JP2006218362A - Oxygen pump - Google Patents

Oxygen pump Download PDF

Info

Publication number
JP2006218362A
JP2006218362A JP2005032539A JP2005032539A JP2006218362A JP 2006218362 A JP2006218362 A JP 2006218362A JP 2005032539 A JP2005032539 A JP 2005032539A JP 2005032539 A JP2005032539 A JP 2005032539A JP 2006218362 A JP2006218362 A JP 2006218362A
Authority
JP
Japan
Prior art keywords
oxygen pump
oxygen
heat
pump according
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005032539A
Other languages
Japanese (ja)
Inventor
Akio Fukuda
明雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005032539A priority Critical patent/JP2006218362A/en
Publication of JP2006218362A publication Critical patent/JP2006218362A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen pump which is capable of conducting the efficient movement to uniformly heat an oxygen pump element and to reduce its thermal loss by forming a resistance heater or infrared reflection layer on a heat-resistant substrate. <P>SOLUTION: The oxygen pump is composed of an oxygen pump element 6 having positive and negative electrode membranes 5a and 5b formed on both sides of an oxygen ion conducting substrate 4, heating means 10a and 10b having the resistance heaters 12a and 12b, to which the infrared radiation layers 16a and 16b are laminated, are formed on the heat-resistant substrates 11a and 11b, a conducting means 8 which is electrically connected with the electrode membranes 5a and 5b and a gas permeable insulation materials 9a and 9b which electrically insulate the oxygen pump element 6 and the heating means 10a and 10b. The oxygen pump can heat the resistance heaters 12a and 12b to which the infrared radiation layers 16a and 16b are laminated and the oxygen pump element 6 uniformly and high efficiently by arranging the negative electrode membrane of the oxygen pump element 6 and the resistance heaters 12a and 12b of the heating means 10a and 10b to a relative structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気化学的に酸素イオンを移動させる酸素ポンプに関するものである。   The present invention relates to an oxygen pump that moves oxygen ions electrochemically.

従来、この種の酸素ポンプは、酸素ポンプ素子を動作するに必要な所定温度に昇温維持するために電熱線などの抵抗発熱体を使った加熱手段を有している(例えば、特許文献1参照)。   Conventionally, this type of oxygen pump has a heating means using a resistance heating element such as a heating wire in order to maintain the temperature at a predetermined temperature required for operating the oxygen pump element (for example, Patent Document 1). reference).

図3は、特許文献1に記載された従来の酸素ポンプを示すものである。図3に示すように、酸素イオン導電性基板1には、電圧印加手段2と加熱手段である温度調整手段3が設けられた構成となっている。
特開平7−172803号公報
FIG. 3 shows a conventional oxygen pump described in Patent Document 1. As shown in FIG. As shown in FIG. 3, the oxygen ion conductive substrate 1 is provided with a voltage applying means 2 and a temperature adjusting means 3 as a heating means.
Japanese Unexamined Patent Publication No. 7-172803

しかしながら、前記従来の構成では、酸素イオン導電性基板上で均一加熱が困難なこと、ならびに熱ロスが大きく温度上昇に時間を要するなどエネルギー的に効率的な加熱が得にくいという課題を有していた。   However, the conventional configuration has problems that uniform heating is difficult on the oxygen ion conductive substrate, and that energy efficient heating is difficult to obtain such as a large heat loss and time required for temperature rise. It was.

本発明は、前記従来の課題を解決するのもので、均一かつ高効率な加熱が可能で、さらに熱ロスの少ない酸素ポンプを提供することを目的としている。   The present invention solves the above-described conventional problems, and an object thereof is to provide an oxygen pump that can perform uniform and high-efficiency heating and that further reduces heat loss.

前記従来の課題を解決するために、酸素イオン導電性基板の両面に正負電極膜が形成された酸素ポンプ素子と、耐熱性基板上に赤外線輻射層が積層された抵抗発熱体が形成された加熱手段と、前記電極膜と電気的に接続された導電手段と、前記酸素ポンプ素子と前記加熱手段を電気的に絶縁する通気性絶縁材とを有し、前記加熱手段により前記酸素イオン導電性基板を加熱する酸素ポンプとするものである。   In order to solve the above-described conventional problems, an oxygen pump element in which positive and negative electrode films are formed on both surfaces of an oxygen ion conductive substrate, and a heating in which a resistance heating element in which an infrared radiation layer is laminated on a heat resistant substrate are formed. Means, electrically conductive means electrically connected to the electrode film, and a breathable insulating material that electrically insulates the oxygen pump element and the heating means, and the oxygen ion conductive substrate is formed by the heating means. Is an oxygen pump for heating.

これによって、酸素イオン導電性基板の均一かつ高効率な加熱が可能となる。   As a result, the oxygen ion conductive substrate can be heated uniformly and efficiently.

また、酸素イオン導電性基板の両面に正負電極膜が形成された酸素ポンプ素子と、耐熱性基板上に赤外線輻射層が積層された抵抗発熱体と赤外線反射層で形成された加熱手段と、前記電極膜と電気的に接続された導電手段と、前記酸素ポンプ素子と前記加熱手段を電気的に絶縁する通気性絶縁材とを有し、前記加熱手段により前記酸素イオン導電性基板を加熱する酸素ポンプとするものである。   Further, an oxygen pump element in which positive and negative electrode films are formed on both surfaces of an oxygen ion conductive substrate, a resistance heating element in which an infrared radiation layer is laminated on a heat resistant substrate, and a heating means formed by an infrared reflection layer, Oxygen having electrically conductive means electrically connected to the electrode film, and a breathable insulating material that electrically insulates the oxygen pump element and the heating means, and heats the oxygen ion conductive substrate by the heating means It is a pump.

これによって、酸素イオン導電性基板の均一かつ高効率な加熱が可能となり、赤外線反射層により熱ロスが低減される。   As a result, the oxygen ion conductive substrate can be heated uniformly and efficiently, and heat loss is reduced by the infrared reflective layer.

本発明の酸素ポンプは、酸素ポンプ素子の均一かつ高効率な加熱が可能で、さらに熱ロスが低減できるので、消費電力の少ない酸素ポンプ素子の提供が可能となる。   In the oxygen pump of the present invention, the oxygen pump element can be heated uniformly and efficiently, and further, heat loss can be reduced, so that an oxygen pump element with low power consumption can be provided.

第1の発明は、酸素イオン導電性基板の両面に正負電極膜が形成された酸素ポンプ素子と、耐熱性基板上に赤外線輻射層が積層された抵抗発熱体が形成された加熱手段と、前記電極膜と電気的に接続された導電手段と、前記酸素ポンプ素子と前記加熱手段を電気的に絶縁する通気性絶縁材とを有し、前記酸素ポンプ素子の正負電極膜と前記加熱手段の抵抗発熱体を相対する構成に配置することにより、抵抗発熱体が酸素ポンプ素子の均一加熱を可能とし、赤外線輻射層は抵抗発熱体からの熱輻射量を増大させ、高効率加熱を可能とする。   The first invention includes an oxygen pump element in which positive and negative electrode films are formed on both surfaces of an oxygen ion conductive substrate, a heating unit in which a resistance heating element in which an infrared radiation layer is laminated on a heat resistant substrate, Conductive means electrically connected to the electrode film, and a breathable insulating material that electrically insulates the oxygen pump element and the heating means, and positive and negative electrode films of the oxygen pump element and resistance of the heating means By disposing the heating elements in the opposite configuration, the resistance heating element can uniformly heat the oxygen pump element, and the infrared radiation layer increases the amount of heat radiation from the resistance heating element, thereby enabling high-efficiency heating.

第2の発明は、特に、抵抗発熱体を白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成することにより、薄膜型の抵抗発熱体を構成し、速熱性の加熱手段とすることができる。   According to the second invention, in particular, the resistance heating element is composed of at least one of platinum, gold, silver, palladium, and rhodium, so that a thin film type resistance heating element is configured as a rapid heating means. Can do.

第3の発明は、特に、赤外線輻射層を金属酸化物および耐熱性結合剤で構成することにより、赤外線輻射率が高い輻射層が得られ、高効率の輻射加熱が可能な加熱手段とすることができる。   According to a third aspect of the present invention, in particular, the infrared radiation layer is made of a metal oxide and a heat-resistant binder, whereby a radiation layer having a high infrared radiation rate is obtained, and a heating means capable of highly efficient radiation heating is provided. Can do.

第4の発明は、特に、耐熱性基板を絶縁性セラミックスで構成し、熱劣化などの熱的影響が少ない加熱手段とすることが可能となる。   According to the fourth aspect of the invention, in particular, the heat-resistant substrate is made of insulating ceramics, and it is possible to provide a heating means that has little thermal influence such as thermal deterioration.

第5の発明は、特に、通気性絶縁材をシリカやアルミナなどの絶縁性酸化物の多孔質成型体とすることにより熱劣化などの熱的影響が少ない通気性絶縁材が得られる。   In the fifth aspect of the invention, in particular, a breathable insulating material with less thermal influence such as thermal deterioration can be obtained by using a porous molded body of an insulating oxide such as silica or alumina as the breathable insulating material.

第6の発明は、特に、通気性絶縁材をシリカやアルミナなどの絶縁性酸化物の成型体であり、成型体に通気用の貫通孔を有する構造とすることにより熱劣化などの熱的影響が少ない通気性絶縁材が得られる。   In particular, the sixth invention is a molded body made of an insulating oxide such as silica or alumina as the breathable insulating material, and has a structure having a through hole for ventilation in the molded body. A gas-permeable insulating material with a small amount can be obtained.

第7の発明は、特に、酸素イオン導電性基板の両面に正負電極膜が形成された酸素ポンプ素子と、耐熱性基板上に抵抗発熱体と赤外線反射層が形成された加熱手段と、前記電極膜と電気的に接続された導電手段と、前記酸素ポンプ素子と前記加熱手段を電気的に絶縁する通気性絶縁材とを有し、前記酸素ポンプ素子の正負電極膜と前記加熱手段の抵抗発熱体を相対する構成に配置することにより、抵抗発熱体が酸素ポンプ素子を均一かつ高効率に加熱することが可能となり、かつ赤外線反射層が熱ロスの少ない効率的な加熱を可能とする。   The seventh invention particularly relates to an oxygen pump element in which positive and negative electrode films are formed on both surfaces of an oxygen ion conductive substrate, a heating means in which a resistance heating element and an infrared reflective layer are formed on a heat resistant substrate, and the electrode Conductive means electrically connected to the membrane, and a breathable insulating material that electrically insulates the oxygen pump element and the heating means, and the resistance heat generation of the positive and negative electrode films of the oxygen pump element and the heating means By disposing the bodies in opposition, the resistance heating element can heat the oxygen pump element uniformly and with high efficiency, and the infrared reflection layer enables efficient heating with little heat loss.

第8の発明は、特に、抵抗発熱体を白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成することにより、薄膜型の抵抗発熱体を構成し、速熱性の加熱手段とすることが可能となる。   In the eighth invention, in particular, the resistance heating element is composed of at least one of platinum, gold, silver, palladium, and rhodium, so that a thin film type resistance heating element is configured as a rapid heating means. Is possible.

第9の発明は、特に、赤外線輻射層を金属酸化物および耐熱性結合剤で構成することにより、赤外線輻射率が高い輻射層が得られ、高効率の輻射加熱が可能な加熱手段とすることができる。   The ninth aspect of the present invention is a heating means capable of obtaining a radiation layer with a high infrared radiation rate and capable of high-efficiency radiation heating, in particular, by configuring the infrared radiation layer with a metal oxide and a heat-resistant binder. Can do.

第10の発明は、特に、赤外線反射層を白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成することにより、薄膜型の赤外線反射層を構成し、輻射による熱ロスを抑制することが可能となる。   In the tenth aspect of the invention, in particular, the infrared reflective layer is made of at least one of platinum, gold, silver, palladium, and rhodium, thereby forming a thin-film infrared reflective layer and suppressing heat loss due to radiation. Is possible.

第11の発明は、特に、耐熱性基板を絶縁性セラミックスで構成し、熱劣化などの熱的影響が少ない加熱手段とすることが可能となる。   In the eleventh aspect of the invention, in particular, the heat-resistant substrate is made of insulating ceramics, and it becomes possible to provide a heating means with little thermal influence such as thermal deterioration.

第12の発明は、特に、通気性絶縁材をシリカやアルミナなどの絶縁性酸化物の多孔質成型体とすることにより熱劣化などの熱的影響が少ない通気性絶縁材が得られる。   In the twelfth aspect of the invention, in particular, a breathable insulating material with less thermal influence such as thermal deterioration can be obtained by using a porous molded body of an insulating oxide such as silica or alumina as the breathable insulating material.

第13の発明は、特に、通気性絶縁材をシリカやアルミナなどの絶縁性酸化物の成型体であり、成型体に通気用の貫通孔を有する構造とすることにより熱劣化などの熱的影響が少ない通気性絶縁材が得られる。   In the thirteenth invention, in particular, the breathable insulating material is a molded body of an insulating oxide such as silica or alumina, and the molded body has a structure having a through-hole for ventilation. A gas-permeable insulating material with a small amount can be obtained.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における酸素ポンプの模式的断面図である。
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of an oxygen pump according to the first embodiment of the present invention.

図1において、酸素イオン導電性基板4は置換型のランタンガレート(La0.8Sr0.2Ga0.8Mg0.2)の焼結体を任意の厚さ(例えば、約200μm)の平板状に成型したものであり、その両面に電極膜5aおよび5bが形成され、酸素ポンプ素子6を構成している。 In FIG. 1, an oxygen ion conductive substrate 4 is made of a sintered body of substitutional type lanthanum gallate (La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3 ) having an arbitrary thickness (for example, about 200 μm). ), The electrode films 5a and 5b are formed on both surfaces thereof, and the oxygen pump element 6 is formed.

酸素ポンプ素子6は、導電手段7を介して、電圧印加手段8と接続されている。酸素ポンプ素子6には、通気性絶縁材9aおよび9bと加熱手段10aおよび10bが積層されている。加熱手段10aおよび10bは、耐熱性基板11aおよび11bと抵抗発熱体12aおよび12bとで構成されている。抵抗発熱体12aおよび12bは、導電手段13aおよび13bを介して、加熱用電圧印加手段14aおよび14bと接続されている。   The oxygen pump element 6 is connected to the voltage applying means 8 through the conductive means 7. The oxygen pump element 6 is laminated with breathable insulating materials 9a and 9b and heating means 10a and 10b. The heating means 10a and 10b are composed of heat resistant substrates 11a and 11b and resistance heating elements 12a and 12b. The resistance heating elements 12a and 12b are connected to the heating voltage applying means 14a and 14b via the conductive means 13a and 13b.

抵抗発熱体12aおよび12bの表面には、それぞれ赤外線輻射層16aおよび16bが積層されている。   Infrared radiation layers 16a and 16b are laminated on the surfaces of the resistance heating elements 12a and 12b, respectively.

酸素イオン導電性基板4は、ランタンガレートに限るものではなく、イットリウムドープ型のジルコニア(YSZ)、サマリウムドープ型のセリア(SDC)などであっても良い。   The oxygen ion conductive substrate 4 is not limited to lanthanum gallate, and may be yttrium-doped zirconia (YSZ), samarium-doped ceria (SDC), or the like.

電極膜には、導電性を有するペロブスカイト型複合酸化物を用いた。例えば、Sm0.5Sr0.5CoOを有機溶剤であるセルロース系ビヒクルと混合したペーストを、スクリーン印刷により印刷膜を形成し、乾燥、焼成することにより多孔質な電極膜を形成した。 A perovskite complex oxide having conductivity was used for the electrode film. For example, a paste obtained by mixing Sm 0.5 Sr 0.5 CoO 3 with a cellulosic vehicle that is an organic solvent was used to form a printed film by screen printing, followed by drying and baking to form a porous electrode film.

さらに、電極膜5aおよび5bは、ペロブスカイト型複合酸化物を用いた多孔質な電極膜の表面に、導電性の高い金や白金のような金属の多孔質膜を形成した2層構造であってもよい。形成方法は、上記のような印刷でよい。   Furthermore, the electrode films 5a and 5b have a two-layer structure in which a porous film made of metal such as gold or platinum having high conductivity is formed on the surface of a porous electrode film using a perovskite complex oxide. Also good. The forming method may be printing as described above.

導電手段7は、AuやPt、Niなどの金属線でよい。通気性絶縁材9aおよび9bは、シリカやアルミナなどの絶縁性酸化物の多孔質成型体あるいは、図示しないがシリカやアルミナなどの絶縁性酸化物の成型体に通気用の貫通孔を設けたものでよい。酸素ポンプ素子6は、負電極膜側から正電極膜側へと酸素を移動させるので、通気性絶縁材には十分な通気性が必要であるが、どちらか一方に限定するものではない。酸素ポンプに要求される特性にあうものを選択すればよい。   The conductive means 7 may be a metal wire such as Au, Pt, or Ni. The breathable insulating materials 9a and 9b are porous molded bodies of insulating oxides such as silica and alumina, or a molded body of insulating oxides such as silica and alumina (not shown) provided with through holes for ventilation. It's okay. Since the oxygen pump element 6 moves oxygen from the negative electrode film side to the positive electrode film side, the air permeable insulating material needs to have sufficient air permeability, but is not limited to either one. What meets the characteristics required for the oxygen pump may be selected.

耐熱性基板11aおよび11bは、アルミナやコーディエライトなど成型可能な熱劣化などの熱的影響が少ない絶縁性セラミックスで構成する。抵抗発熱体12aおよび12bの熱ロスを抑制するために、機械的強度が確保される範囲で、できる限り薄板であることが好ましい。   The heat-resistant substrates 11a and 11b are made of insulating ceramics such as alumina and cordierite that have a small thermal influence such as heat deterioration that can be molded. In order to suppress the heat loss of the resistance heating elements 12a and 12b, it is preferable that the resistance heating elements 12a and 12b be as thin as possible as long as the mechanical strength is ensured.

抵抗発熱体12aおよび12bは、白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成する。電極膜5aおよび5bと同様の印刷法で、耐熱性基板11の表面に薄膜型の発熱体を形成することができる。印刷法であれば、抵抗発熱体12aおよび12bの厚さは、数μm程度にできるので、速熱性の加熱手段10aおよび10bを得ることができる。   The resistance heating elements 12a and 12b are made of at least one of platinum, gold, silver, palladium, and rhodium. A thin film heating element can be formed on the surface of the heat-resistant substrate 11 by the same printing method as that for the electrode films 5a and 5b. In the case of the printing method, the thickness of the resistance heating elements 12a and 12b can be about several μm, so that the rapid heating means 10a and 10b can be obtained.

赤外線輻射層16aおよび16bは、輻射層の前駆体を使って塗布後加熱焼結などの任意の被膜形成手段により得られる被膜である。被膜は、例えば耐熱性結合剤としてのボロシロキサン重合体と、金属酸化物としての鉄、マンガン、銅の3種の複合酸化物およびジルコニア、アルミナ、溶剤を混合した前駆体の加熱焼結によって得られる。   The infrared radiation layers 16a and 16b are films obtained by any film forming means such as post-coating heat sintering using a precursor of the radiation layer. The coating is obtained, for example, by heat-sintering a borosiloxane polymer as a heat-resistant binder, a composite oxide of iron, manganese and copper as metal oxides, and a precursor mixed with zirconia, alumina and a solvent. It is done.

このようにして得られる赤外線輻射層16aおよび16bは、任意の厚さに形成することが可能で、高い赤外線輻射率が得られる。例えば、上記組成で熱平衡型放射率計によれば、厚さ約5μmで、輻射率約0.8となる。抵抗発熱体12aおよび12bの輻射率は、その表面状態にもよるが、おおよそ0.1から0.3程度であり、赤外線輻射層16aおよび16bは明らかに輻射加熱に適している。   The infrared radiation layers 16a and 16b thus obtained can be formed to have an arbitrary thickness, and a high infrared radiation rate can be obtained. For example, according to the heat balance type emissometer with the above composition, the thickness is about 5 μm and the emissivity is about 0.8. The emissivity of the resistance heating elements 12a and 12b is about 0.1 to 0.3 depending on the surface state, and the infrared radiation layers 16a and 16b are clearly suitable for radiant heating.

酸素ポンプ素子6と加熱手段10aおよび10bは、通気性絶縁材9aおよび9bを介して、酸素ポンプ素子6の電極膜5aおよび5bと加熱手段10aおよび10bの抵抗発熱体12aおよび12bを、それぞれ相対して配置する。すなわち、耐熱性基板11a、11b上に形成された抵抗発熱体12a、12bは、耐熱性基板11a、11bに空間をおいて挟まれて設けられた酸素イオン導電性基板4上に設けられた電極膜5a、5bと対向して設けられている。   The oxygen pump element 6 and the heating means 10a and 10b are respectively connected to the electrode films 5a and 5b of the oxygen pump element 6 and the resistance heating elements 12a and 12b of the heating means 10a and 10b via the air-permeable insulating materials 9a and 9b. And place it. That is, the resistance heating elements 12a and 12b formed on the heat resistant substrates 11a and 11b are electrodes provided on the oxygen ion conductive substrate 4 provided with a space between the heat resistant substrates 11a and 11b. It is provided opposite to the films 5a and 5b.

このときの、酸素ポンプ素子6と加熱手段10aおよび10bとの空間距離は、抵抗発熱体12aおよび12bの輻射強度が距離の二乗に反比例することから、可能な限り短いほうが好ましい。   At this time, the spatial distance between the oxygen pump element 6 and the heating means 10a and 10b is preferably as short as possible because the radiation intensity of the resistance heating elements 12a and 12b is inversely proportional to the square of the distance.

以上のように構成された酸素ポンプについて、以下その動作、作用を説明する。   About the oxygen pump comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

抵抗発熱体12aおよび12bは、加熱用電圧印加手段14aおよび14bからの通電により、温度上昇し、赤外線輻射層16aおよび16bが空間近傍に配置された酸素ポンプ素子6を、直接的に輻射加熱する。抵抗発熱体12aおよび12bと酸素ポンプ素子6の空間距離が近いので、酸素ポンプは、短時間で所定温度に昇温する。   The resistance heating elements 12a and 12b rise in temperature by energization from the heating voltage applying means 14a and 14b, and directly radiately heat the oxygen pump element 6 in which the infrared radiation layers 16a and 16b are arranged in the vicinity of the space. . Since the spatial distance between the resistance heating elements 12a and 12b and the oxygen pump element 6 is short, the oxygen pump raises the temperature to a predetermined temperature in a short time.

輻射加熱により、所定温度に昇温した酸素ポンプ素子6に、電圧印加手段8によって正負電極間に通電すると、負電極側から正電極側に向かって、酸素移動が進行する。このときの酸素は、通気性絶縁材9aを介して、周辺大気から供給される。これによって正電極膜5b表面には、酸素だけが輸送されることになる。   When the oxygen pump element 6 heated to a predetermined temperature by radiant heating is energized between the positive and negative electrodes by the voltage applying means 8, oxygen movement proceeds from the negative electrode side toward the positive electrode side. At this time, oxygen is supplied from the surrounding atmosphere through the breathable insulating material 9a. As a result, only oxygen is transported to the surface of the positive electrode film 5b.

以上のように、本実施の形態では、赤外線輻射層16aおよび16bが積層された抵抗発熱体12aおよび12bと、酸素ポンプ素子6が、ほぼ等しい形態で相対しているので、従来の配線による熱ムラが発生しやすい電熱線加熱に比較して、均一かつ高効率の輻射加熱が可能となる。これにより、酸素ポンプの効率的な動作が可能となる。   As described above, in the present embodiment, the resistance heating elements 12a and 12b in which the infrared radiation layers 16a and 16b are laminated and the oxygen pump element 6 are opposed to each other in substantially the same form. Uniform and highly efficient radiation heating is possible as compared with heating wire heating in which unevenness is likely to occur. Thereby, the efficient operation of the oxygen pump becomes possible.

(実施の形態2)
図2は、本発明の第2の実施の形態における酸素ポンプの模式的断面図である。
(Embodiment 2)
FIG. 2 is a schematic cross-sectional view of an oxygen pump according to the second embodiment of the present invention.

図2において、酸素イオン導電性基板4は置換型のランタンガレート(La0.8Sr0.2Ga0.8Mg0.2)の焼結体を任意の厚さ(例えば、約200μm)の平板状に成型したものであり、その両面に電極膜5aおよび5bが形成され、酸素ポンプ素子6を構成している。 In FIG. 2, the oxygen ion conductive substrate 4 is made of a sintered lanthanum gallate (La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3 ) sintered body having an arbitrary thickness (for example, about 200 μm). ), The electrode films 5a and 5b are formed on both surfaces thereof, and the oxygen pump element 6 is formed.

酸素ポンプ素子6は、導電手段7を介して、電圧印加手段8と接続されている。酸素ポンプ素子6には、通気性絶縁材9aおよび9bと加熱手段10aおよび10bが積層されている。加熱手段10aおよび10bは、耐熱性基板11aおよび11bと抵抗発熱体12aおよび12bと赤外線反射層15aおよび15bで構成されている。抵抗発熱体12aおよび12bは、導電手段13aおよび13bを介して、加熱用電圧印加手段14aおよび14bと接続されている。   The oxygen pump element 6 is connected to the voltage applying means 8 through the conductive means 7. The oxygen pump element 6 is laminated with breathable insulating materials 9a and 9b and heating means 10a and 10b. The heating means 10a and 10b are composed of heat resistant substrates 11a and 11b, resistance heating elements 12a and 12b, and infrared reflecting layers 15a and 15b. The resistance heating elements 12a and 12b are connected to the heating voltage applying means 14a and 14b via the conductive means 13a and 13b.

以下、実施の形態1と同様の構成については、記載しないこととする。   Hereinafter, the same configuration as that of the first embodiment will not be described.

赤外線反射層15aおよび15bは、白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成する。電極膜5aおよび5bと同様の印刷法で、耐熱性基板11aおよび11bの表面に薄膜型の赤外線反射層15aおよび15bを形成することができる。   The infrared reflecting layers 15a and 15b are composed of at least one of platinum, gold, silver, palladium, and rhodium. The thin-film infrared reflecting layers 15a and 15b can be formed on the surfaces of the heat resistant substrates 11a and 11b by the same printing method as the electrode films 5a and 5b.

印刷法であれば、赤外線反射層15aおよび15bの厚さは、数μm程度にできる。また、印刷法以外に、蒸着などの薄膜形成手段も適用可能である。   In the case of a printing method, the thickness of the infrared reflecting layers 15a and 15b can be about several μm. In addition to the printing method, thin film forming means such as vapor deposition is also applicable.

赤外線反射層15aおよび15bは、耐熱性基板11aおよび11bよりも赤外線反射率が高いことが必要である。換言すると赤外線輻射率が低いことが必要である。これによって、加熱手段10aおよび10bからの輻射による熱ロスを、抑制できる。材料としては、上記のうち金が最も好ましい。   The infrared reflective layers 15a and 15b are required to have higher infrared reflectance than the heat resistant substrates 11a and 11b. In other words, the infrared radiation rate needs to be low. Thereby, the heat loss by the radiation from the heating means 10a and 10b can be suppressed. As the material, gold is most preferable among the above.

以上のように構成された酸素ポンプについて、以下その動作、作用を説明する。   About the oxygen pump comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

抵抗発熱体12aおよび12bは、加熱用電圧印加手段14aおよび14bからの通電により、温度上昇し、赤外線輻射層16aおよび16bが空間近傍に配置された酸素ポンプ素子6を、直接的に輻射加熱する。抵抗発熱体12aおよび12bと酸素ポンプ素子6の空間距離が近いので、酸素ポンプは、短時間で所定温度に昇温する。   The resistance heating elements 12a and 12b rise in temperature by energization from the heating voltage applying means 14a and 14b, and directly radiately heat the oxygen pump element 6 in which the infrared radiation layers 16a and 16b are arranged in the vicinity of the space. . Since the spatial distance between the resistance heating elements 12a and 12b and the oxygen pump element 6 is short, the oxygen pump raises the temperature to a predetermined temperature in a short time.

この時、抵抗発熱体12aおよび12bと反対側に配置された赤外線反射層15aおよび15bは、赤外線輻射率が低いので、抵抗発熱体12aおよび12bの発熱により昇温した耐熱性基板11aおよび11bの熱輻射による熱ロスを抑制し、酸素ポンプ素子6の加熱に有効に作用する。   At this time, the infrared reflecting layers 15a and 15b arranged on the opposite side of the resistance heating elements 12a and 12b have low infrared emissivity, so that the heat resistant substrates 11a and 11b heated by the heating of the resistance heating elements 12a and 12b Heat loss due to heat radiation is suppressed, and the oxygen pump element 6 is effectively heated.

輻射加熱により、所定温度に昇温した酸素ポンプ素子6に、電圧印加手段8によって正負電極間に通電すると、負電極側から正電極側に向かって、酸素移動が進行する。このときの酸素は、通気性絶縁材9aを介して、周辺大気から供給される。これによって正電極膜5b表面には、酸素だけが輸送されることになる。   When the oxygen pump element 6 heated to a predetermined temperature by radiant heating is energized between the positive and negative electrodes by the voltage applying means 8, oxygen movement proceeds from the negative electrode side toward the positive electrode side. At this time, oxygen is supplied from the surrounding atmosphere through the breathable insulating material 9a. As a result, only oxygen is transported to the surface of the positive electrode film 5b.

以上のように、本実施の形態では、赤外線反射層15aおよび15bが、熱ロスを抑制するので、酸素ポンプの熱的な効率動作を可能となる。   As described above, in the present embodiment, since the infrared reflection layers 15a and 15b suppress heat loss, it is possible to perform a thermal efficient operation of the oxygen pump.

以上のように、酸素ポンプ素子の均一かつ高効率加熱を実現し、熱ロス低減による効率動作が可能な低消費電力の酸素ポンプ素子の提供によって、酸素を利用する空気清浄機や空調機器あるいは健康促進機器、健康増進機器など広範な用途に適用できる。   As described above, by providing oxygen pump elements with low power consumption that can achieve uniform and high-efficiency heating of oxygen pump elements and reduce heat loss, air cleaners and air conditioners that use oxygen or health Applicable to a wide range of applications such as promotion equipment and health promotion equipment.

本発明の第1の実施の形態における酸素ポンプの模式的断面図Schematic sectional view of an oxygen pump in the first embodiment of the present invention 本発明の第1の実施の形態における酸素ポンプの模式的断面図Schematic sectional view of an oxygen pump in the first embodiment of the present invention 従来の酸素ポンプを示す図Diagram showing a conventional oxygen pump

符号の説明Explanation of symbols

4 酸素イオン導電性基板
5a、5b 電極膜
6 酸素ポンプ素子
7 導電手段
9a、9b 通気性絶縁材
10a、10b 加熱手段
11a、11b 耐熱性基板
12a、12b 抵抗発熱体
15a、15b 赤外線反射層
16a、16b 赤外線輻射層
4 Oxygen ion conductive substrate 5a, 5b Electrode film 6 Oxygen pump element 7 Conductive means 9a, 9b Breathable insulating material 10a, 10b Heating means 11a, 11b Heat resistant substrate 12a, 12b Resistance heating element 15a, 15b Infrared reflective layer 16a, 16b Infrared radiation layer

Claims (13)

酸素イオン導電性基板の両面に正負電極膜が形成された酸素ポンプ素子と、耐熱性基板上に赤外線輻射層が積層された抵抗発熱体で形成された加熱手段と、前記電極膜と電気的に接続された導電手段と、前記酸素ポンプ素子と前記加熱手段を電気的に絶縁する通気性絶縁材とを有し、前記加熱手段により前記酸素イオン導電性基板を加熱する酸素ポンプ。 An oxygen pump element having positive and negative electrode films formed on both surfaces of an oxygen ion conductive substrate; a heating means formed of a resistance heating element in which an infrared radiation layer is laminated on a heat resistant substrate; and the electrode film electrically An oxygen pump having connected conductive means, a breathable insulating material that electrically insulates the oxygen pump element and the heating means, and heats the oxygen ion conductive substrate by the heating means. 抵抗発熱体は、白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成される請求項1に記載の酸素ポンプ。 The oxygen pump according to claim 1, wherein the resistance heating element is composed of at least one of platinum, gold, silver, palladium, and rhodium. 赤外線輻射層は、金属酸化物および耐熱性結合剤で構成される請求項1または2に記載の酸素ポンプ。 The oxygen pump according to claim 1 or 2, wherein the infrared radiation layer is composed of a metal oxide and a heat-resistant binder. 耐熱性基板は、絶縁性セラミックスで構成される請求項1〜3いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 1 to 3, wherein the heat-resistant substrate is made of an insulating ceramic. 通気性絶縁材は、シリカやアルミナなどの絶縁性酸化物の多孔質成型体である請求項1〜4いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 1 to 4, wherein the breathable insulating material is a porous molded body of an insulating oxide such as silica or alumina. 通気性絶縁材は、シリカやアルミナなどの絶縁性酸化物の成型体であり、成型体に通気用の貫通孔を有する構造とした請求項1〜4いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 1 to 4, wherein the breathable insulating material is a molded body of an insulating oxide such as silica or alumina, and the molded body has a through hole for ventilation. 酸素イオン導電性基板の両面に正負電極膜が形成された酸素ポンプ素子と、耐熱性基板上に赤外線輻射層が積層された抵抗発熱体と赤外線反射層で形成された加熱手段と、前記電極膜と電気的に接続された導電手段と、前記酸素ポンプ素子と前記加熱手段を電気的に絶縁する通気性絶縁材とを有し、前記加熱手段により前記酸素イオン導電性基板を加熱する酸素ポンプ。 An oxygen pump element in which positive and negative electrode films are formed on both surfaces of an oxygen ion conductive substrate, a heating element formed by a resistance heating element in which an infrared radiation layer is laminated on a heat resistant substrate, and an infrared reflection layer, and the electrode film And an oxygen pump that heats the oxygen ion conductive substrate by the heating means. The oxygen pump includes: a conductive means electrically connected to the heat pump; and a breathable insulating material that electrically insulates the oxygen pump element and the heating means. 抵抗発熱体は、白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成される請求項7に記載の酸素ポンプ。 The oxygen pump according to claim 7, wherein the resistance heating element is made of at least one of platinum, gold, silver, palladium, and rhodium. 赤外線輻射層は、金属酸化物および耐熱性結合剤で構成される請求項7または8に記載の酸素ポンプ。 The oxygen pump according to claim 7 or 8, wherein the infrared radiation layer is composed of a metal oxide and a heat-resistant binder. 赤外線反射層は、白金、金、銀、パラジウム、ロジウムの少なくとも1種以上で構成される請求項7〜9いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 7 to 9, wherein the infrared reflection layer is composed of at least one of platinum, gold, silver, palladium, and rhodium. 耐熱性基板は、絶縁性セラミックスで構成される請求7〜10いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 7 to 10, wherein the heat-resistant substrate is made of an insulating ceramic. 通気性絶縁材は、シリカやアルミナなどの絶縁性酸化物の多孔質成型体である請求項7〜11いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 7 to 11, wherein the breathable insulating material is a porous molded body of an insulating oxide such as silica or alumina. 通気性絶縁材は、シリカやアルミナなどの絶縁性酸化物の成型体であり、成型体に通気用の貫通孔を有する構造とした請求項7〜11いずれか1項に記載の酸素ポンプ。 The oxygen pump according to any one of claims 7 to 11, wherein the breathable insulating material is a molded body of an insulating oxide such as silica or alumina, and the molded body has a through hole for ventilation.
JP2005032539A 2005-02-09 2005-02-09 Oxygen pump Pending JP2006218362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032539A JP2006218362A (en) 2005-02-09 2005-02-09 Oxygen pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032539A JP2006218362A (en) 2005-02-09 2005-02-09 Oxygen pump

Publications (1)

Publication Number Publication Date
JP2006218362A true JP2006218362A (en) 2006-08-24

Family

ID=36981023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032539A Pending JP2006218362A (en) 2005-02-09 2005-02-09 Oxygen pump

Country Status (1)

Country Link
JP (1) JP2006218362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180120305A (en) * 2017-04-26 2018-11-06 립하이 주식회사 Electrochromic device and Driving method for Electrochromic element
US10739662B2 (en) 2017-03-03 2020-08-11 Leaphigh Inc. Electrochromic element and electrochromic device including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10739662B2 (en) 2017-03-03 2020-08-11 Leaphigh Inc. Electrochromic element and electrochromic device including the same
US11175560B2 (en) 2017-03-03 2021-11-16 Leaphigh Inc. Electrochromic element and electrochromic device including the same
US11681198B2 (en) 2017-03-03 2023-06-20 Leaphigh Inc. Electrochromic element and electrochromic device including the same
KR20180120305A (en) * 2017-04-26 2018-11-06 립하이 주식회사 Electrochromic device and Driving method for Electrochromic element
KR101955090B1 (en) 2017-04-26 2019-03-08 립하이 주식회사 Electrochromic device and Driving method for Electrochromic element

Similar Documents

Publication Publication Date Title
JP2006337384A (en) Oxygen sensor
JP2006218362A (en) Oxygen pump
JP2006137638A (en) Oxygen pump
JP2001281219A (en) Air-fuel ratio sensor element
JP3985684B2 (en) Oxygen pump element and oxygen pump device equipped with the element
JP2006069829A (en) Oxygen pump
JP2004269295A (en) Oxygen pumping device and oxygen pumping apparatus on which oxygen pumping device is loaded
JP2004269295A5 (en)
JP2004232019A5 (en)
JP2004131357A (en) Oxygen pump element and oxygen pump
JP3846319B2 (en) Oxygen pump
JP2005315608A (en) Oxygen pump element and oxygen feeder having element
JP4039200B2 (en) Oxygen pump element and oxygen pump device
JP2005305258A (en) Oxygen pump apparatus
JP2004212327A (en) Oxygen pumping element and oxygen pumping apparatus using the same
JP2003279531A (en) Oxygen sensor element
JP2004117099A (en) Oxygen sensor element
JP2006008457A (en) Oxygen pumping device and oxygen supplying apparatus using the same
JP2005307249A (en) Oxygen pumping device
JP4797434B2 (en) Oxygen pump element and oxygen supply device using the same
JP2005172495A (en) Oxygen pumping device
JP2006136812A (en) Oxygen pump element and oxygen supply apparatus using the same
JP2006161108A (en) Oxygen pump element and oxygen feeding device using the same
JP2006258624A (en) Method of controlling oxygen supply device
JP2008120637A (en) Oxygen supply device