JP2006216811A - Multilayer circuit wiring board and bga-type semiconductor device - Google Patents

Multilayer circuit wiring board and bga-type semiconductor device Download PDF

Info

Publication number
JP2006216811A
JP2006216811A JP2005028630A JP2005028630A JP2006216811A JP 2006216811 A JP2006216811 A JP 2006216811A JP 2005028630 A JP2005028630 A JP 2005028630A JP 2005028630 A JP2005028630 A JP 2005028630A JP 2006216811 A JP2006216811 A JP 2006216811A
Authority
JP
Japan
Prior art keywords
layer
wiring board
multilayer circuit
circuit wiring
indirect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005028630A
Other languages
Japanese (ja)
Inventor
Yutaka Kato
裕 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005028630A priority Critical patent/JP2006216811A/en
Publication of JP2006216811A publication Critical patent/JP2006216811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer circuit wiring board having a small stress to an interlayer connection via in that via holes for the interlayer connection are formed on the both sides of an insulating layer through the insulating layer, and to provide a BGA-type semiconductor device. <P>SOLUTION: The multilayer circuit wiring board comprises the via holes 41, 51 for the interlayer connection formed on the both sides of the insulating layer 10 through the insulating layers 20, 30. When a film thickness of the layer 10 is assumed as t, and the diameters of the via holes 41, 51 for interlayer connection are assumes as V<SB>D</SB>, there is a relationship of t<V<SB>D</SB>. When the diameters of the via holes 41, 51 are assumes as V<SB>D</SB>, and a distance between a central axis of the via hole 41 and a central axis of the via hole 51 is assumed as V<SB>C</SB>, there is a relationship of V<SB>C</SB>>2V<SB>D</SB>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、絶縁層の両面に層間接属用ビア及び配線層等が形成されてなる多層回路配線板及び半導体チップ等を搭載してなるBGA型半導体装置に関する。   The present invention relates to a BGA type semiconductor device in which a multilayer circuit wiring board, a semiconductor chip, and the like on which an indirect layer via and a wiring layer are formed on both surfaces of an insulating layer are mounted.

半導体大規模集積回路(LSI)等の半導体素子には、近年、動作速度がクロック周波数で1GHzに達するものが出現している.この様な高速半導体素子では、トランジスターの集積度が高く、その結果入出力端子数が数千を越えることもある。   In recent years, semiconductor devices such as semiconductor large-scale integrated circuits (LSIs) whose operating speed reaches 1 GHz in clock frequency have appeared. In such a high-speed semiconductor device, the degree of integration of transistors is high, and as a result, the number of input / output terminals may exceed several thousand.

このような多端子数の半導体素子をプリント配線基板に実装するために、半導体素子とプリント基板の間には多層回路配線板が配置され、両者の電気的接合の橋渡しを担っている。
多層回路配線板は、高密集した半導体素子の端子との接合に対応するため、プリント配線基板よりも非常に薄い層構造と、微細なライン・アンド・スペースを有する配線パターンを持つ。
現在広く実用化されている多層回路配線板としては、例えばBGA(Ball Grid Array)やCSP(Chip Size Package)等が挙げられる。
In order to mount such a multi-terminal semiconductor element on a printed wiring board, a multilayer circuit wiring board is disposed between the semiconductor element and the printed board, and serves as a bridge for electrical connection between them.
The multilayer circuit wiring board has a wiring pattern having a very thin layer structure and fine lines and spaces than the printed wiring board in order to cope with bonding with terminals of highly dense semiconductor elements.
Examples of multilayer circuit wiring boards that are currently in wide use include BGA (Ball Grid Array) and CSP (Chip Size Package).

最近では、さらなる高密度実装への対応、また、高動作周波数化への要望に答えるため、ポリイミド樹脂フィルムなどに配線パターン及び層間接属用ビアを形成して多層回路配線板を作製し、多層回路配線板全体の厚さを薄くするとともに、層間接属用ビアの接続長を短くすることにより高周波数に対応させたものも開発されてきている。   Recently, in order to respond to the demand for higher density mounting and higher operating frequency, a multilayer circuit wiring board is manufactured by forming a wiring pattern and a layer indirect group via on a polyimide resin film, etc. In addition to reducing the thickness of the entire circuit wiring board, the one corresponding to the high frequency has also been developed by shortening the connection length of the indirect layer via.

このような薄型の多層回路配線板を作製するためには、配線層及び絶縁層を薄くして対応しているが、このような多層回路配線板の問題の一つとして、全体の厚さが薄いために反りが発生し易いことがある。そのため、スティフナと呼ばれる補助板を多層回路配線板に貼り付け、多層回路配線板の反りを防止している。   In order to produce such a thin multilayer circuit wiring board, the wiring layer and the insulating layer are made thin, and as one of the problems of such a multilayer circuit wiring board, the overall thickness is Since it is thin, warping may occur easily. Therefore, an auxiliary board called a stiffener is attached to the multilayer circuit wiring board to prevent warping of the multilayer circuit wiring board.

図2に多層回路配線板に半導体チップ等を実装したBGA型半導体装置の例を示す。
一般的に、多層回路配線板100の上面に半導体チップ110、スティフナ131及びリッド141が実装され、下面に多数の半田ボール121がアレイ状に実装されている。
この状態で最終的に半田ボールを介して図示しないプリント配線板に実装される。
多層回路配線板100の上側は金属及びシリコンの部品に接続され、一方、下側は樹脂の部品に接続される。上下で熱膨張係数の差は必ず存在し半導体チップ動作時と停止時とでは形状が異なる。
FIG. 2 shows an example of a BGA type semiconductor device in which a semiconductor chip or the like is mounted on a multilayer circuit wiring board.
In general, a semiconductor chip 110, a stiffener 131, and a lid 141 are mounted on the upper surface of the multilayer circuit wiring board 100, and a large number of solder balls 121 are mounted in an array on the lower surface.
In this state, it is finally mounted on a printed wiring board (not shown) via a solder ball.
The upper side of the multilayer circuit wiring board 100 is connected to metal and silicon parts, while the lower side is connected to resin parts. There is always a difference in coefficient of thermal expansion between the upper and lower sides, and the shape differs between when the semiconductor chip is operating and when it is stopped.

即ち、多層回路配線板は温度変化に応じて圧縮、引張、剪断等の変形を受ける。このような変形によって多層回路配線板内部の配線パターンに応力が発生することが知られている(例えば、特許文献1参照)。
この場合、配線パターンの層間の電気的接続を担っている層間接属用ビアに応力が集中し易い。これは回路接続の信頼性上問題となる。特に、多層回路配線板で層間接属用ビア同士が十分に離れているビアには問題が発生せず、層間接属用ビアが近接する箇所で問題が発生する場合がある。
特開平09−819579号公報
That is, the multilayer circuit wiring board is subjected to deformation such as compression, tension, and shear according to the temperature change. It is known that stress is generated in the wiring pattern inside the multilayer circuit wiring board due to such deformation (see, for example, Patent Document 1).
In this case, stress tends to concentrate on the layer indirect belonging vias that are responsible for the electrical connection between the layers of the wiring pattern. This is a problem in terms of circuit connection reliability. In particular, in a multilayer circuit wiring board, there is no problem in a via in which layer indirect genus vias are sufficiently separated from each other, and there may be a problem in a location where layer indirect genus vias are close to each other.
Japanese Patent Laid-Open No. 09-819579

半導体チップの端子数はチップサイズに依存するが、通常数千に及ぶ。そのため層間接属用ビアは各層間ごとに同程度の個数が存在する。近接する層間接属用ビアの存在は無視できない問題である。これは層間接属用ビアの接続長が短くなるにつれて顕著になると思われる。
本発明は、上記の問題点に鑑み考案されたもので、絶縁層の両面に絶縁層を介して層間接属用ビアが形成されてなる多層回路配線板において、層間接属用ビアへの応力集中が少ない多層回路配線板及びBGA型半導体装置を提供することを目的とする。
The number of terminals of a semiconductor chip depends on the chip size, but usually reaches several thousand. Therefore, the same number of indirect layer vias exists in each layer. The presence of adjacent layer indirect genus vias is a problem that cannot be ignored. This seems to become more prominent as the connection length of the layer indirect genus via becomes shorter.
The present invention has been devised in view of the above problems, and in a multilayer circuit wiring board in which an indirect layer via is formed on both sides of an insulating layer via an insulating layer, stress on the layer indirect group via is provided. An object of the present invention is to provide a multilayer circuit wiring board and a BGA type semiconductor device with low concentration.

本発明に於いて上記課題を達成するために、まず、請求項1においては、絶縁層10の両面に絶縁層20及び絶縁層30を介して層間接属用ビア41及び51が形成されてなる多層回路配線板であって、前記絶縁層10の膜厚をt、前記層間接属用ビア41及び51の直径をVDとしたとき、
t<VDなる関係が満たされていることを特徴とする多層回路配線板としたものである。
In order to achieve the above object in the present invention, first, in claim 1, layer indirect metal vias 41 and 51 are formed on both surfaces of the insulating layer 10 via the insulating layer 20 and the insulating layer 30. A multilayer circuit wiring board, wherein the thickness of the insulating layer 10 is t, and the diameters of the layer indirect genus vias 41 and 51 are V D.
The multilayer circuit wiring board is characterized in that the relationship t <V D is satisfied.

また、請求項2においては、前記層間接属用ビア41及び51の直径をVD、前記層間接属用ビア41と前記層間接属用ビア51の中心軸間距離をVCとしたとき、
C>2VDなる関係が満たされていることを特徴とする請求項1に記載の多層回路配線板としたものである。
Further, in claim 2, when the diameter of the layer indirect genus vias 41 and 51 is V D , and the distance between the central axes of the layer indirect genus via 41 and the layer indirect genus via 51 is V C ,
2. The multilayer circuit wiring board according to claim 1, wherein a relationship of V C > 2V D is satisfied.

さらにまた、請求項3においては、請求項1または2に記載の多層回路配線板を用いて半導体チップ等を実装し、半導体装置を作製したことを特徴とするBGA型半導体装置としたものである。   Furthermore, a third aspect of the present invention is a BGA type semiconductor device characterized in that a semiconductor device is manufactured by mounting a semiconductor chip or the like using the multilayer circuit wiring board according to the first or second aspect. .

本発明の多層回路配線板は、絶縁層10の膜厚tと、層間接属用ビア41及び51の直径VDとがt<VDなる関係が満たされように、また前記層間接属用ビア41及び51の直径をVDと、層間接属用ビア21と層間接属用ビア31の中心軸間距離をVCとがVC>2VDなる関係が満たされように絶縁層10の膜厚tと、層間接属用ビア21と層間接属用ビア31の中心軸間距離VCとが設定されているため、温度サイクル等の熱衝撃が加わっても、隣り合う層間接属用ビアの相互作用が減少し、配線層の応力は緩和される。
さらに、本発明の多層回路配線板に半導体チップ等を実装することにより信頼性のあるBGA型半導体装置を提供することができる。
In the multilayer circuit wiring board of the present invention, the thickness t of the insulating layer 10 and the diameter V D of the layer indirect attribute vias 41 and 51 satisfy the relationship of t <V D , and the layer indirect attribute is used. the diameter of the V D of the via 41 and 51, a layer of indirect genus vias 21 and the layer indirectly genus vias 31 between the centers axes distance and V C V C> 2V D the relationship is satisfied, so that the insulating layer 10 Since the film thickness t and the center axis distance V C between the layer indirect genus via 21 and the layer indirect genus via 31 are set, even if a thermal shock such as a temperature cycle is applied, the adjacent layer indirect genus Via interaction is reduced and stress in the wiring layer is relaxed.
Furthermore, a reliable BGA type semiconductor device can be provided by mounting a semiconductor chip or the like on the multilayer circuit wiring board of the present invention.

以下に図面を用いて本発明の実施の形態につき説明する。
図1は、本発明の多層回路配線板の一実施例を示す模式構成部分断面図である。
本発明の多層回路配線板100は、ポリイミドフィルム等からなる絶縁層10の両面に配線層11a、12a及びグランド層11b、12bが形成された両面配線板に樹脂フィルム21と接着層22とからなる絶縁層20を介してICパッド42が、樹脂フィルム31と接着層32とからなる絶縁層30を介してBGAパッド52が形成されており、ICパッド42と配線層11aは層間接属用ビア41で、BGAパッド52と配線層12aとは層間接属用ビア51でそれぞれ電気的に接続されており、最外層にはソルダーレジスト層61及び62が形成された4層の回路配線板である。
ここで、絶縁層10としてはポリイミドフィルム、液晶ポリマーフィルム、ガラスエポキシフィルム等を、樹脂フィルム21及び31としてはポリイミドフィルム、液晶ポリマーフィルム等を、接着層21及び層32としてはエポキシ系樹脂、ポリイミド樹脂等を挙げることができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic partial sectional view showing an embodiment of a multilayer circuit wiring board according to the present invention.
The multilayer circuit wiring board 100 of the present invention comprises a resin film 21 and an adhesive layer 22 on a double-sided wiring board in which wiring layers 11a and 12a and ground layers 11b and 12b are formed on both sides of an insulating layer 10 made of polyimide film or the like. The IC pad 42 is formed through the insulating layer 20, and the BGA pad 52 is formed through the insulating layer 30 composed of the resin film 31 and the adhesive layer 32. The IC pad 42 and the wiring layer 11 a are connected to the layer indirect group via 41. Thus, the BGA pad 52 and the wiring layer 12a are electrically connected to each other through the layer-indirectly assigned via 51, and are four-layer circuit wiring boards in which solder resist layers 61 and 62 are formed on the outermost layer.
Here, the insulating layer 10 is a polyimide film, a liquid crystal polymer film, a glass epoxy film, the resin films 21 and 31 are a polyimide film, a liquid crystal polymer film, etc., and the adhesive layer 21 and the layer 32 are an epoxy resin and a polyimide. Examples thereof include resins.

請求項1に係る発明では、上記の多層回路配線板100において、絶縁層10の膜厚をt、層間接属用ビア41及び51の直径をVDとしたとき、t<VDなる関係が満たされるようにしたものである。
最近の高速化、高密度化、薄型化に対応したもので、絶縁層20及び絶縁層30は導体層の薄型化と層間接属用ビア41及び51の接続長の短小化及び絶縁性を考慮してそれなりの厚さが設定されているが、絶縁層10の膜厚tについては、層間接属用ビア41及び51の直径VDよりも小さくなるようにした。
それは、ひとつは、接続長の短小化のためである。もうひとつは、絶縁層10が厚いならば、ビアに生じる応力は、ビアと絶縁層との位置関係よって定まり、向かい合うビアの位置には関係なくなるためである。
In the invention according to claim 1, in the multilayer circuit wiring board 100, when the film thickness of the insulating layer 10 is t and the diameters of the layer indirect metal vias 41 and 51 are V D , there is a relationship of t <V D. It is intended to be satisfied.
In response to recent increases in speed, density, and thickness, the insulating layer 20 and the insulating layer 30 take into consideration the reduction in the thickness of the conductor layer, the shortening of the connection length of the indirect layer vias 41 and 51, and the insulation. Thus, the thickness is set appropriately, but the thickness t of the insulating layer 10 is made smaller than the diameter V D of the layer indirect metal vias 41 and 51.
One is to shorten the connection length. The other is that if the insulating layer 10 is thick, the stress generated in the via is determined by the positional relationship between the via and the insulating layer, and is not related to the position of the opposing via.

請求項2に係る発明では、上記の多層回路配線板100において、層間接属用ビア41及び51の直径をVD、層間接属用ビア41と層間接属用ビア51の中心軸間距離をVCとしたとき、VC>2VDなる関係が満たされるようにして、近接する層間接属用ビアの中心軸間距離を限定したものである。
層間接属用ビア41と層間接属用ビア51の中心軸間距離VCを層間接属用ビア41及び51の直径VDの2倍以上離すことにより、温度サイクル等の熱衝撃が多層回路配線板100に加わっても、隣り合う層間接属用ビア41と層間接属用ビア51の相互作用が減少し、配線層の応力は緩和されるからである。
In the invention according to claim 2, in the multilayer circuit wiring board 100, the diameter of the layer indirect genus vias 41 and 51 is V D , and the distance between the central axes of the layer indirect genus via 41 and the layer indirect genus via 51 is set. When V C is set, the distance between the central axes of the adjacent layer indirect metal vias is limited so that the relationship of V C > 2V D is satisfied.
By separating the center axis distance V C between the layer indirect genus via 41 and the layer indirect genus via 51 by at least twice the diameter V D of the layer indirect genus vias 41 and 51, a thermal shock such as a temperature cycle is generated in the multilayer circuit. This is because even if it is added to the wiring board 100, the interaction between the adjacent layer indirect genus via 41 and the layer indirect genus via 51 decreases, and the stress of the wiring layer is relieved.

図2は、本発明のBGA型半導体装置の一実施例を示す模式構成部分断面図である。
本発明のBGA型半導体装置200は、本発明の多層回路配線板100の一方の面に半導体チップ110、スティフナ131及びリッド141を、他方の面にはんだボール121を実装したものである。
FIG. 2 is a schematic partial sectional view showing an embodiment of the BGA type semiconductor device of the present invention.
The BGA type semiconductor device 200 of the present invention is obtained by mounting the semiconductor chip 110, the stiffener 131 and the lid 141 on one surface of the multilayer circuit wiring board 100 of the present invention, and the solder ball 121 on the other surface.

以下本発明の多層回路配線板の実施例について図面を用いて説明する。
図3(a)〜(e)及び図4(f)〜(h)は、本発明の多層回路配線板の製造方法の一例を工程順に示す模式構成断面図である。
まず、厚さ25.4μmのポリイミドフィルムからなる絶縁層10の両面に厚さ12μmの銅箔を積層して導体層11及び12を形成した積層基材を準備した(図3(a)参照)。
Embodiments of the multilayer circuit wiring board of the present invention will be described below with reference to the drawings.
FIGS. 3A to 3E and FIGS. 4F to 4H are schematic configuration cross-sectional views illustrating an example of a method for manufacturing a multilayer circuit wiring board according to the present invention in the order of steps.
First, a laminated base material in which conductor layers 11 and 12 were formed by laminating a copper foil having a thickness of 12 μm on both surfaces of an insulating layer 10 made of a polyimide film having a thickness of 25.4 μm was prepared (see FIG. 3A). .

次に、導体層11および12上に感光性のドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行ってレジストパターンを形成し、レジストパターンをマスクにして導体層11及び12をエッチングして、レジストパターンを剥離処理して、絶縁層10の一方の面に、配線層11a及びグランド層12bを、他方の面に、配線層12a及びグランド層12bを形成した(図3(b)参照)。   Next, a photosensitive layer is formed by laminating a photosensitive dry film on the conductor layers 11 and 12, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern. The conductor layers 11 and 12 are etched using the mask, the resist pattern is peeled off, the wiring layer 11a and the ground layer 12b are formed on one surface of the insulating layer 10, and the wiring layer 12a and the ground layer are formed on the other surface. 12b was formed (see FIG. 3B).

次に、ポリイミドフィルムからなる厚さ13μmの樹脂フィルム21にエポキシ系樹脂からなる厚さ5μmの接着層22を、ポリイミドフィルムからなる厚さ13μmの樹脂フィルム31にエポキシ系樹脂からなる厚さ5μmの接着層32が形成された接着層付樹脂フィルムを、配線層11a、12aグランド層11b、12bが形成された絶縁層10の両面に積層し(図3(c)参照)、絶縁層10の両面に絶縁層20及び絶縁層30を形成した(図3(d)参照)。   Next, a 5 μm thick adhesive layer 22 made of an epoxy resin is applied to a 13 μm thick resin film 21 made of a polyimide film, and a 5 μm thick epoxy resin is made to a 13 μm thick resin film 31 made of a polyimide film. The resin film with an adhesive layer on which the adhesive layer 32 is formed is laminated on both surfaces of the insulating layer 10 on which the wiring layers 11a and 12a and the ground layers 11b and 12b are formed (see FIG. 3C). An insulating layer 20 and an insulating layer 30 were formed on the substrate (see FIG. 3D).

次に、UVレーザーを用いたレーザー加工により、絶縁層20及び絶縁層30の所定位置を孔明け加工して、ビア用孔23及びビア用孔33を形成した。さらに、ビア用孔23及びビア用孔33をデスミア処理して、ビア用孔23及びビア用孔33内、絶縁層20及
び絶縁層30上に無電解銅めっきにて、めっき下地導電層(特に、図示せず)を形成した(図3(e)参照)。
Next, the via holes 23 and the via holes 33 were formed by drilling predetermined positions of the insulating layer 20 and the insulating layer 30 by laser processing using a UV laser. Further, the via hole 23 and the via hole 33 are subjected to desmear treatment, and electroless copper plating is performed on the insulating layer 20 and the insulating layer 30 in the via hole 23 and the via hole 33 to form a plating base conductive layer (particularly, (Not shown) was formed (see FIG. 3E).

次に、感光性のドライフィルムをラミネートする等の方法で感光層を形成し、パターン露光、現像等の一連のパターニング処理を行って絶縁層20上にパターンめっき用のレジストパターン71を、絶縁層30上にパターンめっき用のレジストパターン72をそれぞれ形成した(図4(f)参照)。   Next, a photosensitive layer is formed by a method such as laminating a photosensitive dry film, and a series of patterning processes such as pattern exposure and development are performed to form a resist pattern 71 for pattern plating on the insulating layer 20. A resist pattern 72 for pattern plating was formed on 30 (see FIG. 4F).

次に、めっき下地導電層を給電層にして電解銅めっきを行い、ビア用穴23、33内及び絶縁層20、30上に導体層を形成し、レジストパターン71及び72を専用の剥離液で剥離し、レジストパターン71及び72下部にあっためっき下地導電層をクイックエッチングで除去し、絶縁層20の所定位置に直径50μmφの層間接属用ビア41及びICパッド42を、絶縁層30の所定位置に直径50μmφの層間接属用ビア51及びBGAパッド52を形成した(図4(g)参照)。   Next, electrolytic copper plating is performed using the plating base conductive layer as a power feeding layer, a conductor layer is formed in the via holes 23 and 33 and on the insulating layers 20 and 30, and the resist patterns 71 and 72 are formed with a dedicated stripping solution. The plating underlying conductive layer under the resist patterns 71 and 72 is removed by quick etching, and a layer indirect metal via 41 and an IC pad 42 having a diameter of 50 μmφ are formed at predetermined positions of the insulating layer 20. A layer indirect genus via 51 and a BGA pad 52 having a diameter of 50 μmφ were formed at the positions (see FIG. 4G).

最後に、スクリーン印刷にて、ソルダーレジスト層61及び62を形成して、絶縁層10の両面に絶縁層20および30を介して層間接属用ビア42及び51が形成された本発明の多層回路配線板100を得た。
ここで、層間接属用ビア41と層間接属用ビア51の中心軸間距離VCは120μmとした。
Finally, the solder resist layers 61 and 62 are formed by screen printing, and the indirect layer vias 42 and 51 are formed on both surfaces of the insulating layer 10 via the insulating layers 20 and 30. A wiring board 100 was obtained.
Here, the center axis distance V C between the layer indirect genus via 41 and the layer indirect genus via 51 was 120 μm.

実施例1と同様な工程で多層回路配線板を作製し、層間接属用ビア41と層間接属用ビア51の中心軸間距離VCが40μmの比較例1の多層回路配線板300を得た。 A multilayer circuit wiring board is manufactured in the same process as in the first embodiment, and the multilayer circuit wiring board 300 of Comparative Example 1 is obtained in which the center axis distance V C between the layer indirect genus via 41 and the layer indirect genus via 51 is 40 μm. It was.

実施例1と同様な工程で多層回路配線板を作製し、層間接属用ビア41と層間接属用ビア51の中心軸間距離VCが80μmの比較例2の多層回路配線板400を得た。 A multilayer circuit wiring board is produced in the same process as in the first embodiment, and the multilayer circuit wiring board 400 of Comparative Example 2 is obtained in which the center axis distance V C between the layer indirect genus via 41 and the layer indirect genus via 51 is 80 μm. It was.

実施例1〜実施例3で得られた多層回路配線板100、多層回路配線板300及び多層回路配線板400の温度サイクル試験を行い、断線に至るまでのサイクル数を記録した。与える温度変化は、低温−40℃、高温125℃、各温度で30分間保持し、低温から高温、及び高温から低温への温度変化に要する時間は5分間とした。温度サイクル試験は1200回まで行った。結果を表1に示す。   Temperature cycle tests of the multilayer circuit wiring board 100, the multilayer circuit wiring board 300, and the multilayer circuit wiring board 400 obtained in Examples 1 to 3 were performed, and the number of cycles until disconnection was recorded. The temperature change to be applied was a low temperature of −40 ° C. and a high temperature of 125 ° C., each temperature being maintained for 30 minutes, and the time required for the temperature change from the low temperature to the high temperature and from the high temperature to the low temperature was 5 minutes. The temperature cycle test was conducted up to 1200 times. The results are shown in Table 1.

Figure 2006216811
表1に示すように、層間接属用ビア41と層間接属用ビア51の中心軸間距離VCが層間接属用ビアの直径の二倍(100μm)以上離れれば温度サイクル1000回を上回ることが確認された。
Figure 2006216811
As shown in Table 1, if the center axis distance V C between the layer indirect genus via 41 and the layer indirect genus via 51 is more than twice the diameter of the layer indirect genus via (100 μm), the temperature cycle exceeds 1000 times. It was confirmed.

本発明の多層回路配線板の一実施例を示す模式構成断面図である。1 is a schematic cross-sectional view showing an embodiment of a multilayer circuit wiring board according to the present invention. 本発明の半導体装置の一実施例を示す模式構成断面図である。1 is a schematic cross-sectional view showing an embodiment of a semiconductor device of the present invention. (a)〜(e)は、本発明の多層回路配線板の製造方法における工程の一部を示す模式構成断面図である。(A)-(e) is typical structure sectional drawing which shows a part of process in the manufacturing method of the multilayer circuit wiring board of this invention. (f)〜(h)は、本発明の多層回路配線板の製造方法における工程の一部を示す模式構成断面図である。(F)-(h) is typical structure sectional drawing which shows a part of process in the manufacturing method of the multilayer circuit wiring board of this invention.

符号の説明Explanation of symbols

10、20、30……絶縁層
11、12……導体層
11a、12a……配線層
11b、12b……グランド層
21、31……樹脂フィルム
22、32……接着層
23、33……ビア用孔
41、51……層間接続用ビア
42……ICパッド
52……BGAパッド
61、62……ソルダーレジスト層
71、72……レジストパターン
100、300、400……多層回路配線板
110……半導体チップ
121……はんだボール
131……スティフナ
141……リッド
200……半導体装置
10, 20, 30 ... Insulating layers 11, 12 ... Conductor layers 11a, 12a ... Wiring layers 11b, 12b ... Ground layers 21, 31 ... Resin films 22, 32 ... Adhesive layers 23, 33 ... Vias Hole 41, 51 ... interlayer connection via 42 ... IC pad 52 ... BGA pad 61, 62 ... solder resist layer 71, 72 ... resist pattern 100, 300, 400 ... multilayer circuit wiring board 110 ... Semiconductor chip 121 …… Solder ball 131 …… Stiffener 141 …… Lid 200 …… Semiconductor device

Claims (3)

絶縁層(10)の両面に絶縁層(20)及び絶縁層(30)を介して層間接属用ビア(41)及び(51)が形成されてなる多層回路配線板であって、前記絶縁層(10)の膜厚をt、前記層間接属用ビア(41)及び(51)の直径をVDとしたとき、
t<VDなる関係が満たされていることを特徴とする多層回路配線板。
A multilayer circuit wiring board in which vias (41) and (51) for indirectly connecting layers are formed on both surfaces of an insulating layer (10) via an insulating layer (20) and an insulating layer (30), the insulating layer When the thickness of (10) is t and the diameter of the layer indirect genus vias (41) and (51) is V D ,
A multilayer circuit wiring board characterized by satisfying a relationship of t <V D.
前記層間接属用ビア(41)及び(51)の直径をVD、前記層間接属用ビア(41)と前記層間接属用ビア(51)の中心軸間距離をVCとしたとき、
C>2VDなる関係が満たされていることを特徴とする請求項1に記載の多層回路配線板。
When the diameter of the layer indirect genus vias (41) and (51) is V D , and the distance between the central axes of the layer indirect genus via (41) and the layer indirect genus via (51) is V C ,
2. The multilayer circuit wiring board according to claim 1, wherein a relationship of V C > 2V D is satisfied.
請求項1または2に記載の多層回路配線板を用いて半導体チップ等を実装し、半導体装置を作製したことを特徴とするBGA型半導体装置。   A BGA type semiconductor device, wherein a semiconductor device or the like is mounted by using the multilayer circuit wiring board according to claim 1 or 2 to produce a semiconductor device.
JP2005028630A 2005-02-04 2005-02-04 Multilayer circuit wiring board and bga-type semiconductor device Pending JP2006216811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028630A JP2006216811A (en) 2005-02-04 2005-02-04 Multilayer circuit wiring board and bga-type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028630A JP2006216811A (en) 2005-02-04 2005-02-04 Multilayer circuit wiring board and bga-type semiconductor device

Publications (1)

Publication Number Publication Date
JP2006216811A true JP2006216811A (en) 2006-08-17

Family

ID=36979758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028630A Pending JP2006216811A (en) 2005-02-04 2005-02-04 Multilayer circuit wiring board and bga-type semiconductor device

Country Status (1)

Country Link
JP (1) JP2006216811A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327971A (en) * 2003-04-03 2004-11-18 Matsushita Electric Ind Co Ltd Wiring board, manufacturing method for wiring board and electronic equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327971A (en) * 2003-04-03 2004-11-18 Matsushita Electric Ind Co Ltd Wiring board, manufacturing method for wiring board and electronic equipment

Similar Documents

Publication Publication Date Title
US6192581B1 (en) Method of making printed circuit board
JP5331958B2 (en) Wiring board and semiconductor package
KR101015704B1 (en) Chip embedded printed circuit board and manufacturing method thereof
JP4651597B2 (en) Semiconductor package substrate
US20120012379A1 (en) Printed circuit board
JP2017123459A (en) Printed circuit board
JP2011023626A (en) Semiconductor device and method of manufacturing the same
KR101601815B1 (en) Embedded board, printed circuit board and method of manufactruing the same
KR100990588B1 (en) A printed circuit board comprising landless via and method for manufacturing the same
JP2015207580A (en) Wiring board and manufacturing method of the same
KR20150006686A (en) Printed Circuit Board and Method of Manufacturing The Same
JP4945919B2 (en) BGA type multilayer circuit board
JP2000216289A (en) Package for semiconductor device
JP2007027706A (en) Wiring board, manufacturing method therefor and semiconductor package
JP2005243850A (en) Multilayer printed wiring board and its manufacturing method
CN111834232B (en) Transfer carrier plate without characteristic layer structure and manufacturing method thereof
KR100704911B1 (en) Electronic chip embedded pcb and method of the same
JP2004221618A (en) Semiconductor device mounting substrate and its manufacturing method, as well as semiconductor package
JP2011222962A (en) Print circuit board and method of manufacturing the same
JP5206217B2 (en) Multilayer wiring board and electronic device using the same
JP5426261B2 (en) Semiconductor device
TWI361483B (en) Aluminum oxide-based substrate and method for manufacturing the same
JP2006216811A (en) Multilayer circuit wiring board and bga-type semiconductor device
JP2005026470A (en) Module with built-in component and its manufacturing method
JP2005340355A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823