JP2003166076A - Method and apparatus for forming composite structure - Google Patents

Method and apparatus for forming composite structure

Info

Publication number
JP2003166076A
JP2003166076A JP2001363926A JP2001363926A JP2003166076A JP 2003166076 A JP2003166076 A JP 2003166076A JP 2001363926 A JP2001363926 A JP 2001363926A JP 2001363926 A JP2001363926 A JP 2001363926A JP 2003166076 A JP2003166076 A JP 2003166076A
Authority
JP
Japan
Prior art keywords
aerosol
composite structure
fine particles
container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001363926A
Other languages
Japanese (ja)
Other versions
JP3809860B2 (en
Inventor
Hironori Hatono
広典 鳩野
Masakatsu Kiyohara
正勝 清原
Katsuhiko Mori
勝彦 森
Atsushi Yoshida
篤史 吉田
Kaori Yamaguchi
香緒里 山口
Tomokazu Ito
朋和 伊藤
Jun Aketo
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Toto Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Toto Ltd
Priority to JP2001363926A priority Critical patent/JP3809860B2/en
Publication of JP2003166076A publication Critical patent/JP2003166076A/en
Application granted granted Critical
Publication of JP3809860B2 publication Critical patent/JP3809860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To stably keep concentration of fine particles in an aerosol constant for a long time, in an aerosol generator employed for a device for forming a composite structure. <P>SOLUTION: This manufacturing method includes adjusting a quantity of curling up fine-particles in a vessel, by effectively supplying the fine particle powders to a gas introduction part, by horizontally shaking the vessel for accommodating the fine particle powders, or introducing the gas while swirling and vibrating it; and further stabilizing the quantity by adjusting the shaking speed. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微粒子を含むエア
ロゾルを基材に吹き付け、微粒子材料からなる構造物を
基材上に形成させることによって、基材と構造物からな
る複合構造物を作製する複合構造物作製方法および複合
構造物作製装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention produces a composite structure composed of a base material and a structure by spraying an aerosol containing fine particles onto a base material and forming a structure composed of the fine particle material on the base material. The present invention relates to a composite structure manufacturing method and a composite structure manufacturing apparatus.

【0002】[0002]

【従来の技術】基板上への微粒子材料からなる膜の形成
方法としてはガスデポジション法(加集誠一郎:金属
1989年1月号)が知られている。この方法は金属や
セラミックスの超微粒子をガス攪拌にてエアロゾル化
し、微小なノズルを通して加速せしめ、基材表面に超微
粒子の圧粉体層を形成させ、これを加熱して焼成させる
ことにより被膜を形成する。例えば特開平11−299
879号公報には、キャリアガスと生体適合材料の微粒
子とから構成されるエアロゾルの供給部、ノズル、加熱
装置、温度測定装置、基材とから構成され、キャリアガ
スをエアロゾルの供給部に導入してエアロゾルを発生さ
せてノズルから基材に吹き付けて微粒子の堆積物を基材
上に形成するとともに基材及び堆積物を加熱せしめて焼
結させ、人工生体適合構造・機能部品を作製する方法が
提案されている。
2. Description of the Related Art As a method for forming a film made of a particulate material on a substrate, a gas deposition method (Kei Shuichiro: Metal
(1989 January issue) is known. In this method, ultrafine particles of metal or ceramics are aerosolized by gas agitation, accelerated through a fine nozzle to form a powder compact layer of ultrafine particles on the surface of the base material, which is heated and baked to form a film. Form. For example, JP-A-11-299
In Japanese Patent No. 879, an aerosol supply part composed of a carrier gas and fine particles of a biocompatible material, a nozzle, a heating device, a temperature measuring device, and a base material are provided, and the carrier gas is introduced into the aerosol supply part. To generate an aerosol and spray it from a nozzle onto a base material to form a particulate deposit on the base material and heat the base material and the deposit to sinter to produce an artificial biocompatible structure / functional component. Proposed.

【0003】上記ガスデポジション法を改良した技術と
して微粒子ビーム堆積法あるいはエアロゾルデポジショ
ン法と呼ばれる脆性材料の膜あるいは構造物の形成方法
がある。これは、脆性材料の微粒子を含むエアロゾルを
ノズルから高速で基板に向けて噴射し、基板に微粒子を
衝突させて、その機械的衝撃力を利用して脆性材料の多
結晶構造物を基板上にダイレクトに形成させる方法であ
り、特開平11−21677号公報、特開平2000−
212766号公報に開示されるものが知られている。
As a technique improved from the above gas deposition method, there is a method of forming a film or structure of a brittle material called a particle beam deposition method or an aerosol deposition method. This is because an aerosol containing fine particles of a brittle material is jetted from a nozzle toward a substrate at high speed, the fine particles collide with the substrate, and the mechanical impact force is used to bring a polycrystalline structure of the brittle material onto the substrate. This is a method of forming directly, and is disclosed in JP-A-11-21677 and JP-A 2000-
The one disclosed in JP-A-212766 is known.

【0004】特開平11−21677号公報に開示され
る技術は、前記した超微粒子を含むエアロゾルを搬送す
る際あるいはセラミックスなどを加熱蒸発させる際に、
超微粒子同士が凝集して大きな粒子となるのを防止する
ために、中間の経路に分級装置を配置するようにしてい
る。
The technique disclosed in Japanese Unexamined Patent Publication (Kokai) No. 11-21677 discloses that when the above-mentioned aerosol containing ultrafine particles is conveyed or when ceramics or the like is heated and evaporated,
In order to prevent the ultrafine particles from aggregating into large particles, a classifying device is arranged in an intermediate path.

【0005】特開2000−212766号公報は、粒
径が10nmから5μmの範囲にあるセラミックスなど
の超微粒子をガスに分散させてエアロゾルとした後、ノ
ズルより高速の超微粒子流として基板に向けて噴射して
堆積物を形成させる。このときに超微粒子や基板に、イ
オン、原子、分子ビームや低温プラズマなどの高エネル
ギー原子などを照射して作製される構造物を強固なもの
とする工夫がなされている。また同公報の図5によると
エアロゾルを発生させるエアロゾル化チャンバーは、ガ
スを導入するとともに重力ベクトル方向への上下振動に
より超微粒子を攪拌・混合させてエアロゾル化する工夫
が採られている。
In Japanese Patent Laid-Open No. 2000-122766, ultrafine particles such as ceramics having a particle size in the range of 10 nm to 5 μm are dispersed in a gas to form an aerosol, and then a high speed ultrafine particle flow is directed toward a substrate from a nozzle. Spray to form deposits. At this time, the ultrafine particles and the substrate are irradiated with ions, atoms, molecular beams, high-energy atoms such as low-temperature plasma, and the like to make a structure strong so that the structure is strengthened. Further, according to FIG. 5 of the publication, the aerosol chamber for generating an aerosol employs a device for agitating and mixing the ultrafine particles by introducing gas and vertically vibrating in the direction of the gravity vector to form an aerosol.

【0006】[0006]

【発明が解決しようとする課題】従来技術で示したエア
ロゾルの発生手段は、静止したエアロゾル供給部におい
て粉体にガス導入パイプを埋没させてガスを導入した
り、エアロゾルチャンバーを上下させるなどの手法を採
るが、エアロゾル供給部が静止している状態でガスを導
入し続けると、粉体はガス導入パイプの開口付近の一体
がすぐに飛ばされてしまい、エアロゾル量を長期的に安
定させて供給することが困難である。エアロゾルチャン
バーを上下させて攪拌することによりこの弊害は有る程
度解消されるものの、上下運動は粉体のパッキング(押
し固める作用)を起こすため、粉体によっては振動とと
もに固着が進み、これがやはりエアロゾル発生量の長期
的安定性に対して弊害を与える。微粒子を基材に衝突さ
せてその構造物を形成させる手法で用いるこれらのエア
ロゾル発生手法では、構造物形成のために数十分から数
時間に亘る連続操作が必要となる場合があり、エアロゾ
ルを長期安定させて供給することは工業利用上必須と言
って良い。
The aerosol generating means shown in the prior art is a method of introducing a gas by burying a gas introducing pipe in powder in a stationary aerosol supplying section, or moving an aerosol chamber up and down. However, if the gas is continuously introduced while the aerosol supply unit is stationary, the powder near the opening of the gas introduction pipe will be immediately blown off, and the amount of aerosol will be stably supplied for a long period of time. Difficult to do. Although this adverse effect is eliminated to some extent by moving the aerosol chamber up and down and stirring, up and down movement causes packing (compressing action) of the powder, and depending on the powder, sticking occurs with vibration, which also causes aerosol generation. It has a negative effect on the long-term stability of the quantity. These aerosol generation methods used in a method of colliding fine particles with a base material to form a structure thereof may require continuous operation for several tens of minutes to several hours to form a structure. It can be said that long-term stable supply is essential for industrial use.

【0007】[0007]

【課題を解決するための手段】まず本発明が行われる場
となった複合構造物作製方法である、基材上に脆性材料
構造物を形成するエアロゾルデポジション法について説
明する。延展性を持たない脆性材料(セラミックス)に
機械的衝撃力を付加すると、結晶子同士の界面などの劈
開面に沿って結晶格子のずれを生じたり、あるいは破砕
される。そして、これらの現象が起こると、ずれ面や破
面には、もともと内部に存在し別の原子と結合していた
原子が剥き出しの状態となった新生面が形成される。こ
の新生面の原子一層の部分は、もともと安定した原子結
合状態から外力により強制的に不安定な表面状態に晒さ
れ、表面エネルギーが高い状態となる。この活性面が隣
接した脆性材料表面や同じく隣接した脆性材料の新生面
あるいは基材表面と接合して安定状態に移行する。外部
からの連続した機械的衝撃力の付加は、この現象を継続
的に発生させ、微粒子の変形、破砕などの繰り返しによ
り接合の進展、緻密化が行われ、脆性材料構造物が形成
される。
First, an explanation will be given of an aerosol deposition method for forming a brittle material structure on a substrate, which is a method for producing a composite structure, which is a place where the present invention is carried out. When a mechanical impact force is applied to a brittle material (ceramics) having no malleability, a crystal lattice shifts or is crushed along the cleavage plane such as the interface between crystallites. When these phenomena occur, a new surface in which the atoms originally existing inside and bonded to another atom are exposed is formed on the slip surface and the fracture surface. A part of the atomic layer on the new surface is exposed from an originally stable atomic bond state to an unstable surface state by an external force, and has a high surface energy. This active surface is joined to the surface of the adjacent brittle material, the new surface of the adjacent brittle material or the surface of the base material, and shifts to a stable state. The continuous application of a mechanical impact force from the outside continuously causes this phenomenon, and the deformation and crushing of the fine particles repeatedly cause the progress of bonding and densification to form a brittle material structure.

【0008】そして、上記機械的衝撃を搬送ガスにて脆
性材料を基材に衝突させるようにした方法がエアロゾル
デポジション法である。この方法はガスデポジション法
より発展してきた手法であり、脆性材料の微粒子をガス
中に分散させたエアロゾルを搬送し、高速で基材表面に
噴射して衝突させ、微粒子を破砕・変形せしめ、基材と
の界面にアンカー層を形成して接合させるとともに、破
砕した断片粒子同士を接合させることにより、基材との
密着性が良好で強度の大きい脆性材料構造物を基材上に
ダイレクトに形成させることができる。
The aerosol deposition method is a method in which the brittle material is caused to collide with the base material by the carrier gas with the mechanical impact. This method is a method that has been developed from the gas deposition method, and conveys an aerosol in which fine particles of a brittle material are dispersed in a gas, jets them at a high speed onto the surface of the base material to collide, and crushes and deforms the fine particles. By forming an anchor layer at the interface with the base material and bonding it together, and by bonding the crushed fragment particles together, a brittle material structure with good adhesion to the base material and high strength can be directly applied to the base material. Can be formed.

【0009】本発明は上述のエアロゾルデポジション法
で用いられるエアロゾル発生器として好適な構成を見い
だしたものであるが、同じくガスデポジション法でも使
用可能であり、従って微粒子粉体としても脆性材料微粒
子の他、金属微粒子なども利用できる。
The present invention has found a suitable constitution as an aerosol generator used in the above-mentioned aerosol deposition method, but it can also be used in the gas deposition method, and therefore, a brittle material fine particle as fine particle powder. Besides, metal fine particles and the like can also be used.

【0010】本発明においては、微粒子をガス中に分散
させたエアロゾルを高速で基材に衝突させて基材と微粒
子材料からなる複合構造物を作製する複合構造物作製方
法において、エアロゾルを発生させるには、微粒子を容
器に収容し、これに重力ベクトル方向に対しておおよそ
直角となる方向に機械的振動作用を与えて微粒子を攪拌
するとともに、ガスを微粒子に吹き付けて微粒子を気流
中に舞い上がらせることとし、その一態様としての複合
構造物作製装置においては、エアロゾルを発生させるエ
アロゾル発生器とこのエアロゾル発生器で発生したエア
ロゾルを高速で基材に衝突させるためのノズルとを備
え、エアロゾル発生器が微粒子を収容する容器と、容器
に接続されガスを導入する導入口と、容器に接続され容
器内で発生したエアロゾルをノズル側に導出する導出口
と、容器に機械的振動作用を与える振動手段とを有し、
振動手段を用いて重力ベクトル方向に対しておおよそ直
角となる方向に振動を与えて微粒子を攪拌するとともに
導入口からガスを微粒子に吹き付けてエアロゾルを発生
させることを特徴とする。
In the present invention, an aerosol is generated in a method for producing a composite structure in which an aerosol in which fine particles are dispersed in a gas is collided with a base material at high speed to produce a composite structure composed of the base material and the fine particle material. In order to stir the microparticles by accommodating the microparticles in a container and mechanically vibrating the microparticles in a direction approximately at right angles to the direction of the gravity vector, a gas is blown to the microparticles so that the microparticles rise in the air stream. In the composite structure manufacturing apparatus as one embodiment thereof, an aerosol generator for generating an aerosol and a nozzle for causing the aerosol generated by the aerosol generator to collide with a base material at a high speed are provided. Is a container for containing fine particles, an inlet connected to the container for introducing gas, and an air generated in the container connected to the container. Has a guiding outlet for deriving a sol nozzle side, and a vibration means for imparting a mechanical vibration action to the container,
It is characterized in that the vibrating means is used to vibrate in a direction substantially perpendicular to the direction of the gravity vector to stir the fine particles, and at the same time a gas is blown from the inlet to the fine particles to generate an aerosol.

【0011】ここで、微粒子とはセラミックスや半導体
などの脆性材料の他、金属材料やこれらの混合物、ある
いはセラミックス微粒子にセラミックスや金属、樹脂を
コーティングしたものが挙げられる。
Here, the fine particles include brittle materials such as ceramics and semiconductors, metallic materials and mixtures thereof, or fine ceramic particles coated with ceramics, metal or resin.

【0012】容器としては数百mLから1L程度の容量
の円筒容器などが使用されるが、これに微粒子粉体を数
十mLから数百mL収容して、導入口を微粒子粉体表面
の直上に位置させたり、粉体内部に導入口を埋没させた
りしてガスを吹き付ける。このとき重力ベクトル方向に
対しておおよそ直角の方向に振動させるが、おおよそ直
角とは実質的には直角方向から10°以内の傾きとす
る。この振動作用はいわゆる水平方向の往復振動が考え
られる。上下振動に比較して重力方向への移動が無いた
め、粉体のパッキングが起こりにくく、従って上下振動
に比べてエアロゾル発生の長期的安定が保たれる。横方
向の振動速度を調節することでエアロゾルの発生量を制
御することができる。
A cylindrical container having a capacity of about several hundred mL to about 1 L is used as the container, and several tens to several hundred mL of the fine particle powder is stored in the container, and the inlet is directly above the surface of the fine particle powder. The gas is blown by locating at the position or burying the inlet inside the powder. At this time, it vibrates in a direction approximately perpendicular to the direction of the gravity vector, but the approximately right angle is substantially an inclination within 10 ° from the perpendicular direction. A so-called horizontal reciprocating vibration can be considered as the vibration action. Since there is no movement in the direction of gravity as compared with vertical vibration, packing of powder is less likely to occur, and therefore, long-term stability of aerosol generation is maintained as compared with vertical vibration. The amount of aerosol generated can be controlled by adjusting the lateral vibration speed.

【0013】また容器内に微粒子とともに大きさが1m
m以上の塊状の微粒子解砕片を収容するとなおよい。例
えばセラミックスのボールなどがこれに当たる。微粒子
粉体に振動を与え続けると微粒子同士は振動によって発
生する静電気などで凝集を始め、時には数mm径もある
凝集塊を多くつくるようになる。このような状態になる
とエアロゾルの発生は起きにくくなりすなわち長期安定
性が損なわれる。従って微粒子解砕片を粉体とともに収
容させて同時に攪拌することにより、微粒子同士の凝集
をほぐすことが可能となり、好適である。この凝集解砕
は導入口を粉体表面直上に位置させてガスを微粒子粉体
に吹き付ける場合に特に効果を上げる。解砕作用を与え
るには、このほか振動作用には寄らない回転羽根を用い
た粉体のミキシングなども一定の効果を上げる。ただし
ミキシングの場合は度が過ぎると容器壁面への粉体の付
着を招来し、長期安定性を損なわせる原因となる。
The size of the particles is 1 m together with the particles in the container.
It is even better to accommodate crushed fine particles of m or more. For example, a ceramic ball or the like corresponds to this. When vibration is continuously applied to the fine particle powder, the fine particles start to agglomerate due to static electricity generated by the vibration, and sometimes a large number of agglomerates with a diameter of several mm are formed. In such a state, generation of aerosol becomes difficult to occur, that is, long-term stability is impaired. Therefore, by accommodating the crushed particles of fine particles together with the powder and stirring them simultaneously, it becomes possible to loosen the agglomeration of the fine particles, which is preferable. This cohesive disintegration is particularly effective when the gas is blown to the fine particle powder with the introduction port positioned directly above the powder surface. In addition to the crushing action, mixing of powder using a rotary blade that does not depend on the vibration action can also produce a certain effect. However, in the case of mixing, if the degree is too high, it causes the powder to adhere to the wall surface of the container, which causes deterioration in long-term stability.

【0014】また別の一態様として、機械的振動作用が
重力ベクトル方向を軸とした渦動振動であることを特徴
とする。渦動振動に関して容器に円筒を用いた場合にお
いて説明すると、容器自体の回転は行われず、円筒の中
心軸がそれにほぼ垂直なある半径をもつ円周上をなぞる
ようにしてスクロール運動をすることを意味しており、
このとき容器上部を支点としてその中心軸が円錐の側面
の形状を描くように運動する場合も含む。この場合も中
心軸自身の運動は重力ベクトル方向に対しておおよそ直
角の面をなぞる回転運動となる。このような運動をさせ
ると、容器の回転が行われないにも関わらず、その中に
収容されている微粒子粉体は容器内で容器の中心軸を中
心として独立して円周回転運動を行う。従ってここに導
入口を位置させてガスを吹き付けるか、ここに導入口を
埋没させてガスを吹き出させるかを行うことにより、導
入口の開口付近に常に回転運動によって新しい粉体が供
給されて、安定的にエアロゾルを発生させることが可能
となる。
As another aspect, the mechanical vibration action is a vortex vibration having an axis in the gravity vector direction. Explaining the vortex vibration in the case of using a cylinder as a container, it means that the container itself does not rotate, but the center axis of the cylinder makes a scroll motion by tracing along a circle with a radius almost perpendicular to it. And
At this time, the case where the center axis of the container moves so as to draw the shape of the side surface of the cone is also included. In this case as well, the movement of the central axis itself is a rotational movement that traces a plane approximately perpendicular to the direction of the gravity vector. When such a movement is performed, the fine particle powder contained in the container independently makes a circular rotation movement about the central axis of the container in spite of the fact that the container does not rotate. . Therefore, by positioning the inlet here and blowing gas, or by burying the inlet here and blowing out the gas, new powder is constantly supplied near the opening of the inlet by a rotary motion, It becomes possible to stably generate an aerosol.

【0015】またエアロゾルの導出口をその開口が容器
内に収容されている粉体の上部に位置させており、吹き
上げられた微粒子粉体が気流に乗って開口まで到達し導
出されるが、本発明の一態様として、さらにはこの導出
口の開口部と収容された微粒子との間に発生したエアロ
ゾル中の凝集粒が導出されることを防ぐ遮蔽手段を設置
することを特徴とする。エアロゾルデポジション法では
エアロゾル中の微粒子は一次粒子がリッチに存在するこ
とが望ましいが、0.1〜5μmの粒径をもつ微粒子粉
体は凝集しやすいこともあって、この微粒子粉体への吹
きつけによるエアロゾル発生では凝集粒を含むことが懸
念される。この凝集粒のうち特に大きいものは構造物の
形成中に基材上に吹き付けられると、形成表面に付着し
てそれ以降の構造物形成を阻害したり、あるいは出来上
がった構造物を削り取るなどの弊害を起こしたりなどす
る。従ってこの凝集粒を除外することが健全な構造物形
成のための要因となるが、上述した遮蔽コマはエアロゾ
ル中の凝集粒が導出口へ到達することを防ぎ、比較的一
次粒子に近い微粒子を選択的に導出させる役割を果た
す。これは一次粒子や多少の凝集はしているものの比較
的小さい凝集粒は気流の流線に沿って移動しやすいのに
対し、粗大な凝集粒は慣性が比較的大きいため、ガスが
吹き付けられた後、比較的直進して導出口へあるいは容
器の上部へ向かって移動するためであり、従って、導出
口の開口部が収容される微粒子粉体の表面から見て隠れ
るように遮蔽手段が配置されることが望ましい。構造物
形成とその阻害との境界にあたる凝集粒の粒径は粉体種
によっても違うなど規定することが難しいため、実質的
には遮蔽手段の大きさや位置とガスの流量などの諸設定
条件を適切に選んでエッチング及び圧粉体形成を代表と
する阻害が起こらない構成を選択するとよい。
Further, the outlet of the aerosol is located at the upper part of the powder contained in the container, and the fine particle powder blown up reaches the opening by the air flow and is discharged. Another aspect of the present invention is characterized in that a shielding means for preventing the aggregated particles in the aerosol generated between the opening of the outlet and the contained fine particles from being discharged is installed. In the aerosol deposition method, it is desirable that the fine particles in the aerosol have a large amount of primary particles, but fine particle powder having a particle size of 0.1 to 5 μm tends to agglomerate. When aerosol is generated by spraying, it is feared that it contains agglomerated particles. If large particles among these agglomerates are sprayed onto the base material during the formation of the structure, they will adhere to the formation surface and hinder the subsequent formation of the structure, or have the adverse effect of scraping off the completed structure. To wake up. Therefore, excluding these agglomerates is a factor for healthy structure formation, but the above-mentioned shielding coma prevents the agglomerates in the aerosol from reaching the outlet, so that fine particles relatively close to the primary particles are Plays a role of selectively deriving. This is because primary particles and relatively small agglomerates with some agglomeration tend to move along the streamline of the air stream, while coarse agglomerates have a relatively large inertia, so gas was blown. This is because, after that, it moves relatively straight and moves toward the outlet or toward the upper part of the container. Therefore, the shielding means is arranged so that the opening of the outlet is hidden when seen from the surface of the fine particle powder contained therein. Is desirable. Since it is difficult to specify that the particle size of agglomerated particles, which is the boundary between structure formation and its inhibition, differs depending on the powder type, it is practically necessary to set various setting conditions such as the size and position of the shielding means and the gas flow rate. It is advisable to appropriately select and select a structure that does not cause any inhibition such as etching and powder compact formation.

【0016】[0016]

【発明の実施の態様】以下に本発明の実施の形態を添付
図面に基づいて説明する。まず本発明のエアロゾル発生
器が使用されるエアロゾルデポジション法における構造
物作製装置について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. First, a structure manufacturing apparatus in the aerosol deposition method using the aerosol generator of the present invention will be described.

【0017】図1は複合構造物作製装置1を示したもの
であり、窒素ガスボンベ101の先にガス搬送管102
を介してエアロゾル発生器103が設置され、その下流
側にエアロゾル搬送管104を介して構造物形成室10
5内に例えば10mm×0.4mmの噴射開口をもつノ
ズル106が設置されている。エアロゾル発生器103
内には脆性材料微粒子例えば酸化アルミニウム微粒子粉
体が充填されている。ノズル106の開口の先には基材
107が配置され、基材107はXYステージ108に
固定されている。構造物形成室105は真空ポンプ10
9と接続されている。
FIG. 1 shows an apparatus 1 for manufacturing a composite structure, in which a gas transfer pipe 102 is provided before a nitrogen gas cylinder 101.
The aerosol generator 103 is installed through the structure forming chamber 10 via the aerosol transfer pipe 104 on the downstream side thereof.
A nozzle 106 having an ejection opening of 10 mm × 0.4 mm is installed in the nozzle 5. Aerosol generator 103
Brittle material fine particles such as aluminum oxide fine particle powder are filled in the inside. A base material 107 is arranged at the tip of the opening of the nozzle 106, and the base material 107 is fixed to the XY stage 108. The structure forming chamber 105 is a vacuum pump 10.
9 is connected.

【0018】以下にエアロゾルデポジション法に基づく
複合構造物作製装置1の作用を述べる。窒素ガスボンベ
101を開栓し、ガスをエアロゾル発生器103内に送
り込み、同時にエアロゾル発生器103を運転させて脆
性材料微粒子と窒素ガスが適当比で混合されたエアロゾ
ルを発生させる。また真空ポンプ109を稼動させ、エ
アロゾル発生器103と構造物形成室105の間に差圧
を生じさせる。このエアロゾルをエアロゾル搬送管10
4を通して加速させ、ノズル106より基材107に向
けて噴射する。基材107はXYステージ108により
揺動され、エアロゾル衝突位置を変化させつつ、微粒子
の衝突により基材107上に膜状の脆性材料構造物が形
成されていく。
The operation of the composite structure manufacturing apparatus 1 based on the aerosol deposition method will be described below. The nitrogen gas cylinder 101 is opened, the gas is sent into the aerosol generator 103, and at the same time, the aerosol generator 103 is operated to generate the aerosol in which the brittle material particles and the nitrogen gas are mixed in an appropriate ratio. Further, the vacuum pump 109 is operated to generate a differential pressure between the aerosol generator 103 and the structure forming chamber 105. This aerosol is transferred to the aerosol carrier pipe 10.
4 to accelerate, and jet from the nozzle 106 toward the substrate 107. The base material 107 is swung by the XY stage 108, and a film-like brittle material structure is formed on the base material 107 by collision of fine particles while changing the aerosol collision position.

【0019】次に上述のような構成を代表とする複合構
造物作製装置に採用されるエアロゾル発生器の実施の態
様を述べる。図2は本発明の一態様としてのエアロゾル
発生器2を示したものであり、約500mLの円筒形状
の容器201にはガスを導入する導入口202と発生し
たエアロゾルを導出する導出口203が配置され、微粒
子粉体204を充填され、これに直径10mmのアルミ
ナ球石205が複数個混在している。この微粒子粉体2
04には、前述した酸化アルミニウムのようなセラミッ
クス粉体でも良いし、あるいは金属材料の粉体でもよ
い。導入口202の開口は直径が2mmであり、微粒子
粉体204の表面近く数mmの位置に、微粒子粉体20
4の方向を向いて開いており、導出口203は直径が4
mmであり、微粒子粉体204の上方約8cmの位置に
開口を開けている。この容器201は振とう器206に
設置されている。
Next, an embodiment of the aerosol generator adopted in the composite structure manufacturing apparatus represented by the above-mentioned structure will be described. FIG. 2 shows an aerosol generator 2 as one embodiment of the present invention, in which a cylindrical container 201 of about 500 mL is provided with an inlet 202 for introducing gas and an outlet 203 for leading out the generated aerosol. Then, the fine particle powder 204 is filled therein, and a plurality of alumina spheres 205 having a diameter of 10 mm are mixed therein. This fine particle powder 2
04 may be ceramic powder such as aluminum oxide described above, or may be powder of a metal material. The opening of the introduction port 202 has a diameter of 2 mm, and the fine particle powder 20 is provided at a position of several mm near the surface of the fine particle powder 204.
4 is open, and the outlet port 203 has a diameter of 4
mm, and an opening is opened at a position approximately 8 cm above the fine particle powder 204. This container 201 is installed in a shaker 206.

【0020】以上の構成からなるエアロゾル発生器2の
作用と効果を述べる。窒素などのガスを導入口202よ
り毎分数〜十数リットルで導入し、同時に振とう器20
6を運転させる。振とう器206は図2中矢印のように
水平方向に振幅約2cm、振とう速度30〜300往復
/分で運転される。この作用によりガスは微粒子粉体2
04を容器内に巻きあげ、エアロゾルを発生させる。こ
の振とう速度を変化させることによりエアロゾル中の微
粒子の濃度を調整することができる。このようにしてエ
アロゾルを発生させつづけると、微粒子粉体204の運
動により徐々にこれが凝集していく。そこで混在してい
るアルミナ球石205が振とうによる攪拌作用を受けて
この凝集粒を解砕する。従って凝集によるエアロゾルの
濃度の低下を抑制することができる。発生したエアロゾ
ルは導出口203へ向かう気流にのり、ここからエアロ
ゾル発生器2の外へと導出される。このようにして作製
されたエアロゾルが図1に示した複合構造物作製装置1
の要素部として作用し、例えば酸化アルミニウムの構造
物の形成などが行われる。
The operation and effect of the aerosol generator 2 having the above structure will be described. A gas such as nitrogen is introduced from the introduction port 202 at a rate of several to several tens of liters per minute, and at the same time, the shaker 20
Drive 6 The shaker 206 is operated at an amplitude of about 2 cm and a shaking speed of 30 to 300 reciprocations / minute in the horizontal direction as shown by the arrow in FIG. Due to this action, the gas is fine particle powder 2
04 is rolled up in a container to generate an aerosol. The concentration of fine particles in the aerosol can be adjusted by changing the shaking speed. When the aerosol is continuously generated in this manner, the fine particle powder 204 is gradually aggregated due to the movement. The alumina spherulites 205 mixed therein are subjected to a stirring action by shaking to break up the aggregated particles. Therefore, it is possible to suppress a decrease in the concentration of the aerosol due to aggregation. The generated aerosol flows along the air flow toward the outlet 203, and is discharged to the outside of the aerosol generator 2 from here. The aerosol thus produced has the composite structure production apparatus 1 shown in FIG.
Of the aluminum oxide and forms a structure of aluminum oxide, for example.

【0021】図3は本発明の別の一態様としてのエアロ
ゾル発生器3を示したものであり、約800mLの円筒
形状の容器301の底に近い側面に複数の導入口302
が設置され、容器301の上方で中心軸上の位置に導出
口303が設置される。これらの開口はそれぞれ直径2
mmおよび直径4mmである。これに微粒子粉体304
が収容される。また導出口303の開口の直下には径が
2cmの凝集粒遮断手段である凝集粒遮蔽コマ305が
容器301の底から支持されて、円錐部を開口のある上
方に向けて設置される。容器301は回転モータ306
の先に設置された半径2.5mmの偏心をもつ偏心軸3
07に乗せられ、また上部の蓋の部分が支柱308に半
固定されて圧縮ばね309で偏心軸307に押さえつけ
られている。
FIG. 3 shows an aerosol generator 3 as another embodiment of the present invention. A plurality of inlets 302 are provided on the side surface near the bottom of a cylindrical container 301 of about 800 mL.
Is installed, and the outlet port 303 is installed at a position on the central axis above the container 301. Each of these openings has a diameter of 2
mm and diameter 4 mm. Fine particle powder 304
Is housed. Further, immediately below the opening of the outlet port 303, an agglomerated particle blocking piece 305 having a diameter of 2 cm, which is an agglomerated particle blocking means, is supported from the bottom of the container 301, and is installed with the conical portion facing upward with the opening. The container 301 is a rotary motor 306.
Eccentric shaft 3 with a radius of 2.5 mm installed at the end of
The upper lid is semi-fixed to the column 308 and is pressed against the eccentric shaft 307 by the compression spring 309.

【0022】以上の構成からなるエアロゾル発生器3の
作用と効果を述べる。導入口302から窒素などのガス
が導入されるとともに回転モータ307が図3中の矢印
のように回転し、偏心軸307により容器301の底面
が直径5mmの円を描くように渦動振動される。容器3
01自体は支柱308に半固定されているため回転は起
こさない。しかしながら拘束を受けていない微粒子粉体
304はこの渦動振動を受けて回転モータ307の回転
方向へと自在に回転する。この作用により導入口302
の開口付近に次々と微粒子が送り込まれて吹き上げら
れ、この攪拌作用により安定的にエアロゾルが発生す
る。また微粒子粉体304の一部は凝集粒を形成してお
り、それがため容器301内で発生した直後のエアロゾ
ル中にも凝集粒が含まれる場合がある。これら凝集粒は
その重量が比較的大きいためその慣性により吹き上げら
れた後は気流に乗りやすい一次粒子と比較して直線的に
容器301内を移動する。一方凝集粒遮蔽コマ305は
導出口303の開口付近で折れ曲がる気流を形成させる
働きをしており、従って気流に乗りやすい一次粒子はこ
の凝集粒遮蔽コマ305を避けて導出口303よりエア
ロゾル発生器3外へ導出されるのに対し、凝集粒は凝集
粒遮蔽コマ305に衝突して開口へと届くことはなく、
従って凝集粒の混在の少ないエアロゾルを作製すること
が可能となる。エアロゾル中の微粒子濃度は回転モータ
306の回転数に敏感に対応して変化するため、これを
制御して所望の濃度のエアロゾルを長期間安定させて発
生させることができる。
The operation and effect of the aerosol generator 3 having the above structure will be described. A gas such as nitrogen is introduced from the inlet 302, the rotary motor 307 rotates as indicated by an arrow in FIG. 3, and the eccentric shaft 307 vortexes the bottom surface of the container 301 to draw a circle having a diameter of 5 mm. Container 3
Since 01 itself is semi-fixed to the column 308, it does not rotate. However, the unrestricted fine particle powder 304 receives this vortex vibration and freely rotates in the rotation direction of the rotation motor 307. Due to this action, the inlet 302
The fine particles are successively sent in the vicinity of the opening of and are blown up, and the stirring action stably generates the aerosol. Further, a part of the fine particle powder 304 forms agglomerated particles, which may cause agglomerated particles to be included in the aerosol immediately after being generated in the container 301. Since these agglomerated particles have a relatively large weight, after being blown up due to their inertia, they move linearly in the container 301 as compared with the primary particles that are easy to ride in the air flow. On the other hand, the agglomerated particle shielding piece 305 has a function of forming a bent airflow near the opening of the outlet 303, so that the primary particles that easily ride the airflow avoid the agglomerated particle shielding piece 305 and the aerosol generator 3 from the outlet 303. On the other hand, the aggregated particles do not reach the opening by colliding with the aggregated particle shielding pieces 305, while being discharged to the outside.
Therefore, it becomes possible to produce an aerosol in which agglomerated particles are less mixed. Since the concentration of fine particles in the aerosol changes sensitively in response to the number of rotations of the rotary motor 306, it is possible to control this to generate an aerosol of a desired concentration in a stable manner for a long period of time.

【0023】また導入口302に開口の向きを回転モー
タ306の回転方向と逆むきすなわち微粒子粉体304
の回転方向において下流側に向けると、開口から微粒子
が侵入して導入口302をふさぐという弊害をなくすこ
とができ好適である。さらに開口の位置は容器301の
側面付近に置くことがよい。なぜなら微粒子粉体304
の回転運動により遠心力が働くため、長時間エアロゾル
発生器を稼動させていると容器301の側面位置にてパ
ッキングを起こすことがままあり、側面付近からガスを
吹き込むことにより遠心力と逆側に力をかけることがで
きたり、あるいはパッキングが生じる前に粉体をガスに
よってほぐすことができるからである。
Further, the direction of the opening of the introduction port 302 is opposite to that of the rotation motor 306, that is, the fine particle powder 304.
It is preferable to direct the particles toward the downstream side in the rotation direction since it is possible to eliminate the adverse effect that the fine particles enter from the opening and block the inlet 302. Further, the position of the opening may be placed near the side surface of the container 301. Because fine particle powder 304
Since the centrifugal force acts due to the rotational movement of the container, when the aerosol generator is operated for a long time, packing sometimes occurs at the side surface position of the container 301, and by blowing gas from the vicinity of the side surface, the centrifugal force is opposite to the centrifugal force. This is because force can be applied or the powder can be loosened by gas before packing occurs.

【0024】図4は本発明の別の一態様としてのエアロ
ゾル発生器4を示したものであり、約800mLの円筒
形状の容器401の底に近い側面に導入口402が設置
され、容器401の上方で中心軸上の位置に導出口40
3が設置される。これらの開口はそれぞれ2mm、4m
mである。導出口403の上部には微粒子粉体404が
漏れない程度の細孔をもつメッシュ405が設置されて
その上に微粒子粉体404が充填される。また導出口4
03の開口の直下には径が2cmの凝集粒遮蔽コマ40
6が容器401の底から支持されて円錐部を開口のある
上方に向けて設置される。容器401は回転モータ40
7の先に設置された半径2.5mmの偏心をもつ偏心軸
408に乗せられ、また上部の蓋の部分が支柱409に
半固定されて圧縮ばね410で偏心軸408に押さえつ
けられている。
FIG. 4 shows an aerosol generator 4 according to another embodiment of the present invention, in which an inlet port 402 is installed on a side surface near a bottom of a cylindrical container 401 of about 800 mL, and The outlet 40 is located above the central axis.
3 is installed. These openings are 2 mm and 4 m, respectively
m. A mesh 405 having pores that prevent the fine particle powder 404 from leaking is installed above the outlet port 403, and the fine particle powder 404 is filled on the mesh 405. Outlet port 4
Immediately below the opening of 03, the agglomerate particle blocking piece 40 with a diameter of 2 cm
6 is supported from the bottom of the container 401, and is installed with the conical portion facing upward with an opening. The container 401 is a rotary motor 40.
7 is mounted on an eccentric shaft 408 having an eccentricity with a radius of 2.5 mm, and the upper lid part is semi-fixed to a column 409 and pressed against the eccentric shaft 408 by a compression spring 410.

【0025】以上の構成からなるエアロゾル発生器4の
作用については、前出のエアロゾル発生器3に準じるも
ので、導入口402から導入されたガスがメッシュを通
して比較的緩やかで分散された状態で容器301の上部
に向かって気流を形成するところに違いがある。このた
め微粒子粉体404の表面全面から緩やかに一次粒子が
巻きあがりエアロゾルを発生するので好適である。図4
中では凝集粒遮蔽コマ406が設置されているが、以上
のような発生機構によりエアロゾル中に凝集粒が混ざる
弊害が少ないため、実際はこれが無くても十分実用的で
ある。
The operation of the aerosol generator 4 having the above-mentioned structure is similar to that of the aerosol generator 3 described above, and the gas introduced from the introduction port 402 is dispersed in a relatively gentle manner through the mesh and is stored in the container. There is a difference in forming an airflow toward the upper part of 301. Therefore, the primary particles are gently rolled up from the entire surface of the fine particle powder 404 to generate an aerosol, which is preferable. Figure 4
Although the aggregated particle shielding piece 406 is installed therein, it is practically practical without it because the aggregated particles are not adversely mixed with the aerosol due to the above-described generation mechanism.

【0026】[0026]

【発明の効果】以上に説明したように本発明によれば、
微粒子をガス中に分散させたエアロゾルを基材に高速で
衝突させて微粒子の構造物を形成させる複合構造物作製
方法および複合構造物作製装置において、エアロゾル発
生器の振動を重力ベクトル方向に対しておおよそ直角と
なる方向に与えながらガスを微粒子に吹き付けることに
より、エアロゾル中の微粒子の濃度を比較的安定させて
長時間発生させることが可能となった。またエアロゾル
中に粗大な凝集粒が含まれるという弊害も解消すること
が容易となった。
As described above, according to the present invention,
In a composite structure manufacturing method and a composite structure manufacturing apparatus in which an aerosol in which particles are dispersed in a gas is collided with a base material at high speed to form a structure of particles, vibration of an aerosol generator is applied to a gravity vector direction. By blowing the gas to the fine particles while giving it in a direction approximately at a right angle, the concentration of the fine particles in the aerosol can be relatively stabilized and generated for a long time. In addition, it became easy to eliminate the problem that coarse agglomerated particles are contained in the aerosol.

【図面の簡単な説明】[Brief description of drawings]

【図1】エアロゾルデポジション法で用いる構造物作製
装置を示す模式図
FIG. 1 is a schematic diagram showing a structure manufacturing apparatus used in an aerosol deposition method.

【図2】本発明の一態様であるエアロゾル発生器2を示
す模式図
FIG. 2 is a schematic diagram showing an aerosol generator 2 according to one embodiment of the present invention.

【図3】本発明の一態様であるエアロゾル発生器3を示
す模式図
FIG. 3 is a schematic diagram showing an aerosol generator 3 according to one embodiment of the present invention.

【図4】本発明の一態様であるエアロゾル発生器4を示
す模式図
FIG. 4 is a schematic diagram showing an aerosol generator 4 according to one embodiment of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 清原 正勝 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 森 勝彦 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 吉田 篤史 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 山口 香緒里 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 伊藤 朋和 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 明渡 純 茨城県つくば市東1−1−1 独立行政法 人 産業技術総合研究所 つくばセンター 内 Fターム(参考) 4F033 QA01 QB02Y QB05 QB13Y QB19 QB20 QC07 QD02 QD05 QD06 QD11 QE05 QF01X QF02Y QF15X QF15Y QH05 QH08 QH10 QH11 4G075 AA24 AA27 AA30 BB04 BB05 BB08 DA02 DA18 EB01 EC01 ED15 4K044 BA01 BA13 BA21 BB11 CA23 CA53    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masakatsu Kiyohara             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Katsuhiko Mori             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Atsushi Yoshida             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Kaori Yamaguchi             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Tomokazu Ito             2-1-1 Nakajima, Kokurakita-ku, Kitakyushu City, Fukuoka Prefecture             No. Totoki Equipment Co., Ltd. (72) Inventor Jun Akito             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             National Institute of Advanced Industrial Science and Technology Tsukuba Center             Within F-term (reference) 4F033 QA01 QB02Y QB05 QB13Y                       QB19 QB20 QC07 QD02 QD05                       QD06 QD11 QE05 QF01X                       QF02Y QF15X QF15Y QH05                       QH08 QH10 QH11                 4G075 AA24 AA27 AA30 BB04 BB05                       BB08 DA02 DA18 EB01 EC01                       ED15                 4K044 BA01 BA13 BA21 BB11 CA23                       CA53

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 微粒子をガス中に分散させたエアロゾル
を高速で基材に衝突させて前記基材と微粒子材料からな
る複合構造物を作製する複合構造物作製方法において、
前記エアロゾルを発生させるには、前記微粒子を容器に
収容し、これに重力ベクトル方向に対しておおよそ直角
となる方向に機械的振動作用を与えて前記微粒子を攪拌
するとともに、前記ガスを前記微粒子に吹き付けて前記
微粒子を気流中に舞い上がらせることとする複合構造物
作製方法。
1. A method for producing a composite structure in which an aerosol in which fine particles are dispersed in a gas is collided with a base material at a high speed to produce a composite structure composed of the base material and the fine particle material.
In order to generate the aerosol, the fine particles are stored in a container, a mechanical vibration action is applied to the fine particles in a direction approximately perpendicular to the direction of the gravity vector to stir the fine particles, and the gas is applied to the fine particles. A method for producing a composite structure, which comprises spraying the fine particles so as to rise in an air stream.
【請求項2】 前記容器内に前記微粒子とともに大きさ
が1mm以上の塊状の微粒子解砕片を収容することを特
徴とする請求項1に記載の複合構造物作製方法。
2. The method for producing a composite structure according to claim 1, wherein a crushed fine particle fragment having a size of 1 mm or more is accommodated in the container together with the fine particle.
【請求項3】 前記機械的振動作用が、重力ベクトル方
向を軸とした渦動振動であることを特徴とする請求項1
または2に記載の複合構造物作製方法。
3. The mechanical vibration action is a vortex vibration having an axis in the gravity vector direction as an axis.
Alternatively, the method for producing a composite structure according to item 2.
【請求項4】 微粒子をガス中に分散させたエアロゾル
を発生させるためのエアロゾル発生器と、該エアロゾル
発生器で発生したエアロゾルを高速で基材に衝突させる
ためのノズルを備え、前記基材と微粒子材料からなる複
合構造物を作製するための複合構造物作製装置におい
て、前記エアロゾル発生器が、前記微粒子を収容する容
器と、前記容器に接続されガスを導入する導入口と、前
記容器に接続され前記容器内で発生したエアロゾルをノ
ズル側に導出する導出口と、前記容器に機械的振動作用
を与える振動手段とを有し、前記振動手段を用いて重力
ベクトル方向に対しておおよそ直角となる方向に振動を
与えて前記微粒子を攪拌するとともに前記導入口からガ
スを前記微粒子に吹き付けてエアロゾルを発生させるこ
とを特徴とする複合構造物作製装置。
4. An aerosol generator for generating an aerosol in which fine particles are dispersed in a gas, and a nozzle for colliding the aerosol generated by the aerosol generator with a base material at a high speed, and the base material. In a composite structure manufacturing apparatus for manufacturing a composite structure made of a particulate material, the aerosol generator is a container for containing the particles, an inlet connected to the container for introducing gas, and connected to the container. It has a discharge port for discharging the aerosol generated in the container to the nozzle side, and a vibrating means for giving a mechanical vibrating action to the container, and is approximately perpendicular to the gravity vector direction using the vibrating means. The composite structure is characterized in that the fine particles are agitated by vibrating in a direction to stir the fine particles and a gas is blown from the introduction port to the fine particles to generate an aerosol. Structure making device.
【請求項5】 前記エアロゾル発生器は、前記容器内に
前記微粒子とともに大きさが1mm以上の塊状の微粒子
解砕片を収容することを特徴とする請求項4に記載の複
合構造物作製装置。
5. The apparatus for producing a composite structure according to claim 4, wherein the aerosol generator accommodates, in the container, the fine particles together with a crushed fine particle fragment having a size of 1 mm or more.
【請求項6】 前記機械的振動作用が、重力ベクトル方
向を軸とした渦動振動であることを特徴とする請求項4
または5に記載の複合構造物作製装置。
6. The mechanical vibration action is a vortex vibration having an axis in the gravity vector direction as an axis.
Or the composite structure manufacturing apparatus according to 5.
【請求項7】 前記エアロゾル発生器において、前記導
出口の開口の鉛直下方に、発生したエアロゾル中の凝集
粒が前記導出口より導出されることを防ぐ遮蔽手段を設
置したことを特徴とする請求項4乃至6に記載の複合構
造物作製装置。
7. In the aerosol generator, a shielding means is provided vertically below the opening of the outlet to prevent aggregated particles in the generated aerosol from being led out from the outlet. Item 7. The composite structure manufacturing apparatus according to items 4 to 6.
JP2001363926A 2001-11-29 2001-11-29 Composite structure manufacturing method and composite structure manufacturing apparatus Expired - Lifetime JP3809860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363926A JP3809860B2 (en) 2001-11-29 2001-11-29 Composite structure manufacturing method and composite structure manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363926A JP3809860B2 (en) 2001-11-29 2001-11-29 Composite structure manufacturing method and composite structure manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2003166076A true JP2003166076A (en) 2003-06-13
JP3809860B2 JP3809860B2 (en) 2006-08-16

Family

ID=19174185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363926A Expired - Lifetime JP3809860B2 (en) 2001-11-29 2001-11-29 Composite structure manufacturing method and composite structure manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3809860B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154803A (en) * 2003-11-21 2005-06-16 Fuji Photo Film Co Ltd Film forming apparatus
JP2006219764A (en) * 2003-09-17 2006-08-24 National Institute Of Advanced Industrial & Technology Aerosol generator, apparatus for forming composite structure, and method of forming composite structure
JP2007291503A (en) * 2006-03-28 2007-11-08 Brother Ind Ltd Aerosol generating apparatus, method for generating aerosol and film forming apparatus
JP2008016578A (en) * 2006-07-05 2008-01-24 Fujitsu Ltd Method for manufacturing capacitor element
JP2008240064A (en) * 2007-03-27 2008-10-09 Canon Inc Method and apparatus for producing structure
JP2008240063A (en) * 2007-03-27 2008-10-09 Canon Inc Production method of structure and apparatus for producing the structure using the same
JP2009087898A (en) * 2007-10-03 2009-04-23 Kansai Paint Co Ltd Method of fabricating transparent conducting film of aluminum doped zinc oxide by using aerosol
JP2009297623A (en) * 2008-06-11 2009-12-24 Sendai Nikon:Kk Powder discharge unit, powder discharger, powder discharge method, and powder ejector
JP2010138447A (en) * 2008-12-11 2010-06-24 Fujitsu Ltd Film-forming method and film-forming apparatus for the same
JP2015151560A (en) * 2014-02-12 2015-08-24 積水化学工業株式会社 Powder supply unit, film deposition apparatus, and film deposition method
CN114011364A (en) * 2021-10-28 2022-02-08 中船重工(邯郸)派瑞特种气体有限公司 Fluorination furnace for preparing tungsten hexafluoride
CN115301443A (en) * 2022-08-04 2022-11-08 重庆新恒基真空镀膜有限公司 Spraying device with quick drying function for metal part machining

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219764A (en) * 2003-09-17 2006-08-24 National Institute Of Advanced Industrial & Technology Aerosol generator, apparatus for forming composite structure, and method of forming composite structure
JP4608202B2 (en) * 2003-11-21 2011-01-12 富士フイルム株式会社 Deposition equipment
JP2005154803A (en) * 2003-11-21 2005-06-16 Fuji Photo Film Co Ltd Film forming apparatus
JP2007291503A (en) * 2006-03-28 2007-11-08 Brother Ind Ltd Aerosol generating apparatus, method for generating aerosol and film forming apparatus
JP2008016578A (en) * 2006-07-05 2008-01-24 Fujitsu Ltd Method for manufacturing capacitor element
JP2008240063A (en) * 2007-03-27 2008-10-09 Canon Inc Production method of structure and apparatus for producing the structure using the same
JP2008240064A (en) * 2007-03-27 2008-10-09 Canon Inc Method and apparatus for producing structure
JP2009087898A (en) * 2007-10-03 2009-04-23 Kansai Paint Co Ltd Method of fabricating transparent conducting film of aluminum doped zinc oxide by using aerosol
JP2009297623A (en) * 2008-06-11 2009-12-24 Sendai Nikon:Kk Powder discharge unit, powder discharger, powder discharge method, and powder ejector
JP2010138447A (en) * 2008-12-11 2010-06-24 Fujitsu Ltd Film-forming method and film-forming apparatus for the same
JP2015151560A (en) * 2014-02-12 2015-08-24 積水化学工業株式会社 Powder supply unit, film deposition apparatus, and film deposition method
CN114011364A (en) * 2021-10-28 2022-02-08 中船重工(邯郸)派瑞特种气体有限公司 Fluorination furnace for preparing tungsten hexafluoride
CN115301443A (en) * 2022-08-04 2022-11-08 重庆新恒基真空镀膜有限公司 Spraying device with quick drying function for metal part machining

Also Published As

Publication number Publication date
JP3809860B2 (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP2003166076A (en) Method and apparatus for forming composite structure
US5928719A (en) Surface processing method by blowing submicron particles
JPS61221310A (en) Method and apparatus for producing pulverous powder of metal or alloy or the like
JP2009179843A (en) Aerosol generator, method for generating aerosol, film depositing apparatus and method for manufacturing film deposited body
JP2018059203A (en) Aerosol film forming apparatus and aerosol film forming method
JP2009028709A (en) Aerosol-generating apparatus and aerosol-generating method
JP4526162B2 (en) Ceramic structure manufacturing equipment
US8636846B2 (en) Aerosol-generating apparatus, film-forming apparatus, and aerosol-generating method
JPH10329136A (en) Method and apparatus for producing granules
JP4053379B2 (en) Fluidized bed equipment
JP4866331B2 (en) Composite particle manufacturing equipment
WO2001021314A1 (en) Vibro-fluidizing device for powder particles
JP2003275631A (en) Aerosol generating device and composite structural material producing apparatus provided with the same
JP4063187B2 (en) Aerosol generator and composite structure manufacturing apparatus including the same
JP4075719B2 (en) Aerosol generator and composite structure manufacturing device
JP2003213449A (en) Apparatus for fabricating composite structure and method of fabricating composite structure
JP4063156B2 (en) Composite structure manufacturing apparatus and manufacturing method
JP3825455B2 (en) Aerosol generator, composite structure manufacturing apparatus, and composite structure manufacturing method
JP2007217765A (en) Aerosol-generating device
JP4820799B2 (en) Container rotating granulator and granulation system
JP2006233334A (en) System for forming composite structure and forming method therefor
JP2004113931A (en) Film-forming apparatus and film-forming method
JP2006219764A (en) Aerosol generator, apparatus for forming composite structure, and method of forming composite structure
JP2005336562A (en) Composite of metal and carbon nano-fiber, and production method therefor
JPH02261536A (en) Device for reforming powder surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060516

R150 Certificate of patent or registration of utility model

Ref document number: 3809860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term