JP2006219604A - Engineering method for improving soil and soil-improving material - Google Patents

Engineering method for improving soil and soil-improving material Download PDF

Info

Publication number
JP2006219604A
JP2006219604A JP2005035154A JP2005035154A JP2006219604A JP 2006219604 A JP2006219604 A JP 2006219604A JP 2005035154 A JP2005035154 A JP 2005035154A JP 2005035154 A JP2005035154 A JP 2005035154A JP 2006219604 A JP2006219604 A JP 2006219604A
Authority
JP
Japan
Prior art keywords
soil
construction
water
soil improvement
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035154A
Other languages
Japanese (ja)
Other versions
JP5010808B2 (en
Inventor
Hideo Sugimoto
英夫 杉本
Kumiko Sato
久美子 佐藤
Shigeru Kanno
滋 管野
Yoshinori Kawamura
佳則 川村
Tomosumi Azeyanagi
智純 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Tokyo Gas Co Ltd
Original Assignee
Obayashi Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Tokyo Gas Co Ltd filed Critical Obayashi Corp
Priority to JP2005035154A priority Critical patent/JP5010808B2/en
Publication of JP2006219604A publication Critical patent/JP2006219604A/en
Application granted granted Critical
Publication of JP5010808B2 publication Critical patent/JP5010808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an engineering method for improving soil and a soil-improving material, in which water permeability of alkali soil is improved and alkali soil such as soil generated by construction can be improved into greening soil in the short term in a construction site. <P>SOLUTION: The engineering method for improving soil comprises desalting an alkaline soil containing sodium chloride having high concentration to a considerable extent in which growth of plants is difficult and containing colloid particles by passing water into the soil and reutilizing the soil as greening soil. In the soil-improving method, the soil is mixed with a neutralizing agent containing a phosphoric acid-feeding source and a calcium-feeding source and water passage treatment is applied to the mixture. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌(例えば、建設発生土等)を通水により脱塩し、これを緑化土壌として再利用するための土壌改良工法及び土壌改良材に関する。   The present invention desalinates alkaline soil (for example, construction generated soil) containing colloidal particles containing sodium chloride at such a high concentration that it is difficult for plants to grow, and reuses it as green soil. The present invention relates to a soil improvement method and a soil improvement material.

近年、高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌(以下、単に「アルカリ土壌」という)については、これを緑化土壌として再利用する要請が高い。このように再利用することができれば、アルカリ土壌の廃棄量が減少して廃棄物の削減に寄与するとともに、緑化土壌が増加して環境改善が図れる。   In recent years, alkaline soil containing high-concentration sodium chloride and colloidal particles (hereinafter simply referred to as “alkaline soil”) is highly demanded to be reused as green soil. If it can be reused in this way, the amount of alkaline soil discarded will be reduced, contributing to the reduction of waste, and the greening soil will be increased to improve the environment.

ところが、アルカリ土壌に含まれるアルカリ成分は植物の生育阻害を招くため、これを緑化土壌として再利用するには、pHを中性にする必要がある。そこで、アルカリ土壌に中和剤を添加することにより、緑化に適した土壌に改善するための技術がある(例えば、特許文献1等参照)。このような技術によれば、アルカリ成分による植物の生育阻害を緩和することが可能となる。   However, since the alkaline component contained in the alkaline soil causes plant growth inhibition, the pH needs to be neutral in order to reuse this as greening soil. Therefore, there is a technique for improving a soil suitable for greening by adding a neutralizing agent to alkaline soil (see, for example, Patent Document 1). According to such a technique, it becomes possible to relieve the plant growth inhibition by the alkali component.

また、アルカリ土壌には、高濃度の塩化ナトリウムが含まれているため、アルカリ土壌を中和するだけでは、これを緑化土壌として再利用するには不十分である。すなわち、高濃度の塩化ナトリウムは植物の生育阻害を招くため、アルカリ土壌を緑化土壌として再利用するには、アルカリ土壌に含まれる塩化ナトリウムを除去する必要がある。そこで、リーチング等の通水により、土壌に含まれる塩化ナトリウムを除去(脱塩)するための技術がある。このような技術によれば、塩化ナトリウムによる植物の生育阻害を緩和することが可能となる。   In addition, since alkaline soil contains high-concentration sodium chloride, it is insufficient to re-use this as greening soil simply by neutralizing the alkaline soil. That is, since high concentration sodium chloride causes plant growth inhibition, it is necessary to remove sodium chloride contained in alkaline soil in order to reuse alkaline soil as greening soil. Therefore, there is a technique for removing (desalting) sodium chloride contained in soil by passing water such as leaching. According to such a technique, it becomes possible to relieve plant growth inhibition by sodium chloride.

さらに、アルカリ土壌には、コロイド粒子も含まれているため、リーチング等の通水を行うだけでは、これを緑化土壌として再利用するには不十分である。すなわち、アルカリ土壌に通水処理を施すと、土壌の透水性が低下してしまい、土壌に含まれる塩化ナトリウムの除去が不十分となる。従って、塩化ナトリウムによる植物の生育阻害を十分に緩和することができない。そこで、従来、アルカリ土壌の透水性を向上させるために、リーチングの際に改良補助剤として石膏を土壌に添加する技術がある。
特開2000−119651号公報
Furthermore, since the colloidal particles are contained in the alkaline soil, it is not sufficient to reuse the water as a greening soil by simply passing water such as leaching. That is, when water-passing treatment is performed on alkaline soil, the water permeability of the soil decreases, and the removal of sodium chloride contained in the soil becomes insufficient. Therefore, plant growth inhibition by sodium chloride cannot be alleviated sufficiently. Therefore, conventionally, in order to improve the water permeability of alkaline soil, there is a technique of adding gypsum to the soil as an improvement aid during leaching.
JP 2000-119651 A

しかしながら、このような従来の技術では、塩化ナトリウムを除去するには大量の通水を行う必要があり、アルカリ土壌の改良に長時間を要する。また、排水用の暗渠等のように常時水を流すことができる施設が必要となり、このような施設のない建設現場で発生した建設発生土を緑化土壌に再利用するには適していない。   However, in such a conventional technique, it is necessary to conduct a large amount of water in order to remove sodium chloride, and it takes a long time to improve the alkaline soil. In addition, a facility that allows water to flow at all times, such as a culvert for drainage, is required, and it is not suitable for reusing the generated soil generated at a construction site without such a facility as green soil.

そこで、本発明者は、これらの問題がアルカリ土壌を通水により脱塩する際に土壌の透水性が低下してしまうことに起因することに鑑み、その原因を探求すると共に、その原因を除去することにより、アルカリ土壌の透水性を向上させることができる中和剤について研究開発を行った。その結果、アルカリ土壌を通水により脱塩する際に、アルカリ土壌に含まれるコロイド粒子が分散、膨潤し、土壌の間隙を塞いでしまうことが原因であることがわかった。すなわち、アルカリ土壌を通水により脱塩すると、塩化ナトリウムの濃度が低下すると共に、土壌は強アルカリ性を呈するようになり、アルカリ土壌に含まれるコロイド粒子が分散、膨潤し、土壌の間隙が塞がれて土壌の透水性が低下することがわかった。   Therefore, the present inventor explored the cause and removed the cause in view of the fact that these problems are caused by a decrease in the water permeability of the soil when the alkaline soil is desalted by passing water. As a result, research and development was conducted on a neutralizing agent capable of improving the water permeability of alkaline soil. As a result, it was found that the colloidal particles contained in the alkaline soil are dispersed and swollen when the alkaline soil is desalted by passing water, and the soil gap is blocked. That is, when alkaline soil is desalted by passing water, the concentration of sodium chloride decreases, the soil becomes strongly alkaline, colloidal particles contained in the alkaline soil are dispersed and swollen, and the soil gap is blocked. It was found that the water permeability of the soil decreased.

本発明は、上記の点に鑑みてなされたものであり、アルカリ土壌の透水性を向上させると共に、建設発生土等のアルカリ土壌を建設現場において短期的に緑化土壌に改良することができる土壌改良工法及び土壌改良材を提供することを目的とする。   The present invention has been made in view of the above points, and while improving the water permeability of alkaline soil, the soil improvement that can improve alkaline soil such as construction generated soil to greening soil at a construction site in a short period of time. It aims at providing a construction method and a soil improvement material.

上記課題を解決するために、本発明は、植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌を通水により脱塩し、これを緑化土壌として再利用するための土壌改良工法であって、土壌にリン酸供給源及びカルシウム供給源を含有する中和剤を混合し、これらの混合物に通水処理を施すことを特徴とする。このような構成によれば、アルカリ土壌に含まれるコロイド粒子の分散、膨潤を抑制することができるようになるため、アルカリ土壌の透水性を向上させることが可能となる
上記のリン酸供給源として、過リン酸石灰、重過リン酸石灰、苦土過リン酸石灰、硫リン安系資材、リン硝安系資材のうち少なくとも1種以上を含有する化学肥料を用いることが好ましい。また、上記のカルシウム供給源として、石膏、硫酸カルシウム、貝殻、鉱滓のうち少なくとも1種以上を含有する化学肥料を用いることが好ましい。
In order to solve the above-mentioned problems, the present invention desalinates alkaline soil containing colloidal particles containing high-concentration sodium chloride to such an extent that plants are difficult to grow, and reuses it as green soil. It is a soil improvement method for carrying out, Comprising: The neutralizing agent containing a phosphoric acid supply source and a calcium supply source is mixed with soil, It is characterized by performing a water-flow process to these mixtures. According to such a configuration, since the dispersion and swelling of colloidal particles contained in the alkaline soil can be suppressed, the water permeability of the alkaline soil can be improved. It is preferable to use a chemical fertilizer containing at least one or more of lime superphosphate, heavy superphosphate lime, bitumen superphosphate lime, ammonium sulfate-based material, and phosphorus nitrate-based material. Moreover, it is preferable to use the chemical fertilizer containing at least 1 sort (s) among gypsum, calcium sulfate, a shell, and a mine as said calcium supply source.

また、本発明は、土壌に該土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材を混合することとしてもよく、かかる無機質材として、例えば、パーライト、粘土焼成品のうち少なくとも1種以上を用いることが好ましい。このような構成によれば、 中和剤のみを単独で土壌に混合する場合と比べると、アルカリ土壌の透水性をよりいっそう向上させることが可能となる。   Further, the present invention may be mixed with a porous inorganic material having a particle size larger than that of the soil particles and having high water retention and water permeability, such as pearlite or a fired clay product. It is preferable to use at least one of them. According to such a configuration, it is possible to further improve the water permeability of the alkaline soil as compared with the case where only the neutralizing agent is mixed with the soil.

また、本発明は、土壌に保水性及び保肥性が高い有機質材を混合することとしてもよく、かかる有機質材として、例えば、ミズコケが風化した泥炭、草炭、または、落ち葉、刈敷き、枝葉等の有機質が腐熟して完熟した堆肥のうち少なくとも1種以上を用いることが好ましい。このような構成によれば、中和剤や無機質材により土壌の透水性を向上させたとしても、植物の生育に必要な水分や栄養分は土壌から流れ出すことはなく土壌中に保持されるため、よりいっそう緑化土壌に適したものに改良することが可能となる。   In addition, the present invention may be mixed with organic materials having high water retention and fertilization properties in the soil. Examples of such organic materials include peat, grass charcoal, or fallen leaves, cuttings, branches, etc. It is preferable to use at least one kind of compost that has been fully ripened after the organic matter has been ripened. According to such a configuration, even if the water permeability of the soil is improved by a neutralizing agent or an inorganic material, moisture and nutrients necessary for the growth of plants do not flow out of the soil and are retained in the soil. It becomes possible to improve to those more suitable for greening soil.

また、本発明は、植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の建設発生土を通水により脱塩し、これを緑化土壌として再利用するための建設発生土の土壌改良工法であって、建設発生土に、リン酸供給源及びカルシウム供給源を含有する中和剤と、該建設発生土の土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材と、保水性及び保肥性が高い有機質材とを添加し、これらをミキサー、トラクター、バックホウ等を用いて攪拌混合する工程と、この工程により中和剤、無機質材及び有機質材と均質的に混合された建設発生土を雨水、河川水等の自然水によって通水する工程と、を有することを特徴とする。このような構成によれば、通水施設や混合プラント等の施設がない建設現場においても、アルカリ土壌である建設発生土を短期的に緑化土壌に改良することが可能となる。   Further, the present invention provides a construction for desalinating alkaline construction-generated soil containing colloidal particles containing high-concentration sodium chloride to the extent that it is difficult for plants to grow and reusing it as green soil. A soil improvement method for generated soil, wherein the construction generated soil has a neutralizing agent containing a phosphate supply source and a calcium supply source, a particle size larger than the soil particles of the construction generated soil, water retention and water permeability A porous inorganic material with high water content and an organic material with high water retention and fertilization properties are added, and these are stirred and mixed using a mixer, tractor, backhoe, etc. And a step of passing the construction generated soil homogeneously mixed with the organic material with natural water such as rain water and river water. According to such a configuration, even in a construction site where there is no facility such as a water flow facility or a mixing plant, it is possible to improve construction generated soil, which is alkaline soil, to green soil in a short time.

また、本発明は、植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌を、通水により脱塩し、これを緑化土壌として再利用する際に用いられる土壌改良材であって、リン酸供給源及びカルシウム供給源を含有する中和剤を含むことを特徴とし、さらに、土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材と、保水性及び保肥性が高い有機質材とを含むことを特徴としてもよい。このような構成によれば、アルカリ土壌に含まれるコロイド粒子の分散、膨潤を抑制することができるようになるため、アルカリ土壌の透水性を向上させることが可能となる。   Further, the present invention is used when alkaline soil containing sodium chloride at a high concentration to the extent that plants are difficult to grow and containing colloidal particles is desalted by passing water and reused as green soil. A soil improvement material comprising a neutralizing agent containing a phosphoric acid source and a calcium source, and is a porous inorganic material having a particle size larger than that of soil particles and having high water retention and water permeability It may be characterized by containing a material and an organic material having high water retention and fertilization. According to such a configuration, since the dispersion and swelling of the colloidal particles contained in the alkaline soil can be suppressed, the water permeability of the alkaline soil can be improved.

本発明によれば、アルカリ土壌の透水性を向上させることができると共に、建設発生土等のアルカリ土壌を建設現場において短期的に緑化土壌に改良することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to improve the water permeability of alkaline soil, alkaline soils, such as construction generation | occurence | production soil, can be improved to greening soil in a short term at a construction site.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

===土壌改良工法及び土壌改良材の基本構成===
まず、土壌改良工法及び土壌改良材の基本構成について説明する。本実施形態における土壌改良工法は、アルカリ土壌を通水により脱塩し、これを緑化土壌として再利用するための土壌改良工法である。この土壌改良工法は、アルカリ土壌に、リン酸供給源及びカルシウム供給源を含有する中和剤(以下、単に「中和剤」という)と、保水性及び透水性が高い多孔質の無機質材(以下、単に「無機質材」という)と、保水性及び保肥性が高い有機質材(以下、単に「有機質材」という)とを混合し、これらの混合物に通水処理を施すという構成を有する。また、本実施形態における土壌改良材は、このような中和剤、無機質材及び有機質材を含有する。
=== Basic structure of soil improvement method and soil improvement material ===
First, the basic structure of the soil improvement method and the soil improvement material will be described. The soil improvement method in the present embodiment is a soil improvement method for desalting alkaline soil by passing water and reusing it as green soil. In this soil improvement method, a neutralizing agent containing a phosphate source and a calcium source (hereinafter simply referred to as “neutralizing agent”) and a porous inorganic material having high water retention and water permeability ( Hereinafter, it is simply referred to as “inorganic material”) and an organic material having high water retention and fertilizing properties (hereinafter simply referred to as “organic material”), and the mixture is subjected to a water flow treatment. Moreover, the soil improvement material in this embodiment contains such a neutralizing agent, an inorganic material, and an organic material.

上記構成の本実施形態において、アルカリ土壌は、植物が生育困難な程度に高濃度の塩化ナトリウムと、コロイド粒子とを含む土壌であり、アルカリ性を呈する。   In the present embodiment having the above-described configuration, the alkaline soil is a soil containing sodium chloride and colloidal particles having a high concentration to such an extent that plants are difficult to grow, and exhibits alkalinity.

また、上記の中和剤は、リン酸供給源である過リン酸石灰と、カルシウム供給源である硫酸カルシウムとを含有している。そして、過リン酸石灰は、可溶性のリン酸塩を多く含んでおり、短時間でアルカリ土壌を中性化し、このアルカリ土壌に含まれるコロイド粒子の分散、膨潤を抑制することにより、透水性を向上させる。一方、硫酸カルシウムは、徐々に溶け出す性能を有するため、中和作用の持続性を向上させる。   Moreover, said neutralizing agent contains the superphosphate lime which is a phosphoric acid supply source, and the calcium sulfate which is a calcium supply source. And lime superphosphate contains a lot of soluble phosphate, neutralizes alkaline soil in a short time, and suppresses the dispersion and swelling of colloidal particles contained in this alkaline soil, thereby improving water permeability. Improve. On the other hand, since calcium sulfate has the performance of gradually dissolving, it improves the sustainability of the neutralizing action.

なお、リン酸供給源は、リン酸イオンを供給する物質であり、上記の過リン酸石灰に限定されるものではなく、例えば、可溶性のリン酸塩等であってもよい。このようなリン酸供給源としては、特に、重過リン酸石灰、苦土過リン酸石灰、硫リン安系資材、リン硝安系資材が好ましい。また、カルシウム供給源は、カルシウムイオンを供給する物質であり、上記の硫酸カルシウムに限定されるものではなく、例えば、可溶性のカルシウム塩であってもよい。このようなカルシウム供給源としては、特に、石膏、貝殻、鉱滓が好ましい。   The phosphate supply source is a substance that supplies phosphate ions, and is not limited to the above-mentioned superphosphate lime, and may be, for example, a soluble phosphate. As such a phosphoric acid supply source, in particular, heavy superphosphate lime, bitumen perphosphate lime, ammonium sulfate-based material, and phosphorus ammonium-based material are preferable. The calcium supply source is a substance that supplies calcium ions, and is not limited to the above calcium sulfate, and may be, for example, a soluble calcium salt. As such a calcium supply source, gypsum, shells, and iron slag are particularly preferable.

また、上記の無機質材は、保水性及び透水性の永続性を保つために生分解性がなく、完全無機系のパーライトを含有している。無機質材は、アルカリ土壌(特に、粒径の不均一な建設発生土)の粒径を調節する作用を有しており、この無機質材を土壌に混合することにより、土壌の粒径分布を物理的に変えることができる。これにより、土壌の透水性が向上し、中性化されたコロイド粒子や塩類が土壌中で移動しやすくなり、塩化ナトリウムは速やかにアルカリ土壌から除去される。なお、無機質材としては、パーライトに限定されるものではなく、例えば、粘土焼成品等の材料であってもよい。   In addition, the above-mentioned inorganic material is not biodegradable in order to maintain water retention and water permeability, and contains completely inorganic pearlite. The inorganic material has the effect of adjusting the particle size of alkaline soil (especially construction soil with non-uniform particle size). By mixing this inorganic material with the soil, the particle size distribution of the soil is physically controlled. Can be changed. Thereby, the water permeability of the soil is improved, the neutralized colloidal particles and salts are easily moved in the soil, and sodium chloride is quickly removed from the alkaline soil. In addition, as an inorganic material, it is not limited to pearlite, For example, materials, such as a clay baking product, may be sufficient.

また、上記の有機質材は、ミズコケが風化した泥炭であるピートモスと、落ち葉、刈敷き、枝葉等の有機質が腐熟して完熟した堆肥とを含有している。ピートモスの品質については、保水性及び保肥性を高くするために腐植質が多いものを用いることとし、堆肥の品質については、土壌微生物が含まれており、且つ保肥性を保つために腐熟が十分なものを用いることとする。このようなピートモス及び堆肥を土壌に混合することにより、透水性が向上したとしても、植物の生育に必要な水分及び栄養分は土壌から流出してしまうことはないので、通水により脱塩すれば、これを緑化土壌としてそのまま再利用することが可能となる。なお、有機質材としては、ピートモスや堆肥に限定されるものではなく、例えば、草炭等の材料であってもよい。   Further, the organic material contains peat moss, which is peat weathered by moss moss, and compost that has been fully ripened by ripening organic matter such as fallen leaves, cuttings, and branches. As for the quality of peat moss, we shall use the one with a lot of humus in order to improve water retention and fertilizer, and as for the quality of compost, it contains soil microorganisms and ripening to maintain fertilizer Should be sufficient. Even if water permeability is improved by mixing such peat moss and compost into the soil, water and nutrients necessary for plant growth will not flow out of the soil. This can be reused as it is as greening soil. In addition, as an organic material, it is not limited to peat moss or compost, For example, materials, such as grass charcoal, may be sufficient.

===建設発生土の土壌改良工法===
次に、建設発生土の土壌改良工法について説明する。本実施形態における建設発生土の土壌改良工法は、上記の土壌改良材を用いてアルカリ土壌である建設発生土を通水により脱塩し、これを緑化土壌として再利用するためのものである。この建設発生土の土壌改良工法は、次のような第1工程及び第2工程からなる。すなわち、第1工程においては、建設発生土に、土壌改良材を添加し、これらをミキサー、トラクター、バックホウ等を用いて攪拌混合すると共に、第2工程においては、第1工程により土壌改良材と均質的に混合された建設発生土を雨水、河川水等の自然水によって通水する。上記の土壌改良材は、可溶性のリン酸塩及びカルシウム塩を含有する中和剤と、建設発生土の土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材と、保水性及び保肥性が高い有機質材とを含有する。
=== Soil improvement method for construction generated soil ===
Next, the soil improvement method for construction generated soil will be described. The soil improvement method for construction-generated soil in the present embodiment is for desalting the construction-generated soil, which is alkaline soil, with water using the above-mentioned soil improving material, and reusing it as green soil. The soil improvement method for construction-generated soil includes the following first and second steps. That is, in the first step, the soil improvement material is added to the construction generated soil, and these are stirred and mixed using a mixer, a tractor, a backhoe or the like. In the second step, the soil improvement material is added by the first step. Homogeneously mixed construction generated soil is passed by natural water such as rain water and river water. The above soil improvement material is a neutralizing agent containing soluble phosphate and calcium salt, a porous inorganic material having a larger particle size than soil particles of construction-generated soil, high water retention and water permeability, Contains an organic material with high water retention and fertilization.

上記の建設発生土としては、例えば、干拓地等、海面の埋め立て地盤を掘削した建設発生土等がある。このような建設発生土は、海水に由来する塩化ナトリウム等の塩類を多量に含み、pH8.5以上の高い値を示すこともあり(強アルカリ性)、植物の生育に適していない。さらに、この建設発生土にはコロイド粒子が含まれており、土壌の透水性が低下しているため、通水により脱塩することは容易ではない。従って、通常の方法では、建設発生土を緑化土壌として再利用することは困難である。   Examples of the above-described construction-generated soil include construction-generated soil obtained by excavating landfill ground on the sea surface such as a reclaimed land. Such construction-generated soil contains a large amount of salt such as sodium chloride derived from seawater, and may have a high value of pH 8.5 or higher (strongly alkaline), and is not suitable for plant growth. Furthermore, since the construction-generated soil contains colloidal particles and the water permeability of the soil is reduced, it is not easy to desalinate by passing water. Therefore, it is difficult to reuse the construction-generated soil as a greening soil by a normal method.

そこで、建設発生土を緑化土壌として再利用するために、上記の土壌改良材を用いてアルカリ土壌を中性化し、且つ土壌中の塩化ナトリウムを除去する。特に、構造物を建設し、その上部を緑化する場合には、緑化工事は構造物の完成後に実施される。このため、工事期間は数ヶ月しかなく、緑化工事を短期的に行う必要がある。そして、建設現場において改良土壌を製造するためには、土木分野で土質改良に利用する機械を利用し、改良土壌を大量生産することにより、工事期間を短縮する。この際、建設発生土と土壌改良材とが不均質な状態で混合されていると、建設発生土に改良されない部分が残り、改良土壌としての品質が低下してしまう。   Therefore, in order to reuse the construction-generated soil as greening soil, the alkaline soil is neutralized and the sodium chloride in the soil is removed using the above-mentioned soil improvement material. In particular, when a structure is constructed and the upper part is greened, the greening work is performed after the structure is completed. For this reason, the construction period is only a few months, and it is necessary to carry out greening work in the short term. And in order to manufacture improved soil at a construction site, the construction period is shortened by mass-producing improved soil using a machine used for soil quality improvement in the civil engineering field. At this time, if the construction-generated soil and the soil improving material are mixed in a heterogeneous state, a portion that is not improved remains in the construction-generated soil, and the quality of the improved soil is degraded.

まず、第1工程においては、建設発生土と土壌改良材とが均質的に混合されるようにする。混合プラント等の施設がない建設現場では、ミキサー、トラクター、バックホウ等を用いて攪拌混合する。これらのうち、均質性を高めるためにはミキサーが好ましいが、ミキサーの代用として、例えば、自走式の土木工事用の土質改良機であり、計量器付きのものを用いてもよい。ミキサーを用いれば、移動と運搬及び設置に時間を要するが、自走式の土質改良機を用いれば、建設現場においても移動・運搬・設置が容易となる。また、土壌改良材を自動的に計量しながら攪拌する機能を備えた計量器付きの土質改良機を用いれば、建設発生土と土壌改良材とを均質的に混合させることが可能となる。なお、荷揚げに必要なミニクレーン機能等を備えた土質改良機を用いれば、建設発生土と土壌改良材とを効率的に混合させることも可能となる。さらに、建設発生土を上記の土壌改良機に搬入する際には、バックホウを用いることが好ましい。この場合、施工効率が高まり、工事期間をより短縮することができるようになる。このように建設現場の機械を利用して攪拌混合すれば、建設現場で掘削した建設発生土を混合プラント等の施設まで運搬する必要もなく、建設現場において建設発生土と土壌改良材とを均質的に混合することが可能となる。   First, in the first step, the construction generated soil and the soil improvement material are mixed homogeneously. At construction sites where there is no facility such as a mixing plant, mixing is carried out using a mixer, tractor, backhoe or the like. Among these, a mixer is preferable for improving homogeneity. However, as a substitute for the mixer, for example, a self-propelled soil improvement machine for civil engineering, and one equipped with a measuring instrument may be used. If a mixer is used, it will take time to move, transport and install, but if a self-propelled soil conditioner is used, it will be easy to move, transport and install even at construction sites. Moreover, if the soil improvement machine with a measuring device provided with the function of stirring while automatically measuring the soil improvement material is used, it is possible to mix the construction generated soil and the soil improvement material uniformly. In addition, if the soil improvement machine provided with the mini crane function etc. required for unloading is used, it will also become possible to mix construction generation soil and soil improvement material efficiently. Furthermore, it is preferable to use a backhoe when the construction generated soil is carried into the soil conditioner. In this case, the construction efficiency increases and the construction period can be further shortened. In this way, if the mixing at the construction site is used for mixing, there is no need to transport the construction generated soil excavated at the construction site to a facility such as a mixing plant, and the construction generated soil and the soil improvement material are homogenized at the construction site. Can be mixed.

次に、第2工程においては、第1工程により土壌改良材と均質的に混合された建設発生土を雨水等によって通水処理を施す。通水施設等がない建設現場では、雨水、河川水等の自然水を用いて通水する。これにより、通水施設等がない建設現場においても、アルカリ土壌である建設発生土を中性化すると共に、この土壌に含まれる塩化ナトリウムを植物が生育可能な程度に除去することが可能となる。さらに、本発明の土壌改良材には、有機質材が含まれているため、改良土壌は植物の生育に適した状態にある。従って、第2工程により改良された改良土壌は、これを緑化土壌として再利用することができる。   Next, in the second step, the construction-generated soil that has been homogeneously mixed with the soil improvement material in the first step is subjected to water flow treatment with rainwater or the like. At construction sites that do not have water-flowing facilities, natural water such as rainwater and river water is used. As a result, even in a construction site where there is no water flow facility or the like, it is possible to neutralize construction generated soil that is alkaline soil and remove sodium chloride contained in this soil to the extent that plants can grow. . Furthermore, since the soil improvement material of the present invention contains an organic material, the improved soil is in a state suitable for plant growth. Therefore, the improved soil improved by the second step can be reused as green soil.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

<改良対象土及び土壌改良材>
本実施例においては、アルカリ土壌である建設発生土を改良対象土とし、さらに、本発明の土壌改良材を用いて、本発明の土壌改良工法を実施した。これらの改良対象土及び土壌改良材の性質・配合等は、次の通りである。
<Soil for improvement and soil improvement material>
In this example, the construction-generated soil, which is alkaline soil, was used as the soil to be improved, and the soil improvement method of the present invention was carried out using the soil improvement material of the present invention. The properties, blending, etc. of these soils to be improved and soil improvement materials are as follows.

===改良対象土(建設発生土)===
図1は、本実施例における建設発生土の粒度分布(粒径加積曲線)を示すグラフである。
=== Improvement target soil (construction generated soil) ===
FIG. 1 is a graph showing the particle size distribution (particle size accumulation curve) of construction-generated soil in this example.

図1に示すように、本実施例における建設発生土は、粒径0.01mm以下の範囲に約20重量%を占めており、粒径1.0mm以下の範囲に約93重量%を占めている。その詳細な粒度分布は、砂(粒径:2〜0.02mm)が約86重量%であり、シルト(粒径:0.02〜0.002mm)が約5重量%、粘土(粒径:0.002mm以下)が約5重量%であった(但し、粒度分布は国際土壌学会法に準拠する)。   As shown in FIG. 1, the construction generated soil in this example occupies about 20% by weight in the range of 0.01 mm or less and about 93% by weight in the range of 1.0 mm or less. Yes. The detailed particle size distribution is about 86% by weight of sand (particle size: 2 to 0.02 mm), about 5% by weight of silt (particle size: 0.02 to 0.002 mm), and clay (particle size: 0.002 mm or less) was about 5% by weight (however, the particle size distribution conforms to the International Soil Society Law).

表1及び表2は、本実施例における建設発生土の性質を示す表であり、表1は建設発生土の物理性を示し、表2は建設発生土の化学性を示す。

Figure 2006219604
Figure 2006219604
Tables 1 and 2 are tables showing the properties of the construction generated soil in this example, Table 1 shows the physical properties of the construction generated soil, and Table 2 shows the chemical properties of the construction generated soil.
Figure 2006219604
Figure 2006219604

表1に示すように、建設発生土の物理性のうち、その粒度分布は、粘土・シルトが約10重量%を占め、砂が約86重量%を占める分布を示した。また、建設発生土の土性は、国際土壌学会の表記でLS(壌質砂土)に区分され、建設発生土の透水係数は、約9.0×10−3m・S−1を示した。 As shown in Table 1, among the physical properties of construction-generated soil, the particle size distribution was such that clay and silt accounted for about 10% by weight and sand accounted for about 86% by weight. In addition, the soil properties of construction generated soil are classified into LS (Loamy sand soil) according to the notation of the International Soil Society, and the permeability coefficient of construction generated soil is about 9.0 × 10 −3 m · S −1 . .

一方、表2に示すように、建設発生土の化学性は、pH:8.8、EC:1.03dS・m−1を示した。このことから、本実施例の建設発生土は、一般の森林表土よりもアルカリ性が強く、塩類濃度が高いことがわかる。 On the other hand, as shown in Table 2, the chemical properties of the soil generated by construction showed pH: 8.8 and EC: 1.03 dS · m −1 . From this, it can be seen that the construction-generated soil of this example is more alkaline and has a higher salt concentration than general forest topsoil.

図2は、本実施例における建設発生土のコロイドに含まれる粘土鉱物のX線回折結果を示すグラフである。   FIG. 2 is a graph showing the X-ray diffraction result of the clay mineral contained in the colloid of the construction generated soil in this example.

図2に示すように、建設発生土には、構成鉱物として、石英、長石、角閃石、メタハロイサイト、雲母粘土鉱物、スメクタイト、ギプサムが含まれていることが確認された。これらのうち、スメクタイトは、エチレングリコール処理により、X線回折のピークが17Å付近に移動することで同定された。そして、処理前の13〜15Åの反射ピークより、Ca型及びNa型が混じるものであると推定された。   As shown in FIG. 2, it was confirmed that the construction generated soil contained quartz, feldspar, amphibole, metahalloysite, mica clay mineral, smectite, and gypsum as constituent minerals. Among these, smectite was identified by the fact that the peak of X-ray diffraction moved to around 17% by the ethylene glycol treatment. And it was estimated that Ca type and Na type were mixed from the reflection peak of 13-15cm before a process.

以上より、本実施例における建設発生土は、アルカリ土壌であること、すなわち、植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌であることがわかった。そこで、このような建設発生土を中和すると共に、通水により脱塩することができれば、これを緑化土壌として再利用することが可能となる。   From the above, it was found that the construction generated soil in this example is alkaline soil, that is, alkaline soil containing sodium chloride at a high concentration to the extent that plants are difficult to grow and colloidal particles. Therefore, if such construction-generated soil can be neutralized and desalted by passing water, it can be reused as green soil.

===土壌改良材===
次に、本実施例では、本発明の土壌改良材を用いて、このような建設発生土を通水により脱塩することが可能か否かについて調べた。なお、本実施例における土壌改良材としては、中和剤、無機質材及び有機質材を含有するものを用いた。
=== Soil improvement material ===
Next, in this example, it was examined whether or not such construction-generated soil can be desalted by running water using the soil improvement material of the present invention. In addition, as a soil improvement material in a present Example, the thing containing a neutralizing agent, an inorganic material, and an organic material was used.

本実施例の中和剤は、リン酸供給源である可溶性リン酸成分含有の化学肥料(以下、「特殊肥料」という)と、カルシウム供給源である硫酸カルシウム成分含有の化学肥料とを含んでおり、特殊肥料としては、過リン酸石灰と同等品を使用し、硫酸カルシウム成分含有の化学肥料としては、硫酸カルシウム粉未肥料を使用した。   The neutralizing agent of the present embodiment includes a chemical fertilizer containing a soluble phosphate component that is a phosphate supply source (hereinafter referred to as “special fertilizer”) and a chemical fertilizer containing a calcium sulfate component that is a calcium supply source. In addition, as a special fertilizer, a product equivalent to lime superphosphate was used, and as a chemical fertilizer containing a calcium sulfate component, calcium sulfate powder non-fertilizer was used.

一方、本実施例の無機質材は、地力増進法で定められた土質改良材であるパーライトを含んでいる。このパーライトは、毛管間隙の構造を改質して透水生を維持しながら土壌の保水性を高める目的で利用した。具体的には、硬質な真珠岩系品(商品名:キングパールL号,粒径1.5〜7mm、三井金属パーライト(株)製)を使用した。   On the other hand, the inorganic material of a present Example contains the pearlite which is a soil improvement material defined by the geopower enhancement method. This perlite was used for the purpose of improving the water retention of the soil while improving the structure of the capillary gap and maintaining the water permeability. Specifically, a hard pearlite product (trade name: King Pearl L, particle size 1.5-7 mm, manufactured by Mitsui Metals Pearlite Co., Ltd.) was used.

また、本実施例の有機質材は、ピートモスと、堆肥とを含んでおり、ピートモスとしては、腐植化が進んだもの(A級品)を使用し、堆肥としては、広葉樹の枝葉の堆肥である緑葉堆肥(東洋リサイクル(株)製)を使用した。   Moreover, the organic material of a present Example contains peat moss and compost, As peony moss, the humus advanced thing (A grade product) is used, and compost is the compost of a broad-leaved tree leaf. Green leaf compost (Toyo Recycle Co., Ltd.) was used.

表3は、本実施例における土壌改良材の配合例を示す表であり、(a)は建設発生土と土壌改良材との配合比(容積比)を示し、(b)は土壌改良材の成分を示す。

Figure 2006219604
Table 3 is a table showing a blending example of the soil improvement material in the present example, (a) shows the blending ratio (volume ratio) between the construction-generated soil and the soil improvement material, and (b) shows the soil improvement material. Ingredients are shown.
Figure 2006219604

表3(a)に示すように、建設発生土と土壌改良材との配合比(容積比)は、8.5:1.5とした。土壌改良材に含まれるパーライト(=無機質材)と、ピートモス(=有機質材)と、緑葉堆肥(=有機質材)との配合比(容積比)は、0.5:0.5:0.5とした。土壌改良材には、上記の中和剤を事前に混合しており、さらに、この中和剤には、改良土壌1mに対する添加量(kg)として、特殊肥料である可溶性リン酸成分含有の化学肥料(過リン酸石灰:23kg/m)と、酸カルシウム成分含有の化学肥料(石膏:5.5kg/m)とを添加している。なお、過リン酸石灰としては、リン酸成分含有量が17%以上のものを用いており、石膏としては、硫酸カルシウム含有量が100%のものを用いた。 As shown in Table 3 (a), the blending ratio (volume ratio) between the construction-generated soil and the soil improvement material was 8.5: 1.5. The blending ratio (volume ratio) of perlite (= inorganic material), peat moss (= organic material) and green leaf compost (= organic material) contained in the soil improvement material is 0.5: 0.5: 0.5 It was. The above-mentioned neutralizing agent is mixed in advance with the soil improvement material. Furthermore, the neutralizing agent contains a soluble phosphate component that is a special fertilizer as an addition amount (kg) to 1 m 3 of the improved soil. Chemical fertilizer (lime phosphate: 23 kg / m 3 ) and chemical fertilizer containing calcium acid component (gypsum: 5.5 kg / m 3 ) are added. In addition, as the phosphate lime, those having a phosphoric acid component content of 17% or more were used, and as the gypsum, those having a calcium sulfate content of 100% were used.

また、表3(b)に示すように、土壌改良材の成分は、主成分として、パーライト5%と、ピートモス5%と、緑葉堆肥5%とを含有しており(容積比)、副成分として、石膏(以下、「中和材A」という)と、過リン酸石灰(以下、「中和材B」という)とを含有することがわかる(但し、側定方法は肥料分析法に準拠する)。   In addition, as shown in Table 3 (b), the components of the soil amendment material contain 5% pearlite, 5% peat moss, and 5% green leaf compost (volume ratio) as the main components, and are secondary components. As shown, it contains gypsum (hereinafter referred to as "neutralizing material A") and superphosphate lime (hereinafter referred to as "neutralizing material B") (however, the lateral method conforms to the fertilizer analysis method) To do).

次に、本実施例の土壌改良材を用いて製造した改良土壌の性質(例えば、透水係数、pH、EC等)について説明する。   Next, the property (for example, hydraulic conductivity, pH, EC, etc.) of the improved soil produced using the soil improving material of this example will be described.

図3は、本実施例における改良土壌の性質を示すグラフであり、(a)は改良土壌の透水係数、(b)は改良土壌のpH、(c)は改良土壌のEC(電気伝導度)を示す。但し、ケース1〜3(比較例1)では特殊肥料を改良材として用いており、ケース4〜6(比較例2)ではパーライトを改良材として用い、さらに、ケース7〜9(本実施例)では本発明の土壌改良材を改良材として用いている。各ケースにおける改良材の土壌に対する混合割合は、ケース1は1重量%、ケース2は3重量%、ケース3は5重量%とし、ケース4及び7は5容積%、ケース5及び8は10容積%、ケース6及び9は15容積%とした。   FIG. 3 is a graph showing the properties of the improved soil in this example, where (a) is the hydraulic conductivity of the improved soil, (b) is the pH of the improved soil, and (c) is the EC (electric conductivity) of the improved soil. Indicates. However, Cases 1 to 3 (Comparative Example 1) use a special fertilizer as an improving material, Cases 4 to 6 (Comparative Example 2) use pearlite as an improving material, and Cases 7 to 9 (Examples). Then, the soil improvement material of this invention is used as an improvement material. The mixing ratio of the improved material to the soil in each case is 1% by weight in case 1, 3% by weight in case 2, 5% in case 3, 5% in cases 4 and 7, and 10% in cases 5 and 8. %, Cases 6 and 9 were 15% by volume.

図3に示すように、建設発生土に特殊肥料を混合させたケースでは(ケース1〜3:比較例1)、透水係数は低下することなく(図3(a)参照)、pH及びECは植物栽培に適した値を示した(図3(b)及び図3(c)参照)。ところが、建設発生土にパーライトのみを混合させたケース(ケース4〜6:比較例2)では、透水係数は一時的に低下し、植物栽培には適さない値を示した。一方、本発明の土壌改良材を混合させたケース(ケース7〜9:本実施例)では、特殊肥料及びパーライトの双方を含んでいるため、透水性は低下することなく、しかもpH及びECは安定し、植物栽培により適した値を示した。   As shown in FIG. 3, in the case where special fertilizer is mixed in the construction generated soil (Cases 1 to 3: Comparative Example 1), the hydraulic conductivity does not decrease (see FIG. 3A), pH and EC are The value suitable for plant cultivation was shown (refer FIG.3 (b) and FIG.3 (c)). However, in cases where only pearlite was mixed in the construction soil (Cases 4 to 6: Comparative Example 2), the hydraulic conductivity was temporarily reduced, indicating a value unsuitable for plant cultivation. On the other hand, in the case mixed with the soil improvement material of the present invention (cases 7 to 9: this example), both the special fertilizer and pearlite are included, so the water permeability does not decrease, and the pH and EC are The value was stable and more suitable for plant cultivation.

表4は、本実施例における改良土壌及び未改良土壌の化学性を示す表である。

Figure 2006219604
Table 4 is a table | surface which shows the chemical nature of the improved soil and unmodified soil in a present Example.

Figure 2006219604

表4に示すように、pHの値は、未改良土壌の場合には、強アルカリ性(pH8.8)の値を示したが、本発明の土壌改良材を用いて改良した改良土壌の場合には、弱酸性(pH6.5)の値を示した。また、EC等の値についても植物栽培に適した値を示した。なお、未改良土壌のpHがやや低く、ECがやや高い値を示したのは、降水などの影響を受けておらず、微細な粒子や塩類を含んでいないからにすぎない。   As shown in Table 4, the pH value showed a strong alkaline (pH 8.8) value in the case of unmodified soil, but in the case of improved soil improved using the soil improving material of the present invention. Showed a value of weak acidity (pH 6.5). Moreover, the value suitable for plant cultivation was shown also about values, such as EC. It should be noted that the pH of the unmodified soil was slightly low and the EC was slightly high because it was not affected by precipitation and contained no fine particles or salts.

以上より、本発明の土壌改良材によって、建設発生土の透水係数のみならず、pH及びECも改善されており、アルカリ土壌を緑化土壌に適したものに改良することが可能であるといえる。   From the above, it can be said that the soil improvement material of the present invention improves not only the hydraulic conductivity of construction-generated soil, but also pH and EC, and it is possible to improve alkaline soil to be suitable for greening soil.

次に、改良土壌における植物の生育状態を調べ、実際に緑化土壌に再利用することができるか否かを調べた。具体的には、改良土壌(斜面)に、タブノキ、シカラシ、ヤブニッケイ、ヤマモモ、ヒサカキ等の植物を移植(移植数7,280本)し、植物の生育状態(樹木の枯死数)を観察した。   Next, the growth state of the plant in the improved soil was examined, and it was examined whether or not it could actually be reused for greening soil. Specifically, plants such as tablina, shikashi, yabunikei, bayberry, hisakaki were transplanted to the improved soil (slope) (7,280 transplants), and the state of plant growth (the number of dead trees) was observed.

その観察結果を表5に示す。但し、同表の「左」、「中」、「右」は、斜面最低部から斜面最上部の方向を基準としている。

Figure 2006219604
The observation results are shown in Table 5. However, “left”, “middle”, and “right” in the table are based on the direction from the lowest slope to the highest slope.
Figure 2006219604

表5は、改良土壌における植物の生育状態(移植後1年経過時)を示す表である。
表5に示すように、改良土壌に植物を移植してから1年が経過すると、これらのうち合計42本(最上段:4本、上段・下段:38本)が枯死した。なお、オオシマザクラ等には落葉がみられたが、新芽が生えていたため、生育に問題がないものとした。
Table 5 is a table showing the growth state of plants in the improved soil (one year after transplantation).
As shown in Table 5, when one year has passed since the plant was transplanted to the improved soil, a total of 42 (uppermost: 4, upper / lower: 38) died. In addition, although the fallen leaves were seen in the cherry tree cherry tree etc., it was assumed that there was no problem in the growth because the sprout was growing.

以上より、移植した植物の枯死率は約0.5%と極めて低く、生存率が約99.5%と高い値を示したことから、改良土壌は植物の生育に適した状態であることがわかる。従って、本発明の土壌改良工法及び土壌改良材によれば、建設発生土等のアルカリ土壌を緑化土壌として再利用することができる。   From the above, the death rate of the transplanted plant was extremely low at about 0.5% and the survival rate was as high as about 99.5%. Therefore, the improved soil may be in a state suitable for plant growth. Recognize. Therefore, according to the soil improvement method and the soil improvement material of the present invention, alkaline soil such as construction generated soil can be reused as greening soil.

本実施例における建設発生土の粒度分布(粒径加積曲線)を示すグラフである。It is a graph which shows the particle size distribution (particle size accumulation curve) of construction generation | occurrence | production soil in a present Example. 本実施例における建設発生土のコロイドに含まれる粘土鉱物のX線回折結果を示すグラフである。It is a graph which shows the X-ray-diffraction result of the clay mineral contained in the colloid of the construction generation | occurrence | production soil in a present Example. 本実施例における改良土壌の性質を示すグラフであり、(a)は改良土壌の透水係数、(b)は改良土壌のpH、(c)は改良土壌のEC(電気伝導度)を示す。It is a graph which shows the property of the improved soil in a present Example, (a) shows the hydraulic conductivity of improved soil, (b) shows the pH of improved soil, (c) shows EC (electrical conductivity) of improved soil.

Claims (10)

植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌を、通水により脱塩し、これを緑化土壌として再利用するための土壌改良工法であって、
前記土壌に、リン酸供給源及びカルシウム供給源を含有する中和剤を混合し、これらの混合物に通水処理を施すことを特徴とする土壌改良工法。
A soil improvement method for desalting alkaline soil containing colloidal particles containing water with a high concentration of sodium chloride to the extent that plants are difficult to grow, and reusing it as green soil,
A soil improvement method comprising mixing a neutralizing agent containing a phosphoric acid supply source and a calcium supply source into the soil, and subjecting the mixture to water passage treatment.
前記リン酸供給源として、
過リン酸石灰、重過リン酸石灰、苦土過リン酸石灰、硫リン安系資材、リン硝安系資材のうち少なくとも1種以上を含有する化学肥料を用いることを特徴とする請求項1に記載の土壌改良工法。
As the phosphate source,
The chemical fertilizer containing at least one or more of superphosphate lime, heavy superphosphate lime, bitumen perphosphate lime, ammonium sulfate-based material, and phosphorous ammonium-based material is used. The soil improvement method described.
前記カルシウム供給源として、
石膏、硫酸カルシウム、貝殻、鉱滓のうち少なくとも1種以上を含有する化学肥料を用いることを特徴とする請求項1又は2に記載の土壌改良工法。
As the calcium source,
The soil improvement method according to claim 1 or 2, wherein a chemical fertilizer containing at least one of gypsum, calcium sulfate, shells, and slag is used.
請求項1から3のいずれかに記載の土壌改良工法において、
前記土壌に、該土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材を混合することを特徴とする土壌改良工法。
In the soil improvement construction method in any one of Claim 1 to 3,
A soil improvement method characterized by mixing a porous inorganic material having a particle size larger than the soil particles and high water retention and water permeability into the soil.
前記無機質材として、
パーライト、粘土焼成品のうち少なくとも1種以上を用いることを特徴とする請求項4に記載の土壌改良工法。
As the inorganic material,
The soil improvement method according to claim 4, wherein at least one of pearlite and clay-fired products is used.
請求項1から5のいずれかに記載の土壌改良工法において、
前記土壌に、保水性及び保肥性が高い有機質材を混合することを特徴とする土壌改良工法。
In the soil improvement construction method in any one of Claim 1 to 5,
A soil improvement method characterized by mixing an organic material having high water retention and fertilization properties with the soil.
前記有機質材として、
ミズコケが風化した泥炭、草炭、または、落ち葉、刈敷き、枝葉等の有機質が腐熟して完熟した堆肥のうち少なくとも1種以上を用いることを特徴とする請求項6に記載の土壌改良工法。
As the organic material,
The soil improvement method according to claim 6, wherein at least one kind of compost that has been ripened and matured from peat, grass charcoal, or fallen leaves, cuttings, branches and leaves, which have been weathered by moss moss, is used.
植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の建設発生土を、通水により脱塩し、これを緑化土壌として再利用するための建設発生土の土壌改良工法であって、
前記建設発生土に、リン酸供給源及びカルシウム供給源を含有する中和剤と、該建設発生土の土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材と、保水性及び保肥性が高い有機質材とを添加し、これらをミキサー、トラクター、バックホウ等を用いて攪拌混合する工程と、
該工程により前記中和剤、前記無機質材及び前記有機質材と均質的に混合された前記建設発生土を雨水、河川水等の自然水によって通水する工程と、
を有することを特徴とする土壌改良工法。
Soil improvement of construction soil for desalination of alkaline construction soil containing high concentration sodium chloride and colloidal particles so that plants are difficult to grow and reusing it as greening soil Construction method,
In the construction generated soil, a neutralizing agent containing a phosphoric acid supply source and a calcium supply source, a porous inorganic material having a particle size larger than the soil particles of the construction generated soil, and having high water retention and water permeability, Adding an organic material having high water retention and fertilizer retention, stirring and mixing these using a mixer, a tractor, a backhoe, and the like;
Passing the construction-generated soil uniformly mixed with the neutralizing agent, the inorganic material and the organic material by the natural water such as rain water, river water, and the like;
The soil improvement construction method characterized by having.
植物が生育困難な程度に高濃度の塩化ナトリウムを含み、且つコロイド粒子を含むアルカリ性の土壌を、通水により脱塩し、これを緑化土壌として再利用する際に用いられる土壌改良材であって、
リン酸供給源及びカルシウム供給源を含有する中和剤を含むことを特徴とする土壌改良材。
A soil conditioner that is used to demineralize alkaline soil containing high-concentration sodium chloride and colloidal particles to the extent that it is difficult for plants to grow and recycle it as green soil. ,
A soil improvement material comprising a neutralizing agent containing a phosphate source and a calcium source.
請求項9に記載の土壌改良材において、
前記土壌粒子よりも粒径が大きく、保水性及び透水性が高い多孔質の無機質材と、
保水性及び保肥性が高い有機質材と、
を含むことを特徴とする土壌改良材。

In the soil improvement material according to claim 9,
A porous inorganic material having a particle size larger than the soil particles, high water retention and water permeability, and
Organic materials with high water and fertilizer retention,
A soil improvement material characterized by containing.

JP2005035154A 2005-02-10 2005-02-10 Soil improvement method and soil improvement material Active JP5010808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035154A JP5010808B2 (en) 2005-02-10 2005-02-10 Soil improvement method and soil improvement material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035154A JP5010808B2 (en) 2005-02-10 2005-02-10 Soil improvement method and soil improvement material

Publications (2)

Publication Number Publication Date
JP2006219604A true JP2006219604A (en) 2006-08-24
JP5010808B2 JP5010808B2 (en) 2012-08-29

Family

ID=36982129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035154A Active JP5010808B2 (en) 2005-02-10 2005-02-10 Soil improvement method and soil improvement material

Country Status (1)

Country Link
JP (1) JP5010808B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950546B1 (en) 2009-04-30 2010-03-30 신림산업 주식회사 A soil conditioner for salt damaged area and a method of preparing the same
CN101012380B (en) * 2007-02-16 2010-10-13 魏凤巢 Salination soil modifying agent composition and use thereof
KR101043581B1 (en) 2010-03-25 2011-06-23 주식회사 가림환경개발 Cleaner for cleaning plants and soil and a method of manufacturing the same
KR101641198B1 (en) * 2015-05-14 2016-07-20 나라해양 주식회사 Transplanting trees methode of made ground
CN106171428A (en) * 2016-07-15 2016-12-07 山东胜伟园林科技有限公司 A kind of method of desulfurated plaster improvement alkali-affected soil plantation Helianthi
JP2017100074A (en) * 2015-12-01 2017-06-08 五洋建設株式会社 Desalting method and improvement method for cohesive soil
KR102125384B1 (en) * 2019-09-02 2020-06-23 일송지오텍(주) Restoration technique of contaminated forest using neutralizing composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267392A (en) * 1988-09-01 1990-03-07 Matsui Kasei:Kk Compound soil conditioner
JPH0459889A (en) * 1990-06-28 1992-02-26 Izumiyama Seido Kk Production of soil conditioner from slag
JPH0532968A (en) * 1991-08-01 1993-02-09 Nippon Solid Co Ltd Material for protecting and improving environment
JPH0860155A (en) * 1994-08-18 1996-03-05 Naisu Tec:Kk Culture soil for growing germinated plant
JPH08134444A (en) * 1994-11-16 1996-05-28 Nkk Corp Method for neutralizing alkali soil
JPH11166181A (en) * 1997-10-01 1999-06-22 Kunneppu Sekkai Kogyo Kk Soil application agent and production thereof
JP2002188086A (en) * 2000-12-21 2002-07-05 Kiso Jiban Consultants Kk Method for alkali soil neutralization treatment by phosphate buffer solution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0267392A (en) * 1988-09-01 1990-03-07 Matsui Kasei:Kk Compound soil conditioner
JPH0459889A (en) * 1990-06-28 1992-02-26 Izumiyama Seido Kk Production of soil conditioner from slag
JPH0532968A (en) * 1991-08-01 1993-02-09 Nippon Solid Co Ltd Material for protecting and improving environment
JPH0860155A (en) * 1994-08-18 1996-03-05 Naisu Tec:Kk Culture soil for growing germinated plant
JPH08134444A (en) * 1994-11-16 1996-05-28 Nkk Corp Method for neutralizing alkali soil
JPH11166181A (en) * 1997-10-01 1999-06-22 Kunneppu Sekkai Kogyo Kk Soil application agent and production thereof
JP2002188086A (en) * 2000-12-21 2002-07-05 Kiso Jiban Consultants Kk Method for alkali soil neutralization treatment by phosphate buffer solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010055378, 平成16年度農業土木学会大会講演会講演要旨集, 2004, p.312−313 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101012380B (en) * 2007-02-16 2010-10-13 魏凤巢 Salination soil modifying agent composition and use thereof
KR100950546B1 (en) 2009-04-30 2010-03-30 신림산업 주식회사 A soil conditioner for salt damaged area and a method of preparing the same
KR101043581B1 (en) 2010-03-25 2011-06-23 주식회사 가림환경개발 Cleaner for cleaning plants and soil and a method of manufacturing the same
KR101641198B1 (en) * 2015-05-14 2016-07-20 나라해양 주식회사 Transplanting trees methode of made ground
JP2017100074A (en) * 2015-12-01 2017-06-08 五洋建設株式会社 Desalting method and improvement method for cohesive soil
CN106171428A (en) * 2016-07-15 2016-12-07 山东胜伟园林科技有限公司 A kind of method of desulfurated plaster improvement alkali-affected soil plantation Helianthi
KR102125384B1 (en) * 2019-09-02 2020-06-23 일송지오텍(주) Restoration technique of contaminated forest using neutralizing composition

Also Published As

Publication number Publication date
JP5010808B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5010808B2 (en) Soil improvement method and soil improvement material
RU2491135C1 (en) Soil slurry-ground mixture (versions) for remediation of disturbed lands and method of remediation of borrow pits and disturbed lands
Agus et al. The role of soil amendment on tropical post tin mining area in Bangka Island Indonesia for dignified and sustainable environment and life
CN111303888A (en) Heavy metal combined pollution soil stabilization repairing agent with low environmental risk, and preparation method and application thereof
Matosic et al. Tillage, manure and gypsum use in reclamation of saline-sodic soils
Scherer et al. Phosphorus fractions and phosphorus delivery potential of a luvisol derived from loess amended with organic materials
CN114192565A (en) Novel method for repairing heavy metal cadmium, arsenic, mercury, lead and chromium composite contaminated soil
CN111903467A (en) Process for improving marine silt for planting soil
KR101144777B1 (en) Manufacturing method of soil modifier using sludge of dredge
Rai et al. Saline and sodic ecosystems in the changing world
RU2486166C2 (en) Method of decontaminating oil-contaminated soil, method of decontaminating spent drilling mud
CN108130095A (en) The good alkaline land soil chemical improvement agent of effect at low cost and its application method
Haynes et al. Natural ripening with subsequent additions of gypsum and organic matter is key to successful bauxite residue revegetation
CN108966723B (en) Comprehensive regulation and control method for desalting and alkalizing dredger fill
Ahmed et al. Effectiveness of humic acid applicationin improving saline soil properties and fodder beet production
Aboukila Use of spent grains, cheese whey, gypsum, and compost for reclamation of sodic soils and improvement of corn seed germination
RU2598546C2 (en) Binder mixture containing lime-containing wastes of heat power industrial complex (versions)
JP4892196B2 (en) Greening soil, method for producing greening soil, and greening method using greening soil
CN107114026A (en) Physics soil improvement method
KR100764004B1 (en) Composition of seed spray soil comprising sewage sludge and starfish powder, and preparation method thereof
CN112979389A (en) Garden sludge modification formula and method for improving soil by garden sludge modification formula
JP4456461B2 (en) Method for reducing hexavalent chromium concentration
JP4380154B2 (en) Solidification method of mud
Norton et al. FGD gypsum influences on soil surface sealing, crusting, infiltration and runoff
KR102120957B1 (en) Manufacturing method of soil material using inorganic sludge and soil material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5010808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250