JP2006219510A - Flame-retardant olefinic polymer composition having excellent electrical insulating property - Google Patents

Flame-retardant olefinic polymer composition having excellent electrical insulating property Download PDF

Info

Publication number
JP2006219510A
JP2006219510A JP2005031412A JP2005031412A JP2006219510A JP 2006219510 A JP2006219510 A JP 2006219510A JP 2005031412 A JP2005031412 A JP 2005031412A JP 2005031412 A JP2005031412 A JP 2005031412A JP 2006219510 A JP2006219510 A JP 2006219510A
Authority
JP
Japan
Prior art keywords
flame retardant
weight
polymer composition
parts
halogen flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005031412A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishida
仁 石田
Katsumi Higuchi
勝美 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2005031412A priority Critical patent/JP2006219510A/en
Publication of JP2006219510A publication Critical patent/JP2006219510A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant olefinic polymer composition having improved excellent electrical insulating properties by compounding a small amount of an improving agent for electrical insulating properties with a non-halogen flame retardant. <P>SOLUTION: The flame-retardant olefinic polymer composition is obtained as follows. An olefinic polymer is compounded with aluminum compound-containing silicate particles prepared by grinding and mixing siliceous particles having ≥90 wt.% content of silicic acid (expressed in terms of SiO<SB>2</SB>) and a chemical compositional ratio represented by formula (1) SiO<SB>2</SB>-nAl<SB>2</SB>O<SB>3</SB>(1) (wherein, n is a number of 0.001-0.01) with aluminum hydroxide and/or calcined kaolin and the non-halogen flame retardant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水酸化マグネシウムなどの非ハロゲン系難燃剤が配合された難燃性オレフィン系重合体組成物に関するものであり、より詳細には、電気絶縁性が向上した難燃性オレフィン系重合体組成物に関する。   The present invention relates to a flame retardant olefin polymer composition containing a non-halogen flame retardant such as magnesium hydroxide, and more specifically, a flame retardant olefin polymer with improved electrical insulation. Relates to the composition.

一般に、ポリオレフィン或いはオレフィン共重合体などのオレフィン系重合体は、ポリ塩化ビニルなどのビニル系重合体に比して電気絶縁性に優れているが、難燃性が低いという欠点がある。このため、オレフィン系重合体には、難燃剤を配合して難燃性を向上させている。   In general, an olefin polymer such as a polyolefin or an olefin copolymer is excellent in electrical insulation as compared with a vinyl polymer such as polyvinyl chloride, but has a drawback of low flame retardancy. For this reason, a flame retardant is mix | blended with the olefin type polymer, and the flame retardance is improved.

このような難燃剤としては、ハロゲン化合物が使用されていたが、火災時に人体に有害なハロゲンガスを発生するという問題があり、近年では、水和アルミナや水酸化マグネシウムなどの非ハロゲン系難燃剤が使用されるようになってきた。   Halogen compounds have been used as such flame retardants, but there is a problem of generating halogen gas harmful to the human body in the event of a fire. In recent years, non-halogen flame retardants such as hydrated alumina and magnesium hydroxide Has come to be used.

しかしながら、非ハロゲン系難燃剤は、吸水し易いという性質を有しており、このため、ハロゲンガスの発生という問題は解決したものの、オレフィン系重合体の特性である電気絶縁性が低下するという欠点がある。   However, non-halogen flame retardants have the property of being easy to absorb water. Therefore, although the problem of the generation of halogen gas has been solved, the electrical insulation that is a characteristic of olefin polymers is reduced. There is.

このような欠点を解決するために、特許文献1では、焼成クレイとシリカとを、非ハロゲン系難燃剤とともにオレフィン系重合体に配合することが提案されている。
特開平11−222539号公報
In order to solve such drawbacks, Patent Document 1 proposes blending calcined clay and silica into an olefin polymer together with a non-halogen flame retardant.
JP-A-11-222539

上記特許文献1では、焼成クレイとシリカとの組み合わせを電気絶縁性向上剤として使用するものであるが、このような組み合わせでは、その電気絶縁性向上効果は十分でなく、例えば満足し得るような電気絶縁性を得るためには、かなり多量の焼成クレイとシリカとを配合することが必要であり、従って、白色度、伸び、引っ張り強度などのオレフィン系重合体の特性が低下するという問題が生じている。   In the above-mentioned Patent Document 1, a combination of fired clay and silica is used as an electrical insulation improver. However, such a combination is not sufficient in its electrical insulation improvement effect, and may be satisfactory, for example. In order to obtain electrical insulation, it is necessary to mix a considerably large amount of calcined clay and silica. Therefore, there arises a problem that characteristics of the olefin polymer such as whiteness, elongation, and tensile strength are deteriorated. ing.

従って、本発明の目的は、わずかな量の電気絶縁性向上剤を非ハロゲン系難燃剤とともに配合することにより優れた電気絶縁性が向上したオレフィン系重合体組成物を提供することにある。   Accordingly, an object of the present invention is to provide an olefin polymer composition having an improved electrical insulation property by blending a small amount of an electrical insulation improver with a non-halogen flame retardant.

本発明によれば、ケイ酸(SiO換算)分を90重量%以上含有し、且つ下記式(1):
SiO・nAl (1)
式中、nは0.001乃至0.01の数である、
で表される化学組成比を有するシリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンとを、摩砕混合して得られたアルミニウム化合物含有ケイ酸塩粒子、及び、非ハロゲン系難燃剤をオレフィン系重合体に配合してなることを特徴とするオレフィン系重合体組成物が提供される。
According to the present invention, the content of silicic acid (SiO 2 equivalent) is 90% by weight or more, and the following formula (1):
SiO 2 · nAl 2 O 3 (1)
Where n is a number from 0.001 to 0.01.
An aluminum compound-containing silicate particle obtained by grinding and mixing silica-based particles having a chemical composition ratio represented by the following: aluminum hydroxide and / or calcined kaolin, and non-halogen flame retardant An olefin polymer composition characterized by being blended with a polymer is provided.

本発明のオレフィン系重合体組成物においては、
(1)前記アルミニウム化合物含有ケイ酸塩粒子は、前記シリカ系粒子100重量部当り、1乃至100重量部の量で水酸化アルミニウム及び/または焼成カオリンを含有していること、
(2)オレフィン系重合体100重量部当り、前記アルミニウム化合物含有ケイ酸塩粒子を0.01乃至10重量部、前記非ハロゲン系難燃剤を5乃至200重量部の量で含有していること、
(3)前記非ハロゲン系難燃剤が水酸化マグネシウムであること、
が好ましい。
In the olefin polymer composition of the present invention,
(1) The aluminum compound-containing silicate particles contain aluminum hydroxide and / or calcined kaolin in an amount of 1 to 100 parts by weight per 100 parts by weight of the silica particles.
(2) The aluminum compound-containing silicate particles are contained in an amount of 0.01 to 10 parts by weight and the non-halogen flame retardant is contained in an amount of 5 to 200 parts by weight per 100 parts by weight of the olefin polymer.
(3) the non-halogen flame retardant is magnesium hydroxide;
Is preferred.

本発明においては、前記式(1)で表されるような微量のアルミナを含む特定の組成のシリカ系粒子と水酸化アルミニウム及び/または焼成カオリンとを摩砕混合して得られたアルミニウム化合物含有ケイ酸塩粒子を、電気絶縁性向上剤として、非ハロゲン系難燃剤と共にオレフィン系重合体に配合したことが重要な特徴である。即ち、このような電気絶縁性向上剤は、極めて少量(例えば、オレフィン系重合体100重量部当り0.01至10重量部)で、非ハロゲン系難燃剤が配合されたオレフィン系重合体組成物の電気絶縁性を高めることができ、この結果、後述する実施例に示されているように、白色度、伸び、引っ張り強度等の特性低下を有効に回避することができる。   In the present invention, it contains an aluminum compound obtained by grinding and mixing silica-based particles having a specific composition containing a trace amount of alumina represented by the formula (1), and aluminum hydroxide and / or calcined kaolin. It is an important feature that silicate particles are blended in an olefin polymer together with a non-halogen flame retardant as an electrical insulation improver. That is, such an electrical insulation improver is an extremely small amount (for example, 0.01 to 10 parts by weight per 100 parts by weight of the olefin polymer) and an olefin polymer composition containing a non-halogen flame retardant. As a result, it is possible to effectively avoid deterioration of characteristics such as whiteness, elongation, and tensile strength, as shown in Examples described later.

(電気絶縁性向上剤)
本発明では、シリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンとを、摩砕混合して得られたアルミニウム化合物含有ケイ酸塩粒子を、電気絶縁性向上剤として使用する。
(Electrical insulation improver)
In the present invention, aluminum compound-containing silicate particles obtained by grinding and mixing silica-based particles and aluminum hydroxide and / or calcined kaolin are used as an electrical insulation improver.

上記のシリカ系粒子は、ケイ酸(SiO換算)分を90重量%以上含有し、且つ下記式(1):
SiO・nAl (1)
式中、nは0.001乃至0.01の数である、
で表される化学組成比を有するものであり、式(1)から明らかな通り、微量のアルミナ成分を含有するものである。このようなケイ酸分を多く含み且つ前記式(1)の化学組成比(SiO/Al比)を満足するような粒子は、極めて微粒で且つシャープな粒度分布に粒度調整することができ、このような粒度調整された粒子を、水酸化アルミニウム及び/または焼成カオリンと摩砕混合して用いると、著しく少ない配合量で、優れた電気絶縁性向上効果が得られるのである。
The above silica-based particles, the silicate (SiO 2 equivalent) fraction containing 90 wt% or more and the following formula (1):
SiO 2 · nAl 2 O 3 (1)
Where n is a number from 0.001 to 0.01.
As shown in the formula (1), it contains a trace amount of an alumina component. Particles containing such a large amount of silicic acid and satisfying the chemical composition ratio (SiO 2 / Al 2 O 3 ratio) of the formula (1) should be adjusted to a very fine and sharp particle size distribution. When such particle size-adjusted particles are used after being ground and mixed with aluminum hydroxide and / or calcined kaolin, an excellent effect of improving electrical insulation can be obtained with a remarkably small blending amount.

このようなシリカ系粒子は、粉砕性が極めて良好であり、湿式粉砕し、さらにジェットミルなどを用いて粉砕し乾燥することにより、極めて微粒で且つシャープな粒度分布を有するものに粒度調整することができる。例えば、レーザ散乱法で測定して、体積基準の中位径が0.1乃至1μmであり、しかも粒径10μm以上の粒子が実質上存在せず、さらには粒径が0.01μm以下のものが実質存在しない粒度分布を有していることが好ましく、このような微粒で且つシャープな粒度分布を有するものを使用することにより、ハンドリング性や重合体に対する分散性が良好となる。   Such silica-based particles have extremely good pulverization properties, and are finely pulverized using a jet mill or the like and then dried to adjust the particle size to those having extremely fine particles and a sharp particle size distribution. Can do. For example, as measured by a laser scattering method, the volume-based median diameter is 0.1 to 1 μm, and there are substantially no particles having a particle size of 10 μm or more, and further, the particle size is 0.01 μm or less. It is preferable to have a particle size distribution that does not substantially exist, and by using such a fine particle having a sharp particle size distribution, the handling property and the dispersibility to the polymer become good.

例えば、上記式(1)において、nの数(シリカ1モル当たりのアルミナのモル数)が上記範囲外である場合には、この粒子の粉砕性が損なわれ、特に前述した微粒で且つシャープな粒度分布を有するように粒度調整することが困難となり、重合体に対する均一分散性が損なわれ、安定して電気絶縁性向上効果を発揮させることが困難となる。   For example, in the above formula (1), when the number of n (number of moles of alumina per mole of silica) is outside the above range, the pulverizability of the particles is impaired. It becomes difficult to adjust the particle size so as to have a particle size distribution, the uniform dispersibility to the polymer is impaired, and it becomes difficult to stably exhibit the effect of improving electrical insulation.

上記のシリカ系粒子は、例えばシリカゾルと硫酸アルミニウム溶液とを前記式(1)の量比を満足するように混合し、室温、大気圧下でpHを3程度に調整して共沈させ、熟成、水洗、乾燥することにより調製することができる。また、酸性白土等のスメクタイト粘土を酸処理することにより調製することもできる。   For example, silica sol and an aluminum sulfate solution are mixed so as to satisfy the quantitative ratio of the above formula (1), and the silica particles are co-precipitated by adjusting the pH to about 3 at room temperature and atmospheric pressure. It can be prepared by washing with water and drying. It can also be prepared by acid treatment of smectite clay such as acid clay.

本発明において、上記シリカ系粒子は、通常、非晶質であるが、一部に結晶構造が残存しているものであってもよく、また、一般には、未焼成の状態で使用に供されるが、必要により、焼成して使用することも可能である。   In the present invention, the silica-based particles are usually amorphous, but some of the crystalline structure may remain, and are generally used in an unfired state. However, if necessary, it can be used after firing.

さらに、上記のシリカ系粒子は、通常、BET比表面積が50乃至300m/gの範囲にあることが好ましい。電気絶縁性向上効果は、BET比表面積が大きくなるほど大きくなる傾向を示すが、比表面積があまりにも大きくなると、嵩高になると共に、重合体への分散性が低下する傾向があるので、上記範囲にあることが好ましい。 Further, the above silica-based particles usually preferably have a BET specific surface area in the range of 50 to 300 m 2 / g. The electrical insulation improvement effect shows a tendency to increase as the BET specific surface area increases, but if the specific surface area becomes too large, it becomes bulky and the dispersibility to the polymer tends to decrease. Preferably there is.

上記のシリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンとを、摩砕混合するにより、本発明に用いるアルミニウム化合物含有ケイ酸塩粒子を得る。本発明では、摩砕混合することが重要であり、単に乾式で混合したのでは、十分な電気絶縁性向上効果は達成されない。例えば、比較例5に示されているように、シリカ系粒子と焼成カオリンとを、摩砕混合でなく単に乾式混合を行って、オレフィン系重合体に配合した場合、電気絶縁性は同じ量で添加した本発明の組成物(実施例2)に比してかなり劣ったものとなってしまう。このような摩砕混合により得られたアルミニウム化合物含有ケイ酸塩粒子がなぜ高い電気絶縁性向上効果を示すのか、その詳細な理由は不明であるが次のように推測される。即ち、上記のシリカ系粒子自体が高い電気絶縁性向上効果を示すとともに、これに水酸化アルミニウム及び/または焼成カオリンを摩砕混合すると、粉砕により微粉化され、結晶構造における結合手が破断され、塩基性交換能が増大すると考えられ、ナトリウム等の電解物質が吸着等によりトラップされ、この結果として、高い電気絶縁性向上効果が発現するものと思われる。   The above silica-based particles are mixed with aluminum hydroxide and / or calcined kaolin to obtain aluminum compound-containing silicate particles for use in the present invention. In the present invention, it is important to mix by grinding. If the mixture is simply dry, a sufficient effect of improving electrical insulation cannot be achieved. For example, as shown in Comparative Example 5, when the silica-based particles and the calcined kaolin are blended into the olefin polymer by simply dry mixing instead of grinding and mixing, the electrical insulation is the same amount. This is considerably inferior to the added composition of the present invention (Example 2). The detailed reason why the aluminum compound-containing silicate particles obtained by such grinding and mixing exhibit a high effect of improving electrical insulation is unknown, but is presumed as follows. That is, the above silica-based particles themselves show a high electrical insulation improvement effect, and when this is mixed with aluminum hydroxide and / or calcined kaolin, it is pulverized by pulverization, and the bonds in the crystal structure are broken. It is considered that the basic exchange capacity is increased, and an electrolytic substance such as sodium is trapped by adsorption or the like, and as a result, it is considered that a high electrical insulation improvement effect is exhibited.

本発明において、シリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンとの摩砕混合の割合は、シリカ系粒子100重量部当り、水酸化アルミニウム及び/または焼成カオリンを1乃至100重量部とすることが好ましく、摩砕混合の割合が、この範囲外では、電気絶縁性向上効果が低くなる傾向がある。   In the present invention, the mixing ratio of silica-based particles and aluminum hydroxide and / or calcined kaolin is 1 to 100 parts by weight of aluminum hydroxide and / or calcined kaolin per 100 parts by weight of silica-based particles. Preferably, when the mixing ratio is outside this range, the effect of improving electrical insulation tends to be low.

また、摩砕の方法は乾式でも湿式でも良いが、特に湿式摩砕が好ましい。一例として、シリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンとを、水の存在下にメカノケミカル的に反応させることにより得られる。メカノケミカル的反応とは、シリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンに機械的な摩砕力が加わる条件下での反応であり、一般にボールミル、チューブミル、振動ミル、ビーズミル等の反応装置を使用し可及的に低い温度、一般に70℃以下の温度、特に15乃至50℃の温度で反応を行う。   The grinding method may be either dry or wet, but wet grinding is particularly preferred. As an example, it is obtained by mechanochemically reacting silica-based particles with aluminum hydroxide and / or calcined kaolin in the presence of water. The mechanochemical reaction is a reaction under a condition in which mechanical grinding force is applied to silica-based particles and aluminum hydroxide and / or calcined kaolin. Generally, reactions such as ball mill, tube mill, vibration mill, and bead mill Using the apparatus, the reaction is carried out at the lowest possible temperature, generally not higher than 70 ° C., in particular 15 to 50 ° C.

上記のようにして得られるアルミニウム化合物含有ケイ酸塩粒子は、例えば、後述するオレフィン系重合体100重量部当り、0.01乃至10重量部、特に0.1乃至5重量部の量で配合され、このような少量での配合により、以下に述べる非ハロゲン系難燃剤の配合による電気絶縁性の低下を防止し、電気絶縁性を著しく高めることができる。特に、少量での配合により電気絶縁性を高めることができるため、オレフィン系重合体の特性、例えば白色度、伸び、引っ張り強度のなどの特性の低下を有効に回避することができる。特に、後述する非ハロゲン系難燃剤(好ましくは水酸化マグネシウム)との重量比(アルミニウム化合物含有ケイ酸塩粒子:非ハロゲン系難燃剤)が1:0.5〜1:20000(好ましくは1:2〜1:2000)の範囲となるように使用した場合には、伸びや引っ張り強度を極めて高い値に維持することができる。   The aluminum compound-containing silicate particles obtained as described above are blended, for example, in an amount of 0.01 to 10 parts by weight, particularly 0.1 to 5 parts by weight per 100 parts by weight of the olefin polymer described later. By such a small amount of blending, it is possible to prevent a decrease in electrical insulation due to blending of the non-halogen flame retardant described below, and to significantly increase electrical insulation. In particular, since electrical insulation can be enhanced by blending in a small amount, deterioration of characteristics of the olefin polymer such as whiteness, elongation and tensile strength can be effectively avoided. In particular, the weight ratio (aluminum compound-containing silicate particles: non-halogen flame retardant) to a non-halogen flame retardant (preferably magnesium hydroxide) described later is 1: 0.5 to 1: 20000 (preferably 1: 2 to 1: 2000), the elongation and tensile strength can be maintained at extremely high values.

上述したアルミニウム化合物含有ケイ酸塩粒子は、必要により、高級脂肪酸塩(特にカルシウム塩)などで表面処理し、分散性を更に向上して使用することもできる。この場合、高級脂肪酸塩の使用量は、アルミニウム化合物含有ケイ酸塩粒子当り、0.5乃至30重量%の範囲とするのがよい。表面処理は高級脂肪酸カルシウム以外のもの、例えば、カルシウム以外の高級脂肪酸及びその塩、多価アルコール乃至その部分エステル(ジペンタエリスリトール等)を用いても良い。   If necessary, the above-described aluminum compound-containing silicate particles can be surface-treated with a higher fatty acid salt (especially a calcium salt) to further improve dispersibility and use. In this case, the higher fatty acid salt is preferably used in a range of 0.5 to 30% by weight per aluminum compound-containing silicate particle. For the surface treatment, other than the higher fatty acid calcium, for example, higher fatty acids other than calcium and salts thereof, polyhydric alcohols or partial esters thereof (dipentaerythritol, etc.) may be used.

高級脂肪酸カルシウムとしては、炭素数10乃至22、特に14乃至18の飽和乃至不飽和脂肪酸、例えばカプリン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、アラキン酸等の飽和脂肪酸、リンデル酸、ツズ酸、ペトロセリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸のカルシウム塩等が使用される。中でもステアリン酸カルシウムが好適なものである。脂肪酸は勿論牛脂脂肪酸、ヤシ油脂肪酸、パーム油脂肪酸等の混合脂肪酸であってもよい。   As higher fatty acid calcium, saturated fatty acids having 10 to 22 carbon atoms, particularly 14 to 18 carbon atoms, such as capric acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, etc. Calcium salts of unsaturated fatty acids such as fatty acids, Linderic acid, Tuzuic acid, Petrothelic acid, oleic acid, linoleic acid, linolenic acid, arachidonic acid and the like are used. Of these, calcium stearate is preferred. Of course, the fatty acid may be a mixed fatty acid such as beef tallow fatty acid, coconut oil fatty acid, or palm oil fatty acid.

(非ハロゲン系難燃剤)
本発明において、非ハロゲン系難燃剤としては、それ自体公知のもの、例えば水和アルミナ、水酸化マグネシウム、リン系化合物、ホウ酸亜鉛、錫酸亜鉛、ヒドロキシ錫酸亜鉛などを使用することができるが、特に水酸化マグネシウムを用いた場合に、本発明の優れた効果が発現する。即ち、水酸化マグネシウムは、吸水性が高く、吸水による電気絶縁性の低下が大きいが、本発明では、前述したアルミニウム化合物含有ケイ酸塩粒子を少量配合することにより、電気絶縁性を著しく高めることができるからである。さらに本発明では、伸びや引っ張り強度等の機械的特性の点からも水酸化マグネシウムが最も好適である。
(Non-halogen flame retardant)
In the present invention, as the non-halogen flame retardant, those known per se, such as hydrated alumina, magnesium hydroxide, phosphorus compounds, zinc borate, zinc stannate, zinc hydroxystannate and the like can be used. However, the excellent effect of the present invention is manifested particularly when magnesium hydroxide is used. In other words, magnesium hydroxide has a high water absorption and a large decrease in electrical insulation due to water absorption. However, in the present invention, by adding a small amount of the above-mentioned aluminum compound-containing silicate particles, the electrical insulation is remarkably improved. Because you can. Furthermore, in the present invention, magnesium hydroxide is most preferable from the viewpoint of mechanical properties such as elongation and tensile strength.

このような非ハロゲン系難燃剤は、ポリオレフィン系重合体100重量部当り、
5乃至200重量部、好ましくは10乃至200重量部の量で使用される。特に非ハロゲン系難燃剤として水酸化マグネシウムを用いた場合には、アルミニウム化合物含有ケイ酸塩粒子との量比が前述した範囲にあるときに、最も優れた機械的特性を確保することができる。
Such a non-halogen flame retardant is based on 100 parts by weight of the polyolefin polymer.
It is used in an amount of 5 to 200 parts by weight, preferably 10 to 200 parts by weight. In particular, when magnesium hydroxide is used as the non-halogen flame retardant, the most excellent mechanical properties can be secured when the amount ratio with the aluminum compound-containing silicate particles is in the above-described range.

(オレフィン系重合体)
前述したアルミニウム化合物含有ケイ酸塩粒子や非ハロゲン系難燃剤が配合されるポリオレフィン系重合体としては、オレフィンのホモポリマーや共重合体からなる各種の樹脂やゴムもしくはエラストマーを使用することができる。具体的には、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1−ブテン、ポリ4−メチル−1−ペンテン等のホモポリオレフィン、あるいはエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等のα−オレフィン同志のランダムあるいはブロック共重合体、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体などが使用される。
(Olefin polymer)
As the polyolefin polymer in which the above-described aluminum compound-containing silicate particles and non-halogen flame retardant are blended, various resins, rubbers or elastomers made of olefin homopolymers or copolymers can be used. Specifically, homopolyolefins such as low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, or ethylene, propylene, 1-butene, 4-methyl-1-pentene, etc. Random or block copolymers of these α-olefins, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers and the like are used.

(その他の配合剤)
本発明のオレフィン系重合体組成物では、前述したアルミニウム化合物含有ケイ酸塩粒子や非ハロゲン系難燃剤以外にも種々の配合剤を配合することができ、例えば各種の酸化防止剤、帯電防止剤などを、それ自体公知の量で配合してもよい。
(Other ingredients)
In the olefin polymer composition of the present invention, various compounding agents can be blended in addition to the aforementioned aluminum compound-containing silicate particles and non-halogen flame retardants, for example, various antioxidants and antistatic agents. Etc. may be blended in an amount known per se.

本発明を、次の実施例により更に説明する。なお、実施例で行った、試験方法は以下のようにして行った。また、エチレン−酢酸ビニル共重合体(EVA)には住友化学製エバテートH2011(酢酸ビニル含有量(VA)15%)、水酸化マグネシウム(Mg(OH))には協和化学製キスマ5Aを用いた。 The invention is further illustrated by the following examples. In addition, the test method performed in the Example was performed as follows. For ethylene-vinyl acetate copolymer (EVA), Sumitomo Chemical's Evaate H2011 (vinyl acetate content (VA) 15%) is used. For magnesium hydroxide (Mg (OH) 2 ), Kyowa Chemical Kisuma 5A is used. It was.

(1)粒径測定
Coulter社製Particle Size Analyzer Model LS13 320を使用し、平均粒径を測定した。
(1) Particle size measurement
The average particle size was measured using a Particle Size Analyzer Model LS13 320 manufactured by Coulter.

(2)電気絶縁性(V.R)
下記配合及び作成条件にてシートを作成して試験片とし、JIS.K.6723に準拠し、試料シートの30℃または60℃における体積固有抵抗値を測定した。なお、測定は試験片を実験室環境にて一昼夜放置した後、各々の測定温度にて1時間保持し測定を行った。
〈配合〉
重量部
EVA(VA=15%) : 100
Mg(OH) : 50
絶縁向上剤 : 表1または2参照

〈試験片作成〉
125℃で5分間混練した後、150℃で5分間プレスを行い、厚さ1mmのシート(試験片)を作成した。
(2) Electrical insulation (VR)
A sheet was prepared under the following composition and preparation conditions to obtain a test piece, and the volume specific resistance value at 30 ° C. or 60 ° C. of the sample sheet was measured according to JIS.K.6723. The measurement was carried out by leaving the test piece for a whole day and night in a laboratory environment, and holding it at each measurement temperature for 1 hour.
<Combination>
Parts by weight
EVA (VA = 15%): 100
Mg (OH) 2 : 50
Insulation improver: see Table 1 or 2

<Test specimen preparation>
After kneading at 125 ° C. for 5 minutes, pressing was performed at 150 ° C. for 5 minutes to prepare a sheet (test piece) having a thickness of 1 mm.

(3)シート白色度
上記(2)と同様の条件で作成したシートを、日本電飾(株)製ND-1001DP型色測色差計を用いて測定した。白色度はハンター白色度(WB)で示した。
(3) Sheet Whiteness A sheet prepared under the same conditions as in (2) above was measured using a ND-1001DP type colorimetric difference meter manufactured by Nippon Denshoku Co., Ltd. The whiteness is indicated by Hunter Whiteness (WB).

(4)引張り伸び及び強度
上記(2)と同様の条件で作成したシートを、JIS. C. 3005に準拠して測定した。
(4) Tensile elongation and strength Sheets prepared under the same conditions as in (2) above were measured according to JIS C 3005.

(試料調製1)
酸性白土の酸処理品(水澤化学製:SiO分93wt%、AlO分1.5wt%、AlO/SiOモル比(n)=0.0095)70gと、焼成カオリン(SATINTONE SP-33)30gとを、イオン交換水300mlと共に2mmφアルミナボール600mlを充填した容量1.5Lのポットミルに仕込み、毎分100回転にて12時間運転し、摩砕混合処理を行った。そのスラリーをステンレス製バットに移し替え、110℃にて一昼夜蒸発乾固した。得られた乾燥ケーキをサンプルミルにて粉砕し、更に日本ニューマチック製ジェットミル(PJM-100SP型)にて微粉砕し、試料を得た。この試料をS−1とする。この試料(S−1)の平均粒径は0.40μmである。また、粒度分布図を図1に示す。
(Sample preparation 1)
Acid clay acid treated product (Mizusawa Industrial Chemicals, Ltd.: SiO 2 minutes 93wt%, Al 2 O 3 minutes 1.5wt%, Al 2 O 3 / SiO 2 molar ratio (n) = 0.0095) and 70 g, calcined kaolin (SATINTONE SP- 33) 30g was charged into a 1.5L pot mill filled with 600ml of 2mmφ alumina balls together with 300ml of ion-exchanged water, and run at 100 rpm for 12 hours for grinding and mixing treatment. The slurry was transferred to a stainless steel vat and evaporated to dryness at 110 ° C. overnight. The obtained dried cake was pulverized by a sample mill, and further finely pulverized by a jet mill (PJM-100SP type) manufactured by Nippon Pneumatic Co., Ltd. to obtain a sample. This sample is designated as S-1. The average particle diameter of this sample (S-1) is 0.40 μm. A particle size distribution diagram is shown in FIG.

(試料調製2)
試料調製1で用いた酸性白土の酸処理品85gと、焼成カオリン(SATINTONE SP-33)10g及び水酸化アルミニウム(昭和電工製H-42)5gを使用し、試料調製1と同様の調製を行い、試料を得た。この試料をS−2とする。
(Sample preparation 2)
Using 85 g of acid clay treated acid sample used in sample preparation 1, 10 g of calcined kaolin (SATINTONE SP-33) and 5 g of aluminum hydroxide (H-42 made by Showa Denko), perform the same preparation as sample preparation 1. A sample was obtained. This sample is designated as S-2.

(試料調製3)
試料調製1で用いた酸性白土の酸処理品70gと、焼成カオリン30gとを、摩砕混合せずに、単に乾式混合し試料を得た。この試料をH−1とする。
(Sample preparation 3)
70 g of acid-treated acid clay used in Sample Preparation 1 and 30 g of calcined kaolin were simply dry-mixed without grinding and mixing to obtain a sample. This sample is designated as H-1.

(実施例1〜3)
絶縁性向上剤として、S−1を表1に示す配合量でそれぞれ添加し、樹脂の評価を行った。結果を表1に示す。
(Examples 1-3)
As an insulation improver, S-1 was added in the amounts shown in Table 1, and the resin was evaluated. The results are shown in Table 1.

(実施例4)
絶縁性向上剤として、S−2を添加し、樹脂の評価を行った。結果を表1に示す。
Example 4
S-2 was added as an insulation improver, and the resin was evaluated. The results are shown in Table 1.

(比較例1)
絶縁性向上剤を添加しないで、樹脂の評価を行った(ブランク)。結果を表2に示す。
(Comparative Example 1)
The resin was evaluated without adding an insulation improver (blank). The results are shown in Table 2.

(比較例2〜4)
絶縁性向上剤として焼成カオリン(SATINTONE SP-33)を表2に示す配合量でそれぞれ添加し、樹脂の評価を行った。結果を表2に示す。
(Comparative Examples 2 to 4)
Sintered kaolin (SATINTONE SP-33) was added as an insulation improver in the amounts shown in Table 2, and the resin was evaluated. The results are shown in Table 2.

(比較例5)
絶縁性向上剤としてH−1を添加して、樹脂の評価を行った。結果を表2に示す。
(Comparative Example 5)
The resin was evaluated by adding H-1 as an insulation improver. The results are shown in Table 2.

Figure 2006219510
Figure 2006219510

Figure 2006219510
Figure 2006219510

本発明で用いたアルミニウム化合物含有ケイ酸塩粒子(試料S−1)の粒度分布を示す図である。It is a figure which shows the particle size distribution of the aluminum compound containing silicate particle | grains (sample S-1) used by this invention.

Claims (4)

ケイ酸(SiO換算)分を90重量%以上含有し、且つ下記式(1):
SiO・nAl (1)
式中、nは0.001乃至0.01の数である、
で表される化学組成比を有するシリカ系粒子と、水酸化アルミニウム及び/または焼成カオリンとを、摩砕混合して得られたアルミニウム化合物含有ケイ酸塩粒子、及び、非ハロゲン系難燃剤をオレフィン系重合体に配合してなることを特徴とするオレフィン系重合体組成物。
Contains 90% by weight or more of silicic acid (SiO 2 equivalent), and the following formula (1):
SiO 2 · nAl 2 O 3 (1)
Where n is a number from 0.001 to 0.01.
An aluminum compound-containing silicate particle obtained by grinding and mixing silica-based particles having a chemical composition ratio represented by the following: aluminum hydroxide and / or calcined kaolin, and non-halogen flame retardant as olefin An olefin polymer composition characterized by being blended with a polymer.
前記アルミニウム化合物含有ケイ酸塩粒子は、前記シリカ系粒子100重量部当り、1乃至100重量部の量で水酸化アルミニウム及び/または焼成カオリンを含有している請求項1に記載のオレフィン系重合体組成物。   The olefin polymer according to claim 1, wherein the aluminum compound-containing silicate particles contain aluminum hydroxide and / or calcined kaolin in an amount of 1 to 100 parts by weight per 100 parts by weight of the silica-based particles. Composition. オレフィン系重合体100重量部当り、前記アルミニウム化合物含有ケイ酸塩粒子を0.01乃至10重量部、前記非ハロゲン系難燃剤を5乃至200重量部の量で含有している請求項1または2に記載のオレフィン系重合体組成物。   3. The aluminum compound-containing silicate particles are contained in an amount of 0.01 to 10 parts by weight and the non-halogen flame retardant is contained in an amount of 5 to 200 parts by weight per 100 parts by weight of the olefin polymer. The olefin polymer composition described in 1. 前記非ハロゲン系難燃剤が水酸化マグネシウムである請求項1乃至3の何れかに記載のオレフィン系重合体組成物。   The olefin polymer composition according to any one of claims 1 to 3, wherein the non-halogen flame retardant is magnesium hydroxide.
JP2005031412A 2005-02-08 2005-02-08 Flame-retardant olefinic polymer composition having excellent electrical insulating property Pending JP2006219510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031412A JP2006219510A (en) 2005-02-08 2005-02-08 Flame-retardant olefinic polymer composition having excellent electrical insulating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031412A JP2006219510A (en) 2005-02-08 2005-02-08 Flame-retardant olefinic polymer composition having excellent electrical insulating property

Publications (1)

Publication Number Publication Date
JP2006219510A true JP2006219510A (en) 2006-08-24

Family

ID=36982038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031412A Pending JP2006219510A (en) 2005-02-08 2005-02-08 Flame-retardant olefinic polymer composition having excellent electrical insulating property

Country Status (1)

Country Link
JP (1) JP2006219510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754789B1 (en) * 2006-06-12 2010-07-13 The Regents Of The University Of California Method for forming flame-retardant clay-polyolefin composites

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222539A (en) * 1998-02-06 1999-08-17 Yazaki Corp Nonhalogen flame-retardant olefin resin composition
JP2004225033A (en) * 2002-11-29 2004-08-12 Mizusawa Ind Chem Ltd Electrical insulation property improver and resin composition improved in electrical insulation property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11222539A (en) * 1998-02-06 1999-08-17 Yazaki Corp Nonhalogen flame-retardant olefin resin composition
JP2004225033A (en) * 2002-11-29 2004-08-12 Mizusawa Ind Chem Ltd Electrical insulation property improver and resin composition improved in electrical insulation property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754789B1 (en) * 2006-06-12 2010-07-13 The Regents Of The University Of California Method for forming flame-retardant clay-polyolefin composites

Similar Documents

Publication Publication Date Title
JP4607137B2 (en) Method for producing microcrystalline boehmite and plastic flame retardant comprising boehmite obtained by the production method
JP5324127B2 (en) Flame retardant, flame retardant composition using the same, molded product thereof, and electric wire having coating
TW201029926A (en) Synthetic inorganic flame retardants, methods for their preparation, and their use as flame retardants
Majka et al. Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites
Zhou et al. Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene–vinyl acetate copolymer
JP2006278047A (en) Covering material, and electric wire/cable
JP2009062214A (en) Magnesium hydroxide particulate, and method for producing the same
ES2751278T3 (en) New solid solution based on magnesium hydroxide and highly active magnesium oxide resin and precursor composition including the same
JP2006219510A (en) Flame-retardant olefinic polymer composition having excellent electrical insulating property
JP2008007730A (en) Flame-retardant resin composition, electric wire and cable using the same
JPH02289420A (en) Magnesium hydroxide particle
JP6144341B2 (en) Flame retardant inorganic filler and flame retardant polymer composition
JP4248922B2 (en) Electrical insulation improver and resin composition with improved electrical insulation
JP2008007726A (en) Flame-retardant resin composition, electric wire and cable using the same
JP4764591B2 (en) Stabilizer for chlorine-containing polymer comprising fine particle zeolite
JP2008007723A (en) Flame-retardant resin composition, electric wire and cable using the same
JP4025108B2 (en) Electrical insulation improver and resin composition with improved electrical insulation
JP2005171036A (en) Metal hydroxide and flame retardant resin composition
JP3244690B2 (en) Stabilized red phosphorus and flame retardant resin composition
JP5025174B2 (en) Flame retardant resin composition and electric wire and cable using the same
ES2645989T3 (en) Flame retardant and fire resistant polymeric compositions based on specific high surface lime
KR20200105658A (en) Hydrotalcite particles, manufacturing method thereof, and resin stabilizer and resin composition comprising the same
JPH11228936A (en) Ultrafar-to far-infrared absorber
JP4521209B2 (en) Electrical insulation improver and chlorine-containing resin composition with improved electrical insulation
JP2024513322A (en) thermally conductive filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Effective date: 20100824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118