Table 3.

実施例8
D−Eop−G−Dの漂白シーケンスにおいて、漂白段の中間に酵素処理を導入した以外実施例7と同様に行った。結果を表3に記した。
Example 8
In the bleaching sequence of D-Eop-GD, the same procedure as in Example 7 was performed except that an enzyme treatment was introduced in the middle of the bleaching stage. The results are shown in Table 3.

実施例9
D−Eop−D−Gの漂白シーケンスにおいて、漂白段の最終段に酵素処理を導入した以外実施例7と同様に行った。結果を表3に記した。
Example 9
In the bleaching sequence of D-Eop-DG, the same procedure as in Example 7 was performed except that the enzyme treatment was introduced into the final stage of the bleaching stage. The results are shown in Table 3.

比較例6
酵素処理を行わない以外、実施例7と同様に行った。結果を表3に記した。
Comparative Example 6
It carried out like Example 7 except not performing an enzyme treatment. The results are shown in Table 3.

Figure 2006219767
Figure 2006219767

すなわち、二酸化塩素と過酸化水素を使用した漂白シーケンスの中に酵素処理を導入することにより、完成パルプで問題となっている褪色度を改善できた。   In other words, by introducing an enzyme treatment into the bleaching sequence using chlorine dioxide and hydrogen peroxide, the discoloration that was a problem in the finished pulp could be improved.

実施例10
クラフト蒸解後酸素漂白を行ったパルプAを用い、初段に酵素処理を導入したG−Z−E−Pの漂白シーケンスによる漂白を行った。酵素はAspergillus nigerが生産した粗製酵素を使用した。
G(酵素処理):PC10%、pH5、40℃、180分 酵素:100ユニット
初段Z:PC10%、60℃、3分、O3/0.5%
E:PC10%、60℃、90分、NaOH/0.8%
P:PC10%、90℃、120分、H/1.5%
洗浄条件:各段の反応終了後、パルプ濃度2.5%に希釈し、パルプ濃度20%に脱水した。
その結果、白色度86.3%、Kappa価0.7、HexA量2.9μmol/g、PC価1.3のパルプを得た。
Example 10
Using pulp A which had been subjected to oxygen bleaching after kraft cooking, bleaching was performed according to a bleaching sequence of GZE-P in which enzyme treatment was introduced in the first stage. The enzyme used was a crude enzyme produced by Aspergillus niger.
G (enzyme treatment): PC 10%, pH 5, 40 ° C., 180 minutes Enzyme: 100 unit first stage Z: PC 10%, 60 ° C., 3 minutes, O 3 /0.5%
E: PC 10%, 60 ° C., 90 minutes, NaOH / 0.8%
P: PC 10%, 90 ° C., 120 minutes, H 2 O 2 /1.5%
Washing conditions: After completion of the reaction in each stage, the pulp was diluted to a pulp concentration of 2.5% and dehydrated to a pulp concentration of 20%.
As a result, a pulp having whiteness of 86.3%, Kappa number of 0.7, HexA amount of 2.9 μmol / g, and PC number of 1.3 was obtained.

比較例11
酵素を添加しない他は、実施例10と同様に行った。その結果、白色度84.7%、Kappa価2.3、HexA量11.4μmol/g、PC価 3.3のパルプを得た。
実施例10、比較例11のように、TCF漂白においても、酵素を導入することにより、褪色性に問題のない完成パルプを得た。
Comparative Example 11
The procedure was the same as Example 10 except that no enzyme was added. As a result, a pulp having a whiteness of 84.7%, a Kappa number of 2.3, a HexA amount of 11.4 μmol / g, and a PC number of 3.3 was obtained.
As in Example 10 and Comparative Example 11, even in TCF bleaching, a finished pulp having no problem with fading was obtained by introducing an enzyme.

Claims (13)

製紙用化学パルプ中の不飽和ウロン酸を除去する方法において、グルクロニダーゼを添加することを特徴とするパルプ中の不飽和ウロン酸の除去方法。   A method for removing unsaturated uronic acid in pulp, wherein glucuronidase is added in the method for removing unsaturated uronic acid in chemical pulp for papermaking. グルクロニダーゼがキシロシダーゼ又はキシラナーゼを含有する請求項1記載の方法。   The method of claim 1, wherein the glucuronidase contains xylosidase or xylanase. グルクロニダーゼがα−グルクロニダーゼである請求項1又は2記載の方法   The method according to claim 1 or 2, wherein the glucuronidase is α-glucuronidase. 不飽和ウロン酸がヘキセンウロン酸である請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the unsaturated uronic acid is hexeneuronic acid. グルクロニダーゼが担子菌又は糸状菌から生産される請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the glucuronidase is produced from a basidiomycete or a filamentous fungus. キシロシダーゼ又はキシラナーゼが担子菌又は糸状菌から生産される請求項2記載の方法。   The method according to claim 2, wherein the xylosidase or xylanase is produced from a basidiomycete or a filamentous fungus. 担子菌がChlorosplenium属である請求項5又は6記載の方法。   The method according to claim 5 or 6, wherein the basidiomycete is Chlorosplenium genus. 糸状菌がAspergillus属である請求項5又は6記載の方法。   The method according to claim 5 or 6, wherein the filamentous fungus is Aspergillus. Chlorosplenium属がChlorosplenium aeruginosumである請求項7記載の方法。   The method according to claim 7, wherein the genus Chlorosplenium is Chlorosplenium aeruginosum. Aspergillus属がAspergillus nigerである請求項8記載の方法。   The method according to claim 8, wherein the genus Aspergillus is Aspergillus niger. キシランを含有する培地で生産する請求項5〜10記載の方法。   The method of Claims 5-10 produced in the culture medium containing a xylan. 生産されたグルクロニダーゼを精製しないでパルプに添加する請求項5〜10記載の方法。   The method according to claims 5 to 10, wherein the produced glucuronidase is added to the pulp without purification. 酸素処理後、漂白処理工程間又は漂白処理後のパルプにグルクロニダーゼを添加する請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein glucuronidase is added to the pulp after the oxygen treatment, between the bleaching steps or after the bleaching treatment.
JP2005032317A 2005-02-08 2005-02-08 Method for removing unsaturated uronic acid in chemical pulp for papermaking Pending JP2006219767A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005032317A JP2006219767A (en) 2005-02-08 2005-02-08 Method for removing unsaturated uronic acid in chemical pulp for papermaking
EP06002054A EP1688535A1 (en) 2005-02-08 2006-02-01 Method for removing unsaturated uronic acid in chemical pulp for papermaking
US11/347,324 US20060177921A1 (en) 2005-02-08 2006-02-06 Method for removing unsaturated uronic acid in chemical pulp for papermaking
CA002535519A CA2535519A1 (en) 2005-02-08 2006-02-07 Method for removing unsaturated uronic acid in chemical pulp for papermaking
BRPI0600247-1A BRPI0600247A (en) 2005-02-08 2006-02-07 chemical pulp unsaturated uranic acid removal process for papermaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032317A JP2006219767A (en) 2005-02-08 2005-02-08 Method for removing unsaturated uronic acid in chemical pulp for papermaking

Publications (2)

Publication Number Publication Date
JP2006219767A true JP2006219767A (en) 2006-08-24
JP2006219767A5 JP2006219767A5 (en) 2008-03-06

Family

ID=36283941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032317A Pending JP2006219767A (en) 2005-02-08 2005-02-08 Method for removing unsaturated uronic acid in chemical pulp for papermaking

Country Status (5)

Country Link
US (1) US20060177921A1 (en)
EP (1) EP1688535A1 (en)
JP (1) JP2006219767A (en)
BR (1) BRPI0600247A (en)
CA (1) CA2535519A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266798A (en) * 2007-04-16 2008-11-06 Oji Paper Co Ltd Method for measuring hexenuronic acid content in bleached pulp, method for producing bleached pulp, and method for producing paper
JP2010094124A (en) * 2008-09-17 2010-04-30 Univ Of Tsukuba Hexenuronic acid-specific releasing enzyme and bacterium producing the same
JP2022549123A (en) * 2020-08-07 2022-11-24 斉魯工業大学 Short-Procedure ECF Bleaching Process X/DZP (X/ZDP) for Kraft Wood Pulp

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269102A (en) * 1989-01-19 1990-11-02 Akzo Nv Method for separating delta4-unsaturated uronic acid from glycosaminoglycan
JPH05500907A (en) * 1990-07-24 1993-02-25 ギスト ブロカデス ナムローゼ フェンノートシャップ Cloning and expression of xylanase genes from fungi
JPH05247865A (en) * 1992-03-06 1993-09-24 Jujo Paper Co Ltd Production of bleached pulp
JPH07501587A (en) * 1991-12-05 1995-02-16 ヴァルティオン・テクニッリネン・トゥトキムスケスクス Cellulose pulp processing method and enzyme preparation
JPH09504703A (en) * 1994-08-26 1997-05-13 ギスト ブロカデス ベスローテン フェンノートシャップ Arabinoxylan degrading enzyme
JP2000220087A (en) * 1999-01-22 2000-08-08 Oji Paper Co Ltd Enzymatic treatment for paper pulp
JP2000282384A (en) * 1999-03-31 2000-10-10 Oji Paper Co Ltd Production of bleached pulp
JP2002345472A (en) * 2001-05-11 2002-12-03 Oji Paper Co Ltd New hexene uronidase, gene encoding the same and use thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837515A (en) * 1990-05-16 1998-11-17 Alko-Yhtiot Oy Enzyme preparations and methods for their production
AU7990391A (en) * 1990-06-08 1991-12-31 Valtion Teknillinen Tutkimuskeskus Beta -xylanase preparation, process for the preparation thereof and its use in pulp bleaching
FI904214A (en) * 1990-08-27 1992-02-28 Valtion Teknillinen HYDROLYSERINGSFOERFARANDE FOER HEMICELLULOSA.
EP0628080A1 (en) * 1992-12-24 1994-12-14 Gist-Brocades N.V. Cloning and expression of xylanase b
FI95607C (en) * 1994-06-03 1996-02-26 Valtion Teknillinen Process and enzyme preparations for treating cellulose pulp
US7816129B2 (en) * 1994-07-29 2010-10-19 Ab Enzymes Gmbh Production and secretion of proteins of bacterial origin in filamentous fungi

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02269102A (en) * 1989-01-19 1990-11-02 Akzo Nv Method for separating delta4-unsaturated uronic acid from glycosaminoglycan
JPH05500907A (en) * 1990-07-24 1993-02-25 ギスト ブロカデス ナムローゼ フェンノートシャップ Cloning and expression of xylanase genes from fungi
JPH07501587A (en) * 1991-12-05 1995-02-16 ヴァルティオン・テクニッリネン・トゥトキムスケスクス Cellulose pulp processing method and enzyme preparation
JPH05247865A (en) * 1992-03-06 1993-09-24 Jujo Paper Co Ltd Production of bleached pulp
JPH09504703A (en) * 1994-08-26 1997-05-13 ギスト ブロカデス ベスローテン フェンノートシャップ Arabinoxylan degrading enzyme
JP2000220087A (en) * 1999-01-22 2000-08-08 Oji Paper Co Ltd Enzymatic treatment for paper pulp
JP2000282384A (en) * 1999-03-31 2000-10-10 Oji Paper Co Ltd Production of bleached pulp
JP2002345472A (en) * 2001-05-11 2002-12-03 Oji Paper Co Ltd New hexene uronidase, gene encoding the same and use thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266798A (en) * 2007-04-16 2008-11-06 Oji Paper Co Ltd Method for measuring hexenuronic acid content in bleached pulp, method for producing bleached pulp, and method for producing paper
JP2010094124A (en) * 2008-09-17 2010-04-30 Univ Of Tsukuba Hexenuronic acid-specific releasing enzyme and bacterium producing the same
JP2022549123A (en) * 2020-08-07 2022-11-24 斉魯工業大学 Short-Procedure ECF Bleaching Process X/DZP (X/ZDP) for Kraft Wood Pulp
JP7311932B2 (en) 2020-08-07 2023-07-20 斉魯工業大学 Short-Procedure ECF Bleaching Process X/DZP (X/ZDP) for Kraft Wood Pulp

Also Published As

Publication number Publication date
BRPI0600247A (en) 2006-10-03
CA2535519A1 (en) 2006-08-08
US20060177921A1 (en) 2006-08-10
EP1688535A1 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
EP0758378B1 (en) Thermostable xylanases
Du et al. Understanding pulp delignification by laccase–mediator systems through isolation and characterization of lignin–carbohydrate complexes
Yang et al. Use of hemicellulolytic enzymes as one stage in bleaching of kraft pulps
CN100513680C (en) Paper pulp making technology by biological catalytic cracking method
Cadena et al. On hexenuronic acid (HexA) removal and mediator coupling to pulp fiber in the laccase/mediator treatment
CN104342424B (en) For changing and improving fiber oxidation enzymatic compositions and papermaking process and the application of fibre property
JPH0340887A (en) Enzyme-removed lignin for lignocellulosic material
FI109037B (en) Enzymatic treatment of chemical lignocellulosic pulp
FI95607B (en) Process and enzyme preparations for treating cellulose pulp
Garg et al. Biobleaching effect of Streptomyces thermoviolaceus xylanase preparations on birchwood kraft pulp
EP0545958B1 (en) A process for hydrolyzing hemicellulose by enzymes produced by trichoderma reesei
Kaneko et al. Relationship between production of hydroxyl radicals and degradation of wood, crystalline cellulose, and a lignin-related compound or accumulation of oxalic acid in cultures of brown-rot fungi
Singh et al. Environmentally friendly totally chlorine free bleaching of wheat straw pulp using novel cellulase-poor xylanases of wild strains of Coprinellus disseminatus
Christov et al. Enzymatic prebleaching of sulphite pulps
JP2006219767A (en) Method for removing unsaturated uronic acid in chemical pulp for papermaking
GB2248075A (en) Bleaching chemical pulp
Masarin et al. Manganese peroxidase and biomimetic systems applied to in vitro lignin degradation in Eucalyptus grandis milled wood and kraft pulps
Joy et al. Biological delignification of biomass
DE69015294T2 (en) Bleaching wood pulp with enzymes.
Gandla et al. Enzymatic saccharification of lignocellulosic biomass
García-Torreiro et al. Lessons learned from the treatment of organosolv pulp with ligninolytic enzymes and chemical delignification agents
Castro e Silva et al. Decay of Parkia oppositifolia in Amazonia by Pycnoporus sanguineus and potential use for effluent decolorization
JPH07243184A (en) Method for bleaching wood pulp
SEPTININGRUM Studies on Hexenuronosyl Xylooligosaccharide Degrading Enzymes from Paenibacillus species
Sallesa et al. Effect of cellulase-free xylanases from Acrophialophora nainiana and Humicola grisea var. thermoidea on eucalyptus kraft pulp

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026