JP2006219764A - Aerosol generator, apparatus for forming composite structure, and method of forming composite structure - Google Patents
Aerosol generator, apparatus for forming composite structure, and method of forming composite structure Download PDFInfo
- Publication number
- JP2006219764A JP2006219764A JP2006128592A JP2006128592A JP2006219764A JP 2006219764 A JP2006219764 A JP 2006219764A JP 2006128592 A JP2006128592 A JP 2006128592A JP 2006128592 A JP2006128592 A JP 2006128592A JP 2006219764 A JP2006219764 A JP 2006219764A
- Authority
- JP
- Japan
- Prior art keywords
- aerosol
- powder
- fine particles
- composite structure
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は、粉体をガス中に分散させてエアロゾルを発生させるエアロゾル発生装置、エアロゾル発生方法、このエアロゾル発生装置を組み込んだ複合構造物作製装置及び複合構造物作製方法に関する。 The present invention relates to an aerosol generating device, an aerosol generating method for generating an aerosol by dispersing powder in a gas, a composite structure manufacturing device and a composite structure manufacturing method incorporating this aerosol generating device.
近年、粉体をガス中に分散させてエアロゾルを発生させるエアロゾル発生装置が、エアロゾルディポジション法による脆性材料微粒子の常温製膜技術等に利用されている(特許文献1)。 In recent years, an aerosol generator that generates aerosol by dispersing powder in a gas has been used for a room temperature film forming technique of brittle material fine particles by an aerosol deposition method (Patent Document 1).
また、プラズマ中に粉末をキャリヤガスとともに供給し、予め配置されている試料に粉末を蒸着するシステムにおける粉末供給装置として、回転可能な粉末供給盤に形成された溝に、粉末容器から粉末を落とし込む装置が提案されている。(特許文献2) In addition, as a powder supply device in a system for supplying powder into a plasma together with a carrier gas and depositing the powder on a prearranged sample, the powder is dropped from a powder container into a groove formed in a rotatable powder supply board. A device has been proposed. (Patent Document 2)
エアロゾルディポジション法では、基本的に1次粒子が0.1〜5μm程度の脆性材料微粒子をガス中に分散させて得たエアロゾルを基板に亜音速程度の高速で吹き付けて製膜体を得る。ここにおいて、均質な製膜を行うには、エアロゾル中の脆性材料微粒子ができるだけ凝集していない状態で基板に吹き付けられるようにする必要がある。そのために、上記エアロゾル発生装置として、筐体内にセラミック微粒子を収納する容器を設置するとともに、該筐体にガス導入管とエアロゾル導出管を接続し、ガス導入管からのガスによって容器内のセラミック微粒子をエアロゾル化し、このエアロゾルをエアロゾル導出管から取り出すようにしたエアロゾル発生装置が提案されている。(特許文献3) In the aerosol deposition method, basically, an aerosol obtained by dispersing fine particles of brittle material having primary particles of about 0.1 to 5 μm in a gas is sprayed onto a substrate at a high speed of subsonic speed to obtain a film-formed body. Here, in order to perform uniform film formation, it is necessary that the brittle material fine particles in the aerosol be sprayed onto the substrate in a state where they are not aggregated as much as possible. For this purpose, as the aerosol generating device, a container for storing ceramic fine particles is installed in a casing, and a gas introduction pipe and an aerosol lead-out pipe are connected to the casing, and the ceramic fine particles in the container are formed by gas from the gas introduction pipe. An aerosol generating device has been proposed in which the aerosol is converted into an aerosol and the aerosol is taken out from the aerosol lead-out tube. (Patent Document 3)
更に、エアロゾルを安定して発生させるために、ガス導入管とエアロゾル導出管が接続された容器内にセラミック微粒子を収納し、容器を往復動(重力ベクトル方向と直角となる方向)或いは偏心回転させることでガスによる破壊力と振動によってセラミック微粒子をエアロゾル化する提案がなされている。(特許文献4) Furthermore, in order to generate aerosol stably, the ceramic fine particles are stored in a container to which the gas introduction pipe and the aerosol outlet pipe are connected, and the container is reciprocated (direction perpendicular to the gravity vector direction) or eccentrically rotated. Therefore, proposals have been made to aerosolize ceramic fine particles by gas destructive force and vibration. (Patent Document 4)
上述した装置は量産化に適していない。即ち、量産化のためには、長時間エアロゾルを安定して発生させる必要があるが、従来の装置では連続してエアロゾルを発生させることができない。また、一旦装置を止めて微粒子を補給したのでは、均一な濃度でエアロゾルを発生させるのが困難になる。さらには流動性の悪い、もしくは凝集し易い粉体では装置内での詰まりやブリッジングが起こりやすく、粉体搬送の長期安定化が困難である。 The apparatus described above is not suitable for mass production. That is, for mass production, it is necessary to stably generate aerosol for a long time, but the conventional apparatus cannot generate aerosol continuously. Further, once the device is stopped and the fine particles are replenished, it becomes difficult to generate aerosol at a uniform concentration. Furthermore, powders with poor fluidity or easily agglomerate are likely to be clogged or bridging in the apparatus, and it is difficult to stabilize powder transport for a long time.
特に特許文献2に開示された装置は、圧縮ガスによって粉体を攪拌するがエアロゾルとするわけではなく、また攪拌室内の粉体がなくなると作業を中断しなければならない。
また特許文献3では、容器に収納されているセラミック微粒子を使いきってしまうとエアロゾルガスデポジション作業を中断しなければならない。
更に特許文献4でも特許文献3と同様に、容器内のセラミック微粒子を使いきってしまうとエアロゾルガスデポジション作業を中断しなければならない。
In particular, the apparatus disclosed in Patent Document 2 stirs powder with compressed gas, but does not use aerosol, and the operation must be interrupted when the powder in the stirring chamber runs out.
In Patent Document 3, if the ceramic fine particles contained in the container are used up, the aerosol gas deposition operation must be interrupted.
Further, in Patent Document 4, as in Patent Document 3, if the ceramic fine particles in the container are used up, the aerosol gas deposition operation must be interrupted.
また、微粒子が金属酸化物のような場合には、凝集固着性が強く装置内で容易に詰まりやブリッジングを起こす。また、大気と触れることで水分を吸収し、さらに詰まりやブリッジングを起こしやすくしなり、かつエアロゾル化できなくなることがあるが従来技術ではその改善策が示されていない。 In addition, when the fine particles are metal oxides, they have strong cohesive adhesion and easily clog or bridging in the apparatus. In addition, when it comes into contact with the atmosphere, it absorbs moisture, and more easily clogs and bridges, and may not be able to be aerosolized.
本発明は、上記事情に鑑みてなされたものであり、長時間エアロゾルを発生させても、初期状態と同じ濃度で安定してエアロゾルを発生させることができるエアロゾル発生装置とこのエアロゾル発生装置及びその方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an aerosol generator capable of stably generating an aerosol at the same concentration as the initial state even when the aerosol is generated for a long time, the aerosol generator, and its It aims to provide a method.
上記課題を解決すべく第1の発明は、一次粒子が0.1〜5μmの脆性材料の微粒子をガス中に分散させたエアロゾルを基材に向けてノズルより噴出して、前記エアロゾルを前記基材表面に衝突させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる複合構造物作製装置に用いるエアロゾル発生装置であって、このエアロゾル発生装置は微粒子を収容する粉体収容部と、この粉体収容部からの微粒子を定量供給する粉体供給部と、ガスの導入管及びエアロゾルの導出管に直接接続され、前記ガスの導入管からのガスで前記粉体供給部からの微粒子を前記エアロゾルの導出管より導出するエアロゾル化部とを備えた構成とした。
また、第2の発明は、一次粒子が0.1〜5μmの脆性材料の微粒子をガス中に分散させたエアロゾルを基材に向けてノズルより噴出して、前記エアロゾルを前記基材表面に衝突させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる複合構造物作製装置に用いるエアロゾル発生装置であって、このエアロゾル発生装置は微粒子を収容する粉体収容部と、この粉体収容部からの微粒子を搬送する循環式輸送手段である粉体供給部と、ガスの導入管及びエアロゾルの導出管に直接接続され、前記ガスの導入管からのガスで前記粉体供給部からの微粒子を前記エアロゾルの導出管より導出するエアロゾル化部とを備えた構成とした。
In order to solve the above-mentioned problem, the first invention is to spray an aerosol in which fine particles of a brittle material having primary particles of 0.1 to 5 μm are dispersed in a gas toward a base material from a nozzle, and the aerosol is converted into the base. An aerosol generator for use in a composite structure manufacturing apparatus that collides with the surface of a material and forms a structure made of the constituent material of the fine particles on the base material, the aerosol generator being a powder container that contains fine particles And a powder supply unit for quantitatively supplying fine particles from the powder storage unit, and a gas inlet pipe and an aerosol outlet pipe, and the gas from the gas inlet pipe is connected directly to the gas inlet pipe. An aerosol generation unit for extracting fine particles from the aerosol extraction tube was used.
Further, in the second invention, an aerosol in which fine particles of a brittle material having primary particles of 0.1 to 5 μm are dispersed in a gas is jetted from a nozzle toward the substrate, and the aerosol collides with the substrate surface. An aerosol generator for use in a composite structure manufacturing apparatus for forming a structure composed of the constituent material of the fine particles on the base material, the aerosol generator including a powder container for storing fine particles, and the powder A powder supply unit which is a circulating transport means for transporting fine particles from the body containing unit, and a gas inlet pipe and an aerosol outlet pipe are directly connected to each other, and gas from the gas inlet pipe is supplied from the powder supply unit. And an aerosol-generating unit that derives the fine particles from the aerosol lead-out tube.
本発明において、エアロゾルとは、微粒子が気体に分散した状態の固気混合相を指す。エアロゾルデポジション法に使用されるエアロゾルにおいては、微粒子が1次粒子の状態で分散しているものが良いが、凝集粒を含む場合もある。 In the present invention, aerosol refers to a solid-gas mixed phase in which fine particles are dispersed in a gas. In the aerosol used in the aerosol deposition method, fine particles are preferably dispersed in the form of primary particles, but may also contain aggregated particles.
本発明のエアロゾル発生装置の好ましい態様においては、前記粉体供給部、粉体収納部およびエアロゾル化部を真空系内に収納する。
真空系内に収容する第一の理由として、エアロゾルデポジションを行う構造物形成室は微粒子が酸化したり反応するのを防ぐため真空に維持する必要がある。この構造物形成室に繋がるエアロゾル化部、或いはエアロゾル化部に連通する粉体供給部や粉体収納部を大気圧にしておくと、構造物形成室の真空状態を維持することが困難となる。そこで、エアロゾル化部、粉体供給部および粉体収納部を真空系内に収納して、構造物形成室よりは真空度は低いがある程度の減圧雰囲気内にエアロゾル化部、粉体供給部および粉体収納部を配置する。第二の理由として、エアロゾルデポジションによる構造物形成プロセスには純度の高いガスを使用する必要がある。ガスの種類により粉体の搬送速度が異なり、構造物の特性を大きく左右することが解明されている。よって純度の高いガスを使用し常に粉体の搬送の速度を安定させる必要がある。また大気が混入するとコンタミが構造物内に混入するなどの問題が発生することが考えられ、これらを防ぐ必要がある。
このような真空系に配置した粉体収納部に作業を中断することなく微粒子(粉体)を補給するにはロードロック室を付設する。
In a preferred aspect of the aerosol generator of the present invention, the powder supply unit, the powder storage unit, and the aerosol generation unit are stored in a vacuum system.
As a first reason for accommodating in the vacuum system, the structure forming chamber for performing the aerosol deposition needs to be maintained in a vacuum in order to prevent the fine particles from being oxidized or reacted. If the aerosol generating unit connected to the structure forming chamber, or the powder supply unit and the powder storage unit communicating with the aerosol forming unit are kept at atmospheric pressure, it is difficult to maintain the vacuum state of the structure forming chamber. . Therefore, the aerosolization unit, the powder supply unit, and the powder storage unit are housed in a vacuum system, and the aerosolization unit, the powder supply unit, and the Arrange the powder container. As a second reason, it is necessary to use a high-purity gas in the structure formation process by aerosol deposition. It has been elucidated that the conveying speed of the powder differs depending on the type of gas and greatly affects the characteristics of the structure. Therefore, it is necessary to use a high-purity gas and constantly stabilize the powder conveyance speed. In addition, when air is mixed in, problems such as contamination entering the structure may occur, and it is necessary to prevent them.
In order to replenish fine particles (powder) without interrupting the operation of the powder storage unit arranged in such a vacuum system, a load lock chamber is provided.
また、本発明に係る複合構造物作製装置は、上記のエアロゾル発生装置と、エアロゾルを基材に吹き付けるためのノズルを備える。
また、本発明に係るエアロゾル発生方法は、微粒子の補給が可能な粉体収納部から粉体供給部に微粒子を送り込み、この粉体供給部によって所定量の粉体を連続してエアロゾル化部に供給し、エアロゾル化部においてガス中に微粒子が分散したエアロゾルを生成する。
更に、本発明に係る複合構造物作製方法は上記のエアロゾル発生方法で生成せしめたエアロゾルを複合構造物作製装置のノズルに供給し、ノズルからエアロゾルを基材表面に衝突させ、この衝突の衝撃によって前記微粒子を破砕・変形させて接合させ、前記微粒子の構成材料からなる構造物を前記基材上に形成させる。
In addition, a composite structure manufacturing apparatus according to the present invention includes the above-described aerosol generation apparatus and a nozzle for spraying the aerosol onto the base material.
Also, the aerosol generating method according to the present invention feeds fine particles from a powder container capable of replenishing fine particles to a powder supply unit, and a predetermined amount of powder is continuously supplied to the aerosol generation unit by the powder supply unit. Then, an aerosol in which fine particles are dispersed in the gas is generated in the aerosol generation unit.
Further, in the composite structure manufacturing method according to the present invention, the aerosol generated by the above-described aerosol generation method is supplied to the nozzle of the composite structure manufacturing apparatus, and the aerosol is made to collide with the substrate surface from the nozzle. The fine particles are crushed and deformed and joined to form a structure made of the constituent material of the fine particles on the substrate.
本発明によるエアロゾル発生装置を用いることによって、長時間、初期状態と同じ濃度でエアロゾルを発生させることができる。
また、粉体(微粒子)を補給する際にも装置を停止せずに行えるので、エアロゾル発生の条件が変化することなく安定した状態でエアロゾルをノズルに供給することができる。
By using the aerosol generator according to the present invention, it is possible to generate aerosol at the same concentration as the initial state for a long time.
Further, since the apparatus can be performed without stopping the apparatus when replenishing powder (fine particles), the aerosol can be supplied to the nozzle in a stable state without changing the conditions for generating the aerosol.
請求項に記載の装置の使用の場の一つとして考えられるエアロゾルデポジション法は脆性材料などの微粒子をガス中に分散させたエアロゾルをノズルから基材に向けて噴射し、金属やガラス、セラミックスやプラスチックなどの基材に微粒子を衝突させ、この衝突の衝撃により脆性材料微粒子を変形や破砕を起させしめてこれらを接合させ、基材上に微粒子の構成材料からなる構造物をダイレクトで形成させることを特徴としており、特に加熱手段を必要としない常温で構造物が形成可能であり、焼成体同等の機械的強度を保有する構造物を得ることができる。この方法に用いられる装置は、基本的にエアロゾルを発生させるエアロゾル発生器と、エアロゾルを基材に向けて噴射するノズルとからなり、ノズルの開口よりも大きな面積で構造物を作製する場合には、基材とノズルを相対的に移動・揺動させる位置制御手段を有し、減圧下で作製を行う場合には構造物を形成させるチャンバーと真空ポンプを有し、またエアロゾルを発生させるためのガス発生源を有することが一般的である。 The aerosol deposition method considered as one of the places of use of the device according to the claim is a method in which an aerosol in which fine particles such as brittle materials are dispersed in a gas is sprayed from a nozzle toward a base material, and metal, glass, ceramics Particles collide with a substrate such as plastic or plastic, and the impact of this collision causes the particles of brittle material to be deformed or crushed and joined together to directly form a structure composed of the constituent material of the particles on the substrate. In particular, a structure can be formed at room temperature that does not require a heating means, and a structure having mechanical strength equivalent to that of a fired body can be obtained. The apparatus used in this method basically consists of an aerosol generator for generating aerosol and a nozzle for injecting the aerosol toward the base material. When a structure is produced with a larger area than the opening of the nozzle, In addition, it has a position control means that moves and swings the base material and the nozzle relative to each other, and has a chamber and a vacuum pump for forming a structure when producing under reduced pressure, and also generates aerosol It is common to have a gas source.
エアロゾルデポジション法のプロセス温度は常温であり、微粒子材料の融点より十分に低い温度、すなわち数百℃以下で構造物形成が行われるところにひとつの特徴がある。 The process temperature of the aerosol deposition method is room temperature, and one feature is that the structure is formed at a temperature sufficiently lower than the melting point of the particulate material, that is, several hundred degrees C. or less.
また使用される微粒子はセラミックスや半導体などの脆性材料を主体とし、同一材質の微粒子を単独であるいは混合させて用いることができるほか、異種の脆性材料微粒子を混合させたり、複合させて用いることが可能である。また一部金属材料や有機物材料などを脆性材料微粒子に混合させたり、脆性材料微粒子表面にコーティングさせて用いることも可能である。これらの場合でも構造物形成の主となるものは脆性材料である。 In addition, the fine particles used are mainly brittle materials such as ceramics and semiconductors, and fine particles of the same material can be used alone or mixed, and different fine particles of brittle material can be mixed or used in combination. Is possible. Further, it is also possible to mix a part of a metal material or an organic material with brittle material fine particles or to coat the surface of brittle material fine particles. Even in these cases, the main component of structure formation is a brittle material.
この手法によって形成される構造物において、結晶性の脆性材料微粒子を原料として用いる場合、構造物の脆性材料部分は、その結晶子サイズが原料微粒子のそれに比べて小さい多結晶体であり、その結晶は実質的に結晶配向性がない場合が多く、脆性材料結晶同士の界面にはガラス層からなる粒界層が実質的に存在しないと言え、さらに構造物の一部は基材表面に食い込むアンカー層を形成することが多いという特徴がある。 In the structure formed by this method, when crystalline brittle material fine particles are used as a raw material, the brittle material portion of the structure is a polycrystalline body whose crystallite size is smaller than that of the raw material fine particles, and the crystal In many cases, there is substantially no crystal orientation, and it can be said that there is substantially no grain boundary layer consisting of a glass layer at the interface between brittle material crystals, and a part of the structure is an anchor that bites into the substrate surface It is characterized by often forming a layer.
この方法により形成される構造物は、微粒子同士が圧力によりパッキングされ、物理的な付着で形態を保っている状態のいわゆる圧粉体とは明らかに異なり、十分な強度を保有している。 The structure formed by this method clearly has a sufficient strength unlike a so-called green compact in which fine particles are packed by pressure and keeps a form by physical adhesion.
この構造物形成において、脆性材料微粒子が破砕・変形を起していることは、原料として用いる脆性材料微粒子および形成された脆性材料構造物の結晶子サイズX線回折法で測定することにより判断できる。すなわちエアロゾルデポジション法で形成される構造物の結晶子サイズは、原料微粒子の結晶子サイズよりも小さい値を示す。微粒子が破砕や変形をすることで形成されるずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この表面エネルギーが高い活性な新生面が、隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合することにより構造物が形成されるものと考えられる。また微粒子の表面に水酸基が程よく存在する場合では、微粒子の衝突時に微粒子同士や微粒子と構造物との間に生じる局部のずり応力により、メカノケミカルな酸塩基脱水反応が起き、これら同士が接合するということも考えられる。外部からの連続した機械的衝撃力の付加は、これらの現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料構造物が成長するものと考えられる。 In this structure formation, it can be judged that the brittle material fine particles are crushed and deformed by measuring the brittle material fine particles used as a raw material and the crystallite size X-ray diffraction of the formed brittle material structure. . That is, the crystallite size of the structure formed by the aerosol deposition method is smaller than the crystallite size of the raw material fine particles. A new surface in which atoms originally present inside and bonded to other atoms are exposed is formed on the slip surface or fracture surface formed by crushing or deforming fine particles. This active new surface having a high surface energy is considered to be formed by joining the surface of the adjacent brittle material, the new surface of the adjacent brittle material, or the substrate surface. In addition, when hydroxyl groups are present on the surface of the fine particles moderately, a mechanochemical acid-base dehydration reaction occurs due to local shear stress generated between the fine particles and between the fine particles and the structure when the fine particles collide with each other. It can be considered. The addition of continuous mechanical impact force from the outside causes these phenomena to occur continuously, and the progress and densification of joints are performed by repeated deformation and crushing of fine particles, and brittle material structures grow. it is conceivable that.
以下、本発明の実施の形態を、図面により詳細に説明する。図1は、本発明に係るエアロゾル発生装置を組み込んだ複合構造物作製装置の装置図であり、複合構造物作製装置はエアロゾルデポジションを行う構造物形成室10と、この構造物形成室10にエアロゾルを供給するエアロゾル発生装置20からなり、構造物形成室10はポンプ11によって高真空に維持され、また構造物形成室10内にはエアロゾルを噴出する矩形の開口を備えたノズル12と、コンピュータにより上下(Z)、前後左右(XY)に制動できる基板ホルダ13と、この基板ホルダ13に取付けられる基材14が配置され、またノズル12へのエアロゾルの濃度を測定するセンサ15からの信号を外部のフィードバック制御回路16へ送って処理し、エアロゾル発生装置20や搬送用の窒素ガスを充填したガスボンベ30のそれぞれの制御部へ配線17を介して信号が送られ、エアロゾル濃度を制御するとともに基材に衝突するエアロゾルの量を任意量供給するように制御を行う。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an apparatus diagram of a composite structure manufacturing apparatus incorporating an aerosol generating apparatus according to the present invention. The composite structure manufacturing apparatus includes a structure forming chamber 10 for performing aerosol deposition, and a structure forming chamber 10. The structure forming chamber 10 is maintained at a high vacuum by a pump 11 and includes a nozzle 12 having a rectangular opening for ejecting aerosol into the structure forming chamber 10 and a computer. A substrate holder 13 that can be braked vertically (Z), front and rear, left and right (XY), and a base material 14 attached to the substrate holder 13 are arranged, and a signal from a sensor 15 that measures the concentration of aerosol to the nozzle 12 is received. It is sent to an external feedback control circuit 16 for processing, and the aerosol generator 20 and the gas cylinder 30 filled with nitrogen gas for transportation are used. A signal is sent via the line 17 to the control unit of the respectively performs control so that any amount of supply amount of aerosol that impinges on the substrate to control the aerosol concentration.
一方、前記エアロゾル発生装置20は、図2に示すように、セラミックや金属酸化物などの微粒子の補充が可能な粉体収納部21と、この粉体収納部21からの微粒子を定量供給する粉体供給部22と、この粉体供給部22から供給された微粒子をエアロゾル化するエアロゾル化部23とを備える。エアロゾル化部23にはガスの導入管24とエアロゾルの導出管25が接続されている。 On the other hand, as shown in FIG. 2, the aerosol generator 20 includes a powder container 21 capable of replenishing fine particles such as ceramics and metal oxides, and a powder for quantitatively supplying fine particles from the powder container 21. A body supply unit 22 and an aerosolization unit 23 that aerosolizes the fine particles supplied from the powder supply unit 22 are provided. A gas introduction pipe 24 and an aerosol lead-out pipe 25 are connected to the aerosol generating unit 23.
前記粉体供給部22には微粒子の供給量をコントロールする機構を設けることができる。この機構としては図3(a)に示すように、流路の開口26を形成した粉体供給部22の底板にスライド板27を摺動可能に重ね、スライド板27に形成した開口28と開口26との共通する部分で流路を絞る構造が考えられる。また図3(b)に示すように、流路の開口26に円錐形バルブ29を昇降自在に配置する構成も考えられる。 The powder supply unit 22 may be provided with a mechanism for controlling the supply amount of fine particles. As this mechanism, as shown in FIG. 3A, a slide plate 27 is slidably overlapped with a bottom plate of a powder supply unit 22 in which an opening 26 of a flow path is formed, and an opening 28 and an opening formed in the slide plate 27 are formed. A structure is conceivable in which the flow path is narrowed at a portion in common with 26. Further, as shown in FIG. 3 (b), a configuration is conceivable in which a conical valve 29 is disposed in the opening 26 of the flow path so as to be movable up and down.
図4は粉体収納部21の断面図であり、粉体収納部21は前記したように減圧されている。そこで、ロードロック室40を付設している。このロードロック室40と粉体収納部21の間はゲート41で仕切られている。
粉体収納部21内に粉体(微粒子)を供給するには、ゲート41を閉じた状態で、ロードロック室40の蓋体42を開け、内部に粉体(微粒子)を充填し、蓋体42を閉じた後、吸引パイプ43を介してロードロック室40内を粉体収納部21内とほぼ同圧になるまで減圧し、その後、ゲート41を開いて粉体収納部21内に新たな粉体(微粒子)を供給する。この時ゲート41を急激に開くと粉体(微粒子)が短時間で大量に粉体収容部21内に供給され、粉体収容部21の底にある粉体(微粒子)が圧粉され、性状が変化してしまう。これを防止するために、ゲート41の開閉を自動で制御する駆動装置をつけ、低速で開くことで粉体収容部21に供給する粉体(微粒子)の量を微量に調整してやると良い。
FIG. 4 is a cross-sectional view of the powder container 21, and the powder container 21 is decompressed as described above. Therefore, a load lock chamber 40 is attached. The load lock chamber 40 and the powder container 21 are partitioned by a gate 41.
In order to supply the powder (fine particles) into the powder container 21, the lid 42 of the load lock chamber 40 is opened with the gate 41 closed, and the powder (fine particles) is filled therein, and the lid After closing 42, the inside of the load lock chamber 40 is depressurized through the suction pipe 43 until the pressure is almost the same as that in the powder storage unit 21. Supply powder (fine particles). At this time, when the gate 41 is suddenly opened, a large amount of powder (fine particles) is supplied into the powder containing portion 21 in a short time, and the powder (fine particles) at the bottom of the powder containing portion 21 is compacted. Will change. In order to prevent this, a driving device that automatically controls the opening and closing of the gate 41 is attached, and the amount of powder (fine particles) supplied to the powder container 21 is adjusted to a very small amount by opening at low speed.
また、前記粉体供給部22はエアロゾル化部23への微粒子の供給量を調整可能とするため、図5〜図9に示す構造のものが考えられる。
図5に示す粉体供給部22は粉体収納部21とエアロゾル化部23との間に無端ベルト50を配置し、この無端ベルト50に形成した溝51内に粉体収納部21から粉体を供給し無端ベルト50が走行することでエアロゾル化部23へ所定量の粉体を供給するようにしている。尚、無端ベルト50の走行速度を調整する、もしくは溝51の幅や深さの寸法や形状を変えることでエアロゾル化部23への供給量が制御される。
The powder supply unit 22 may have a structure shown in FIGS. 5 to 9 in order to adjust the amount of fine particles supplied to the aerosol-generating unit 23.
The powder supply unit 22 shown in FIG. 5 has an endless belt 50 disposed between the powder storage unit 21 and the aerosol generating unit 23, and the powder from the powder storage unit 21 is placed in a groove 51 formed in the endless belt 50. The endless belt 50 travels to supply a predetermined amount of powder to the aerosol generating unit 23. Note that the supply amount to the aerosol generating unit 23 is controlled by adjusting the traveling speed of the endless belt 50 or changing the width and depth of the groove 51 and the shape thereof.
また、図6に示す粉体供給部22は粉体収納部21とエアロゾル化部23との間に回転テーブル60を配置し、この回転テーブル60の周縁部に形成した切欠き溝61と、この切欠き溝61の外周側面に沿って配置される半環状ガイド62とで形成される矩形溝63内に粉体収納部21から粉体を供給する。この矩形溝63に供給された粉体は回転テーブル60が回転することで、擦切り板64まで搬送される。搬送された溝63内の粉体が擦切り板64によって擦切られエアロゾル化部23へ供給される。尚、回転テーブル60の回転速度調整、もしくは溝63の幅、深さの寸法や形状を変えることでエアロゾル化部23への供給量が制御される。 Further, the powder supply unit 22 shown in FIG. 6 has a rotary table 60 disposed between the powder storage unit 21 and the aerosol-generating unit 23, and a notch groove 61 formed on the peripheral edge of the rotary table 60, Powder is supplied from the powder storage unit 21 into a rectangular groove 63 formed by a semi-annular guide 62 disposed along the outer peripheral side surface of the notch groove 61. The powder supplied to the rectangular groove 63 is conveyed to the scraping plate 64 as the rotary table 60 rotates. The transported powder in the groove 63 is scraped off by the scraping plate 64 and supplied to the aerosol generating unit 23. Note that the supply amount to the aerosol generating unit 23 is controlled by adjusting the rotation speed of the rotary table 60 or changing the width and depth dimensions and shape of the groove 63.
図7に示す粉体供給部22は、粉体収容部21とエアロゾル化部23との間に一定の隙間を持たせた回転テーブル80を配置し、粉体収容部21に収容された粉体が、この分体収容部21と回転テーブル80の間の隙間を回転テーブル80が回転し通過することにより擦切られ、回転テーブル80上に厚み均一に敷き詰められた状態で供給される。回転テーブル80が回転することで回転テーブル上に敷き詰められた粉体は、エアロゾル化部23まで搬送される。エアロゾル化部23は回転テーブルとの間に一定の隙間を保持しており、この隙間を粉体が通過してエアロゾル化部内部に搬送される。 The powder supply unit 22 shown in FIG. 7 has a rotary table 80 provided with a certain gap between the powder storage unit 21 and the aerosolization unit 23, and the powder stored in the powder storage unit 21. However, the rotary table 80 rotates and passes through the gap between the split body accommodating portion 21 and the rotary table 80, and is supplied in a state where the rotary table 80 is uniformly spread over the rotary table 80. The powder spread on the rotary table by the rotation of the rotary table 80 is conveyed to the aerosolization unit 23. The aerosol generating unit 23 maintains a certain gap with the rotary table, and the powder passes through this gap and is conveyed into the aerosol generating unit.
次にエアロゾル化部内部を図8に示す。エアロゾル化部と回転テーブルの隙間を通過してエアロゾル化部内部に導入された粉体82はガス導入管24より噴出したガスで拡散、解砕されエアロゾル化される。さらに掻き出し機構81をガス導入管24とエアロゾル導入管の間に掻き出し機構81を設けることができる。これにより固着・凝集してエアロゾル化されない粉体を確実に掻き出しエアロゾル化の効率を上げることが可能となる。尚、回転テーブル80の回転速度調整もしくは粉体収容部21と回転テーブル80との隙間間隔を変えることでエアロゾル化部23への供給量が制御される。さらに掻き出し機構81の大きさや形状を変えることによりエアロゾル発生器の濃度を制御することが可能である。 Next, the inside of the aerosol-generating part is shown in FIG. The powder 82 that has passed through the gap between the aerosolization part and the rotary table and is introduced into the aerosolization part is diffused and crushed by the gas ejected from the gas introduction pipe 24 to be aerosolized. Further, the scraping mechanism 81 can be provided between the gas introduction pipe 24 and the aerosol introduction pipe. As a result, it is possible to reliably scrape out the powder that is fixed and agglomerated and is not aerosolized, thereby increasing the efficiency of aerosolization. The amount supplied to the aerosol generating unit 23 is controlled by adjusting the rotational speed of the rotary table 80 or changing the gap interval between the powder container 21 and the rotary table 80. Further, the concentration of the aerosol generator can be controlled by changing the size and shape of the scraping mechanism 81.
図9に示す粉体供給部22は粉体収納部91とエアロゾル化手段94との間には循環式の輸送手段92として回転テーブルを配置している。
粉体収容部91内の粉体は、粉体の自重や攪拌体を使用したり、粉体収容部91に振動を与える等を利用して、回転テーブル92上にある溝93へ粉体を供給する。
具体的には、回転テーブル92の水平な上面に円環状の溝93が形成され、粉体収納部91内に粉体が供給され、次いでスキージ板等によって溝93から上方に溢れた粉体が取り除かれ、この状態で回転テーブル92の回転によって溝93内の粉体はエアロゾル化手段94に送られ、エアロゾルとなってノズルへ供給される。
前記溝93の大きさを変更したり駆動手段にて回転速度を変更したりすることによって、粉体輸送量を調節することが可能である。
In the powder supply unit 22 shown in FIG. 9, a rotary table is disposed between the powder storage unit 91 and the aerosolization unit 94 as a circulating transport unit 92.
For the powder in the powder container 91, the powder is put into the groove 93 on the rotary table 92 by using the weight of the powder, a stirring member, or applying vibration to the powder container 91. Supply.
Specifically, an annular groove 93 is formed on the horizontal upper surface of the rotary table 92, the powder is supplied into the powder container 91, and then the powder overflowed upward from the groove 93 by a squeegee plate or the like. In this state, the powder in the groove 93 is sent to the aerosolization means 94 by the rotation of the rotary table 92, and is supplied to the nozzle as aerosol.
It is possible to adjust the amount of powder transport by changing the size of the groove 93 or changing the rotational speed by the driving means.
10…構造物形成室、11…ポンプ、12…ノズル、13…基板ホルダ、14…基材、15…センサ、16…フィードバック制御回路、17…配線、20…エアロゾル発生装置、21…粉体収納部、22…粉体供給部、23…エアロゾル化部、24…ガスの導入管、25…エアロゾルの導出管、26…流路の開口、27…スライド板、28…開口、29…円錐形バルブ、40…ロードロック室、41…ゲート、42…蓋体、43…吸引パイプ、50…無端ベルト、51…溝、60…回転テーブル、61…溝、62…擦切り板、80…回転テーブル、81…解砕機構、82…粉体、91…粉体収納部、92…回転テーブル、93…溝,94…エアロゾル化手段。 DESCRIPTION OF SYMBOLS 10 ... Structure formation chamber, 11 ... Pump, 12 ... Nozzle, 13 ... Substrate holder, 14 ... Base material, 15 ... Sensor, 16 ... Feedback control circuit, 17 ... Wiring, 20 ... Aerosol generator, 21 ... Powder storage , 22 ... powder supply unit, 23 ... aerosolization unit, 24 ... gas introduction pipe, 25 ... aerosol outlet pipe, 26 ... channel opening, 27 ... slide plate, 28 ... opening, 29 ... conical valve , 40 ... Load lock chamber, 41 ... Gate, 42 ... Lid, 43 ... Suction pipe, 50 ... Endless belt, 51 ... Groove, 60 ... Rotary table, 61 ... Groove, 62 ... Scraping plate, 80 ... Rotary table, 81 ... Crushing mechanism, 82 ... powder, 91 ... powder storage unit, 92 ... rotary table, 93 ... groove, 94 ... aerosolization means.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006128592A JP2006219764A (en) | 2003-09-17 | 2006-05-02 | Aerosol generator, apparatus for forming composite structure, and method of forming composite structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003324935 | 2003-09-17 | ||
JP2006128592A JP2006219764A (en) | 2003-09-17 | 2006-05-02 | Aerosol generator, apparatus for forming composite structure, and method of forming composite structure |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004197293A Division JP3825455B2 (en) | 2003-09-17 | 2004-07-02 | Aerosol generator, composite structure manufacturing apparatus, and composite structure manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006219764A true JP2006219764A (en) | 2006-08-24 |
Family
ID=36982274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006128592A Pending JP2006219764A (en) | 2003-09-17 | 2006-05-02 | Aerosol generator, apparatus for forming composite structure, and method of forming composite structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006219764A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009113463A1 (en) * | 2008-03-10 | 2009-09-17 | Toto株式会社 | Composite structure forming method, prepared particles, and composite structure forming system |
JP2020164935A (en) * | 2019-03-29 | 2020-10-08 | 日産自動車株式会社 | Film deposition method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05293761A (en) * | 1992-04-16 | 1993-11-09 | Sony Corp | Powdery material feeding device |
JPH081516A (en) * | 1994-06-24 | 1996-01-09 | Alps Eng:Kk | Abrasive supply device |
JPH11170173A (en) * | 1997-12-15 | 1999-06-29 | Sony Corp | Particulate material supply device |
JP2003166076A (en) * | 2001-11-29 | 2003-06-13 | National Institute Of Advanced Industrial & Technology | Method and apparatus for forming composite structure |
-
2006
- 2006-05-02 JP JP2006128592A patent/JP2006219764A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05293761A (en) * | 1992-04-16 | 1993-11-09 | Sony Corp | Powdery material feeding device |
JPH081516A (en) * | 1994-06-24 | 1996-01-09 | Alps Eng:Kk | Abrasive supply device |
JPH11170173A (en) * | 1997-12-15 | 1999-06-29 | Sony Corp | Particulate material supply device |
JP2003166076A (en) * | 2001-11-29 | 2003-06-13 | National Institute Of Advanced Industrial & Technology | Method and apparatus for forming composite structure |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009113463A1 (en) * | 2008-03-10 | 2009-09-17 | Toto株式会社 | Composite structure forming method, prepared particles, and composite structure forming system |
JP2009242942A (en) * | 2008-03-10 | 2009-10-22 | Toto Ltd | Composite structure forming method, prepared particle, and composite structure forming system |
US8241703B2 (en) | 2008-03-10 | 2012-08-14 | Toto Ltd. | Pre-formed controlled particle formed of fine particles non-chemically bonded together, composite structure formation method involving controlled particles, and composite structure formation system involving controlled particle |
US9404186B2 (en) | 2008-03-10 | 2016-08-02 | Toto Ltd. | Pre-formed controlled particles formed of fine particles non-chemically bonded together, pre-formed controlled particles for use in an aerosol deposition method, and composite structure formation system involving controlled particles |
US9573149B2 (en) | 2008-03-10 | 2017-02-21 | Toto Ltd. | Composite structure formation method, pre-formed controlled particles formed of fine particles non-chemically bonded together, and composite structure formation system involving controlled particles |
US10046344B2 (en) | 2008-03-10 | 2018-08-14 | Toto Ltd. | Composite structure formation method using pre-formed controlled particles formed of fine particles non-chemically bonded together |
JP2020164935A (en) * | 2019-03-29 | 2020-10-08 | 日産自動車株式会社 | Film deposition method |
JP7255291B2 (en) | 2019-03-29 | 2023-04-11 | 日産自動車株式会社 | Deposition method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BRPI0715565A2 (en) | Methods and apparatus for making coatings using electrostatic spraying | |
JPH08158033A (en) | Production of fine-structure thick film material and device therefor | |
JP2007231390A (en) | Aerosol generation apparatus and method, and deposition apparatus and method using the same | |
JP2006200013A (en) | Film deposition method and film deposition system | |
JP2009028709A (en) | Aerosol-generating apparatus and aerosol-generating method | |
JP3825455B2 (en) | Aerosol generator, composite structure manufacturing apparatus, and composite structure manufacturing method | |
JP3809860B2 (en) | Composite structure manufacturing method and composite structure manufacturing apparatus | |
JP2006219764A (en) | Aerosol generator, apparatus for forming composite structure, and method of forming composite structure | |
KR20010052900A (en) | Method and device for producing a powder aerosol and use thereof | |
JP2008308716A (en) | Aerosol generator and film deposition apparatus | |
JP4115145B2 (en) | Aerosol generator and composite structure manufacturing apparatus including the same | |
JPH05186864A (en) | Powder feeder | |
JP4526162B2 (en) | Ceramic structure manufacturing equipment | |
JP4075716B2 (en) | Composite structure manufacturing equipment | |
JP4269728B2 (en) | Composite structure manufacturing equipment | |
JP4063187B2 (en) | Aerosol generator and composite structure manufacturing apparatus including the same | |
JP4075719B2 (en) | Aerosol generator and composite structure manufacturing device | |
JP4866088B2 (en) | Deposition method | |
JP2006233334A (en) | System for forming composite structure and forming method therefor | |
JP4736022B2 (en) | Composite structure forming system and forming method | |
JP2010138447A (en) | Film-forming method and film-forming apparatus for the same | |
JP4591498B2 (en) | Composite structure manufacturing method | |
JP4741447B2 (en) | Film forming method and film forming apparatus | |
JP4029347B2 (en) | Aerosol generator and composite structure manufacturing apparatus including the same | |
JP5234289B2 (en) | Powder adjustment method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20070628 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070802 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070628 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100119 |
|
A02 | Decision of refusal |
Effective date: 20100518 Free format text: JAPANESE INTERMEDIATE CODE: A02 |