JP2006219702A - Plasma film-forming apparatus - Google Patents

Plasma film-forming apparatus Download PDF

Info

Publication number
JP2006219702A
JP2006219702A JP2005032596A JP2005032596A JP2006219702A JP 2006219702 A JP2006219702 A JP 2006219702A JP 2005032596 A JP2005032596 A JP 2005032596A JP 2005032596 A JP2005032596 A JP 2005032596A JP 2006219702 A JP2006219702 A JP 2006219702A
Authority
JP
Japan
Prior art keywords
gas
film
electrode
mixing box
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005032596A
Other languages
Japanese (ja)
Other versions
JP4680619B2 (en
Inventor
Takaomi Kurata
敬臣 倉田
Toru Kikuchi
亨 菊池
Teiji Wakamatsu
貞次 若松
Shin Asari
伸 浅利
Yoshio Shimizu
美穂 清水
Kazuya Saito
斎藤  一也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2005032596A priority Critical patent/JP4680619B2/en
Publication of JP2006219702A publication Critical patent/JP2006219702A/en
Application granted granted Critical
Publication of JP4680619B2 publication Critical patent/JP4680619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma film-forming apparatus which forms a film with uniform thickness distribution in a plane direction of a substrate by uniformizing the intensity distribution of a high-frequency power in a plane direction of an electrode. <P>SOLUTION: The apparatus is provided with a vacuum chamber 1 of which the inside can be evacuated, a first electrode 3 which is arranged in the vacuum chamber 1 and supports an article 20 to be film-formed, a gas-mixing box 8 for mixing a plurality of film-forming gases in it, a second electrode 2 which composes one part of a wall of the vacuum chamber 1, is arranged so as to face the first electrode 3, and has a gas inlet 12 for introducing the film-forming gases mixed in the gas-mixing box 8 into the vacuum chamber 1, and the high-frequency power source 18 for generating the plasma of the film-forming gas in the vacuum chamber 1 by forming a high-frequency electric field between the first and second electrodes 3 and 2, wherein the mixing box 8 is placed on the second electrode 2 through an insulating material 17, and has a gas outlet 11 of the mixed gas so as to directly connect to the gas inlet 12 of the second electrode 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はプラズマ成膜装置に関し、詳しくは、複数種の成膜ガスを、成膜室内に導入する前に混合するガスミキシングボックスを備えたプラズマ成膜装置に関する。   The present invention relates to a plasma film forming apparatus, and more particularly to a plasma film forming apparatus provided with a gas mixing box for mixing a plurality of types of film forming gases before introducing them into a film forming chamber.

複数種の成膜ガスを用いて基板上にプラズマCVD(Chemical Vapor Deposition)法で成膜を行う場合において、成膜室内にそれら成膜ガスを導入する前にそれら成膜ガスを混合するガスミキシングボックスを成膜室の外に設けたプラズマCVD装置が周知である。例えば特許文献1参照。このようなガスミキシングボックスを用いることで、複数種の成膜ガスはガスミキシングボックスの内部で撹拌されて混合され、成膜室内に均一な濃度で供給される。
特開2001−335941号公報
When film deposition is performed on a substrate by plasma CVD (Chemical Vapor Deposition) method using multiple types of deposition gas, gas mixing is performed to mix these deposition gases before introducing them into the deposition chamber A plasma CVD apparatus in which a box is provided outside a film forming chamber is well known. For example, see Patent Document 1. By using such a gas mixing box, a plurality of types of film forming gases are agitated and mixed in the gas mixing box, and supplied to the film forming chamber at a uniform concentration.
JP 2001-335941 A

そのガスミキシングボックスを備えたプラズマCVD装置において、ガスミキシングボックスからのガス出口と、成膜室内へのガス導入口との間に接続された配管が長いと、ガスミキシングボックス内の圧力は減圧下にある成膜室内の圧力より上昇し、成膜ガス供給源からガスミキシングボックス内に流量調整して成膜ガスを供給するマスフローコントローラの両端の圧力差を十分に確保することができず、安定した流量で成膜ガスを成膜室内に供給することができなくなってしまう。その結果として、成膜された膜の膜厚が均一でなくなったり、膜厚の再現性が悪化してしまうなどの問題が生じる。   In the plasma CVD apparatus equipped with the gas mixing box, if the pipe connected between the gas outlet from the gas mixing box and the gas inlet into the film forming chamber is long, the pressure in the gas mixing box is reduced. The pressure difference between the two ends of the mass flow controller that supplies the deposition gas by adjusting the flow rate from the deposition gas supply source into the gas mixing box cannot be secured sufficiently. The film forming gas cannot be supplied into the film forming chamber at the flow rate. As a result, there arise problems that the film thickness of the formed film is not uniform and the reproducibility of the film thickness deteriorates.

なお、上記配管の口径を大口径にすればミキシングボックス内の圧力上昇を抑えることができるが、ミキシングボックス内における各種成膜ガスの撹拌による混合効果の低下を防ぐため、あまり上記配管の口径は大口径にできない。   In addition, if the diameter of the pipe is made large, the pressure rise in the mixing box can be suppressed, but in order to prevent the mixing effect from being lowered due to stirring of various film forming gases in the mixing box, the diameter of the pipe is not much. It cannot be made large.

そこで特許文献1では、ミキシングボックスを電極の上に設置し、ミキシングボックスのガス出口を、電極の厚さ方向を貫通して形成されたガス導入口に直結させることで、上述したようにガス出口とガス導入口間を接続する配管の長さに起因する成膜ガスの流量の不安定さを解消するようにしている。   Therefore, in Patent Document 1, the mixing box is installed on the electrode, and the gas outlet of the mixing box is directly connected to the gas inlet formed through the thickness direction of the electrode, as described above. And the instability of the flow rate of the film forming gas due to the length of the pipe connecting the gas inlets.

なお、ガスミキシングボックスを例えばフッ素樹脂等のやわらかい材料から構成するとガスミキシングボックス内の真空を維持できなく、またアルミナのようなセラミック材料では加工費も含めコストがかかってしまうため、ミキシングボックスはステンレス等の金属材料から構成するのが一般的である。   Note that if the gas mixing box is made of a soft material such as a fluororesin, the vacuum inside the gas mixing box cannot be maintained, and a ceramic material such as alumina is expensive, including processing costs. Generally, it is made of a metal material such as

図2は従来における、高周波電力が印加される電極2と、この電極2上に配置されたガスミキシングボックス8の側面図を示す。ここで、導体を流れる高周波電流は周波数が高くなるほど導体内部はほとんど流れずに表面近くを流れる表皮効果により、電極2上面の略中心位置に供給された高周波電流は図2において矢印で示すような経路で流れて、電極2において他の電極(図示せず)に対向する面に至る。ここで、ガスミキシングボックス8は導電性を有するため電極2と電気的に接触しており、よって高周波電流は、ガスミキシングボックス8が配置された図において左側ではガスミキシングボックス8の表面を流れてから、反対面側に流れる。すなわち、電極2の上部表面の略中心から、その上部表面の左側を流れて反対面側に流れる高周波電流の経路の方が、ガスミキシングボックス8が有る分だけ長くなり、電極2の上部表面の右側を流れて反対面側に流れる高周波電流の経路に比べて抵抗が大となる。   FIG. 2 is a side view of a conventional electrode 2 to which high-frequency power is applied and a gas mixing box 8 disposed on the electrode 2. Here, as the frequency of the high-frequency current flowing through the conductor increases, the high-frequency current supplied to the substantially central position on the upper surface of the electrode 2 is indicated by an arrow in FIG. It flows in a path and reaches the surface of the electrode 2 that faces another electrode (not shown). Here, since the gas mixing box 8 has electrical conductivity, it is in electrical contact with the electrode 2, so that high-frequency current flows on the surface of the gas mixing box 8 on the left side in the figure where the gas mixing box 8 is arranged. To the opposite side. That is, the path of the high-frequency current flowing from the approximate center of the upper surface of the electrode 2 to the opposite side through the left side of the upper surface is longer by the amount of the gas mixing box 8, and the upper surface of the electrode 2 The resistance is larger than the path of the high-frequency current flowing on the right side and flowing on the opposite side.

この結果、ガスミキシングボックス8が存在する図において左側とガスミキシングボックス8が存在しない右側とで、電極2に対向している他の電極との間に生じる高周波電力強度に偏りが生じ、生成されるプラズマ密度が電極面方向に関して均一でなくなる。これにより、基板の面方向において、ガスミキシングボックス8が有る箇所と無い箇所とで成膜速度が異なり膜厚分布が悪化する。この問題は、成膜速度が、高周波電力強度に正比例するような反応律速系(主に非晶質珪素膜や窒化珪素膜の成膜)で特に顕著に表れる。   As a result, the high-frequency power intensity generated between the left side in the figure where the gas mixing box 8 exists and the right side where the gas mixing box 8 does not exist and the other electrodes facing the electrode 2 are generated and generated. The plasma density is not uniform with respect to the electrode surface direction. Thereby, in the surface direction of a board | substrate, the film-forming speed | rate differs by the location where the gas mixing box 8 exists, and the location which does not exist, and film thickness distribution deteriorates. This problem appears particularly prominently in a reaction-controlled system (mainly the formation of an amorphous silicon film or a silicon nitride film) in which the film formation rate is directly proportional to the high-frequency power intensity.

本発明は上述の問題に鑑みてなされ、その目的とするところは、高周波電力強度が電極面方向において均一になるようにし、基板面方向における膜厚分布を均一にすることができるプラズマ成膜装置を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to make a plasma film forming apparatus capable of making the high-frequency power intensity uniform in the electrode surface direction and uniforming the film thickness distribution in the substrate surface direction. Is to provide.

本発明のプラズマ成膜装置は、内部が真空排気される真空チャンバと、この真空チャンバ内に設置され、成膜対象物が支持される第1電極と、複数種の成膜ガスを混合するガスミキシングボックスと、真空チャンバの壁の一部を構成して第1電極に対向しており、ガスミキシングボックス内で混合された成膜ガスを真空チャンバ内に導入するためのガス導入口が形成された第2電極と、第1及び第2電極間に高周波電界を生じさせて真空チャンバ内に成膜ガスのプラズマを生成させる高周波電源とを備え、ミキシングボックスは、第2電極上に絶縁物を介して設置され、混合ガスのガス出口を第2電極のガス導入口に直結させていることを特徴としている。   The plasma film-forming apparatus of the present invention includes a vacuum chamber in which the inside is evacuated, a first electrode that is installed in the vacuum chamber and supports a film-forming target, and a gas that mixes a plurality of types of film-forming gases. The mixing box and a part of the wall of the vacuum chamber constitute a part of the first electrode and face the first electrode, and a gas introduction port for introducing the film forming gas mixed in the gas mixing box into the vacuum chamber is formed. The second electrode and a high-frequency power source for generating a high-frequency electric field between the first and second electrodes to generate plasma of a film forming gas in the vacuum chamber, and the mixing box has an insulator on the second electrode. The gas outlet of the mixed gas is directly connected to the gas inlet of the second electrode.

本発明では、ガスミキシングボックスと、ガス導入口が形成された第2電極との間に絶縁物を介在させてそれら両者の電気的接触を避けた構成とした。このような構成により、第2電極の上部表面に供給された高周波電流は、ガスミキシングボックスが配置された部分であってもガスミキシングボックスを経由しないで第2電極の上部表面を流れて、第1電極と対向している下部表面に流れる。これにより、第2電極表面を流れる高周波電流はガスミキシングボックスを流れることによる電流損失の影響を受けずに、この第2電極とこれに対向して設けられた第1電極との間に生じる高周波電力強度を電極面方向において均一とすることができる。この結果、成膜対象物の面方向における成膜速度のばらつきを抑えて膜厚分布が均一となる。   In this invention, it was set as the structure which interposed the insulator between the gas mixing box and the 2nd electrode in which the gas inlet was formed, and avoided both electrical contact. With such a configuration, the high-frequency current supplied to the upper surface of the second electrode flows through the upper surface of the second electrode without passing through the gas mixing box, even in the portion where the gas mixing box is disposed. It flows to the lower surface facing one electrode. As a result, the high-frequency current flowing on the surface of the second electrode is not affected by the current loss caused by flowing through the gas mixing box, and the high-frequency generated between the second electrode and the first electrode provided opposite thereto. The power intensity can be made uniform in the electrode surface direction. As a result, the film thickness distribution is uniform while suppressing variations in the film formation speed in the surface direction of the film formation target.

本発明は、特に、反応律速が高周波電力強度に正比例するような、例えば、珪素含有ガスと窒素含有ガスを用いた窒化珪素膜の形成や、珪素含有ガスと不活性ガスを用いた多結晶もしくは非晶質の珪素膜の形成に効果的である。   In particular, the present invention is such that the reaction rate-determining is directly proportional to the high-frequency power intensity, for example, the formation of a silicon nitride film using a silicon-containing gas and a nitrogen-containing gas, or a polycrystalline or This is effective for forming an amorphous silicon film.

本発明のプラズマ成膜装置によれば、ガスミキシングボックスと、ガス導入口が形成された第2電極との間に絶縁物を介在させてそれら両者の電気的接触を避けた構成としたので、第1電極と第2電極との間に生じる高周波電力強度を電極面方向において均一とすることができる。この結果、成膜対象物の面方向における成膜速度のばらつきを抑えて膜厚分布が均一となり、成膜品質を向上できる。   According to the plasma film forming apparatus of the present invention, since the insulator is interposed between the gas mixing box and the second electrode in which the gas inlet is formed, the electrical contact between them is avoided. The high-frequency power intensity generated between the first electrode and the second electrode can be made uniform in the electrode surface direction. As a result, variations in film formation speed in the surface direction of the film formation target are suppressed, the film thickness distribution becomes uniform, and film formation quality can be improved.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various deformation | transformation is possible based on the technical idea of this invention.

図1は本発明の実施形態に係るプラズマ成膜装置を示す。このプラズマ成膜装置は、真空チャンバ内に導入された成膜ガスをプラズマ放電にさらし成膜対象物表面で化学反応を起こさせて堆積させるプラズマCVD装置である。   FIG. 1 shows a plasma film forming apparatus according to an embodiment of the present invention. This plasma film forming apparatus is a plasma CVD apparatus in which a film forming gas introduced into a vacuum chamber is exposed to a plasma discharge to cause a chemical reaction on the surface of a film forming object to be deposited.

真空チャンバ1には、図示しない真空排気系に接続された排気口7が設けられ、成膜室6として機能する内部が真空排気(減圧)できるようになっている。   The vacuum chamber 1 is provided with an exhaust port 7 connected to an evacuation system (not shown) so that the inside functioning as the film forming chamber 6 can be evacuated (depressurized).

真空チャンバ1内には、真空チャンバ壁と絶縁されて第1電極3が配設されている。第1電極3は接地されている。また、第1電極3は、成膜対象物であるガラスや半導体等の基板20を支持するサセプタとしても機能する。   A first electrode 3 is disposed in the vacuum chamber 1 so as to be insulated from the vacuum chamber wall. The first electrode 3 is grounded. The first electrode 3 also functions as a susceptor that supports a substrate 20 such as glass or semiconductor that is a film formation target.

真空チャンバ1の天井側には真空チャンバ壁と絶縁されて第2電極2が設けられている。第2電極2は真空チャンバ1の天井壁の一部を構成し、シャワープレート4を挟んで第1電極3と対向している。第2電極2は、真空チャンバ1の外に設けられた高周波電源18と変調器19を介して接続されている。   A second electrode 2 is provided on the ceiling side of the vacuum chamber 1 so as to be insulated from the vacuum chamber wall. The second electrode 2 constitutes a part of the ceiling wall of the vacuum chamber 1 and faces the first electrode 3 with the shower plate 4 interposed therebetween. The second electrode 2 is connected to a high frequency power source 18 provided outside the vacuum chamber 1 via a modulator 19.

第2電極2は、真空チャンバ1内で第1電極3に向けられた開口を有する容器状に形成され、その開口に蓋をするように、多数の小孔が形成されたシャワープレート4が取り付けられている。第2電極2の上部とシャワープレート4との間にはガス貯留室5が形成され、このガス貯留室5に通じるガス導入口12が第2電極2上部の厚さ方向を貫通して形成されている。ガス導入口12は、第2電極2を上面側から見た図4に示すように、第2電極2上面の略中央に位置している。   The second electrode 2 is formed in a container shape having an opening directed to the first electrode 3 in the vacuum chamber 1, and a shower plate 4 having a large number of small holes is attached to cover the opening. It has been. A gas storage chamber 5 is formed between the upper part of the second electrode 2 and the shower plate 4, and a gas inlet 12 leading to the gas storage chamber 5 is formed through the thickness direction of the upper part of the second electrode 2. ing. As shown in FIG. 4 when the second electrode 2 is viewed from the upper surface side, the gas inlet 12 is located at the approximate center of the upper surface of the second electrode 2.

真空チャンバ1の外部に臨む第2電極2の上部表面上には、絶縁物17を介してガスミキシングボックス8が設置されている。ガスミキシングボックス8は、例えばステンレス等の金属材料からなり、その内部には混合室9と、この混合室9に接続されたガス流路10が形成されている。   On the upper surface of the second electrode 2 facing the outside of the vacuum chamber 1, a gas mixing box 8 is installed via an insulator 17. The gas mixing box 8 is made of, for example, a metal material such as stainless steel, and a mixing chamber 9 and a gas flow path 10 connected to the mixing chamber 9 are formed therein.

絶縁物17は、例えばアルミナやフッ素樹脂からなり、第2電極2の上部表面と、ガスミキシングボックス8の下面との間に介在されている。この絶縁物17によって、第2電極2とガスミキシングボックス8とは電気的に絶縁されている。   The insulator 17 is made of alumina or fluororesin, for example, and is interposed between the upper surface of the second electrode 2 and the lower surface of the gas mixing box 8. The insulator 17 electrically insulates the second electrode 2 and the gas mixing box 8 from each other.

ガス流路10の一端は混合室9に接続され、他端はガスミキシングボックス8のガス出口11と接続されている。そして、第2電極2に形成されたガス導入口12上に上記ガス出口11が位置され、それらガス出口11とガス導入口12とは直結されている。これらガス出口11とガス導入口12との直結を阻害しないため、絶縁物17においてそれらガス出口11とガス導入口12との間に位置する部分は厚さ方向が貫通されている。   One end of the gas flow path 10 is connected to the mixing chamber 9, and the other end is connected to the gas outlet 11 of the gas mixing box 8. The gas outlet 11 is located on the gas inlet 12 formed in the second electrode 2, and the gas outlet 11 and the gas inlet 12 are directly connected. In order not to hinder the direct connection between the gas outlet 11 and the gas inlet 12, a portion of the insulator 17 located between the gas outlet 11 and the gas inlet 12 is penetrated in the thickness direction.

以上のことより、ガスミキシングボックス8の混合室9は、ガス流路10、ガス出口11、ガス導入口12、ガス貯留室5、およびシャワープレート4の小孔を介して、成膜室6に通じている。   From the above, the mixing chamber 9 of the gas mixing box 8 enters the film forming chamber 6 through the gas passage 10, the gas outlet 11, the gas inlet 12, the gas storage chamber 5, and the small holes of the shower plate 4. Communicates.

真空チャンバ1の外部には、複数種の成膜ガスに対応して複数のガス供給源13、16が配設され、各ガス供給源13、16はそれぞれマスフローコントローラ14、15を介してガスミキシングボックス8の混合室9に接続されている。ガス供給源13、16は、混合室9において上記ガス流路10の反対側に接続されている。   A plurality of gas supply sources 13 and 16 are arranged outside the vacuum chamber 1 corresponding to a plurality of types of film forming gases, and the gas supply sources 13 and 16 are gas mixed via mass flow controllers 14 and 15, respectively. It is connected to the mixing chamber 9 of the box 8. The gas supply sources 13 and 16 are connected to the opposite side of the gas flow path 10 in the mixing chamber 9.

以上のプラズマ成膜装置を用いた成膜時には、先ず真空チャンバ1の内部を真空排気系で所定圧力(例えば50〜800Pa)まで真空排気(減圧)した後、成膜ガス供給源13、16から成膜ガスがマスフローコントローラ14、15で流量が調整されながらミキシングボックス8の混合室9に導入される。混合室9内に導入された複数種の成膜ガスは混合室9内で混合され各ガス成分の濃度が均一にされた後、ガス流路10、ガス出口11、第2電極2に形成されたガス導入口12を通ってガス貯留室5内へと導入される。このガス貯留室5内へ導入された混合ガスはシャワープレート4の小孔から第1電極3上に載置された基板20に向けて吹き付けられる。   At the time of film formation using the above plasma film forming apparatus, first, the inside of the vacuum chamber 1 is evacuated (depressurized) to a predetermined pressure (for example, 50 to 800 Pa) by an evacuation system, and then the film formation gas supply sources 13 and 16 The film forming gas is introduced into the mixing chamber 9 of the mixing box 8 while the flow rate is adjusted by the mass flow controllers 14 and 15. A plurality of types of film forming gases introduced into the mixing chamber 9 are mixed in the mixing chamber 9 to make the concentration of each gas component uniform, and then formed in the gas flow path 10, the gas outlet 11, and the second electrode 2. The gas is introduced into the gas storage chamber 5 through the gas inlet 12. The mixed gas introduced into the gas storage chamber 5 is sprayed from the small hole of the shower plate 4 toward the substrate 20 placed on the first electrode 3.

このとき、ガスミキシングボックス8のガス出口11と、第2電極2に形成されたガス導入口12との間には長い配管が介在せず両者は直結されているので、ガス出口11とガス導入口12との間における圧力損失がほとんどない。このため、そのような圧力損失分だけ混合室9の内部圧力が上昇することがないので、成膜ガスの流量を調整するマスフローコントローラ14、15の両端の圧力差を十分に高くすることができる。これにより、成膜ガスは流量が安定した状態でマスフローコントローラ14、15から成膜室6内に供給されるので成膜室6の混合ガスの状態が安定し、その結果、基板20上に成膜される膜の膜厚が均一になる。なお、以上の効果を得るためには混合室9からガス導入口12に至るガス流路は300mm以下が好ましい。   At this time, since a long pipe is not interposed between the gas outlet 11 of the gas mixing box 8 and the gas inlet 12 formed in the second electrode 2, both are directly connected. There is almost no pressure loss between the mouth 12. For this reason, since the internal pressure of the mixing chamber 9 does not increase by such a pressure loss, the pressure difference between both ends of the mass flow controllers 14 and 15 for adjusting the flow rate of the film forming gas can be sufficiently increased. . As a result, the deposition gas is supplied from the mass flow controllers 14 and 15 into the deposition chamber 6 with a stable flow rate, so that the state of the mixed gas in the deposition chamber 6 is stabilized. The film thickness of the film to be formed becomes uniform. In order to obtain the above effects, the gas flow path from the mixing chamber 9 to the gas inlet 12 is preferably 300 mm or less.

上述した状態で基板20を、第1電極3に内設したヒータで加熱して所定温度(例えば60〜450℃)を維持しながら高周波電源18から第2電極2に高周波電力(例えば発振周波数は10〜100MHz)を印加し、両電極2、3間に放電を生じさせプラズマを生じさせる。そのプラズマで成膜ガスが分解されて基板20の表面で気相成長し基板20上に堆積される。   In the state described above, the substrate 20 is heated by a heater provided in the first electrode 3 to maintain a predetermined temperature (for example, 60 to 450 ° C.), and the high frequency power (for example, the oscillation frequency is supplied from the high frequency power source 18 to the second electrode 2). 10 to 100 MHz) is applied to generate a discharge between the electrodes 2 and 3 to generate plasma. The deposition gas is decomposed by the plasma, and vapor phase growth is performed on the surface of the substrate 20 to be deposited on the substrate 20.

そして、本実施形態では、共に導電性を有するガスミキシングボックス8と第2電極2との間に絶縁物17を介在させて両者の電気的接触を避けた構成とした。ガスミキシングボックス8は電気的にどこにも接続されず、その電位は浮動電位となっている。このような構成により、図3において矢印で示すように、高周波電源18より第2電極2の上部表面の略中心位置に供給された高周波電流は、ガスミキシングボックス8が配置された図において左側においてもガスミキシングボックス8を経由しないで第2電極2の上部表面を流れて、第1電極3と対向している下部表面に流れる。すなわち、第2電極2の上部表面の略中心から、その上部表面の左側を流れて反対面側に流れる高周波電流の経路と、上部表面の右側を流れて反対面側に流れる高周波電流の経路とは同じ長さとなり、両経路における抵抗が同程度になる。   And in this embodiment, it was set as the structure which interposed the insulator 17 between the gas mixing box 8 which has both conductivity, and the 2nd electrode 2, and avoided both electrical contact. The gas mixing box 8 is not electrically connected anywhere and its potential is a floating potential. With such a configuration, as indicated by an arrow in FIG. 3, the high-frequency current supplied from the high-frequency power source 18 to the substantially central position on the upper surface of the second electrode 2 is on the left side in the figure in which the gas mixing box 8 is arranged. Also flows through the upper surface of the second electrode 2 without passing through the gas mixing box 8 and flows to the lower surface facing the first electrode 3. That is, a path of high-frequency current flowing from the approximate center of the upper surface of the second electrode 2 to the left side of the upper surface and flowing to the opposite surface side, and a path of high-frequency current flowing from the right side of the upper surface to the opposite surface side Have the same length and the resistance in both paths is comparable.

この結果、ガスミキシングボックス8が存在する図において左側とガスミキシングボックス8が存在しない右側とで、第1電極3との間に生じる高周波電力強度に偏りが生じず、電極面方向での高周波電力強度が均一になる。これにより、基板20の面方向における膜厚分布が均一となる。   As a result, in the figure where the gas mixing box 8 is present, there is no bias in the high-frequency power intensity generated between the left electrode and the right side where the gas mixing box 8 is not present, and the first electrode 3, and the high-frequency power in the electrode surface direction. The strength becomes uniform. Thereby, the film thickness distribution in the surface direction of the substrate 20 becomes uniform.

図5は、図2に示す従来の構成と、図3に示す本発明の構成とで、高周波電力が印加される電極の面方向における(peak to peak)電位の電位分布のシミュレーション結果を示す。   FIG. 5 shows a simulation result of the potential distribution of the (peak to peak) potential in the surface direction of the electrode to which the high-frequency power is applied in the conventional configuration shown in FIG. 2 and the configuration of the present invention shown in FIG.

この図5の結果から明らかなように、従来の構成ではガスミキシングボックスが有る箇所と無い箇所とで、電極中心から同距離における電位の大きさが異なる。これに対して、本発明の構成では電極中心から同距離における電位は、ガスミキシングボックスが有る箇所と無い箇所どちらも同じ電位となっている。すなわち、本発明では電極中心に対して対称な電位分布が得られる。このことは基板面方向での膜厚分布の均一化につながる。   As is apparent from the results of FIG. 5, in the conventional configuration, the magnitude of the potential at the same distance from the center of the electrode differs depending on whether the gas mixing box is present or not. On the other hand, in the configuration of the present invention, the potential at the same distance from the center of the electrode is the same at both the location where the gas mixing box is present and the location where the gas mixing box is not present. In other words, in the present invention, a symmetrical potential distribution is obtained with respect to the electrode center. This leads to a uniform film thickness distribution in the substrate surface direction.

次に、成膜ガスとしてSiH4ガスとNH3ガスと窒素ガスとを用いた窒化珪素膜と、成膜ガスとしてSiH4ガスとArガスとを用いた非晶質珪素膜とを下記の成膜条件にて成膜し、膜厚分布の評価を行った結果について説明する。評価に使用した成膜対象物である矩形状のガラス基板のサイズは730mm×920mmであり、その基板の690mm×880mmの領域中の25点で膜厚測定を行い、σ=(最大膜厚−最小膜厚)/(最大膜厚+最小膜厚)×100[%]で定義される膜厚分布を算出し、その値を図2に示される従来構成と、図3に示される本発明構成とで比較した。 Next, a silicon nitride film using SiH 4 gas, NH 3 gas, and nitrogen gas as the film forming gas, and an amorphous silicon film using SiH 4 gas and Ar gas as the film forming gas are formed as follows. The results of film formation under film conditions and evaluation of film thickness distribution will be described. The size of the rectangular glass substrate which is the film formation target used for the evaluation is 730 mm × 920 mm, and the film thickness is measured at 25 points in the 690 mm × 880 mm region of the substrate, and σ = (maximum film thickness− The film thickness distribution defined by (minimum film thickness) / (maximum film thickness + minimum film thickness) × 100 [%] is calculated, and the value is calculated according to the conventional configuration shown in FIG. 2 and the present invention configuration shown in FIG. And compared.

窒化珪素膜の成膜条件は、高周波電力周波数を27.12MHz、投入電力密度を0.57W/cm2、SiH4ガス流量を690sccm、NH3ガス流量をSiH4ガスの12.5倍、窒素ガス流量をSiH4ガスの17倍とした。 The film formation conditions of the silicon nitride film are as follows: high frequency power frequency is 27.12 MHz, input power density is 0.57 W / cm 2 , SiH 4 gas flow rate is 690 sccm, NH 3 gas flow rate is 12.5 times that of SiH 4 gas, nitrogen The gas flow rate was 17 times that of SiH 4 gas.

非晶質珪素膜の成膜条件は、高周波電力周波数を27.12MHz、投入電力密度を0.05W/cm2、SiH4ガス流量を330sccm、Arガス流量をSiH4ガスの50倍とした。 The film formation conditions for the amorphous silicon film were a high frequency power frequency of 27.12 MHz, an input power density of 0.05 W / cm 2 , a SiH 4 gas flow rate of 330 sccm, and an Ar gas flow rate of 50 times that of SiH 4 gas.

図6は従来構成における窒化珪素膜の膜厚分布を示し、図7は本発明構成における窒化珪素膜の膜厚分布を示し、図8は従来構成における非晶質珪素膜の膜厚分布を示し、図9は本発明構成における非晶質珪素膜の膜厚分布を示す。各図において、基板の長手方向及び短手方向にそれぞれ対応する2つの横軸は基板中心位置を0とした場合のその中心位置からの距離(mm)を示し、縦軸は膜厚(Å)を示す。   6 shows the thickness distribution of the silicon nitride film in the conventional configuration, FIG. 7 shows the thickness distribution of the silicon nitride film in the configuration of the present invention, and FIG. 8 shows the thickness distribution of the amorphous silicon film in the conventional configuration. FIG. 9 shows the film thickness distribution of the amorphous silicon film in the structure of the present invention. In each figure, the two horizontal axes corresponding to the longitudinal direction and the short direction of the substrate indicate the distance (mm) from the central position when the central position of the substrate is 0, and the vertical axis indicates the film thickness (Å). Indicates.

図6に示されるように、従来構成の成膜装置で成膜された窒化珪素膜では、基板面方向の膜厚分布が±8.9%であり、膜厚分布が傾斜している。これに対して、図7に示されるように、本発明構成の成膜装置で成膜された窒化珪素膜では、基板面方向の膜厚分布は傾斜がなく±3.5%と飛躍的に向上している。また、非晶質珪素膜についても、図9に示される本発明構成の成膜装置で成膜された非晶質珪素膜では基板面方向の膜厚分布は傾斜がなく、図8に示す従来における±5.2%の膜厚分布に対して、±2.4%というように良好な膜厚分布が得られている。   As shown in FIG. 6, in the silicon nitride film formed by the conventional film forming apparatus, the film thickness distribution in the substrate surface direction is ± 8.9%, and the film thickness distribution is inclined. On the other hand, as shown in FIG. 7, in the silicon nitride film formed by the film forming apparatus having the configuration of the present invention, the film thickness distribution in the substrate surface direction is not inclined and is drastically as ± 3.5%. It has improved. As for the amorphous silicon film, the amorphous silicon film formed by the film forming apparatus having the structure of the present invention shown in FIG. 9 has no inclination in the film thickness distribution in the substrate surface direction, and the conventional silicon film shown in FIG. A favorable film thickness distribution of ± 2.4% is obtained with respect to the film thickness distribution of ± 5.2%.

また、図10は従来構成の成膜装置で成膜された窒化珪素膜の成膜速度と膜厚分布と本発明構成の成膜装置で成膜された窒化珪素膜の成膜速度と膜厚分布を示し、図11は従来構成の成膜装置で成膜された窒化珪素膜の成膜速度と膜厚分布と本発明構成の成膜装置で成膜された窒化珪素膜の成膜速度と膜厚分布を示す。各図において、■が成膜速度を、◆が膜厚分布を示す。   FIG. 10 shows the film formation speed and film thickness distribution of a silicon nitride film formed by a conventional film forming apparatus, and the film formation speed and film thickness of a silicon nitride film formed by the film forming apparatus of the present invention. FIG. 11 shows the film formation speed and film thickness distribution of the silicon nitride film formed by the film forming apparatus having the conventional structure, and the film forming speed of the silicon nitride film formed by the film forming apparatus of the present invention. The film thickness distribution is shown. In each figure, ■ indicates the deposition rate, and ◆ indicates the film thickness distribution.

これら図10、11から、窒化珪素膜と非晶質珪素膜のどちらの成膜においても、従来構成の成膜装置で成膜された膜の膜厚分布より、本発明構成の成膜装置で成膜された膜の膜厚分布の方が良好であることがわかる。なおかつ、成膜速度については従来とほとんど同じであり、本発明を用いても成膜速度の低下をまねくことはない。   From FIGS. 10 and 11, it can be seen from the film thickness distribution of the film formed by the conventional film forming apparatus that the silicon nitride film and the amorphous silicon film are formed by the film forming apparatus of the present invention. It can be seen that the film thickness distribution of the formed film is better. In addition, the film forming speed is almost the same as the conventional one, and even if the present invention is used, the film forming speed is not lowered.

なお、上記窒化珪素膜や非晶質珪素膜に対する不純物のドーピングのあるなしによって、本発明の効果に違いは出ない。   Note that there is no difference in the effects of the present invention depending on whether the silicon nitride film or the amorphous silicon film is doped with impurities.

本発明の実施形態に係るプラズマ成膜装置の概略断面図である。It is a schematic sectional drawing of the plasma film-forming apparatus which concerns on embodiment of this invention. 従来例のプラズマ成膜装置要部の模式図である。It is a schematic diagram of the principal part of the plasma film-forming apparatus of a prior art example. 本発明の実施形態に係るプラズマ成膜装置要部の模式図である。It is a schematic diagram of the principal part of the plasma film-forming apparatus which concerns on embodiment of this invention. 図2、3の上面図である。FIG. 4 is a top view of FIGS. 従来と本発明とにおける、電極面内の電位分布図である。It is the electric potential distribution map in the electrode surface in the past and this invention. 従来における窒化珪素膜の膜厚分布図である。It is a film thickness distribution diagram of a conventional silicon nitride film. 本発明における窒化珪素膜の膜厚分布図である。It is a film thickness distribution map of the silicon nitride film in the present invention. 従来における非晶質珪素膜の膜厚分布図である。It is a film thickness distribution diagram of a conventional amorphous silicon film. 本発明における非晶質珪素膜の膜厚分布図である。It is a film thickness distribution diagram of the amorphous silicon film in the present invention. 従来と本発明とにおいて、窒化珪素膜の成膜速度と膜厚分布を示す図である。It is a figure which shows the film-forming speed | rate and film thickness distribution of a silicon nitride film in the past and this invention. 従来と本発明とにおいて、非晶質珪素膜の成膜速度と膜厚分布を示す図である。It is a figure which shows the film-forming speed | rate and film thickness distribution of an amorphous silicon film in the past and this invention.

符号の説明Explanation of symbols

1…真空チャンバ、2…第2電極、3…第1電極、4…シャワープレート、8…ガスミキシングボックス、9…混合室、11…ガス出口、12…ガス導入口、17…絶縁物、18…高周波電源、20…成膜対象物。   DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber, 2 ... 2nd electrode, 3 ... 1st electrode, 4 ... Shower plate, 8 ... Gas mixing box, 9 ... Mixing chamber, 11 ... Gas outlet, 12 ... Gas inlet, 17 ... Insulator, 18 ... high frequency power supply, 20 ... film formation target.

Claims (6)

内部が真空排気される真空チャンバと、
前記真空チャンバ内に設置され、成膜対象物が支持される第1電極と、
複数種の成膜ガスを混合するガスミキシングボックスと、
前記真空チャンバの壁の一部を構成して前記第1電極に対向しており、前記ガスミキシングボックス内で混合された成膜ガスを前記真空チャンバ内に導入するためのガス導入口が形成された第2電極と、
前記第1及び第2電極間に高周波電界を生じさせて前記真空チャンバ内に前記成膜ガスのプラズマを生成させる高周波電源と、を備えたプラズマ成膜装置であって、
前記ガスミキシングボックスは、前記第2電極上に絶縁物を介して設置され、前記混合ガスのガス出口を前記第2電極の前記ガス導入口に直結させている
ことを特徴とするプラズマ成膜装置。
A vacuum chamber in which the inside is evacuated;
A first electrode installed in the vacuum chamber and supporting a film formation target;
A gas mixing box that mixes multiple types of deposition gases;
A part of the wall of the vacuum chamber is formed and is opposed to the first electrode, and a gas inlet for introducing the film forming gas mixed in the gas mixing box into the vacuum chamber is formed. A second electrode;
A high-frequency power source that generates a high-frequency electric field between the first and second electrodes to generate plasma of the film-forming gas in the vacuum chamber,
The gas mixing box is installed on the second electrode via an insulator, and the gas outlet of the mixed gas is directly connected to the gas inlet of the second electrode. .
前記複数種の成膜ガスは、珪素含有ガスと窒素含有ガスを含み、前記成膜対象物に窒化珪素膜が成膜される請求項1に記載のプラズマ成膜装置。   The plasma deposition apparatus according to claim 1, wherein the plurality of types of deposition gases include a silicon-containing gas and a nitrogen-containing gas, and a silicon nitride film is deposited on the deposition target. 前記複数種の成膜ガスは、珪素含有ガスと不活性ガスを含み、前記成膜対象物に多結晶もしくは非晶質の珪素膜が成膜される請求項1に記載のプラズマ成膜装置。   The plasma deposition apparatus according to claim 1, wherein the plurality of types of deposition gases include a silicon-containing gas and an inert gas, and a polycrystalline or amorphous silicon film is deposited on the deposition target. 前記高周波電源の発振周波数は10〜100MHzであることを特徴とする請求項1乃至請求項3の何れかに記載のプラズマ成膜装置。   The plasma film-forming apparatus according to any one of claims 1 to 3, wherein an oscillation frequency of the high-frequency power source is 10 to 100 MHz. 前記絶縁物は、アルミナまたはフッ素樹脂であることを特徴とする請求項1乃至請求項4の何れかに記載のプラズマ成膜装置。   5. The plasma film forming apparatus according to claim 1, wherein the insulator is alumina or a fluororesin. 前記ガスミキシングボックス内で混合された成膜ガスが前記第2電極の前記ガス導入口に至るまでのガス流路が300mm以下であることを特徴とする請求項1乃至請求項5の何れかに記載のプラズマ成膜装置。   The gas flow path from the film-forming gas mixed in the gas mixing box to the gas introduction port of the second electrode is 300 mm or less. The plasma film-forming apparatus of description.
JP2005032596A 2005-02-09 2005-02-09 Plasma deposition system Active JP4680619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032596A JP4680619B2 (en) 2005-02-09 2005-02-09 Plasma deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032596A JP4680619B2 (en) 2005-02-09 2005-02-09 Plasma deposition system

Publications (2)

Publication Number Publication Date
JP2006219702A true JP2006219702A (en) 2006-08-24
JP4680619B2 JP4680619B2 (en) 2011-05-11

Family

ID=36982215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032596A Active JP4680619B2 (en) 2005-02-09 2005-02-09 Plasma deposition system

Country Status (1)

Country Link
JP (1) JP4680619B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250356B1 (en) * 2006-11-08 2013-04-05 주식회사 원익아이피에스 Apparatus for manufacturing semiconductor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213439A (en) * 1983-05-18 1984-12-03 Kyocera Corp Capacity coupling type glow discharge decomposition apparatus
JPH08325759A (en) * 1995-05-30 1996-12-10 Anelva Corp Surface-treating device
JPH09134911A (en) * 1995-10-04 1997-05-20 Hyundai Electron Ind Co Ltd High dielectric thin film production and manufacturing device
JPH09279350A (en) * 1996-04-11 1997-10-28 Anelva Corp Surface treating device
JPH09312290A (en) * 1996-02-14 1997-12-02 Applied Materials Inc Germanium doped epsg thin film layer and its manufacture
JPH11152573A (en) * 1997-07-11 1999-06-08 Applied Materials Inc Gas mixing device and method therefor
JP2000273638A (en) * 1999-03-24 2000-10-03 Ebara Corp Chemical vapor deposition device
JP2001148378A (en) * 1999-11-22 2001-05-29 Tokyo Electron Ltd Plasma processing apparatus, cluster tool and plasma control method
JP2001335941A (en) * 2000-05-25 2001-12-07 Ulvac Japan Ltd Gas injection device, and vacuum treatment system
JP2003224000A (en) * 2002-01-30 2003-08-08 Alps Electric Co Ltd Plasma treatment device
JP2005344169A (en) * 2004-06-03 2005-12-15 Tokyo Electron Ltd Plasma cvd apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213439A (en) * 1983-05-18 1984-12-03 Kyocera Corp Capacity coupling type glow discharge decomposition apparatus
JPH08325759A (en) * 1995-05-30 1996-12-10 Anelva Corp Surface-treating device
JPH09134911A (en) * 1995-10-04 1997-05-20 Hyundai Electron Ind Co Ltd High dielectric thin film production and manufacturing device
JPH09312290A (en) * 1996-02-14 1997-12-02 Applied Materials Inc Germanium doped epsg thin film layer and its manufacture
JPH09279350A (en) * 1996-04-11 1997-10-28 Anelva Corp Surface treating device
JPH11152573A (en) * 1997-07-11 1999-06-08 Applied Materials Inc Gas mixing device and method therefor
JP2000273638A (en) * 1999-03-24 2000-10-03 Ebara Corp Chemical vapor deposition device
JP2001148378A (en) * 1999-11-22 2001-05-29 Tokyo Electron Ltd Plasma processing apparatus, cluster tool and plasma control method
JP2001335941A (en) * 2000-05-25 2001-12-07 Ulvac Japan Ltd Gas injection device, and vacuum treatment system
JP2003224000A (en) * 2002-01-30 2003-08-08 Alps Electric Co Ltd Plasma treatment device
JP2005344169A (en) * 2004-06-03 2005-12-15 Tokyo Electron Ltd Plasma cvd apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250356B1 (en) * 2006-11-08 2013-04-05 주식회사 원익아이피에스 Apparatus for manufacturing semiconductor

Also Published As

Publication number Publication date
JP4680619B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US7927455B2 (en) Plasma processing apparatus
US6344420B1 (en) Plasma processing method and plasma processing apparatus
JP2008205219A (en) Showerhead, and cvd apparatus using the same showerhead
KR20060007375A (en) Plasma processing device
JP2010103188A (en) Atmospheric pressure plasma processing apparatus
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JP2006310481A (en) Cvd apparatus
KR100377096B1 (en) Semiconductor fabricating apparatus having improved shower head
JPS6187319A (en) Chemical vapor phase film forming equipment using plasma
JP4680619B2 (en) Plasma deposition system
JP3036477B2 (en) Semiconductor manufacturing equipment
JP2000144421A (en) Film forming device and formation of film
TW200917910A (en) Plasma processing apparatus
EP0949352A1 (en) Plasma CVD apparatus
JP4404303B2 (en) Plasma CVD apparatus and film forming method
JP2006049544A (en) Substrate processing apparatus and substrate processing method using same
JPS63190173A (en) Plasma treating device
JP3068604B2 (en) Plasma CVD equipment
JP2848755B2 (en) Plasma CVD equipment
JPS6294922A (en) Film forming device using plasma cvd method
JPS62210623A (en) Electrode for vapor phase reactor
US11692269B2 (en) Plasma processing apparatus
JP5362511B2 (en) Catalytic chemical vapor deposition system
JPH0250969A (en) Thin film forming device
JP4594770B2 (en) Plasma CVD equipment

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250