JP2005171036A - Metal hydroxide and flame retardant resin composition - Google Patents
Metal hydroxide and flame retardant resin composition Download PDFInfo
- Publication number
- JP2005171036A JP2005171036A JP2003411221A JP2003411221A JP2005171036A JP 2005171036 A JP2005171036 A JP 2005171036A JP 2003411221 A JP2003411221 A JP 2003411221A JP 2003411221 A JP2003411221 A JP 2003411221A JP 2005171036 A JP2005171036 A JP 2005171036A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium hydroxide
- metal hydroxide
- flame retardant
- retardant resin
- saturated fatty
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、成形加工時或いは燃焼時にハロゲン系ガスが発生しない非ハロゲンの難燃材料に用いられる金属水酸化物に関する。さらに本発明は、該金属水酸化物を用いた、高い難燃性と高い機械的強度及び柔軟性とを有する難燃性樹脂組成物に関する。 The present invention relates to a metal hydroxide used for a non-halogen flame-retardant material that does not generate a halogen-based gas during molding or combustion. Furthermore, the present invention relates to a flame retardant resin composition having high flame retardancy and high mechanical strength and flexibility using the metal hydroxide.
電線絶縁体、ケーブルシース、電線管、土木養生シート、家電製品部品等に使用される材料には難燃性が求められる。従来、これらの材料にポリオレフィンを用いる場合、難燃性を付与するためにハロゲン含有難燃剤を配合して難燃化する方法が一般的に採用されていた。しかし、かかる方法においては、ハロゲン含有難燃剤配合ポリオレフィンを成形加工する時、或いは該難燃剤配合ポリオレフィンの燃焼時にハロゲン化水素ガスが発生する問題が指摘されていた。 Materials used for electric wire insulators, cable sheaths, electric pipes, civil engineering curing sheets, home appliance parts, etc. are required to have flame retardancy. Conventionally, when polyolefin is used for these materials, a method of adding a halogen-containing flame retardant to make it flame retardant has been generally employed in order to impart flame retardancy. However, in such a method, a problem has been pointed out that hydrogen halide gas is generated when a halogen-containing flame retardant-blended polyolefin is molded or burned.
一方、ポリオレフィンに金属水酸化物を配合し難燃性を付与する方法も提案されている。しかし、かかる方法においては、該難燃剤配合ポリオレフィンの成形加工時或いは該難燃剤配合ポリオレフィンの燃焼時にハロゲン化水素ガスの発生は無いものの、所望の難燃性を得るためには、多量の金属水酸化物を配合することが必須であった。そのため配合組成物の機械的強度や柔軟性が著しく損なわれる問題があった。 On the other hand, a method for imparting flame retardancy by blending a metal hydroxide with polyolefin has also been proposed. However, in such a method, there is no generation of hydrogen halide gas at the time of molding of the flame retardant-blended polyolefin or combustion of the flame retardant-blended polyolefin. It was essential to blend oxides. Therefore, there has been a problem that the mechanical strength and flexibility of the blended composition are remarkably impaired.
この問題を解決するため、ポリオレフィン、水酸化マグネシウム及びメタクリロキシ系シランカップリング剤からなる難燃性樹脂組成物であって、該樹脂組成物に電離放射線を照射されてなる難燃性樹脂組成物が開示されている(特許文献1参照)。しかし、係る難燃性樹脂組成物は、その機械的強度や柔軟性においては満足できるものの、難燃性においては満足のゆくものではなかった。 In order to solve this problem, a flame retardant resin composition comprising a polyolefin, magnesium hydroxide, and a methacryloxy-based silane coupling agent, wherein the resin composition is irradiated with ionizing radiation. It is disclosed (see Patent Document 1). However, the flame retardant resin composition is satisfactory in mechanical strength and flexibility, but not satisfactory in flame retardancy.
また、メタクリロキシ系シランカップリング剤と、炭素数12以上の不飽和脂肪酸とそのアルカリ金属塩及びアンモニウム塩の少なくとも1種とを含有する水酸化マグネシウムと、該水酸化マグネシウムをポリオレフィン樹脂に配合してなる難燃性樹脂組成物が開示されている(特許文献2参照)。しかし、係る難燃性樹脂組成物においても、その柔軟性や難燃性は満足のゆくものではなかった。
本発明の目的は、成形加工時或いは燃焼時にハロゲン系ガスが発生しない非ハロゲンの難燃材料に用いられる金属水酸化物を提供することにあり、更には、該金属水酸化物を用いた、高い難燃性と高い機械的強度及び柔軟性とを有する難燃性樹脂組成物を提供することにある。 An object of the present invention is to provide a metal hydroxide used for a non-halogen flame retardant material that does not generate a halogen-based gas during molding or combustion, and further, using the metal hydroxide, An object of the present invention is to provide a flame retardant resin composition having high flame retardancy and high mechanical strength and flexibility.
本発明者らは、上記課題を解決するために鋭意検討した結果、特定量のシランカップリング剤並びに飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物で被覆された金属水酸化物、さらに該金属水酸化物をポリオレフィン系樹脂に配合した樹脂組成物は、成形加工時或いは燃焼時にハロゲン系ガスを発生せず、且つ高い難燃性と高い機械的強度及び柔軟性とを有することを見出し本発明を完成させるに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a specific amount of silane coupling agent and at least one selected from the group of saturated fatty acids, saturated fatty acid metal salts and saturated fatty acid ammonium salts. A metal hydroxide coated with a compound, and a resin composition in which the metal hydroxide is blended with a polyolefin-based resin, does not generate a halogen-based gas during molding or combustion, and has high flame resistance and high mechanical properties. The present invention has been found out to have sufficient strength and flexibility.
すなわち、本発明は、シランカップリング剤0.05〜1.5重量%、並びに飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物0.5重量%より大きく且つ2重量%以下により被覆されたことを特徴とする金属水酸化物及び該金属水酸化物をポリオレフィン系樹脂に配合した難燃性樹脂組成物に関するものである。 That is, the present invention relates to a silane coupling agent of 0.05 to 1.5% by weight, and 0.5% by weight of at least one compound selected from the group of saturated fatty acids, saturated fatty acid metal salts and saturated fatty acid ammonium salts. The present invention relates to a metal hydroxide characterized by being coated with an amount of greater than% and not more than 2% by weight, and a flame retardant resin composition containing the metal hydroxide in a polyolefin resin.
本発明は、成形加工時或いは燃焼時にハロゲン系ガスが発生しない非ハロゲンの難燃材料に用いられる金属水酸化物を提供する。更に、該金属水酸化物を用いた、高い難燃性と高い機械的強度及び柔軟性とを有する難燃性樹脂組成物を提供する。 The present invention provides a metal hydroxide used for a non-halogen flame retardant material that does not generate a halogen-based gas during molding or combustion. Furthermore, the present invention provides a flame retardant resin composition having high flame retardancy and high mechanical strength and flexibility using the metal hydroxide.
本発明における、シランカップリング剤被覆量は、金属水酸化物重量に対し、0.05〜1.5重量%、好ましくは0.1〜1.0重量%である。シランカップリング剤量が0.05重量%未満であると、樹脂組成物の柔軟性、及び難燃性が低下し、又、1.5重量%を超えると、樹脂組成物の機械的強度の向上が得られず経済的に不利となる。 In the present invention, the coating amount of the silane coupling agent is 0.05 to 1.5% by weight, preferably 0.1 to 1.0% by weight, based on the weight of the metal hydroxide. When the amount of the silane coupling agent is less than 0.05% by weight, the flexibility and flame retardancy of the resin composition are lowered, and when it exceeds 1.5% by weight, the mechanical strength of the resin composition is reduced. It cannot be improved and it is economically disadvantageous.
本発明に用いられるシランカップリング剤は、一般的にシランカップリング剤と称されているものであれば、特に限定するものではない。例えば,ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン等が例示される。中でも、難燃性樹脂組成物の良好な機械的強度及び難燃性を得られることから、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシランが好適な例として挙げられる。又、これらシランカップリング剤は単独で、若しくは二種以上の混合物として用いることもできる。 The silane coupling agent used in the present invention is not particularly limited as long as it is generally referred to as a silane coupling agent. For example, vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycid Examples thereof include xylpropyltrimethoxysilane and γ-mercaptopropyltrimethoxysilane. Among them, γ-methacryloxypropyltrimethoxysilane and γ-methacryloxypropyltriethoxysilane are preferable examples because good mechanical strength and flame retardancy of the flame retardant resin composition can be obtained. These silane coupling agents can be used alone or as a mixture of two or more.
本発明における、飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物の被覆量は、金属水酸化物重量に対し、0.5重量%より大きく且つ2重量%以下、好ましくは0.6〜1.5重量%である。飽和脂肪酸若しくはその塩の量が0.5重量%以下であると、難燃性樹脂組成物の難燃性が低下し、又、2重量%を超えると難燃性樹脂組成物の機械的強度が低下する。 In the present invention, the coating amount of at least one compound selected from the group of saturated fatty acids, saturated fatty acid metal salts and saturated fatty acid ammonium salts is greater than 0.5% by weight with respect to the metal hydroxide weight and It is 2 wt% or less, preferably 0.6 to 1.5 wt%. When the amount of the saturated fatty acid or its salt is 0.5% by weight or less, the flame retardancy of the flame retardant resin composition is lowered, and when it exceeds 2% by weight, the mechanical strength of the flame retardant resin composition is reduced. Decreases.
本発明に用いられる飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物における飽和脂肪酸は特に限定するものではない。例えば飽和脂肪酸としてパルミチン酸、ステアリン酸等が例示される。中でも、難燃性樹脂組成物の良好な機械的強度及び難燃性が得られることから、ステアリン酸が好適な例として挙げられる。また、飽和脂肪酸の金属塩としてパルミチン酸カリウム、パルミチン酸亜鉛、パルミチン酸マグネシウム、ステアリン酸ナトリウム、ステアリン酸亜鉛、ステアリン酸マグネシウム等が例示される。中でも、難燃性樹脂組成物の良好な機械的強度及び難燃性が得られることから、ステアリン酸ナトリウムが好適な例として挙げられる。さらに、飽和脂肪酸のアンモニウム塩としてパルミチン酸アンモニウム、ステアリン酸アンモニウム等が例示される。中でも、難燃性樹脂組成物の良好な機械的強度及び難燃性が得られることから、ステアリン酸アンモニウムが好適な例として挙げられる。又、これら飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物は単独で、若しくは二種以上の混合物として用いることもできる。 The saturated fatty acid in at least one compound selected from the group consisting of saturated fatty acids, metal salts of saturated fatty acids and ammonium salts of saturated fatty acids used in the present invention is not particularly limited. Examples of saturated fatty acids include palmitic acid and stearic acid. Among them, stearic acid is a preferable example because good mechanical strength and flame retardancy of the flame retardant resin composition can be obtained. Examples of saturated fatty acid metal salts include potassium palmitate, zinc palmitate, magnesium palmitate, sodium stearate, zinc stearate, magnesium stearate and the like. Especially, since the favorable mechanical strength and flame retardance of a flame-retardant resin composition are obtained, sodium stearate is mentioned as a suitable example. Furthermore, examples of ammonium salts of saturated fatty acids include ammonium palmitate and ammonium stearate. Especially, since the favorable mechanical strength and flame retardance of a flame-retardant resin composition are obtained, an ammonium stearate is mentioned as a suitable example. In addition, at least one compound selected from the group consisting of saturated fatty acids, metal salts of saturated fatty acids, and ammonium salts of saturated fatty acids can be used alone or as a mixture of two or more.
本発明における金属水酸化物のBET比表面積は、特に限定されるものではないが、難燃性樹脂組成物の難燃性、難燃性樹脂組成物の機械的強度等を勘案すると、3〜15m2/gが好ましい。さらに好ましくは5〜10m2/gである。 The BET specific surface area of the metal hydroxide in the present invention is not particularly limited, but considering the flame retardancy of the flame retardant resin composition, the mechanical strength of the flame retardant resin composition, etc. 15 m 2 / g is preferred. More preferably, it is 5-10 m < 2 > / g.
本発明における金属水酸化物の、レーザー回折散乱法で測定した平均粒子径は、特に限定されるものではないが、難燃性樹脂組成物の難燃性、難燃性樹脂組成物の機械的強度等を勘案すると、0.4〜5μmが好ましい。さらに好ましくは0.5〜2μmである。 The average particle diameter of the metal hydroxide in the present invention measured by the laser diffraction scattering method is not particularly limited, but the flame retardancy of the flame retardant resin composition, the mechanical properties of the flame retardant resin composition In consideration of strength and the like, 0.4 to 5 μm is preferable. More preferably, it is 0.5-2 micrometers.
本発明において用いる金属水酸化物は特に限定はない。例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、ハイドロタルサイト類、カルシウム・アルミネート水和物、下記一般式(1)で示される複合水酸化マグネシウム等が挙げられる。 The metal hydroxide used in the present invention is not particularly limited. Examples thereof include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, hydrotalcites, calcium aluminate hydrate, and composite magnesium hydroxide represented by the following general formula (1).
Mg1−xMx(OH)2 (1)
(ここでMはMn、Fe、Co、Ni、Cu、Znから選ばれる1種の元素であり、Xは0より大きく0.1以下の値である。)なお、ここで言う複合水酸化マグネシウムとは水酸化マグネシウムとマグネシウム以外の金属元素Mの水酸化物との固溶体を言う。
Mg 1-x M x (OH) 2 (1)
(Here, M is one element selected from Mn, Fe, Co, Ni, Cu, and Zn, and X is a value greater than 0 and less than or equal to 0.1.) Means a solid solution of magnesium hydroxide and a hydroxide of a metal element M other than magnesium.
中でも、難燃性及び分解温度に優れる難燃剤が得られることから水酸化マグネシウム、及び複合水酸化マグネシウムが好ましい。また、これら被覆前の金属水酸化物は単独で、若しくは二種以上の混合物として用いることもできる。 Among these, magnesium hydroxide and composite magnesium hydroxide are preferable because a flame retardant having excellent flame retardancy and decomposition temperature is obtained. These metal hydroxides before coating can be used alone or as a mixture of two or more.
本発明に用いる、金属水酸化物は公知の方法によって得ることができる。例えば合成品、若しくは及び天然品の粉砕品から得ることができる。例えば、合成水酸化マグネシウムを得る一例として、苦汁に(苦汁の製造方法は東海大学出版会発行「海水の科学と工業」491〜493頁に記載。)、攪拌条件下で、塩化カルシウム溶液と苛性ソーダ溶液を反応させて得た水酸化カルシウムスラリーを滴下しながら投入し、室温にて反応後、静置して水酸化マグネシウムスラリーを得た後、係るスラリーを、オートクレーブにて140〜180℃、1〜4時間の条件下で水熱処理を行った後、真空ろ過器にて脱水、水洗し、水酸化マグネシウムのウェットケーキを得る方法を挙げることができる。 The metal hydroxide used in the present invention can be obtained by a known method. For example, it can be obtained from a synthetic product or a ground product of a natural product. For example, as an example of obtaining synthetic magnesium hydroxide, in bitter juice (a method for producing bitter juice is described in “Seawater Science and Industry”, pages 491 to 493, published by Tokai University Press), calcium chloride solution and caustic soda under stirring conditions The calcium hydroxide slurry obtained by reacting the solution was added dropwise, reacted at room temperature, and allowed to stand to obtain a magnesium hydroxide slurry. Then, the slurry was 140 to 180 ° C., 1 A method of obtaining a magnesium hydroxide wet cake by performing hydrothermal treatment under a condition of ˜4 hours and then dehydrating and washing with a vacuum filter can be mentioned.
本発明において、金属水酸化物を、シランカップリング剤、並びに飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物で被覆する方法は特に限定はない。例えば、被覆前の金属水酸化物の水溶液スラリーに、シランカップリング剤、並びに飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物を添加し、表面被覆処理を行う。又、それらシランカップリング剤、並びに飽和脂肪酸、飽和脂肪酸の金属塩及び飽和脂肪酸のアンモニウム塩の群から選ばれる少なくとも1種以上の化合物の添加順序に特に限定はなく、逐次添加、同時添加のいずれでもよい。その後、表面被覆処理操作を完了した金属水酸化物水溶液スラリーを、ろ過脱水、洗浄、乾燥、粉砕して、本発明の金属水酸化物を得る。 In the present invention, the method of coating the metal hydroxide with a silane coupling agent and at least one compound selected from the group of saturated fatty acids, metal salts of saturated fatty acids and ammonium salts of saturated fatty acids is not particularly limited. . For example, a silane coupling agent and at least one compound selected from the group of saturated fatty acids, saturated fatty acid metal salts and saturated fatty acid ammonium salts are added to an aqueous slurry of metal hydroxide before coating, Perform coating. Further, there is no particular limitation on the order of addition of these silane coupling agents, and at least one compound selected from the group of saturated fatty acids, metal salts of saturated fatty acids and ammonium salts of saturated fatty acids, either sequential addition or simultaneous addition. But you can. Thereafter, the metal hydroxide aqueous solution slurry for which the surface coating treatment operation has been completed is filtered, dehydrated, washed, dried, and pulverized to obtain the metal hydroxide of the present invention.
本発明の金属水酸化物は樹脂と配合することにより、高い難燃性と高い機械的強度及び柔軟性とを有する難燃性樹脂組成物を得ることができる。 By blending the metal hydroxide of the present invention with a resin, a flame retardant resin composition having high flame retardancy and high mechanical strength and flexibility can be obtained.
用いる樹脂に特に限定はなく、熱可塑性樹脂、ゴム等が例示される。中でも、熱可塑性樹脂、特にポリオレフィン系樹脂に用いる場合に、本発明の金属水酸化物難燃剤の効果を発揮できる。 The resin to be used is not particularly limited, and examples thereof include a thermoplastic resin and rubber. Especially, when using it for a thermoplastic resin, especially polyolefin-type resin, the effect of the metal hydroxide flame retardant of this invention can be exhibited.
用いるポリオレフィン系樹脂は、一般的にポリオレフィンと称されているものであれば特に限定はない。例えば、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン−プロピレンランダム共重合体、エチレン−プロピレンブロック共重合体、プロピレン−エチレン−プロピレンブロック共重合体、ポリプロピレン、ポリブタジエン、ポリ(4−メチルペンテン)、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸エチル−無水マレイン酸共重合体、エチレン−メタアクリル酸グリシジル−酢酸ビニル共重合体、エチレン−アクリル酸ブチル共重合体等が挙げられる。中でも、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エチル共重合体が好ましい。 The polyolefin resin to be used is not particularly limited as long as it is generally called a polyolefin. For example, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra low density polyethylene, ethylene-propylene random copolymer, ethylene-propylene block copolymer, propylene-ethylene-propylene block copolymer, polypropylene, Polybutadiene, poly (4-methylpentene), ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer, ethylene -Glycidyl methacrylate-vinyl acetate copolymer, ethylene-butyl acrylate copolymer, etc. are mentioned. Among these, an ethylene-vinyl acetate copolymer and an ethylene-ethyl acrylate copolymer are preferable.
本発明の金属水酸化物を樹脂と配合する場合、高い難燃性と高い機械的強度及び柔軟性とを有する難燃性樹脂組成物を得るために、樹脂100重量部に対し金属水酸化物難燃剤を80〜300重量部配合することが好ましい。 When blending the metal hydroxide of the present invention with a resin, in order to obtain a flame retardant resin composition having high flame retardancy and high mechanical strength and flexibility, the metal hydroxide is used with respect to 100 parts by weight of the resin. It is preferable to blend 80 to 300 parts by weight of a flame retardant.
本発明の難燃性樹脂組成物を製造する方法は特に限定されない。具体的には、押出機、ニーダ、バンバリーミキサー、ロール等による混練方法が例示される。 The method for producing the flame retardant resin composition of the present invention is not particularly limited. Specifically, a kneading method using an extruder, a kneader, a Banbury mixer, a roll or the like is exemplified.
また、本発明では、本発明の趣旨を損なわない限りにおいて、酸化防止剤、紫外線吸収剤、顔料、充填剤、架橋剤、架橋助剤、カップリング剤、他の難燃剤等の、他の副資材や添加剤を併用してもよい。 Further, in the present invention, other auxiliary agents such as antioxidants, ultraviolet absorbers, pigments, fillers, crosslinking agents, crosslinking aids, coupling agents, other flame retardants, etc. may be used without departing from the spirit of the present invention. Materials and additives may be used in combination.
更には、本発明の難燃性樹脂組成物は、成形後に架橋してもよい。その方法としては、有機過酸化物やアゾ化合物の熱分解によって生成するラジカルを利用する化学架橋、電子線等の電離放射線を照射する電離放射線架橋、有機シラン化合物を用いるシラン架橋等が例示される。 Furthermore, the flame retardant resin composition of the present invention may be crosslinked after molding. Examples of the method include chemical crosslinking using radicals generated by thermal decomposition of organic peroxides and azo compounds, ionizing radiation crosslinking that irradiates ionizing radiation such as electron beams, and silane crosslinking using an organic silane compound. .
本発明の難燃性樹脂組成物は、高い難燃性、高い機械的強度並びに柔軟性が必要とされる用途、例えば電線絶縁体、ケーブルシース、電線管、土木養生シート、家電製品部品等に使用される。
The flame retardant resin composition of the present invention is used in applications that require high flame retardancy, high mechanical strength and flexibility, for example, electric wire insulators, cable sheaths, electric pipes, civil engineering curing sheets, home appliance parts, etc. used.
次に、本発明を実施例及び比較例によって説明するが、本発明はこれらの例に限定されるものではない。 Next, although an example and a comparative example explain the present invention, the present invention is not limited to these examples.
(測定方法)
「BET比表面積」
比表面積計(Macsorb1201(マウンテック社製))を用いて窒素吸着法により測定した。
(Measuring method)
"BET specific surface area"
It measured by the nitrogen adsorption method using the specific surface area meter (Macsorb1201 (made by a mountec company)).
「平均粒子径、レーザー回折散乱法」
金属水酸化物0.2重量%を加えた0.2重量%のヘキサメタリン酸ナトリウム水溶液スラリーを超音波で2分間処理した後、レーザー回折散乱方式の粒度分布計マイクロトラックHRA9320−X100(日機装(株)製)を用いて測定した。
"Average particle size, laser diffraction scattering method"
A 0.2% by weight sodium hexametaphosphate aqueous slurry added with 0.2% by weight metal hydroxide was treated with ultrasonic waves for 2 minutes, and then a laser diffraction scattering type particle size distribution analyzer Microtrac HRA9320-X100 (Nikkiso Co., Ltd.) )).
「シランカップリング剤量」
金属水酸化物の表面被覆処理前後の金属水酸化物の珪素量を蛍光X線分析装置(ZSX100E(リガク(株)製))で測定し、その差分から求めた。
"Amount of silane coupling agent"
The amount of silicon in the metal hydroxide before and after the surface coating treatment of the metal hydroxide was measured with a fluorescent X-ray analyzer (ZSX100E (manufactured by Rigaku Corporation)) and obtained from the difference.
「飽和脂肪酸若しくはその塩量」
金属水酸化物の表面被覆処理前後の金属水酸化物の炭素量を炭素分析装置(EMIA−110(堀場製作所(株)製))で測定し、その差分から求めた。
"Saturated fatty acid or its salt"
The amount of carbon of the metal hydroxide before and after the surface coating treatment of the metal hydroxide was measured with a carbon analyzer (EMIA-110 (manufactured by Horiba, Ltd.)) and obtained from the difference.
「VW−1燃焼試験」
UL1581に準じて、5本の試料で試験を行った。各試料の燃焼時間が60秒未満でかつクラフト紙が燃焼による損傷のないものを合格とした。
"VW-1 combustion test"
According to UL1581, five samples were tested. Each sample was judged to be acceptable if the burning time was less than 60 seconds and the kraft paper was not damaged by burning.
「JASO D611燃焼試験」
JASO D611に準じて、5本の試料で試験を行った。各試料の燃焼時間が15秒以内であるものを合格とした。
“JASO D611 Combustion Test”
In accordance with JASO D611, the test was performed with five samples. A sample having a burning time of 15 seconds or less was regarded as acceptable.
「引張試験」
機器電線評価では、引張試験用の試料をJIS K7113の2号型ダンベルで打ち抜いた後、装置名テンシロンUTM−2.5TPL(東洋ボールドウィン社製)を用いて、500mm/分にて引張試験を行い、UL subject758に基づき、引張強度が10.3MPa以上で、引張伸び率が100%以上であるものを合格とした。
"Tensile test"
In the device electric wire evaluation, a tensile test sample was punched out with a JIS K7113 No. 2 dumbbell, and then a tensile test was performed at 500 mm / min using a device name Tensilon UTM-2.5 TPL (manufactured by Toyo Baldwin). Based on UL subject 758, those having a tensile strength of 10.3 MPa or more and a tensile elongation of 100% or more were regarded as acceptable.
また、自動車電線評価では、引張試験用の試料をJIS K6301の3号型ダンベルで打ち抜いた後、200mm/分にて引張試験を行い、JASO D611に基づき、引張強度が15.7MPa以上で、引張伸び率が125%以上であるものを合格とした。 In automotive electric wire evaluation, a tensile test sample was punched with a JIS K6301 type 3 dumbbell, and then a tensile test was performed at 200 mm / min. Based on JASO D611, the tensile strength was 15.7 MPa or more. Those having an elongation of 125% or more were regarded as acceptable.
尚、各電線評価において、引張伸び率は、組成物の柔軟性の表わすものとし、高い数値のものほど柔軟性に優れると判断した。 In addition, in each electric wire evaluation, the tensile elongation rate shall represent the softness | flexibility of a composition, and it was judged that the thing with a higher numerical value was excellent in the softness | flexibility.
(金属水酸化物の実施例、比較例)
(金属水酸化物実施例1)水酸化マグネシウム1
Mg濃度1.9mol/lを含む苦汁2.6lに対して、攪拌条件下に、4.3mol/l塩化カルシウム溶液1.0lと8mol/l苛性ソーダ溶液1.07lを反応させて得た水酸化カルシウムスラリーを滴下しながら投入し、室温にて60分間反応、24時間静置後、上澄液を取り除き、2.5lの水酸化マグネシウムスラリーを得た。
(Examples of metal hydroxides, comparative examples)
(Metal hydroxide Example 1) Magnesium hydroxide 1
Hydroxylation obtained by reacting 1.0 l of 4.3 mol / l calcium chloride solution and 1.07 l of 8 mol / l caustic soda solution under stirring conditions against 2.6 l of bitter juice containing Mg concentration of 1.9 mol / l The calcium slurry was added dropwise, reacted at room temperature for 60 minutes, allowed to stand for 24 hours, and then the supernatant was removed to obtain 2.5 l of magnesium hydroxide slurry.
このスラリーを、容量3lのオートクレーブにて150℃、2時間の条件下で水熱処理を行った後、真空ろ過器にて脱水、水洗し、水酸化マグネシウムのウェットケーキを得た。 The slurry was hydrothermally treated at 150 ° C. for 2 hours in a 3 liter autoclave and then dehydrated and washed with a vacuum filter to obtain a magnesium hydroxide wet cake.
水酸化マグネシウムの表面被覆処理剤としてγ−メタクリロキシプロピルトリメトキシシラン(信越シリコーン社製、商品名「KBM503」)とステアリン酸ナトリウム(日本油脂(株)製、ノンサールSN―15)を用いた。処理溶液として、pH4に調製したγ−メタクリロキシプロピルトリメトキシシランの5重量%の水溶液、及び80℃のステアリン酸ナトリウムの3重量%の水溶液を用意した。 As the surface coating agent for magnesium hydroxide, γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Silicone, trade name “KBM503”) and sodium stearate (manufactured by Nippon Oil & Fats Co., Ltd., Non-Sal SN-15) were used. As a treatment solution, a 5% by weight aqueous solution of γ-methacryloxypropyltrimethoxysilane adjusted to pH 4 and a 3% by weight aqueous solution of sodium stearate at 80 ° C. were prepared.
上記のウェットケーキを乾燥させて得た水酸化マグネシウム粉末に水を加え、50℃、濃度120g/lの水酸化マグネシウムスラリーを調製した。該スラリーにγ−メタクリロキシプロピルトリメトキシシラン水溶液を、該スラリーの攪拌下、滴下し、滴下終了後60分間攪拌を続けた。次いで、このスラリーに、ステアリン酸ナトリウム水溶液を、このスラリーの攪拌下、滴下し、滴下終了後30分間攪拌を続けた。なお、γ−メタクリロキシプロピルトリメトキシシラン水溶液及びステアリン酸ナトリウム水溶液の滴下は、γ−メタクリロキシプロピルトリメトキシシラン及びステアリン酸によるそれぞれの被覆量が、0.05〜1.5重量%及び0.5重量%より大きく且つ2重量%以下の、それぞれの範囲内の所定の値に(本実施例においては0.50重量%及び0.60重量%に)達するまで行った。 Water was added to the magnesium hydroxide powder obtained by drying the wet cake to prepare a magnesium hydroxide slurry at 50 ° C. and a concentration of 120 g / l. An aqueous γ-methacryloxypropyltrimethoxysilane solution was added dropwise to the slurry while stirring the slurry, and stirring was continued for 60 minutes after the completion of the addition. Next, an aqueous sodium stearate solution was dropped into the slurry while stirring the slurry, and stirring was continued for 30 minutes after the completion of the dropping. In addition, dropping of the γ-methacryloxypropyltrimethoxysilane aqueous solution and the sodium stearate aqueous solution was carried out with the respective coating amounts of 0.05 to 1.5% by weight and 0.005% by weight of γ-methacryloxypropyltrimethoxysilane and stearic acid. This was performed until a predetermined value within the respective range of greater than 5% by weight and 2% by weight or less (0.50% by weight and 0.60% by weight in this example) was reached.
各表面被覆処理溶液の滴下を完了したスラリーを、ろ過脱水、洗浄、乾燥、粉砕して、表面処理した水酸化マグネシウム1を得た。 The slurry in which the dropping of each surface coating treatment solution was completed was filtered and dehydrated, washed, dried, and pulverized to obtain surface-treated magnesium hydroxide 1.
得られた水酸化マグネシウム1のBET比表面積、レーザー回折散乱法で測定した平均粒子径を測定した。また、γ−メタクリロキシプロピルトリメトキシシランの被覆量、ステアリン酸の被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area of the obtained magnesium hydroxide 1 and the average particle diameter measured by the laser diffraction scattering method were measured. Further, the coating amount of γ-methacryloxypropyltrimethoxysilane and the coating amount of stearic acid were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物実施例2〜5)水酸化マグネシウム2〜5
γ−メタクリロキシプロピルトリメトキシシラン水溶液、及びステアリン酸ナトリウム水溶液を用い、それぞれの被覆量が表1に記載の値に達するまで滴下量を変更した以外は、金属水酸化物実施例1と同様な方法で表面被覆処理をして水酸化マグネシウム2〜5を得た。
(Metal hydroxide Examples 2-5) Magnesium hydroxide 2-5
The same as in Example 1 of metal hydroxide, except that an aqueous solution of γ-methacryloxypropyltrimethoxysilane and an aqueous solution of sodium stearate were used and the amount added was changed until the respective coating amounts reached the values shown in Table 1. Surface coating treatment was performed by the method to obtain magnesium hydroxide 2-5.
水酸化マグネシウム2〜5のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 2-5 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物実施例6)水酸化マグネシウム6
水酸化マグネシウムスラリーを155℃、3時間の条件下で水熱処理を行ったこと、並びにγ−メタクリロキシプロピルトリメトキシシラン水溶液、及びステアリン酸ナトリウム水溶液を用い、それぞれの被覆量が表1に記載の値に達するまで滴下量を変更したこと以外は、金属水酸化物実施例1と同様な方法で表面被覆処理をして水酸化マグネシウム6を得た。
(Metal hydroxide Example 6) Magnesium hydroxide 6
The magnesium hydroxide slurry was hydrothermally treated at 155 ° C. for 3 hours, and an aqueous γ-methacryloxypropyltrimethoxysilane solution and an aqueous sodium stearate solution were used. Magnesium hydroxide 6 was obtained by surface coating in the same manner as in metal hydroxide Example 1 except that the amount dropped was changed until the value was reached.
水酸化マグネシウム6のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 6 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物実施例7)水酸化マグネシウム7
水酸化マグネシウムスラリーを145℃、2時間の条件下で水熱処理を行ったこと、並びにγ−メタクリロキシプロピルトリメトキシシラン水溶液、及びステアリン酸ナトリウム水溶液を用い、それぞれの被覆量が表1に記載の値に達するまで滴下量を変更したこと以外は、金属水酸化物実施例1と同様な方法で表面被覆処理をして水酸化マグネシウム7を得た。
(Metal hydroxide Example 7) Magnesium hydroxide 7
The magnesium hydroxide slurry was hydrothermally treated at 145 ° C. for 2 hours, and an aqueous γ-methacryloxypropyltrimethoxysilane solution and an aqueous sodium stearate solution were used. Magnesium hydroxide 7 was obtained by surface coating in the same manner as in metal hydroxide Example 1 except that the amount of dripping was changed until the value was reached.
水酸化マグネシウム7のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 7 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物実施例8)水酸化マグネシウム8
ステアリン酸ナトリウムの代わりにパルミチン酸カリウム(日本油脂製、ノンサールPK−1)を用いたこと、並びにγ−メタクリロキシプロピルトリメトキシシラン水溶液及びパルミチン酸カリウム水溶液を、それぞれの被覆量が表1に記載の値に達するまで滴下量を変更したこと以外は、金属水酸化物実施例1と同様な方法で表面被覆処理をして水酸化マグネシウム8を得た。
(Metal hydroxide Example 8) Magnesium hydroxide 8
Table 1 shows that each of the coating amounts of potassium palmitate (Nonsar PK-1 manufactured by NOF Corporation) was used instead of sodium stearate, and γ-methacryloxypropyltrimethoxysilane aqueous solution and potassium palmitate aqueous solution. A surface coating treatment was carried out in the same manner as in Metal Hydroxide Example 1 except that the amount of dripping was changed until the value reached, thereby obtaining magnesium hydroxide 8.
水酸化マグネシウム8のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter and coating amount of magnesium hydroxide 8 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物実施例9)複合水酸化マグネシウム1
Mg濃度1.9mol/lを含む苦汁2.6lに、0.42mol/lの塩化ニッケル水溶液1lを予め混合し、攪拌条件下に、4.3mol/l塩化カルシウム溶液1.0lと8mol/l苛性ソーダ溶液1.07lを反応させて得た水酸化カルシウムスラリーを滴下しながら投入し、室温にて60分間反応、24時間静置後、上澄液を取り除き、2.5lの複合水酸化マグネシウムスラリーを得た。
(Metal hydroxide Example 9) Composite magnesium hydroxide 1
To 2.6 l of bitter juice containing Mg concentration of 1.9 mol / l, 1 l of 0.42 mol / l nickel chloride aqueous solution is mixed in advance and under stirring conditions, 4.3 l / l calcium chloride solution 1.0 l and 8 mol / l Calcium hydroxide slurry obtained by reacting 1.07 l of caustic soda solution was added dropwise, reacted at room temperature for 60 minutes, allowed to stand for 24 hours, then the supernatant was removed, and 2.5 l of composite magnesium hydroxide slurry Got.
このスラリーを、容量3lのオートクレーブにて170℃、2時間の条件下で水熱処理を行った後、真空ろ過器にて脱水、水洗し、複合水酸化マグネシウムのウェットケーキを得た。尚、得られたケーキの組成をキレート滴定にて組成を分析したところ、Mg0.9Ni0.1(OH)2であることを確認した。 The slurry was hydrothermally treated at 170 ° C. for 2 hours in an autoclave having a capacity of 3 liters, and then dehydrated and washed with a vacuum filter to obtain a composite magnesium hydroxide wet cake. In addition, when the composition of the obtained cake was analyzed by chelate titration, it was confirmed to be Mg 0.9 Ni 0.1 (OH) 2 .
かかる複合水酸化マグネシウムを用いたこと、並びにγ−メタクリロキシプロピルトリメトキシシラン水溶液、及びステアリン酸ナトリウム水溶液を用い、それぞれの被覆量が表1に記載の値に達するまで滴下量を変更した以外は、金属水酸化物実施例1と同様な方法で表面被覆処理をして複合水酸化マグネシウム1を得た。 Except for using this composite magnesium hydroxide, and using the γ-methacryloxypropyltrimethoxysilane aqueous solution and the sodium stearate aqueous solution, and changing the dripping amount until the respective coating amounts reached the values shown in Table 1. The surface of the metal hydroxide was treated in the same manner as in Example 1 to obtain composite magnesium hydroxide 1.
複合水酸化マグネシウム1のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of the composite magnesium hydroxide 1 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物比較例1〜3)水酸化マグネシウム9〜11
γ−メタクリロキシプロピルトリメトキシシラン水溶液、及びステアリン酸ナトリウム水溶液の滴下量を、γ−メタクリロキシプロピルトリメトキシシランの被覆量が0.05〜1.5重量%の範囲を、又はステアリン酸による被覆量が0.5重量%より大きく且つ2重量%以下の範囲を、外れる所定の値に達するまで行った以外は、金属水酸化物実施例1と同様な方法で表面被覆処理をして水酸化マグネシウム9〜11を得た。
(Metal hydroxide comparative examples 1-3) Magnesium hydroxide 9-11
Dropping amount of γ-methacryloxypropyltrimethoxysilane aqueous solution and sodium stearate aqueous solution, coating amount of γ-methacryloxypropyltrimethoxysilane in the range of 0.05 to 1.5% by weight, or coating with stearic acid The surface coating treatment was performed in the same manner as in the metal hydroxide Example 1 except that the amount was larger than 0.5% by weight and not more than 2% by weight until reaching a predetermined value outside the range, and was subjected to hydroxylation. Magnesium 9-11 were obtained.
水酸化マグネシウム9〜11のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 9-11 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物比較例4)水酸化マグネシウム12
水酸化マグネシウムの表面被覆処理剤としてステアリン酸ナトリウムのみを用いたこと、及び被覆量が表1に記載の値に達するまで滴下量を変更したこと以外は、金属水酸化物比較例1と同様な方法で表面被覆処理をして水酸化マグネシウム12を得た。
(Metal hydroxide comparative example 4) Magnesium hydroxide 12
Similar to Metal Hydroxide Comparative Example 1 except that only sodium stearate was used as the surface coating agent for magnesium hydroxide and the dripping amount was changed until the coating amount reached the values shown in Table 1. Surface coating treatment was performed by the method to obtain magnesium hydroxide 12.
水酸化マグネシウム12のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 12 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物比較例5)水酸化マグネシウム13
水酸化マグネシウムの表面被覆処理剤としてγ−メタクリロキシプロピルトリメトキシシランのみを用いたこと、及び被覆量が表1に記載の値に達するまで滴下量を変更したこと以外は、金属水酸化物比較例1と同様な方法で表面被覆処理をして水酸化マグネシウム13を得た。
(Metal hydroxide comparative example 5) Magnesium hydroxide 13
Metal hydroxide comparison, except that only γ-methacryloxypropyltrimethoxysilane was used as the magnesium hydroxide surface coating agent, and the amount of dripping was changed until the coating amount reached the value shown in Table 1. Surface coating treatment was performed in the same manner as in Example 1 to obtain magnesium hydroxide 13.
水酸化マグネシウム13のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 13 were measured. The measurement results are shown in Table 1, respectively.
(金属水酸化物比較例6)水酸化マグネシウム14
ステアリン酸ナトリウムの代わりにオレイン酸ナトリウム(日本油脂製、ON−8)を用いたこと、並びにγ−メタクリロキシプロピルトリメトキシシラン水溶液及びオレイン酸ナトリウム水溶液を、それぞれの被覆量が表1に記載の値に達するまで滴下量を変更したこと以外は、金属水酸化物比較例1と同様な方法で表面被覆処理をして水酸化マグネシウム14を得た。
(Metal hydroxide comparative example 6) Magnesium hydroxide 14
The use of sodium oleate (manufactured by NOF Corporation, ON-8) instead of sodium stearate, and γ-methacryloxypropyltrimethoxysilane aqueous solution and sodium oleate aqueous solution, the respective coating amounts are listed in Table 1. Magnesium hydroxide 14 was obtained by performing a surface coating treatment in the same manner as in the metal hydroxide comparative example 1 except that the dropping amount was changed until the value was reached.
水酸化マグネシウム14のBET比表面積、平均粒子径及び被覆量を測定した。それぞれ測定結果を表1に示した。 The BET specific surface area, average particle diameter, and coating amount of magnesium hydroxide 14 were measured. The measurement results are shown in Table 1, respectively.
(難燃性樹脂組成物の実施例、比較例)
(難燃性樹脂実施例1)
ポリオレフィン系樹脂としてエチレン−酢酸ビニル共重合体(EVA、東ソー製、商品名ウルトラセンYX13A、酢酸ビニル含有量=32%、メルトインデックス(MI)=1g/10分)を100重量部に対し、水酸化マグネシウム1を225重量部を配合し、170℃に加熱した加圧ニーダで10分間混練した。混練物をロールで圧延しシート状に成形し、シートペレタイザーで裁断して、ペレット状の組成物を調製した。
(Examples of flame retardant resin compositions, comparative examples)
(Flame-retardant resin Example 1)
As polyolefin resin, ethylene-vinyl acetate copolymer (EVA, manufactured by Tosoh Corporation, trade name Ultrasen YX13A, vinyl acetate content = 32%, melt index (MI) = 1 g / 10 min) is added to 100 parts by weight of water. 225 parts by weight of magnesium oxide 1 was blended and kneaded for 10 minutes with a pressure kneader heated to 170 ° C. The kneaded product was rolled with a roll, formed into a sheet, and cut with a sheet pelletizer to prepare a pellet-shaped composition.
このペレット状の組成物を電線成形用のダイを装着した20mm単軸押出機に投入し、外径0.5mmの銅線に0.4mmの厚みで組成物を被覆し、電線を成形した。成形温度は180℃で行った。この電線を燃焼試験用の試料とした。 The pellet-shaped composition was put into a 20 mm single-screw extruder equipped with a die for forming an electric wire, and the composition was coated on a copper wire having an outer diameter of 0.5 mm with a thickness of 0.4 mm to form an electric wire. The molding temperature was 180 ° C. This electric wire was used as a sample for a combustion test.
また前記シート状の組成物を180℃に加熱したプレス成形機で5分間プレスし、厚み0.5mmのシートを成形した。この0.5mmのシートに100kGyの照射線量で電子線を照射し、これを引張試験用の試料とした。 The sheet-like composition was pressed for 5 minutes with a press molding machine heated to 180 ° C. to form a sheet having a thickness of 0.5 mm. This 0.5 mm sheet was irradiated with an electron beam at an irradiation dose of 100 kGy, and this was used as a sample for a tensile test.
次いで、これら電線、引張試験用の試料を用いてVW−1燃焼試験、引張試験を行い評価した。水酸化マグネシウム1を用いた難燃性樹脂組成物のVW−1燃焼試験は合格であり、また引張強度、引張伸び率も、UL subject758で判定し合格であった。これら難燃性樹脂組成物配合比、及び測定結果、評価結果を表2に併せて示した。 Next, a VW-1 combustion test and a tensile test were performed using these electric wires and a sample for a tensile test and evaluated. The VW-1 combustion test of the flame retardant resin composition using magnesium hydroxide 1 was acceptable, and the tensile strength and tensile elongation were also determined by UL subject 758. These flame retardant resin composition blend ratios, measurement results, and evaluation results are also shown in Table 2.
(難燃性樹脂実施例2〜12)
難燃性樹脂実施例1で用いたエチレン−酢酸ビニル共重合体と、水酸化マグネシウム2〜8及び複合水酸化マグネシウム1を、それぞれを表2に示す配合比で組成物を調製した以外は、難燃性樹脂実施例1と同様の方法で電線、及び引張試験用の試料を調製し、難燃性樹脂実施例1と同様の方法で評価試験を行った。その結果を表2に併せて示した。
(Flame-retardant resin Examples 2 to 12)
Flame retardant resin Except that the ethylene-vinyl acetate copolymer used in Example 1, magnesium hydroxide 2-8, and composite magnesium hydroxide 1 were prepared with the mixing ratio shown in Table 2, respectively. A wire and a sample for a tensile test were prepared in the same manner as in the flame-retardant resin Example 1, and an evaluation test was performed in the same manner as in the flame-retardant resin Example 1. The results are also shown in Table 2.
水酸化マグネシウム2〜8、及び複合水酸化マグネシウム1を用いた難燃性樹脂組成物のVW−1燃焼試験は合格であり、また引張強度、引張伸び率も、UL subject758で判定し合格であった。これら難燃性樹脂組成物配合比、及び測定結果、評価結果を表2に併せて示した。 The VW-1 combustion test of the flame retardant resin composition using magnesium hydroxide 2-8 and composite magnesium hydroxide 1 passed, and the tensile strength and tensile elongation were also judged as determined by UL subject 758. It was. These flame retardant resin composition blend ratios, measurement results, and evaluation results are also shown in Table 2.
(難燃性樹脂比較例1〜9)
実施例1で用いたエチレン−酢酸ビニル共重合体と、水酸化マグネシウム9〜14を、それぞれを表3に示す配合比で組成物を調製した以外は、難燃性樹脂実施例1と同様の方法で電線、及び引張試験用の試料を調製し、実施例1と同様の方法で評価試験を行った。その結果を表3に併せて示した。
(Flame-retardant resin comparative examples 1-9)
Except that the ethylene-vinyl acetate copolymer used in Example 1 and magnesium hydroxide 9 to 14 were each prepared in a composition ratio shown in Table 3, the same flame retardant resin as Example 1 was prepared. A wire and a sample for a tensile test were prepared by the method, and an evaluation test was performed in the same manner as in Example 1. The results are also shown in Table 3.
水酸化マグネシウム9〜11、及び14を用いる場合、VW−1燃焼試験結果と、UL subject758で判定結果は同時には合格しなかった。また、ステアリン酸の単独処理である水酸化マグネシウム12、γ−メタクリロキシプロピルトリメトキシシランの単独処理である水酸化マグネシウム13を用いる場合、それぞれ配合量を変えても、燃焼試験と引張試験結果は、同時には合格しなかった。 When using magnesium hydroxide 9-11 and 14, the determination result by VW-1 combustion test and UL subject 758 did not pass simultaneously. In addition, when using magnesium hydroxide 12 which is a single treatment of stearic acid and magnesium hydroxide 13 which is a single treatment of γ-methacryloxypropyltrimethoxysilane, even if the blending amount is changed, the combustion test and the tensile test result are , Did not pass at the same time.
(難燃性樹脂実施例13〜19)
ポリオレフィン系樹脂としてエチレン−エチルアクリレート共重合体(EEA、日本ユニカー製、商品名DPDJ6182、エチルアクリレート含有量=15%、MI=1.5g/10分)と、水酸化マグネシウム1〜3、水酸化マグネシウム8、及び複合水酸化マグネシウム1を表4に示す配合比で組成物を調製したこと、外径0.8mmの銅線に0.5mmの厚みで組成物を被覆し電線を成形したこと、及び厚み1.0mmのシートを成形し、この1.0mmのシートに電子線の照射を施さずに、そのまま引張試験用の試料とした以外は、難燃性樹脂実施例1と同様の方法で電線、及び引張試験用の試料を調製し、JASO D611燃焼試験、引張試験を行った。その結果を表4に併せて示した。
(Flame-retardant resin Examples 13 to 19)
As a polyolefin resin, ethylene-ethyl acrylate copolymer (EEA, manufactured by Nihon Unicar, trade name DPDJ6182, ethyl acrylate content = 15%, MI = 1.5 g / 10 min), magnesium hydroxide 1-3, hydroxide The magnesium 8 and the composite magnesium hydroxide 1 were prepared with the composition shown in Table 4, the copper wire having an outer diameter of 0.8 mm was coated with the composition with a thickness of 0.5 mm, and an electric wire was formed, A flame retardant resin was prepared in the same manner as in Example 1 except that a 1.0 mm thick sheet was formed and the 1.0 mm sheet was not irradiated with an electron beam and used as a sample for a tensile test. An electric wire and a sample for a tensile test were prepared, and a JASO D611 combustion test and a tensile test were performed. The results are also shown in Table 4.
水酸化マグネシウム1〜3、水酸化マグネシウム8、及び複合水酸化マグネシウム1を用いる場合、JASO D611燃焼試験は合格であり、また引張強度、引張伸び率も、JASO D611で判定し合格であった。 When using magnesium hydroxide 1 to 3, magnesium hydroxide 8 and composite magnesium hydroxide 1, the JASO D611 combustion test was acceptable, and the tensile strength and tensile elongation were also determined by JASO D611 and passed.
(難燃性樹脂比較例10〜18)
難燃性樹脂実施例13で用いたエチレン−エチルアクリレート共重合体と、水酸化マグネシウム9〜13を、それぞれを表5に示す配合比で組成物を調製した以外は、実施例13と同様の方法で電線、及び引張試験用の試料を調製し、難燃性樹脂実施例13と同様の方法で評価試験を行った。その結果を表5に併せて示した。
(Flame-retardant resin comparative examples 10-18)
Flame Retardant Resin The same as Example 13 except that the ethylene-ethyl acrylate copolymer used in Example 13 and magnesium hydroxide 9 to 13 were prepared in the composition ratios shown in Table 5, respectively. An electric wire and a sample for a tensile test were prepared by the method, and an evaluation test was performed by the same method as in Example 13 of the flame retardant resin. The results are also shown in Table 5.
水酸化マグネシウム9〜11を用いる場合、JASO D611燃焼試験結果と、JASO D611で判定結果は同時には合格しなかった。また、ステアリン酸の単独処理である水酸化マグネシウム12、並びにγ−メタクリロキシプロピルトリメトキシシランの単独処理である水酸化マグネシウム13は、それぞれ配合量を変えても、燃焼試験験結果と、JASO D611で判定結果は同時には合格しなかった。 When using magnesium hydroxide 9-11, the judgment result by JASO D611 combustion test result and JASO D611 did not pass simultaneously. In addition, magnesium hydroxide 12 which is a single treatment of stearic acid and magnesium hydroxide 13 which is a single treatment of γ-methacryloxypropyltrimethoxysilane are different from each other in the combustion test results and JASO D611 even when the blending amount is changed. The judgment result did not pass at the same time.
本発明の金属水酸化物は、成形加工時或いは燃焼時にハロゲン系ガスが発生しない非ハロゲンの難燃材料に用いられる、更に、該金属水酸化物を用いた本発明の難燃性樹脂組成物は、高い難燃性と高い機械的強度及び柔軟性とを有する。従って本発明は、高い難燃性、高い機械的強度並びに柔軟性が必要とされる用途、例えば電線絶縁体、ケーブルシース、電線管、土木養生シート、家電製品部品等に有用である。 The metal hydroxide of the present invention is used for a non-halogen flame retardant material that does not generate a halogen-based gas at the time of molding or combustion, and further, the flame retardant resin composition of the present invention using the metal hydroxide. Has high flame retardancy and high mechanical strength and flexibility. Therefore, the present invention is useful for applications that require high flame retardancy, high mechanical strength, and flexibility, such as electric wire insulators, cable sheaths, electric pipes, civil engineering curing sheets, and home appliance parts.
Claims (4)
Mg1−xMx(OH)2 (1)
(ここに、MはMn、Fe、Co、Ni、Cu、Znから選ばれる1種の元素であり、Xは0より大きく0.1以下の値である。) The metal hydroxide according to claim 1, wherein the metal hydroxide is magnesium hydroxide or composite magnesium hydroxide represented by the following general formula (1).
Mg 1-x M x (OH) 2 (1)
(Here, M is one element selected from Mn, Fe, Co, Ni, Cu, and Zn, and X is a value greater than 0 and less than or equal to 0.1.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003411221A JP2005171036A (en) | 2003-12-10 | 2003-12-10 | Metal hydroxide and flame retardant resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003411221A JP2005171036A (en) | 2003-12-10 | 2003-12-10 | Metal hydroxide and flame retardant resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005171036A true JP2005171036A (en) | 2005-06-30 |
Family
ID=34732022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003411221A Pending JP2005171036A (en) | 2003-12-10 | 2003-12-10 | Metal hydroxide and flame retardant resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005171036A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199934A (en) * | 2004-12-22 | 2006-08-03 | Furukawa Electric Co Ltd:The | Flame-retardant resin composition and molded product using the same |
JP2007016153A (en) * | 2005-07-08 | 2007-01-25 | Konoshima Chemical Co Ltd | Magnesium hydroxide-based flame retardant with high heat resistance, flame retardant resin composition and molded product |
JP2009084524A (en) * | 2007-10-03 | 2009-04-23 | Hitachi Cable Ltd | Halogen-free flame-retardant resin composition and electric wire/cable using the same |
JP2011219344A (en) * | 2010-03-26 | 2011-11-04 | Fujifilm Corp | Method for producing metal hydroxide fine particle |
JP2014179327A (en) * | 2010-10-13 | 2014-09-25 | Hitachi Metals Ltd | Electric wire and cable using flame-retardant resin composition |
CN105038521A (en) * | 2015-07-23 | 2015-11-11 | 莆田学院 | Metal-silica sol expanding flame-retardant coating and preparing method thereof |
JP2017122029A (en) * | 2016-01-07 | 2017-07-13 | 協和化学工業株式会社 | Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same |
-
2003
- 2003-12-10 JP JP2003411221A patent/JP2005171036A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006199934A (en) * | 2004-12-22 | 2006-08-03 | Furukawa Electric Co Ltd:The | Flame-retardant resin composition and molded product using the same |
JP2007016153A (en) * | 2005-07-08 | 2007-01-25 | Konoshima Chemical Co Ltd | Magnesium hydroxide-based flame retardant with high heat resistance, flame retardant resin composition and molded product |
JP2009084524A (en) * | 2007-10-03 | 2009-04-23 | Hitachi Cable Ltd | Halogen-free flame-retardant resin composition and electric wire/cable using the same |
JP2011219344A (en) * | 2010-03-26 | 2011-11-04 | Fujifilm Corp | Method for producing metal hydroxide fine particle |
US8728418B2 (en) | 2010-03-26 | 2014-05-20 | Fujifilm Corporation | Method for producing metal hydroxide fine particle |
JP2014179327A (en) * | 2010-10-13 | 2014-09-25 | Hitachi Metals Ltd | Electric wire and cable using flame-retardant resin composition |
CN105038521A (en) * | 2015-07-23 | 2015-11-11 | 莆田学院 | Metal-silica sol expanding flame-retardant coating and preparing method thereof |
JP2017122029A (en) * | 2016-01-07 | 2017-07-13 | 協和化学工業株式会社 | Magnesium hydroxide particle having slow growth late and low aspect ratio method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0354233A (en) | Complex flame retardant and flame-retardant resin composition containing same | |
EP0780425B2 (en) | Heat deterioration resistant flame retardant, resin composition and molded articles | |
JP4201792B2 (en) | Flame retardant, flame retardant resin composition and molded article | |
JP3299921B2 (en) | Acid-resistant thermoplastic resin composition containing magnesium hydroxide | |
JPWO2013108937A1 (en) | Thermal conductivity improver | |
JP2005171036A (en) | Metal hydroxide and flame retardant resin composition | |
JP2008528753A (en) | Composition for producing non-halogen flame retardant insulation using nanotechnology | |
JP5783477B2 (en) | Electric wires and cables using flame retardant resin composition | |
JP2008007730A (en) | Flame-retardant resin composition, electric wire and cable using the same | |
JP3749682B2 (en) | Magnesium hydroxide flame retardant, method for producing the same, and flame retardant resin composition using the flame retardant | |
JP3922240B2 (en) | Non-halogen flame retardant wire and non-halogen flame retardant cable | |
JP2007070483A (en) | Flame-retardant composition for coating of electric wire/cable and flame-retardant electric wire/cable | |
JPH01245039A (en) | Flame retardant and flame retardant resin composition using said flame retardant | |
HU227773B1 (en) | Process for producing self-extinguishing cables with low-level production of fumes, and flame-retardant compositions used therein | |
JP2008007726A (en) | Flame-retardant resin composition, electric wire and cable using the same | |
JP2008007723A (en) | Flame-retardant resin composition, electric wire and cable using the same | |
JP2007016152A (en) | Magnesium hydroxide-based flame retardant having high heat resistance, flame retardant resin composition and molded article | |
JP2005325280A (en) | Flame retardant resin composition | |
JP3853755B2 (en) | Flame retardant resin composition | |
JP5135522B2 (en) | Flame retardant resin composition | |
JP5025174B2 (en) | Flame retardant resin composition and electric wire and cable using the same | |
JP2004075923A (en) | Flame-retardant resin composition | |
JP2008280444A (en) | Halogen-free flame-retardant resin composition and electric wire or cable using the same | |
JPS61213214A (en) | Flame-retardant resin composition | |
JP2006306915A (en) | Flame retardant composition and electric wire |