JP2006218436A - Continuous shearing apparatus - Google Patents

Continuous shearing apparatus Download PDF

Info

Publication number
JP2006218436A
JP2006218436A JP2005035802A JP2005035802A JP2006218436A JP 2006218436 A JP2006218436 A JP 2006218436A JP 2005035802 A JP2005035802 A JP 2005035802A JP 2005035802 A JP2005035802 A JP 2005035802A JP 2006218436 A JP2006218436 A JP 2006218436A
Authority
JP
Japan
Prior art keywords
disk
rotating disk
input side
relative
fixed disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005035802A
Other languages
Japanese (ja)
Other versions
JP2006218436A5 (en
Inventor
Kishihiro Yamaoka
岸泰 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005035802A priority Critical patent/JP2006218436A/en
Publication of JP2006218436A publication Critical patent/JP2006218436A/en
Publication of JP2006218436A5 publication Critical patent/JP2006218436A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/685Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads
    • B29C48/687Barrels or cylinders characterised by their inner surfaces, e.g. having grooves, projections or threads having projections with a short length in the barrel direction, e.g. pins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/39Plasticisers, homogenisers or feeders comprising two or more stages a first extruder feeding the melt into an intermediate location of a second extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/397Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using a single screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/47Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using discs, e.g. plasticising the moulding material by passing it between a fixed and a rotating disc that are coaxially arranged

Abstract

<P>PROBLEM TO BE SOLVED: To continuously perform powerful shearing by preventing clogging due to solidification of a working object material, of the recessed grooves of a stationary disk and a rotary disk in a continuous shearing apparatus performing operations of nano solid phase kneading, nano pulverizing, mechanochemical operations to facilitate flow, and by applying appropriately enhanced compression pressure to the working object material. <P>SOLUTION: In this continuous shearing apparatus, a facing crossing-point angle formed by making the ridge of crest of the rotary disk face that of the stationary disk is displaced by 5-40° and the disks are arranged in multiple stages; a phenomenon where a flow is stagnant is prevented caused by clogging of the recessed grooves of the stationary disk and rotary disk due to solidification of the working object material; and the depth of the recessed grooves of the stationary disk and rotary disk is varied from a charging side toward a discharging side with steps, thus appropriate compression pressure corresponding to the operations of the nano solid phase kneading, nano pulverizing, mechanochemical is applied to the working object material to enable powerful continuous shearing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は多段円盤型連続混練装置および多段円盤型連続粉砕装置および多段円盤型連続メカノケミカル装置における被加工材料の固形化による閉塞を防止して流動を容易にし、且つ剪断効率を高める連続剪断装置に関する。   The present invention relates to a multi-stage disk type continuous kneading apparatus, a multi-stage disk type continuous crushing apparatus, and a multi-stage disk type continuous mechanochemical apparatus that prevents clogging due to solidification of a work material, facilitates flow, and increases shear efficiency. About.

(被混練材料、被粉砕材料、被メカノケミカル材料、)を以下被加工材料という、を本発明の多段円盤型の連続剪断装置でナノ固相混練、ナノ粉砕、メカノケミカル、等の剪断操作の効率を高めるために被加工材料の流動を損なわずして圧縮加圧することが重要である。   (Materials to be kneaded, materials to be crushed, materials to be mechanochemically treated) are hereinafter referred to as materials to be machined. In order to increase efficiency, it is important to compress and press without impairing the flow of the work material.

なお、本発明に関連する公知技術として固定円盤と回転円盤を多段に構成した連続捏和装置はマトリックス樹脂に微粉体を分散する(固相−液相)のレオロジー的な流動挙動で剪断を付与する装置である。(例えば、非特許文献1及び特許文献6を参照)   In addition, as a known technique related to the present invention, a continuous kneading device comprising a fixed disk and a rotating disk in multiple stages imparts shear by rheological flow behavior of dispersing fine powder in matrix resin (solid phase-liquid phase). It is a device to do. (For example, see Non-Patent Document 1 and Patent Document 6)

これに対して、ナノ超微粒子をマトリックス樹脂中に分散する場合にナノ超微粒子はミクロ微粒子の1,000倍の表面エネルギーを有し、その結果により1,000倍の凝集力を有する、この凝集粒子を解砕して混練分散するには従来の流動挙動を示すレオロジー的な液相剪断混練では液相の滑り現象で剪断エネルギーは低く作用して分散に必要とする剪断力を被加工材料に作用させて分散することが不可能となっている、そこでナノ粒子の分散においてマトリックス樹脂を固相化の状態にして固相−固相の状態で剪断する方法がある(例えば、特許文献1を参照。)
該特許文献1より先に固定円盤と回転円盤を多段に構成した連続混練法(特許文献2を参照。)では加熱溶融状態のレオロジー的な流動挙動剪断と冷却による固相化状態の固相剪断とを繰り返し、固相の状態温度点でトライボロジー的な剪断を凝集粒子に与えることにより凝集粒子を一次粒子に解砕して分散する方法がある。
In contrast, when nano ultrafine particles are dispersed in a matrix resin, the nano ultra fine particles have a surface energy 1,000 times that of micro fine particles, and as a result, this agglomeration has 1,000 times the cohesion. In the conventional rheological liquid-phase shear kneading, which exhibits the flow behavior, the particles are crushed and kneaded to disperse. Therefore, it is impossible to disperse by acting, and in dispersion of nanoparticles, there is a method in which the matrix resin is solidified and sheared in a solid-solid state (for example, Patent Document 1). reference.)
In the continuous kneading method (see Patent Document 2) in which a fixed disk and a rotating disk are configured in multiple stages prior to Patent Document 1, rheological flow behavior shearing in a heated and melted state and solid phase shearing in a solid state by cooling. There is a method in which the agglomerated particles are disintegrated into primary particles by applying tribological shearing to the agglomerated particles at the state temperature point of the solid phase.

粉砕は被加工材料(被粉砕材料)を剪断によって粒子を分割しミクロ微粒子からナノ超微粒子と微細化によって表面積を増大することにより反応活性が高められ、素材の新機能を出現し付加価値の向上が図られ、利用分野の拡大が期待される(例えば、非特許文献2を参照。)   In pulverization, the material to be processed (the material to be crushed) is divided by shearing, and the reaction activity is increased by increasing the surface area by refining from microfine particles to nano-ultrafine particles. Is expected to expand the field of use (for example, see Non-Patent Document 2).

また、従来の機械式粉砕方法で最も微粉砕が可能とするジェットミルでは1μmが粉砕限界とされている。また、固定円盤と回転円盤を多段に構成した連続粉砕法ではトライボロジー的な粒子間の摩擦を利用する剪断粉砕方法では平均粒子径0.3μmの超微粒子に粉砕出来る粉砕方法と装置がある(特許文献3を参照。)   Further, in the jet mill that enables the finest pulverization by the conventional mechanical pulverization method, the pulverization limit is 1 μm. In addition, there is a pulverization method and apparatus that can pulverize ultrafine particles with an average particle size of 0.3 μm in a shear pulverization method using tribological friction between particles in a continuous pulverization method in which a fixed disk and a rotating disk are configured in multiple stages (patent (See reference 3.)

また、メカノケミカル操作は、ミクロ粒子とナノ粒子に機械的剪断摩擦を付与すると物
理的・化学的変化の作用によって、ミクロ粒子が核となりその表面にナノ粒子が表層に修
飾される(例えば、非特許文献3及び非特許文献4と特許文献4を参照)また、固定円
盤と回転円盤を多段に構成した連続磨砕剪断による粒子の表面改質微粒子の製造装置があ
る(特許文献5を参照。)
Also, in mechanochemical operation, when mechanical shear friction is applied to microparticles and nanoparticles, the microparticles become nuclei and the nanoparticles are modified on the surface by the action of physical and chemical changes (for example, non-particles) Further, there is an apparatus for producing surface-modified fine particles of particles by continuous grinding shear, in which a fixed disk and a rotating disk are configured in multiple stages (see Patent Document 5). )

ナノ固相混練、ナノ粉砕、メカノケミカル、等の連続剪断操作を可能とする装置に固定円盤と回転円盤を多段に構成した連続捏和機(特許文献6を参照。)がある、この連続捏
和機の固定円盤と回転円盤に形成された凹谷部空間が先端部側ほど減少されて圧縮圧力が
作用して被加工材料の密度を高めて剪断効率を向上させる機構の装置がある
There is a continuous kneader (see Patent Document 6) in which a stationary disk and a rotating disk are configured in multiple stages as an apparatus that enables continuous shearing operations such as nano-solid phase kneading, nano-pulverization, and mechanochemical. There is a mechanism device that improves the shear efficiency by increasing the density of the work material by reducing the concave valley space formed in the fixed disk and rotating disk of the Japanese machine toward the tip side and applying compression pressure

International Publication Number WO 2004/043663 A2International Publication Number WO 2004/043663 A2 特開2002−347020号公報JP 2002-347020 A 特開2002−001154 号公報Japanese Patent Laid-Open No. 2002-001154 特開平08−227714号公報Japanese Patent Laid-Open No. 08-227714 特開平10−202653 号公報Japanese Patent Laid-Open No. 10-202653 United States Patent4,408,887号United States Patent 4,408,887 「プラスチックス」1995年10月号 Vol.146 No.10 (フィラーの分散・ 複合化・混練)山岡岸泰 筆 86〜89頁"Plastics" October 1995 Vol.146 No.10 (Dispersion, compounding, and kneading of fillers) Yamaokagishi Yasushi, pages 86-89 「無機系微粒子・超微粒子技術と応用の最新動向」 (株)東レリサーチセンター編集・発行1996.01.18第2刷発行 4〜9頁“Latest Trends in Inorganic Fine Particle / Ultrafine Particle Technology and Applications” Edited and published by Toray Research Center, Inc. 「無機物のメカノケミストリー」久保輝一郎著 (株)綜合技術出版 第一版1〜3頁“Inorganic Mechanochemistry” by Keiichiro Kubo Sogo Technology Publishing Co., Ltd. 「図解 ナノテクノロジーのすべて」川合知二 監修 (株)工業調査会 初版第2刷発行 184〜191頁“Illustration of Nanotechnology” Supervised by Tomoji Kawai, Industrial Research Co., Ltd. First edition, 2nd edition, pages 184-191

しかし、固定円盤と回転円盤を多段に構成した特許文献6の連続捏和機を使用してナノ固相混練・ナノ粉砕・メカノケミカルの操作を行うとき、被加工材料に作用する剪断は固体−固体の摩擦抵抗が非常に高く作用する操作となる、また被加工材料と円盤谷底面の間においても固体−固体の摩擦抵抗によって被加工材料の流動を阻害する傾向となる、特許文献6の多段円盤構造は固定円盤と回転円盤に形成された谷と山の形状変化によって被加工材料に圧縮加圧を付与し密度を高めて高剪断力を作用することが特徴となっている。   However, when the solid-state kneading, nano-pulverization, and mechanochemical operations are performed using the continuous kneader of Patent Document 6 in which a fixed disk and a rotating disk are configured in multiple stages, the shearing acting on the work material is solid- The operation of which the frictional resistance of the solid acts very high, and the flow of the workpiece material tends to be hindered by the solid-solid frictional resistance between the workpiece material and the bottom surface of the disk valley. The disk structure is characterized in that a high pressure is applied to the material to be processed by applying compression and pressure by changing the shapes of valleys and peaks formed in the fixed disk and the rotating disk, thereby increasing the density.

しかし、特許文献6の説明図のFIG7とFIG8に示す挽き臼形状の固定円盤と回転円盤の組合せの相対面に生ずる放射方向又は求心方向に形成されている凸山部の回転方向相対稜線の交点相対角度が回転円盤の回転角度毎に一定の角度で形成されることがなく、そのために生ずる問題は相対稜線の交点相対角度が0度から−度の交点相対角度となる回転の角度位置を形成する構造となっている。   However, the intersection of the rotational direction relative ridges of the convex portions formed in the radial direction or the centripetal direction formed on the relative surface of the combination of the grinding mill shape fixed disk and the rotating disk shown in FIG. 7 and FIG. The relative angle is not formed at a constant angle for each rotation angle of the rotating disk, and the problem that arises is that the relative angle of the intersection of the relative ridgeline forms an angular position of rotation where the relative angle of the intersection is 0 degree to -degree. It has a structure to do.

そのために0度から−度の交点相対角度となる凹谷溝同士の被加工材料は必要以上に高い圧縮加圧力を受けて被加工材料は完全な固形化状態に形成され、放射方向又は求心方向え流動する推力がゼロとなりその谷溝を閉塞する現象となる、その次に生ずる問題はその閉塞現象が始めの閉塞点から投入側え向かって順次に成長し、最後には全ての固定円盤と回転円盤の空隙間を埋め尽くし、被加工材料はすべての円盤凹谷溝を流動しない状態となり、円盤凹谷溝に固形化された被加工材料と円盤が一体化して被加工材料の流動は完全に停滞する。   For this reason, the material to be processed between the concave and valley grooves having an intersection relative angle of 0 to-degrees is subjected to a compressive pressure higher than necessary, and the material to be processed is formed into a completely solid state, and the radial direction or the centripetal direction. The next problem that occurs is the phenomenon that the thrust that flows is zero and the valley groove is closed, and the next problem that occurs is that the blocking phenomenon grows sequentially from the first closing point to the input side, and finally all the fixed disks The gaps in the rotating disk are filled, and the work material does not flow in all the disk trough grooves. The work material solidified in the disk recess grooves and the disk are integrated, and the flow of the work material is complete. Stagnant.

つぎに固定円盤と回転円盤の相対する凸山の頂点面上のみで剪断回転し、モーターが過負荷状態となり装置が停止するという問題がおこる。   Next, there is a problem that the shearing rotation occurs only on the apex surface of the convex ridge facing the fixed disk and the rotating disk, the motor is overloaded and the device stops.

上記の課題を解決するための本発明の手段は、固定円盤と回転円盤を多段に構成した連続剪断装置の投入側から排出側までの総組合せにおいて溝の形状に変化を付けず、固定円盤と回転円盤の相対面に放射方向に形成されている凸山部の回転方向相対稜線の出会によって形成される交点相対角度が、投入側から排出側に至る総組合せにおいて排出側へ沿
って相対角度を減少し角度変異して交点相対角度を5度〜40度に形成することにより
被加工材料に圧縮加圧力を発生する手段で局所の滞留を防ぐことを特徴とする。
The means of the present invention for solving the above-mentioned problems is not to change the shape of the groove in the total combination from the input side to the discharge side of the continuous shearing device configured with a fixed disk and a rotating disk in multiple stages, Relative angle along the discharge side in the total combination from the input side to the discharge side is the relative angle of intersection formed by the encounter of the relative ridge lines in the rotation direction of the ridges formed radially on the relative surface of the rotating disk By reducing the angle and changing the angle to form an intersection relative angle of 5 to 40 degrees, local retention is prevented by means for generating a compression pressure on the work material.

また、上記の課題を解決するための本発明の手段は、固定円盤と回転円盤を多段に構成した連続剪断装置の投入側から排出側までの総組合せにおいて溝の形状に変化を付けず、固定円盤と回転円盤の相対面に放射方向に形成されている凹谷部の深さが、投入側から排
出側までの総組合せにおいて排出側へ沿って減少し深さ変異することにより被加工材料に剪断に適切な圧縮加圧力を発生する手段を特徴とする。
Further, the means of the present invention for solving the above-mentioned problem is that the shape of the groove is not changed in the total combination from the input side to the discharge side of the continuous shearing device composed of a fixed disk and a rotating disk in multiple stages. The depth of the concave valley formed in the radial direction on the relative surface of the disk and the rotating disk decreases along the discharge side in the total combination from the input side to the discharge side, and the depth varies, so that the material to be processed It is characterized by a means for generating a compression pressure suitable for shearing.

また、上記の課題を解決するための本発明の手段は、固定円盤と回転円盤を多段に構成した連続剪断装置の投入側から排出側までの総組合せにおいて溝の形状に変化を付けず、固定円盤と回転円盤の相対面に放射方向に形成されている凸部山の回転方向相対稜線の相対角度が、投入側から排出側までの総組合せにおいて排出側へ沿って相対角度を減少し角度変異すること、及び、固定円盤と回転円盤の相対面に放射方向に形成されている凹谷部が、投入側から排出側までの総組合せにおいて排出側へ沿って深さを減少し深さ変異することを複合して形成したことにより被加工材料に最適な圧縮加圧状態で剪断を発生する構造の手段を特徴とする。   Further, the means of the present invention for solving the above-mentioned problem is that the shape of the groove is not changed in the total combination from the input side to the discharge side of the continuous shearing device composed of a fixed disk and a rotating disk in multiple stages. The relative angle of the rotation direction relative ridgeline of the convex ridge formed radially on the relative surface of the disk and the rotating disk decreases the relative angle along the discharge side in the total combination from the input side to the discharge side, and angle variation And the concave valleys formed in the radial direction on the relative surfaces of the fixed disk and the rotating disk reduce the depth along the discharge side and vary the depth in the total combination from the input side to the discharge side. It is characterized by a structure having a structure in which shearing is generated in a compression-pressurized state optimum for the material to be processed.

上記の説明において、連続剪断装置の回転円盤と固定円盤の凸山部の稜線が相対して出来る相対交点角度を5度〜40度で角度変位して形成することにより、回転円盤と固定円盤の凹溝部を被加工材料が固形化で閉塞して流動が停滞する現象を防ぎ、さらに回転円盤と固定円盤の凹部溝深さを投入側から排出側え段差で深さを変位形成することによってナノ固相混練、ナノ粉砕、メカノケミカル、に対応する適切な圧縮加圧を被加工材料に付与して強力な剪断を連続に操作することが可能になった。   In the above description, by forming the relative intersection angle between the rotating disk of the continuous shearing device and the convex ridge portion of the fixed disk relative to each other by changing the angle by 5 to 40 degrees, the rotation disk and the fixed disk By preventing the phenomenon that the material to be processed is blocked by solidification of the work material due to solidification of the concave groove, the depth of the concave groove of the rotating disk and the fixed disk is changed by changing the depth from the input side to the discharge side step. Appropriate compression and pressure corresponding to solid-phase kneading, nano-pulverization, and mechanochemical can be applied to the material to be processed, and strong shearing can be continuously operated.

以下、本発明の好適な実施の形態を図1〜図7に例示し連続剪断装置を詳細に説明する。図1は連続剪断装置を構成する全体図、1は被加工材料の定量供給装置、該定量供給装置1は、フイードスクリュー4の上流側に配置、該フイードスクリュー4と、回転円盤群3並びに排出スクリュー5は同軸上で回転するよう構成している。該回転円盤31〜36は固定円盤21〜25と交互に配置して本発明の剪断機構を形成している。図2は図1のA断面矢視図、図3は図1のB断面矢視図、図4は図1のC断面矢視図、図5は図1のD断面矢視図をそれぞれに示し。図6は図1の固定円盤21〜25及び回転円盤31〜36の組合せ構成断面拡大図、図7は図6の投入側任意経D1から排出側任意経D2の断面展開図である。   Hereinafter, a preferred embodiment of the present invention is illustrated in FIGS. 1 to 7 and a continuous shearing device will be described in detail. FIG. 1 is an overall view of a continuous shearing device, 1 is a quantitative supply device for a material to be processed, and the quantitative supply device 1 is arranged upstream of a feed screw 4, the feed screw 4 and a rotating disk group 3. In addition, the discharge screw 5 is configured to rotate on the same axis. The rotating disks 31 to 36 are alternately arranged with the fixed disks 21 to 25 to form the shearing mechanism of the present invention. 2 is a sectional view taken along the arrow A in FIG. 1, FIG. 3 is a sectional view taken along the arrow B in FIG. 1, FIG. 4 is a sectional view taken along the arrow C in FIG. Showing. 6 is an enlarged cross-sectional view of the combined configuration of the fixed disks 21 to 25 and the rotating disks 31 to 36 of FIG. 1, and FIG. 7 is a developed sectional view of the input side arbitrary dimension D1 to the discharge side arbitrary dimension D2 of FIG.

図2は図1の投入側のA断面矢視を示す、固定円盤と回転円盤の相対面に放射方向に形成されている凸山部の回転方向相対稜線の出会によって投入側求心向交点相対角度αを20〜40度で形成して出来た投入側求心交点6は回転円盤の投入側回転円盤回転方向7へ回転することによって投入側求心向交点移動方向8へ移動する、この投入側求心交点6が投入側求心向交点移動方向8へ移動することにより固定円盤と回転円盤の凹谷溝に存在する被加工材料を求心方向へ移送する機構となる。   FIG. 2 is a cross-sectional arrow view of the input side of FIG. 1, and relative to the input side centripetal intersection by encountering the rotation direction relative ridge line of the convex portion formed radially on the relative surface of the fixed disk and the rotation disk. The input side centripetal intersection 6 formed by forming the angle α at 20 to 40 degrees moves in the input side centripetal intersection moving direction 8 by rotating in the rotation direction 7 of the rotation side of the rotary disk. By moving the intersection 6 in the input side centripetal intersection moving direction 8, a mechanism for transferring the work material present in the recessed grooves of the fixed disk and the rotating disk in the centripetal direction is obtained.

図3は図1の投入側のB断面矢視を示す、固定円盤と回転円盤の相対面に放射方向に形成されている凸山部の回転方向相対稜線の出会によって投入側放射向交点相対角度θを20〜40度で形成して出来た投入側放射向交点9は回転円盤の投入側回転円盤回転方向10へ回転することによって投入側放射向交点移動方向11へ移動する、この投入側放射向交点9が投入側放射向交点移動方向11へ移動することにより固定円盤と回転円盤の凹
谷溝に存在する被加工材料を放射方向へ移送する機構となる。
FIG. 3 shows a cross-sectional arrow B on the input side of FIG. 1, and the relative relationship between the input side and the radial direction is determined by encountering the rotation direction relative ridgelines of the convex ridges formed radially on the relative surfaces of the fixed disk and the rotation disk. The input side radial intersection point 9 formed by forming the angle θ at 20 to 40 degrees moves in the input side radial direction intersection moving direction 11 by rotating in the input side rotational disk rotation direction 10 of the rotating disk. The radial crossing point 9 moves in the input side radial crossing point moving direction 11, thereby providing a mechanism for transferring the work material existing in the recessed valley grooves of the fixed disk and the rotating disk in the radial direction.

図4は図1の排出側のC断面矢視を示す、固定円盤と回転円盤の相対面に放射方向に形成されている凸山部の回転方向相対稜線の出会によって排出側求心向交点相対角度βを5〜15度で形成して出来た排出側求心向交点12は回転円盤の排出側回転円盤回転方向13へ回転することによって排出側求心向交点移動方向14へ移動する、この排出側求心向交点12の排出側求心向交点移動方向14へ移動することにより固定円盤と回転円盤の凹谷溝に存在する被加工材料を求心方向へ移送する機構となる。   FIG. 4 shows the discharge side centripetal intersection relative to the discharge side centripetal point by encountering the rotation direction relative ridge line of the convex portion formed in the radial direction on the relative surface of the fixed disk and the rotation disk. The discharge side centripetal intersection 12 formed by forming the angle β at 5 to 15 degrees moves in the discharge side centripetal intersection moving direction 14 by rotating in the discharge side rotation disk rotation direction 13 of the rotating disk. By moving to the discharge side centripetal intersection moving direction 14 of the centripetal intersection 12, it becomes a mechanism for transferring the work material existing in the recessed grooves of the fixed disk and the rotating disk in the centripetal direction.

図5は図1の排出側のD断面矢視を示す、固定円盤と回転円盤の相対面に放射方向に形成されている凸山部の回転方向相対稜線の出会によって排出側放射向交点相対角度ωを5〜15度で形成して出来た排出側求心向相対交点15は回転円盤の排出側回転円盤回転方向16へ回転することによって排出側求心向交点移動方向17へ移動する、この排出側求心向交点15の排出側求心向交点移動方向17へ移動することにより固定円盤と回転円盤の凹谷溝に存在する被加工材料を放射方向へ移送する機構となる。   FIG. 5 is a cross-sectional arrow view of the discharge side of FIG. 1, relative to the discharge side radial intersection by encountering the rotation direction relative ridge line of the convex portion formed radially on the relative surface of the fixed disk and the rotation disk. The discharge side centripetal direction relative intersection 15 formed by forming the angle ω at 5 to 15 degrees moves in the discharge side centripetal point movement direction 17 by rotating in the discharge side rotation disk rotation direction 16 of the rotating disk. By moving the side centripetal intersection 15 in the discharge side centripetal intersection moving direction 17, it becomes a mechanism for transferring the work material existing in the recessed grooves of the fixed disk and the rotating disk in the radial direction.

図1のA断面矢視部からC断面矢視部に至るに従って求心向相対交点移動方向の固定円盤と回転円盤の組合せにおいて図2の投入側求心向交点相対角度αから図4の排出側求心向交点相対角度βに減少する角度変異により被加工材料に送り速度の減少をもたらして被加工材料に圧縮の加圧力を発生させる機構となる。   In the combination of a fixed disk and a rotating disk in the direction of centripetal relative crossing from the A cross-sectional arrow to the C cross-sectional arrow in FIG. 1, the discharge-side centripetal in FIG. An angle variation that decreases to the crossing point relative angle β causes a reduction in the feed speed to the work material, thereby generating a compression pressure on the work material.

図1のB断面矢視部からD断面矢視部に至るに従って求心向相対交点移動方向の固定円盤と回転円盤の組合せにおいて図3の投入側求心向交点相対角度θから図5の排出側求心向交点相対角度ωに減少する角度変異により被加工材料に送り速度の減少をもたらして被加工材料に圧縮の加圧力を発生させる機構となる。   In the combination of the fixed disk and the rotating disk in the direction of centripetal relative intersection moving from the B section arrow section to the D section arrow section in FIG. 1, the discharge side centripetal of FIG. An angle variation that decreases to the crossing point relative angle ω causes a reduction in the feed speed to the work material, thereby generating a compression pressure on the work material.

図6に示す経D1〜経D2に至る断面の経を円周に展開し図7に示している。この図7の回転円盤31のd1凹谷溝深さ4〜10mmが該凹谷溝深さd1から回転円盤36のd2凹谷溝深さ1〜3mm該凹谷溝深さd2に至る回転円盤両面の各凹谷溝深さがd1〜d2に至るに段差で形成して深さ変位することにより溝空隙体積を減少することにより被加工材料に圧縮の加圧力を発生させる機構となる。   FIG. 7 shows a cross section extending from the warp D1 to the warp D2 shown in FIG. The rotating disk 31 has a d1 recessed groove depth of 4 to 10 mm from the recessed groove depth d1 to a d2 recessed groove depth of 1 to 3 mm of the rotating disk 36 and a recessed disk groove d2. It becomes a mechanism for generating compression pressure on the work material by reducing the groove void volume by forming the depth of each concave valley groove on both sides to steps d1 to d2 and changing the depth.

固定円盤21のd3凹谷溝深さ4〜10mmが該凹谷溝深さd3から回転円盤25のd4
凹谷溝深さ1〜3mm該凹谷溝深さd4に至る固定円盤両面の各凹谷溝深さはd3〜d4に至るに段差で形成して深さ変位することにより溝空隙体積を減少することにより被加工材料に圧縮の加圧力を発生させる機構となる。
The d3 concave groove depth 4 to 10 mm of the fixed disk 21 is d4 of the rotating disk 25 from the concave groove depth d3.
Concave groove depth 1 to 3 mm Each recessed groove depth on both sides of the fixed disk reaching the concave groove depth d4 is formed by a step to reach d3 to d4, and the depth is displaced to reduce the groove void volume. By doing so, it becomes a mechanism for generating a compression pressure on the work material.

は連続剪断装置を構成する全体図Is an overall view of a continuous shearing device は図1のA断面矢視図Is a cross-sectional view taken along the arrow A in FIG. は図1のB断面矢視図Is a cross-sectional arrow view of B in FIG. は図1のC断面矢視図Is a cross-sectional view of FIG. は図1のD断面矢視図Is a cross-sectional view of FIG. は図1の多段に組み合わされた固定円盤と回転円盤部の拡大図Is an enlarged view of the fixed disk and rotating disk unit combined in multiple stages in FIG. は図6に示す経D1〜経D2に至る断面の経円周展開図Is a cross-circular development view of the cross section from warp D1 to warp D2 shown in FIG.

符号の説明Explanation of symbols

1 被加工材料定量フィーダー
2 固定円盤群
3 回転円盤群
4 フイードスクリュー
5 押出スクリュー
6 投入側求心向交点
7 投入側回転円盤回転方向
8 投入側求心向交点移動方向
9 投入側放射向交点
10 投入側回転円盤回転方向
11 投入側放射向交点移動方向
12 排出側求心向交点
13 排出側回転円盤回転方向
14 排出側求心向交点移動方向
15 排出側放射向交点
16 排出側回転円盤回転方向
17 排出側放射向交点移動方向
21〜25 固定円盤
31〜36 回転円盤
α 投入側求心向交点相対角度
β 排出側求心向交点相対角度
θ 投入側放射向交点相対角度
ω 排出側放射向交点相対角度
D1 投入側任意経
D2 排出側任意経
D1×π 投入側任意D1断面経展開長
D2×π 排出側任意D2断面経展開長
d1 投入側回転円盤凹溝深さ
d2 排出側回転円盤凹溝深さ d3 投入側固定円盤凹溝深さ
d4 排出側固定円盤凹溝深さ
1 Work material quantitative feeder
2 fixed disks
3 rotating disks
4 Feed screw 5 Extrusion screw 6 Input side centripetal intersection 7 Input side rotating disk rotation direction
8 Input side centripetal intersection moving direction 9 Input side radial intersection 10 Input side rotating disk rotation direction 11 Input side radial intersection moving direction
12 Discharge-side centripetal intersection 13 Discharge-side rotating disk rotation direction
14 Displacement side centripetal intersection moving direction
15 discharge side radiation intersection
16 Discharge side rotating disk rotation direction
17 Displacement direction of emission side intersection
21-25 Fixed disk 31-36 Rotating disk α Input side centripetal direction relative angle
β Relative angle of discharge side centripetal intersection
θ Relative angle of input side radiation direction
ω Relative angle of emission side intersection
D1 Input side optional path D2 Discharge side optional path
D1 × π Input side Arbitrary D1 cross section length
D2 × π discharge side arbitrary D2 cross section length
d1 Depth of the rotating disk on the input side d2 Depth of the groove on the rotating disk of the discharge side d3 Depth of groove on the fixed disk of the input side d4 Depth of groove of the fixed disk on the discharge side

Claims (3)

固定円盤と回転円盤を多段に構成した連続剪断装置の固定円盤と回転円盤の投入側から排出側までの総組合せにおいて相対面に放射方向に形成されている凸山部の回転方向相対稜線の出会によって形成される投入側の交点相対角度を20〜40度で形成し、排出側の交点相対角度を5〜15度に形成し、投入側より排出側に至るに角度差で減少を形成して角度変異することを特徴とする連続剪断装置。 In the total combination from the input side to the discharge side of the fixed disk and rotating disk of a continuous shearing device composed of a fixed disk and a rotating disk in multiple stages, the relative ridgelines in the rotational direction of the convex ridges formed radially on the relative surface The intersection-side relative angle formed by the association is formed at 20 to 40 degrees, the discharge-side intersection relative angle is formed at 5 to 15 degrees, and a decrease is formed by the angle difference from the input side to the discharge side. A continuous shearing device characterized in that the angle is varied. 固定円盤と回転円盤を多段に構成した連続剪断装置の固定円盤と回転円盤の投入側から排出側までの総組合せにおいて相対面に放射方向に形成されている凹谷部の深さを、投入側は4〜10mmで形成し、排出側は1〜3mmに形成し、投入側より排出側に至るに段差で深さ変異形成して溝空隙体積の減少することを特徴とする連続剪断装置。 The depth of the concave valley formed in the radial direction on the relative surface in the total combination from the loading side to the discharging side of the fixed disk and rotating disk of the continuous shearing device composed of a fixed disk and a rotating disk in multiple stages is set on the input side. Is formed at 4 to 10 mm, the discharge side is formed at 1 to 3 mm, depth variation is formed at the step from the input side to the discharge side, and the volume of the groove void is reduced. 固定円盤と回転円盤を多段に構成した連続剪断装置の、固定円盤と回転円盤の投入側から排出側までの総組合せにおいて相対面に放射方向に形成されている凸山部の稜線の交点相対角度の角度変異と、固定円盤と回転円盤の凹谷部の溝深さが、被加工材料の投入側より排出側までの総組合せにおいて投入側より排出側に至るに段差で深さ変異形成して溝空隙体積を減少することを特徴とする請求項1および請求項2項を複合した連続剪断装置。
Relative angle of intersection of ridges of ridges formed radially on the relative surface in the total combination from the input side to the discharge side of the fixed disk and rotating disk of the continuous shearing device composed of a fixed disk and rotating disk in multiple stages And the groove depth of the concave and recessed valleys of the fixed disk and the rotating disk is a depth variation at the step from the input side to the discharge side in the total combination from the input side to the discharge side of the work material. 3. A continuous shearing device comprising a combination of claim 1 and claim 2, wherein the groove void volume is reduced.
JP2005035802A 2005-02-14 2005-02-14 Continuous shearing apparatus Pending JP2006218436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035802A JP2006218436A (en) 2005-02-14 2005-02-14 Continuous shearing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035802A JP2006218436A (en) 2005-02-14 2005-02-14 Continuous shearing apparatus

Publications (2)

Publication Number Publication Date
JP2006218436A true JP2006218436A (en) 2006-08-24
JP2006218436A5 JP2006218436A5 (en) 2007-12-13

Family

ID=36981091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035802A Pending JP2006218436A (en) 2005-02-14 2005-02-14 Continuous shearing apparatus

Country Status (1)

Country Link
JP (1) JP2006218436A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864150B1 (en) 2007-04-12 2008-10-16 이원근 Polishing method and polishing apparatus of the ball using the plural plate
JPWO2013161229A1 (en) * 2012-04-23 2015-12-21 淺田鉄工株式会社 Dispersing and grinding machine
CN107185666A (en) * 2017-07-06 2017-09-22 象山互易科技咨询有限公司 A kind of environment-friendly highly efficient aquatic attractant produces preparation facilities

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898128A (en) * 1981-12-07 1983-06-10 Kishihiro Yamaoka Continuous kneader
JPH08227714A (en) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
JPH10202653A (en) * 1997-01-23 1998-08-04 B H Kogyo Kk Method and device for producing organic and inorganic composite powder
JP2002001154A (en) * 2000-06-27 2002-01-08 Kck Oyo Gijutsu Kenkyusho:Kk Method and device for pulverizing particles to be pulverized
JP2002347020A (en) * 2001-05-29 2002-12-04 Kck Oyo Gijutsu Kenkyusho:Kk Method and apparatus for kneading ultra-fine powder and resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898128A (en) * 1981-12-07 1983-06-10 Kishihiro Yamaoka Continuous kneader
JPH08227714A (en) * 1995-02-21 1996-09-03 Mitsubishi Pencil Co Ltd Carbon material for negative electrode of lithium ion secondary battery and manufacture thereof
JPH10202653A (en) * 1997-01-23 1998-08-04 B H Kogyo Kk Method and device for producing organic and inorganic composite powder
JP2002001154A (en) * 2000-06-27 2002-01-08 Kck Oyo Gijutsu Kenkyusho:Kk Method and device for pulverizing particles to be pulverized
JP2002347020A (en) * 2001-05-29 2002-12-04 Kck Oyo Gijutsu Kenkyusho:Kk Method and apparatus for kneading ultra-fine powder and resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864150B1 (en) 2007-04-12 2008-10-16 이원근 Polishing method and polishing apparatus of the ball using the plural plate
JPWO2013161229A1 (en) * 2012-04-23 2015-12-21 淺田鉄工株式会社 Dispersing and grinding machine
US9248419B2 (en) 2012-04-23 2016-02-02 Asada Iron Works Co., Ltd. Dispersion and grinding machine
CN107185666A (en) * 2017-07-06 2017-09-22 象山互易科技咨询有限公司 A kind of environment-friendly highly efficient aquatic attractant produces preparation facilities
CN107185666B (en) * 2017-07-06 2022-08-30 南京宏远生物科技有限公司 High-efficient aquatic products phagostimulant production preparation facilities of environment-friendly

Similar Documents

Publication Publication Date Title
Thompson et al. Wet granulation in a twin‐screw extruder: Implications of screw design
JP5148075B2 (en) Powder processing equipment and powder processing equipment
JP4698439B2 (en) Powder and granulator
Shima et al. Influence of aggregation on thermal conductivity in stable and unstable nanofluids
JP2005270955A (en) Treatment apparatus and powder treatment method
JP5600547B2 (en) Roll mill
JP2006218436A (en) Continuous shearing apparatus
JP5905366B2 (en) Rotary classifier and vertical mill
JP2013078707A (en) Roll mill
JP2006218436A5 (en)
JP5529419B2 (en) Method for producing composite oxide powder
Morales et al. Mechanical particle-size reduction techniques
JP2011083672A (en) Stirring granulator
JP2002347020A (en) Method and apparatus for kneading ultra-fine powder and resin
JP5807014B2 (en) Mill and grinding method
CN101804310A (en) High-efficiency dispersion emulsifying machine
JP4462894B2 (en) Powder processing equipment
JP2004513802A (en) Method for making powder from polymeric material and apparatus for performing this method
JP3977574B2 (en) Method and apparatus for pulverizing particles to be crushed
JP5404199B2 (en) Kneading equipment
JP3317643B2 (en) Coal ash spheroidizing method and coal ash spheroidizing apparatus using the same
JP3177741U (en) Wet medium disperser
JPH11347429A (en) Powder treating device
JP5680044B2 (en) Powder processing equipment and powder processing equipment
JP2005324999A (en) Method of improving dispersibility of carbon nanotube

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109