JP2006215388A - Method for manufacturing conductive member - Google Patents

Method for manufacturing conductive member Download PDF

Info

Publication number
JP2006215388A
JP2006215388A JP2005029523A JP2005029523A JP2006215388A JP 2006215388 A JP2006215388 A JP 2006215388A JP 2005029523 A JP2005029523 A JP 2005029523A JP 2005029523 A JP2005029523 A JP 2005029523A JP 2006215388 A JP2006215388 A JP 2006215388A
Authority
JP
Japan
Prior art keywords
conductive
layer
charging
conductive particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005029523A
Other languages
Japanese (ja)
Other versions
JP4727244B2 (en
Inventor
Toshihiro Otaka
利博 大高
Hideta Araki
秀太 荒木
Hisanari Sawada
弥斉 澤田
Atsushi Ikeda
敦 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Chemicals Inc
Original Assignee
Canon Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Chemicals Inc filed Critical Canon Chemicals Inc
Priority to JP2005029523A priority Critical patent/JP4727244B2/en
Publication of JP2006215388A publication Critical patent/JP2006215388A/en
Application granted granted Critical
Publication of JP4727244B2 publication Critical patent/JP4727244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a conductive member capable of outputting an excellent image free from an image defect over a long term even when an electrophotographic device to be applied is an electrophotographic device using only DC voltage as voltage to be applied to an electrifying member. <P>SOLUTION: A conductive covering layer provided on a conductive supporting body is a layer in which conductive particles are dispersed. Processing for stirring a mixture for forming the layer at the time of forming the layer is performed in a plurality of stages. In each stage, dispersion share in the succeeding stage is switched to be low. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリンタ、ファクシミリ及び複写機等の電子写真方式を採用した画像形成装置における被接触物を電気的にコントロールする導電性部材(例えば、帯電部材、現像剤担持部材、転写部材、クリーニング部材、除電部材等)の製造方法に関する。   The present invention relates to a conductive member (for example, a charging member, a developer carrying member, a transfer member, and a cleaning member) that electrically controls an object to be contacted in an image forming apparatus employing an electrophotographic system such as a printer, a facsimile machine, and a copying machine. , A static elimination member, etc.).

電子写真方式を採用した画像形成装置、いわゆる電子写真装置は、電子写真感光体、帯電手段、露光手段、現像手段および転写手段を有するものが一般的である。   An image forming apparatus employing an electrophotographic system, that is, an electrophotographic apparatus, generally includes an electrophotographic photosensitive member, a charging unit, an exposure unit, a developing unit, and a transfer unit.

また、この帯電手段としては、電子写真感光体の表面に接触または近接配置された帯電部材に電圧(直流電圧のみの電圧または直流電圧に交流電圧を重畳した電圧)を印加することによって該電子写真感光体の表面を帯電する方式のものが多く採用されている。帯電部材に印加する電圧として、直流電圧に交流電圧を重畳した電圧を採用した場合、交流電源が必要となって電子写真装置の大型化やコストアップを招いたり、電力消費量が増加したり、交流電流の使用によるオゾンなどの多量発生によって帯電部材や電子写真感光体の耐久性が低下したりするため、これらの観点からすると、帯電部材への印加電圧は直流電圧のみの電圧であることが好ましい。   Further, as this charging means, a voltage (a voltage of only DC voltage or a voltage obtained by superimposing an AC voltage on a DC voltage) is applied to a charging member that is in contact with or close to the surface of the electrophotographic photosensitive member. Many systems that charge the surface of the photoreceptor are used. As a voltage to be applied to the charging member, when a voltage obtained by superimposing an AC voltage on a DC voltage is used, an AC power source is required, leading to an increase in size and cost of the electrophotographic apparatus, an increase in power consumption, From the above viewpoint, the voltage applied to the charging member may be only a DC voltage because the durability of the charging member and the electrophotographic photosensitive member may decrease due to the large amount of ozone generated by the use of alternating current. preferable.

更には、帯電を安定に行なう、オゾンの発生を低減する、あるいは、低コストという観点から、接触式の帯電方式が好んで用いられている。   Furthermore, a contact-type charging method is preferably used from the viewpoint of stably charging, reducing the generation of ozone, or reducing the cost.

帯電部材への印加電圧を直流電圧のみの電圧とした場合、帯電処理された被帯電体表面の帯電電位がムラになりやすく、また、微小のスジ状の画像欠陥が生じやすく、帯電の均一性が得られ難い場合がある。また、帯電部材が連続使用により通電劣化した場合には、帯電部材の抵抗が上昇(チャージアップ)し易く、それに伴い帯電処理された被帯電体表面の帯電電位が低下するという問題がある。また、接触式の帯電方式を用いる画像形成装置においては、帯電部材の汚れ(現像剤の表面付着など)が生じた場合には、この汚れによる帯電不良により画像濃度ムラ等が生じるという問題がある。特に、帯電部材に直流電圧のみを印加する帯電方式の場合、帯電部材の汚れの影響が直流電圧に交流電圧を重畳した電圧を印可する帯電方式に比べ、画像不良として現れ易い傾向にある。   When the voltage applied to the charging member is a DC voltage only, the charged potential on the surface of the charged object is likely to be uneven, and minute streak-like image defects are likely to occur, and the charging uniformity. May be difficult to obtain. In addition, when the charging member is deteriorated by energization due to continuous use, there is a problem that the resistance of the charging member is likely to increase (charge up), and the charging potential on the surface of the charged object is reduced accordingly. Further, in the image forming apparatus using the contact-type charging method, when the charging member is contaminated (development of the developer surface, etc.), there is a problem that image density unevenness is caused by the charging failure due to the contamination. . In particular, in the charging method in which only a DC voltage is applied to the charging member, the influence of contamination on the charging member tends to appear as an image defect compared to a charging method in which a voltage in which an AC voltage is superimposed on the DC voltage is applied.

この問題に対して、帯電の均一性を得る事を目的として、導電性の粒子を用いることにより抵抗の均一性を得るという技術が特許文献1に開示されている。   To solve this problem, Patent Document 1 discloses a technique for obtaining uniformity of resistance by using conductive particles for the purpose of obtaining uniformity of charging.

しかし、粒径の小さい粒子は、表面エネルギーが大きいため、粒子同士の凝集力が強く、ストラクチャー構造などの2次凝集体を形成していることが多い。そのため、粒径の小さな導電性粒子を導電性部材中に均一に分散させることが容易ではなく、ミクロ的な抵抗ムラを生じやすく、抵抗の均一性が得られ難い場合がある。   However, particles having a small particle size have a large surface energy, so that the particles have a strong cohesive force and often form secondary aggregates such as a structure structure. For this reason, it is not easy to uniformly disperse the conductive particles having a small particle diameter in the conductive member, and micro resistance unevenness is likely to occur, and it may be difficult to obtain resistance uniformity.

これに対して、分散工程の分散機や工程を増やして、分散シェア及び分散効率を上げ、高分散性を得るという技術が、特許文献2、3に開示されている。
特開平06−250494号公報 特開2003−207966号公報 特開平09−146342号公報
On the other hand, Patent Documents 2 and 3 disclose techniques for increasing the dispersion share and efficiency by increasing the number of dispersers and processes in the dispersion process and obtaining high dispersibility.
Japanese Patent Laid-Open No. 06-250494 JP 2003-207966 A JP 09-146342 A

しかしながら、高分散性を得ようと強いシェアにより分散処理を行なうと、分散工程が終了すると、急激にシェアから開放されるため、反発的に再凝集等が起こりる場合があり、このような場合には、導電粒子の分散状態が不安定化し、安定性が悪いという問題がある。   However, if dispersion processing is performed with a strong share in order to obtain high dispersibility, when the dispersion process is completed, it is suddenly released from the share, so reaggregation may occur repulsively. However, there is a problem that the dispersion state of the conductive particles becomes unstable and the stability is poor.

本発明の目的は、被接触物を電気的にコントロールし得る導電性部材、特に直流電圧を印加して、被接触物を帯電させるための導電性部材として、導電性粒子の分散性が良好であり、抵抗の均一性が確保された導電性部材を製造できる方法を提供することにある。本発明の他の目的は、導電性粒子の分散性が良好であり、ミクロ的な抵抗ムラを生じなく、抵抗の均一性が得られている導電性被覆層を有し、帯電不良の発生や画像欠陥の発生という問題が改善され、かつ、長期にわたっての改良された抵抗均一性を有する直流印加用の帯電部材として好適な導電性部材の製造方法を提供することにある。   The object of the present invention is to provide a conductive member that can electrically control a contacted object, in particular, a conductive member for charging a contacted object by applying a DC voltage, and has a good dispersibility of conductive particles. It is another object of the present invention to provide a method capable of manufacturing a conductive member in which uniformity of resistance is ensured. Another object of the present invention is to have a conductive coating layer that has good dispersibility of conductive particles, does not cause microscopic resistance unevenness, and has uniform resistance, An object of the present invention is to provide a method for producing a conductive member suitable as a charging member for direct current application which has improved the problem of occurrence of image defects and has improved resistance uniformity over a long period of time.

本発明にかかる導電性部材の製造方法は、導電性支持体上に、導電性粒子を含む導電性被覆層を少なくとも有する導電性部材の製造方法において、
層形成用材料と導電性粒子とを少なくとも含む混合物を用意する工程と、
前記混合物を攪拌して該混合物中に導電性粒子を分散させる工程と、
前記導電性粒子を分散状態で含む混合物から導電性層を形成する工程と、
前記導電性層を導電性支持体上の被覆層とする工程と
を有し、
前記混合物中への導電性粒子の分散を、分散シェアの異なるn段階(n≧2)の攪拌処理により行い、かつn段階の分散シェアよりもn+1段階目の分散シェアが小さい
ことを特徴とする導電性部材の製造方法である。
The method for producing a conductive member according to the present invention is a method for producing a conductive member having at least a conductive coating layer containing conductive particles on a conductive support.
Preparing a mixture containing at least a layer forming material and conductive particles;
Stirring the mixture to disperse conductive particles in the mixture;
Forming a conductive layer from a mixture containing the conductive particles in a dispersed state;
Having the conductive layer as a coating layer on a conductive support,
Conductive particles are dispersed in the mixture by n-stage (n ≧ 2) stirring processes with different dispersion shares, and the dispersion share of the (n + 1) th stage is smaller than the dispersion share of the n-stage. It is a manufacturing method of an electroconductive member.

本発明によれば、表面層として、導電性粒子を分散させた導電性の被覆層を有する導電性部材であっても、粒子が均一に分散することが容易で、ミクロ的な抵抗ムラを生じなく、抵抗の均一性が得られ、被接触物を電気的にコントロールする導電性部材(例えば、電子写真装置の帯電部材、現像剤担持部材、転写部材、クリーニング部材、除電部材等)として好適な導電性部材を得ることができる。特に、この導電性部材を電子写真装置の接触帯電部材として用いることにより、帯電不良が発生しにくく、画像欠陥のない良好な画像出力を可能とし、かつ、接触帯電部材の長期にわたって抵抗の均一性を維持することが可能な接触帯電部材を提供することができる。   According to the present invention, even a conductive member having a conductive coating layer in which conductive particles are dispersed as a surface layer can easily disperse particles uniformly, resulting in microscopic resistance unevenness. And uniform resistance, and suitable as a conductive member (for example, a charging member, a developer carrying member, a transfer member, a cleaning member, or a charge removing member of an electrophotographic apparatus) for electrically controlling an object to be contacted. A conductive member can be obtained. In particular, by using this conductive member as a contact charging member of an electrophotographic apparatus, it is possible to produce a good image output that is less likely to cause charging defects and has no image defects, and has a uniform resistance over a long period of time. It is possible to provide a contact charging member capable of maintaining the above.

本発明の製造方法が適用可能な導電性部材としては、導電性支持体上に導電性被覆層を少なくとも有する構成のものであり、その用途に応じた層構成とすることができる。本発明の製造方法で得られる導電性部材は、電子写真装置の帯電部材、現像剤担持部材、転写部材、クリーニング部材、除電部材等として利用でき、特に、直流電圧を印加して用いる部材、中でも帯電部材として特に好適に利用し得る。更に、導電性部材の表面層の形成に、本発明にかかる分散シェアの異なる複数の攪拌処理を適用することで、導電性部材の特性の改善を効果的に行なうことが可能となる。   The conductive member to which the production method of the present invention can be applied has a structure having at least a conductive coating layer on a conductive support, and can have a layer structure corresponding to its use. The conductive member obtained by the production method of the present invention can be used as a charging member, a developer carrying member, a transfer member, a cleaning member, a charge eliminating member, etc. of an electrophotographic apparatus, particularly a member used by applying a DC voltage, It can be particularly suitably used as a charging member. Furthermore, it is possible to effectively improve the characteristics of the conductive member by applying a plurality of stirring processes having different dispersion shares according to the present invention to the formation of the surface layer of the conductive member.

帯電部材として利用する場合の導電性部材の構成の一例を図2及び3に示す。図2に示す帯電部材は図2に示すようにローラ形状であり、導電性支持体2aと被覆層として、その外周に一体に形成された弾性層2bから構成されている。帯電部材の他の構成を図3に示す。図3に示すように帯電部材は、被覆層が弾性層2bと表面層2cからなる2層であってもよいし、弾性層2b及び抵抗層2dと表面層2cからなる3層及び、抵抗層2dと表面層2cの間に第2の抵抗層2eを設けた、4層以上を導電性支持体2aの上に形成した構成としてもよい。   An example of the structure of the conductive member when used as a charging member is shown in FIGS. The charging member shown in FIG. 2 has a roller shape as shown in FIG. 2, and is composed of a conductive support 2a and an elastic layer 2b integrally formed on the outer periphery thereof as a coating layer. Another configuration of the charging member is shown in FIG. As shown in FIG. 3, the charging member may be a two-layer coating layer composed of an elastic layer 2b and a surface layer 2c, a three-layer layer composed of an elastic layer 2b, a resistance layer 2d and a surface layer 2c, and a resistance layer. It is good also as a structure which provided the 2nd resistance layer 2e between 2d and the surface layer 2c, and formed four or more layers on the electroconductive support body 2a.

導電性支持体2aは、鉄、銅、ステンレス、アルミニウム及びニッケル等の金属材料の丸棒を用いることができる。更に、これらの金属表面に防錆や耐傷性付与を目的としてメッキ処理を施しても構わないが、導電性を損なわないことが必要である。   As the conductive support 2a, a round bar made of a metal material such as iron, copper, stainless steel, aluminum and nickel can be used. Furthermore, these metal surfaces may be plated for the purpose of providing rust prevention and scratch resistance, but it is necessary not to impair the conductivity.

上記の構成の帯電ローラにおいて、弾性層2bは被帯電体としての電子写真感光体に対する給電や、電子写真感光体1に対する良好な均一密着性を確保するために適当な導電性と弾性を持たせてある。また、帯電ローラと電子写真感光体の均一密着性を確保するために弾性層2bを研磨によって中央部を一番太く、両端部に行くほど細くなる形状、いわゆるクラウン形状に形成することが好ましい。一般的な電子写真装置の構造では、帯電ローラ2が、支持体2aの両端部に所定の押圧力を与えて電子写真感光体1と当接されているので、中央部の押圧力が小さく、両端部ほど大きくなっているために、帯電ローラ1の真直度が十分であれば問題ないが、十分でない場合には中央部と両端部に対応する画像に濃度ムラが生じてしまう場合がある。クラウン形状は、これを防止するために形成する。   In the charging roller having the above-described configuration, the elastic layer 2b has appropriate conductivity and elasticity in order to supply power to the electrophotographic photosensitive member as the member to be charged and to ensure good uniform adhesion to the electrophotographic photosensitive member 1. It is. In order to ensure uniform adhesion between the charging roller and the electrophotographic photosensitive member, it is preferable to form the elastic layer 2b in a so-called crown shape by polishing so that the central portion is thickest and narrows toward both ends. In the structure of a general electrophotographic apparatus, the charging roller 2 applies a predetermined pressing force to both ends of the support 2a and is in contact with the electrophotographic photosensitive member 1, so that the pressing force at the center is small, Since both ends are large, there is no problem if the straightness of the charging roller 1 is sufficient, but if it is not sufficient, density unevenness may occur in the images corresponding to the center and both ends. The crown shape is formed to prevent this.

弾性層2bの導電性は、ゴム等の弾性材料中にカーボンブラック、グラファイト及び導電性金属酸化物等から選択された電子伝導機構を有する導電剤、及びアルカリ金属塩や四級アンモニウム塩等のイオン伝導機構を有する導電剤を、適宜添加することにより1010Ωcm未満に調整されるのがよい。 The conductivity of the elastic layer 2b is a conductive agent having an electron conduction mechanism selected from carbon black, graphite and a conductive metal oxide in an elastic material such as rubber, and ions such as alkali metal salts and quaternary ammonium salts. It is preferable to adjust to less than 10 10 Ωcm by appropriately adding a conductive agent having a conduction mechanism.

弾性層2bを形成するための層形成用材料としての具体的な弾性材料としては、例えば、天然ゴム、エチレンプロピレンゴム(EPDM)、スチレンブタジエンゴム(SBR)、シリコンーンゴム、ウレタンゴム、エピクロルヒドリンゴム、イソプレンゴム(IR)、ブタジエンゴム(BR)、ニトリルブタジエンゴム(NBR)及びクロロプレンゴム(CR)等の合成ゴム、更にはポリアミド樹脂、ポリウレタン樹脂及びシリコーン樹脂等も挙げられる。   Specific elastic materials as a layer forming material for forming the elastic layer 2b include, for example, natural rubber, ethylene propylene rubber (EPDM), styrene butadiene rubber (SBR), silicone rubber, urethane rubber, epichlorohydrin rubber, isoprene. Synthetic rubbers such as rubber (IR), butadiene rubber (BR), nitrile butadiene rubber (NBR), and chloroprene rubber (CR), as well as polyamide resins, polyurethane resins, and silicone resins are also included.

直流電圧のみを印加して、被帯電体の帯電処理を行なう帯電部材においては、帯電均一性を達成するために、特に中抵抗の極性ゴム(例えば、エピクロルヒドリンゴム、NBR、CR及びウレタンゴム等)やポリウレタン樹脂を弾性材料として用いるのが好ましい。これらの極性ゴムやポリウレタン樹脂は、ゴムや樹脂中の水分や不純物がキャリアとなり、僅かではあるが導電性をもつと考えられ、これらの導電機構はイオン伝導であると考えられる。但し、これらの極性ゴムやポリウレタン樹脂に導電剤を全く添加しないで弾性層を作製し、得られた帯電部材は低温低湿環境(L/L)において、抵抗値が高くなり1010Ωcm以上となってしまうものもあるため帯電部材に高電圧を印加しなければならなくなる。 In a charging member that applies a direct current voltage to charge the object to be charged, in order to achieve charging uniformity, particularly a moderate resistance polar rubber (eg, epichlorohydrin rubber, NBR, CR, urethane rubber, etc.) It is preferable to use polyurethane resin as an elastic material. These polar rubbers and polyurethane resins are considered to have a slight conductivity due to moisture and impurities in the rubber and resin as carriers, and these conduction mechanisms are considered to be ionic conduction. However, an elastic layer is prepared without adding a conductive agent to these polar rubbers and polyurethane resins, and the obtained charging member has a high resistance value of 10 10 Ωcm or more in a low temperature and low humidity environment (L / L). Therefore, a high voltage must be applied to the charging member.

そこで、L/L環境で帯電部材の抵抗値が1010Ωcm未満になるように、前述した電子導電機構を有する導電剤やイオン導電機構を有する導電剤を適宜添加して調整するのが好ましい。しかしながら、イオン導電機構を有する導電剤は抵抗値を低くする効果が小さく、特にL/L環境でその効果が小さい。そのため、イオン導電機構を有する導電剤の添加と併せて電子導電機構を有する導電剤を補助的に添加して抵抗調整を行ってもよい。 Therefore, it is preferable to adjust the conductive member having the above-described electronic conductive mechanism and the conductive agent having the ionic conductive mechanism by appropriately adding so that the resistance value of the charging member is less than 10 10 Ωcm in the L / L environment. However, the conductive agent having an ionic conduction mechanism has a small effect of lowering the resistance value, and particularly in the L / L environment. Therefore, the resistance adjustment may be performed by supplementarily adding a conductive agent having an electronic conductive mechanism in addition to the addition of a conductive agent having an ionic conductive mechanism.

また、弾性層2bはこれらの弾性材料を発泡成型した発泡体であってもよい。   The elastic layer 2b may be a foam obtained by foaming these elastic materials.

弾性層の厚さは、好ましくは0.5〜20mm、特には1〜10mmであることが好ましい。   The thickness of the elastic layer is preferably 0.5 to 20 mm, particularly 1 to 10 mm.

表面層2cは、帯電部材の表面を構成し、被帯電体である感光体と接触するため感光体を汚染してしまう材料構成では好ましくない。また、表面離型性のよいものが好ましいといえる。従って、表面層を形成するための層形成用材料(結着材料)としては、樹脂を用いるのが好ましいといえる。   The surface layer 2c constitutes the surface of the charging member, and is not preferable in a material configuration that contaminates the photoconductor because it contacts the photoconductor that is the object to be charged. Moreover, it can be said that the thing with surface releasability is preferable. Therefore, it can be said that it is preferable to use a resin as the layer forming material (binding material) for forming the surface layer.

表面層2cの結着樹脂材料としては、フッ素樹脂、ポリアミド樹脂、アクリル樹脂、ポリウレタン樹脂、シリコーン樹脂、ブチラール樹脂、スチレン−エチレン・ブチレン−オレフィン共重合体(SEBC)及びオレフィン−エチレン・ブチレン−オレフィン共重合体(CEBC)等を用いることが好ましい。この表面層2cを本発明の製造方法にかかる被覆層形成工程によって形成する場合は、フッ素樹脂、アクリル樹脂及びシリコーン樹脂等が特に好ましい。   As the binder resin material for the surface layer 2c, fluororesin, polyamide resin, acrylic resin, polyurethane resin, silicone resin, butyral resin, styrene-ethylene-butylene-olefin copolymer (SEBC), and olefin-ethylene-butylene-olefin It is preferable to use a copolymer (CEBC) or the like. When the surface layer 2c is formed by the coating layer forming step according to the production method of the present invention, a fluororesin, an acrylic resin, a silicone resin, and the like are particularly preferable.

これらの結着樹脂に静摩擦係数を小さくする目的で、グラファイト、雲母、二硫化モリブテン及びフッ素樹脂粉末等の固体潤滑剤、あるいはフッ素系界面活性剤、あるいはワックス、及びシリコーンオイル等を添加してもよい。   For the purpose of reducing the static friction coefficient to these binder resins, solid lubricants such as graphite, mica, molybdenum disulfide and fluororesin powder, or fluorosurfactants, wax, silicone oil, etc. may be added. Good.

表面層2cには、各種導電性粒子を適宜用いる。導電性粒子としては、金属酸化物系導電性粒子、金属系導電性粒子、カーボンブラック、カーボン系導電性粒子等を挙げることができ、本発明においては、所望の電気抵抗を得るためには、該各種導電性粒子を2種以上併用してもよい。   Various conductive particles are appropriately used for the surface layer 2c. Examples of the conductive particles include metal oxide-based conductive particles, metal-based conductive particles, carbon black, and carbon-based conductive particles. In the present invention, in order to obtain a desired electric resistance, Two or more kinds of the various conductive particles may be used in combination.

金属酸化物系導電性粒子としては、酸化亜鉛、酸化錫、酸化インジウム、酸化チタン(二酸化チタン、一酸化チタン等)、酸化鉄、酸化アルミニウム等、が挙げられる。前記金属酸化物系導電性粒子はそれのみで十分な導電性を示すものもあるがそうでないものも存在する。粒子の導電性を十分なものとするため、これらの粒子に、ドーパントを添加しても良い。一般的に金属酸化物格子欠陥の存在により、余剰電子が生成し、導電性を示すと考えられ、ドーパント添加によって格子欠陥の形成が促進され、十分な導電性を得ることができるのである。例えば、酸化亜鉛のドーパントとしてはアルミニウム、酸化錫のドーパントとしてはアンチモン、酸化インジウムのドーパントとしては錫などが使用される。また、酸化チタンの導電性を得る場合は、酸化チタンに導電性酸化錫を被覆したものなども挙げることができる。さらには、シリカ等の金属酸化物からなる基体の表面に、カーボンブラックを含む層を被覆したものなども挙げられる。   Examples of the metal oxide conductive particles include zinc oxide, tin oxide, indium oxide, titanium oxide (titanium dioxide, titanium monoxide, etc.), iron oxide, aluminum oxide, and the like. Some of the metal oxide-based conductive particles show sufficient conductivity by themselves, but some of them do not. In order to make the conductivity of the particles sufficient, a dopant may be added to these particles. In general, it is considered that surplus electrons are generated due to the presence of metal oxide lattice defects and show conductivity, and formation of lattice defects is promoted by addition of a dopant, and sufficient conductivity can be obtained. For example, aluminum is used as a dopant for zinc oxide, antimony is used as a dopant for tin oxide, and tin is used as a dopant for indium oxide. Moreover, when obtaining the electroconductivity of titanium oxide, what coated electroconductive tin oxide on titanium oxide etc. can be mentioned. Furthermore, the thing which coat | covered the layer containing carbon black on the surface of the base | substrate which consists of metal oxides, such as a silica, etc. are mentioned.

金属系導電性粒子としては、銀、銅、ニッケル、亜鉛等が挙げられる。   Examples of the metal conductive particles include silver, copper, nickel, and zinc.

カーボンブラックとしては、アセチレンブラック、ファーネスブラック、チャンネルブラック等が挙げられる。   Examples of carbon black include acetylene black, furnace black, and channel black.

カーボン系導電性粒子としては、グラファイト、カーボンファイバー、活性炭、木炭等を挙げることができる。   Examples of the carbon conductive particles include graphite, carbon fiber, activated carbon, charcoal and the like.

導電性粒子の粒径は平均粒径で1.0μm未満であることが好ましい。平均粒径が1.0μmを超えると感光ドラム上にピンホールが存在した場合、ピンホールリークが発生する場合がある。また、導電性粒子の比重が重い場合は平均粒径が1.0μmを超えると塗布液中で導電性粒子が沈降しやすくなり、塗布液の分散安定性が悪くなる場合がある。   The average particle size of the conductive particles is preferably less than 1.0 μm. If the average particle size exceeds 1.0 μm, pinhole leakage may occur if pinholes exist on the photosensitive drum. When the specific gravity of the conductive particles is heavy, if the average particle size exceeds 1.0 μm, the conductive particles are likely to settle in the coating solution, and the dispersion stability of the coating solution may be deteriorated.

導電性粒子の比重は、好ましくは0.8〜8.0、特には1.0〜7.0であることが好ましい。   The specific gravity of the conductive particles is preferably 0.8 to 8.0, particularly 1.0 to 7.0.

これらの粒子は、表面処理、変性、官能基の導入、コートなどを施したものでもよい。   These particles may be subjected to surface treatment, modification, introduction of functional groups, coating, and the like.

表面層の抵抗値は、104〜1015Ωcmであることが好ましい。また、厚さは1〜500μmであることが好ましい。特には1〜50μmであることが好ましい。抵抗層の厚さについても、表面層と同等であることが好ましい。 The resistance value of the surface layer is preferably 10 4 to 10 15 Ωcm. Moreover, it is preferable that thickness is 1-500 micrometers. In particular, it is preferably 1 to 50 μm. The thickness of the resistance layer is also preferably the same as that of the surface layer.

上記の表面被覆層、弾性被覆層および抵抗層の形成は、例えば、あらかじめ所定の膜厚に形成されたシート形状またはチューブ形状の層を接着または被覆することによって行ってもよいし、静電スプレー塗布やディッピング塗布などの塗布法によって行ってもよい。また、押し出し成形によって大まかに層形成した後、研磨などによって層の形状を整える方法であってもよいし、型内で所定の形状に材料を硬化、成形する方法であってもよい。すなわち、予めシート状やチューブ状の層を形成して、この層を導電性支持体上に被覆して被覆層を形成する場合は、導電性粒子を分散状態で含む混合物から導電性層を形成する工程と、導電性層を導電性支持体上の被覆層とする工程とが別工程として行なわれ、塗布法のように導電性支持体上に直接導電性被覆層を設ける場合は、これらの工程が一工程として行なわれる。   The surface coating layer, the elastic coating layer, and the resistance layer may be formed by, for example, adhering or coating a sheet-shaped or tube-shaped layer formed in advance to a predetermined film thickness, or electrostatic spraying. The coating may be performed by a coating method such as coating or dipping. Moreover, after forming a layer roughly by extrusion molding, the method of adjusting the shape of a layer by grinding | polishing etc. may be used, and the method of hardening and shaping | molding material to a predetermined shape within a type | mold may be used. That is, when a sheet-like or tube-like layer is formed in advance and this layer is coated on a conductive support to form a coating layer, the conductive layer is formed from a mixture containing conductive particles in a dispersed state. And when the conductive layer is provided directly on the conductive support as in the coating method, these steps are performed as separate steps. A process is performed as one process.

塗布法によって層を形成する場合、塗布液に用いられる溶剤としては、層形成用材料、例えば例えば結着材料やその他の被覆層形成に必要な材料を溶解または分散することができる溶剤であればよく、例えば、メタノール、エタノール、イソプロパノールなどのアルコール類や、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類や、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類や、ジメチルスルホキシドなどのスルホキシド類や、テトラヒドロフラン、ジオキサン、エチレングリコールモノメチルエーテルなどのエーテル類や、酢酸メチル、酢酸エチルなどのエステル類や、クロロホルム、塩化エチレン、ジクロルエチレン、四塩化炭素、トリクロロエチレンなどの脂肪族ハロゲン化炭化水素や、ベンゼン、トルエン、キシレン、リグロイン、クロロベンゼン、ジクロロベンゼンなどの芳香族化合物などが挙げられる。   When a layer is formed by a coating method, the solvent used in the coating solution is a solvent that can dissolve or disperse a layer forming material, for example, a binding material or other materials necessary for forming a coating layer. Well, for example, alcohols such as methanol, ethanol and isopropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and sulfoxides such as dimethyl sulfoxide , Ethers such as tetrahydrofuran, dioxane and ethylene glycol monomethyl ether, esters such as methyl acetate and ethyl acetate, and aliphatic halogenated carbonization such as chloroform, ethylene chloride, dichloroethylene, carbon tetrachloride and trichloroethylene Motoya, benzene, toluene, xylene, ligroin, chlorobenzene, and aromatic compounds such as dichlorobenzene.

導電性粒子と層形成用材料とを含む混合物中に導電性粒子を所望とする分散度に分散する方法としては、混合物を、リボンブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー等に供給して攪拌混合する、あるいは、バンバリーミキサー、加圧ニーダー等で攪拌混合する等、既存の方法を用いることができる。塗布法による層形成には、溶剤、層形成用材料及び導電性粒子を混合し、ボールミル、サンドミル、ペイントシェーカー、ダイノミル及びパールミル等、従来公知の溶液分散手段を用いて、塗布液中に導電性粒子を分散させ、そうして得られた導電性粒子が分散状態にある塗布液を導電性支持体の所定位置に塗布し、必要に応じて乾燥処理を行なって導電性粒子の分散性が向上している被覆層を形成することができる。本発明においては、これらの分散機の中でも、導電性粒子を分散する工程が連続的に行なえ、分散シェアが適切で、シェアを容易に変更可能なビーズミルを用いることが好ましい。   In order to disperse the conductive particles in a desired degree of dispersion in the mixture containing the conductive particles and the layer forming material, the mixture is supplied to a ribbon blender, a Nauter mixer, a Henschel mixer, a super mixer, etc. Existing methods such as stirring and mixing, or stirring and mixing with a Banbury mixer, a pressure kneader, or the like can be used. For the layer formation by the coating method, a solvent, a layer forming material and conductive particles are mixed, and the conductive liquid is made conductive in the coating solution by using a conventionally known solution dispersing means such as a ball mill, a sand mill, a paint shaker, a dyno mill and a pearl mill. Disperse the particles, apply a coating solution in which the conductive particles thus obtained are in a dispersed state to a predetermined position of the conductive support, and perform a drying treatment as necessary to improve the dispersibility of the conductive particles. A covering layer can be formed. In the present invention, among these dispersers, it is preferable to use a bead mill that can continuously perform the step of dispersing conductive particles, has an appropriate dispersion share, and can easily change the share.

なお、先に述べたとおり、混合物に含有させる層形成材料としては、導電性の弾性層(2b)の形成では、各種のゴム及び樹脂から選択されたものが使用され、必要に応じて、導電性等を制御するための各種の添加剤を更に添加することができる。また、表面層(2c)の形成では、結着材料、好ましくは結着樹脂が層形成用材料であり、この場合にも必要に応じて、導電性等を制御するための各種の添加剤を添加することができる。また、混合物には必要に応じて溶剤を添加できるが、塗布法による形成では溶媒が必須である。混合物の組成としては所望とする機能や特性を有する導電性被覆層を得るために必要な組成を選択すればよい。その際、結着材料と導電性粒子の比率は、結着樹脂:導電性粒子=1:0.2〜1:2.5(重量比)であることが好ましく、また、塗布液中の導電性粒子の含有量は1〜20重量%、塗布液中の結着樹脂の含有量は5〜40重量%であることが好ましい。   As described above, as the layer forming material to be included in the mixture, materials selected from various rubbers and resins are used in the formation of the conductive elastic layer (2b). Various additives for controlling properties and the like can be further added. In the formation of the surface layer (2c), a binder material, preferably a binder resin, is a layer forming material. In this case as well, various additives for controlling conductivity and the like are added as necessary. Can be added. Moreover, although a solvent can be added to a mixture as needed, a solvent is essential for formation by a coating method. What is necessary is just to select a composition required in order to obtain the electroconductive coating layer which has a desired function and characteristic as a composition of a mixture. At that time, the ratio of the binder material to the conductive particles is preferably binder resin: conductive particles = 1: 0.2 to 1: 2.5 (weight ratio), and the inclusion of the conductive particles in the coating liquid The amount is preferably 1 to 20% by weight, and the content of the binder resin in the coating solution is preferably 5 to 40% by weight.

溶剤の含有量に関しては、塗布液の粘度が、1〜500mPa・s、さらに好ましくは5〜100mPa・sになるように添加し、その含有量は好ましくは10〜90wt%、特には30〜80wt%であることが好ましい。   Regarding the content of the solvent, it is added so that the viscosity of the coating solution is 1 to 500 mPa · s, more preferably 5 to 100 mPa · s, and the content is preferably 10 to 90 wt%, particularly 30 to 80 wt%. % Is preferred.

本発明の製造方法において分散シェアの異なる攪拌処理を設けることによって、導電性粒子の被覆層中での分散性が改善されるメカニズムは明らかになっていないが、本発明者等の鋭意検討により、以下のことは解明できた。   Although the mechanism by which the dispersibility in the coating layer of the conductive particles is improved by providing a stirring process having a different dispersion share in the production method of the present invention has not been clarified, The following were clarified.

部材の帯電の均一性は、帯電部材を構成する材料として用いられる導電剤や機能性粒子の分散性が寄与しているところが大きい。導電剤の分散性が劣る場合、抵抗の均一性が十分でないため、帯電の均一性が得られ難くなる。また、導電剤の通電劣化が起こりやすくなる。抵抗の均一性を得るため、導電剤として導電性の粒子を用いた場合、粒子同士の凝集力が強いため、1次粒径付近まで粒子を分散させるには、ある一定以上の強いシェアによって、強固な粒子の凝集体を崩すことが必要であることがわかった。また、導電性粒子の分散状態、導電性粒子同士の接触状態も通電による劣化には影響しているものと考えられている。導電性粒子の分散性が良くなれば、帯電部材を連続使用(連続通電)しても抵抗上昇しないものと考えられる。しかしながら、強いシェアにより分散処理を行なうと、分散工程が終了すると、急激にシェアから開放されるため、反発的に再凝集等が起こりやすく、導電性粒子の分散状態が不安定化し、安定性が悪くなってしまう。分散工程が進むに連れて、シェアを徐々に弱くすることにより、導電性粒子にかかるエネルギーの急激な変化がないため、安定状態に近い状態で分散工程を終了することができるため、長期的に安定な分散状態が得られる。   The uniformity of charging of the member is largely due to the dispersibility of the conductive agent and functional particles used as the material constituting the charging member. When the dispersibility of the conductive agent is inferior, the uniformity of resistance is not sufficient, so that it is difficult to obtain the uniformity of charging. In addition, the conductive agent is likely to be deteriorated by energization. When conductive particles are used as the conductive agent in order to obtain uniformity of resistance, the cohesive force between the particles is strong, and in order to disperse the particles up to the vicinity of the primary particle size, It has been found necessary to break up the aggregates of strong particles. Moreover, it is thought that the dispersion | distribution state of electroconductive particle and the contact state of electroconductive particles are also affecting the deterioration by electricity supply. If the dispersibility of the conductive particles is improved, it is considered that the resistance does not increase even when the charging member is continuously used (continuous energization). However, if dispersion processing is performed with a strong share, when the dispersion process is completed, it is suddenly released from the share, so re-aggregation tends to occur repulsively, the dispersion state of the conductive particles becomes unstable, and stability is improved. It gets worse. As the dispersion process progresses, by gradually weakening the share, there is no sudden change in energy applied to the conductive particles, so the dispersion process can be completed in a state close to the stable state, so in the long term A stable dispersion state can be obtained.

撹拌型分散装置により分散する際の、撹拌部の最大周速は2〜12m/sが好ましく、特には4〜10m/sが好ましい。シェアを切り替える際の減少の程度は、1〜2m/sが好ましい。シェアを切り替える回数については、1〜4回が好ましい。すなわち、分散シェアの異なる段階の数(n)は2〜5の範囲が好ましい。   The maximum peripheral speed of the stirring unit when dispersed by the stirring type dispersing device is preferably 2 to 12 m / s, and particularly preferably 4 to 10 m / s. The degree of reduction when switching shares is preferably 1 to 2 m / s. The number of times of switching shares is preferably 1 to 4 times. That is, the number (n) of stages with different distribution shares is preferably in the range of 2-5.

上記のような様々な検討により、被覆層に導電性粒子を含有してなる導電性部材の製造方法において、該導電性粒子を該被覆層中に分散する工程において、2段階以上の分散シェアに切り替えて、かつ、分散シェアを徐々に弱くして分散を行なうことにより、抵抗の均一性及び導電性粒子の均一な分散状態を長期的に維持できる導電性部材を製造できることに至ったものである。   Through various studies as described above, in the method for producing a conductive member containing conductive particles in the coating layer, in the step of dispersing the conductive particles in the coating layer, the dispersion share of two or more stages is achieved. By switching and gradually decreasing the dispersion share, it is possible to produce a conductive member that can maintain the uniformity of resistance and the uniform dispersion state of conductive particles for a long period of time. .

次に、本発明の導電性部材の好ましい用途として、電子写真装置の接触帯電部材(帯電ローラ)として用いた例を、画像形成装置の概略構成に基づいて説明する。
(1)画像形成装置
図1は、本発明のプロセスカートリッジを具備する画像形成装置例の概略構成図である。本例の画像形成装置は、転写式電子写真利用の反転現像方式、現像兼クリーニング方式(クリーナーレス)の装置である。プロセスカートリッジ6内には、像担持体としての回転ドラム型の電子写真感光体1が配置されており、矢印の方向に所定の周速度(プロセススピード)で回転駆動される。電子写真感光体1の周囲には、まず、帯電手段としての帯電ローラ2が、電子写真感光体1に所定の押圧力で接触した状態で配置されている。本例では帯電ローラ2を駆動し、電子写真感光体1と等速回転させる。この帯電ローラ2に対して帯電バイアス印加電源S1から所定の直流電圧(この場合−1180Vとした)が印加されることで電子写真感光体1の表面が所定の極性電位(暗部電位−400Vとした)に一様に接触帯電方式・DC帯電方式で帯電処理される。
Next, as a preferred application of the conductive member of the present invention, an example in which it is used as a contact charging member (charging roller) of an electrophotographic apparatus will be described based on a schematic configuration of an image forming apparatus.
(1) Image Forming Apparatus FIG. 1 is a schematic configuration diagram of an example of an image forming apparatus provided with a process cartridge of the present invention. The image forming apparatus of this example is a reversal developing method using transfer type electrophotography, and a developing and cleaning method (cleanerless). A rotary drum type electrophotographic photosensitive member 1 as an image carrier is disposed in the process cartridge 6 and is driven to rotate at a predetermined peripheral speed (process speed) in the direction of the arrow. Around the electrophotographic photosensitive member 1, first, a charging roller 2 as a charging unit is disposed in a state of being in contact with the electrophotographic photosensitive member 1 with a predetermined pressing force. In this example, the charging roller 2 is driven to rotate at the same speed as the electrophotographic photosensitive member 1. A predetermined DC voltage (in this case, -1180 V) is applied to the charging roller 2 from the charging bias application power source S1, so that the surface of the electrophotographic photosensitive member 1 has a predetermined polarity potential (dark part potential -400 V). ) Is uniformly charged by a contact charging method or a DC charging method.

露光手段3は、例えばレーザービームスキャナーである。電子写真感光体1の帯電処理面に露光手段3により目的の画像情報に対応した露光Lがなされることにより、電子写真感光体1の表面電位が露光明部の電位(明部電位−120Vとした)に選択的に低下(減衰)して静電潜像が形成される。反転現像手段4により、電子写真感光体の静電潜像の露光明部に、電子写真感光体1の帯電極性と同極性に帯電(現像バイアス−350V)しているトナー(ネガトナー)を選択的に付着させて静電潜像をトナー画像として可視化する。図中、4aは現像ローラ、4bはトナー供給ローラ、4cはトナー層厚規制部材を示す。   The exposure unit 3 is, for example, a laser beam scanner. The exposure unit 3 performs exposure L corresponding to target image information on the charging surface of the electrophotographic photosensitive member 1, so that the surface potential of the electrophotographic photosensitive member 1 is changed to the potential of the exposure bright portion (bright portion potential of −120 V The electrostatic latent image is formed by selectively decreasing (attenuating). The toner (negative toner) charged with the same polarity as the charging polarity of the electrophotographic photosensitive member 1 (developing bias −350 V) is selectively applied to the exposed bright portion of the electrostatic latent image of the electrophotographic photosensitive member by the reversal developing unit 4. And the electrostatic latent image is visualized as a toner image. In the figure, 4a is a developing roller, 4b is a toner supply roller, and 4c is a toner layer thickness regulating member.

転写手段としての転写ローラ5は、電子写真感光体1に所定の押圧力で接触した状態で配置されることで転写部を形成し、電子写真感光体1の回転と順方向に電子写真感光体1の回転周速度とほぼ同じ周速度で回転する。また、転写バイアス印加電源S2からトナーの帯電極性とは逆極性の転写電圧が印加される。転写部に対して不図示の給紙機構部から転写材Pが所定の制御タイミングで給紙され、その給紙された転写材Pの裏面が転写電圧を印加した転写ローラ5によりトナーの帯電極性とは逆極性に帯電されることにより、転写部において電子写真感光体1上のトナー画像が転写材Pに静電転写される。   The transfer roller 5 serving as a transfer unit is disposed in contact with the electrophotographic photosensitive member 1 with a predetermined pressing force to form a transfer portion, and the electrophotographic photosensitive member rotates in the forward direction with the rotation of the electrophotographic photosensitive member 1. It rotates at the same peripheral speed as the rotational peripheral speed of 1. Further, a transfer voltage having a polarity opposite to the charging polarity of the toner is applied from the transfer bias applying power source S2. The transfer material P is fed to the transfer portion from a paper feed mechanism portion (not shown) at a predetermined control timing, and the back surface of the fed transfer material P is charged with toner by the transfer roller 5 to which a transfer voltage is applied. The toner image on the electrophotographic photosensitive member 1 is electrostatically transferred to the transfer material P at the transfer portion.

転写部でトナー画像の転写を受けた転写材は、電子写真感光体から分離されて、不図示のトナー画像定着手段へ導入されてトナー画像の定着処理を受けて画像形成物として出力される。両面画像形成モードや多重画像形成モードの場合は、この画像形成物が不図示の再循環搬送機構に導入されて転写部へ再導入される。   The transfer material that has received the transfer of the toner image at the transfer portion is separated from the electrophotographic photosensitive member, introduced into a toner image fixing means (not shown), subjected to a toner image fixing process, and output as an image formed product. In the case of the double-sided image formation mode or the multiple image formation mode, this image formed product is introduced into a recirculation conveyance mechanism (not shown) and reintroduced into the transfer unit.

転写残余トナー等の電子写真感光体上の残留物は、帯電ローラ2により電子写真感光体の帯電極性と同極性に帯電される。そしてその転写残余トナーは、露光部を通って現像手段4に至って、バックコントラストにより電気的に現像装置内に回収され、現像兼クリーニング(クリーナーレス)が達成されている。   Residues on the electrophotographic photosensitive member such as transfer residual toner are charged to the same polarity as the charging polarity of the electrophotographic photosensitive member by the charging roller 2. Then, the transfer residual toner reaches the developing means 4 through the exposure portion, and is electrically collected in the developing device by the back contrast, thereby achieving development and cleaning (cleanerless).

本例では、電子写真感光体1、帯電ローラ2、現像手段4を一体に支持し、画像形成装置本体に着脱自在のプロセスカートリッジ6としている。この際現像手段4は別体としてもよい。   In this example, the electrophotographic photosensitive member 1, the charging roller 2, and the developing means 4 are integrally supported, and the process cartridge 6 is detachable from the main body of the image forming apparatus. At this time, the developing means 4 may be a separate body.

更に、本発明にかかる製造方法により得られた導電性部材が適用される電子写真装置は図1に示した構成に限定されず、少なくとも帯電部材と電子写真感光体とを有する図示した構成とは異なるプロセスカートリッジ(現像手段は本体側のものを使用するものや、クリーニング手段をトナー像の転写領域と帯電部材間に有するものなど)を用いた構成とすることができる。更に、プロセスカートリッジを用いずに、装置本体に必要な各部材を配置した構成としてもよい。   Further, the electrophotographic apparatus to which the conductive member obtained by the manufacturing method according to the present invention is applied is not limited to the configuration shown in FIG. 1, and the illustrated configuration having at least a charging member and an electrophotographic photosensitive member is as follows. Different process cartridges can be used (developing means using the main body side or cleaning means having a cleaning means between the toner image transfer region and the charging member). Furthermore, it is possible to employ a configuration in which each member necessary for the apparatus main body is arranged without using the process cartridge.

図1の装置の帯電部材2に直流電圧を印加すると、帯電部材と感光体との微少な空間で放電が起こって感光体1の表面が帯電される。本発明の製造方法により得られた導電性部材を帯電部材2として用いれば、帯電部材の帯電均一性を向上させることができるだけではなく、抵抗変化を抑えることができるため、非常に優れた画像を得ることができる。特に、図1のように現像、独立したクリーニング手段を有さず、転写後に感光体に残留したトナーを現像手段により回収する、いわゆる現像兼クリーニング(クリーナーレス)方式を採用した画像形成装置の複数枚プリントを可能にするのに極めて有効である。   When a DC voltage is applied to the charging member 2 of the apparatus shown in FIG. 1, a discharge occurs in a minute space between the charging member and the photosensitive member, and the surface of the photosensitive member 1 is charged. If the conductive member obtained by the production method of the present invention is used as the charging member 2, not only can the charging uniformity of the charging member be improved, but also the resistance change can be suppressed, so a very excellent image can be obtained. Obtainable. In particular, as shown in FIG. 1, a plurality of image forming apparatuses adopting a so-called developing and cleaning (cleanerless) system that does not have a developing and independent cleaning unit and collects toner remaining on the photosensitive member after transfer by the developing unit. It is extremely effective in enabling sheet printing.

以下、本発明を実施例を用いて更に詳細に説明する。
(実施例1)
下記の要領で本発明の帯電部材としての帯電ローラを作製した。
エピクロルヒドリンゴム:100質量部
四級アンモニウム塩:2質量部
炭酸カルシウム:90質量部
酸化亜鉛:5質量部
脂肪酸:5質量部
以上の材料を60℃に調節した密閉型ミキサーにて10分間混練した後、エピクロルヒドリンゴム100質量部に対してエーテルエステル系可塑剤15質量部を加え、20℃に冷却した密閉型ミキサーで更に20分間混練し、原料コンパウンドを調製した。このコンパウンドに原料ゴムのエピクロルヒドリンゴム100質量部に対し加硫剤としての硫黄1質量部、加硫促進剤としてのノクセラーDM(ジベンゾチアジルスルフィド)1質量部及びノクセラーTS(テトラメチルチウラムモノスルフィド)0.5質量部を加え、20℃に冷却した2本ロール機にて10分間混練した。得られたコンパウンドを、φ6mmステンレス製支持体の周囲にローラ状になるように押出成型機にて成型し、加熱蒸気加硫した後、外径φ12mmになるように研磨処理して弾性層を得た。ローラ長は230mmとした。
続いて、以下に示す材料:
アクリルポリオール溶液(ダイセル化学社製:PLACCEL DC2016):100質量部;
イソシアネートA(IPDI)(デグサ社製:VESTANAT B1370):27質量部;
イソシアネートB(HDI)(旭化成ケミカルズ社製:DURANATE TPA-B80E):17質量部;
導電性粒子(戸田工業社製 CS−Bk100Y:カーボンブラックで被覆されたシリカ粒子):13質量部;
変性ジメチルシリコーンオイル(東レ・ダウコーニング・シリコーン社製 SH28PA):0.3質量部;及び
メチルイソブチルケトン:300質量部
をミキサーを用いて撹拌し、混合溶液を作製した。次いでこの混合溶液を、平均粒径が0.8mmのガラスビーズをメディアとしてベッセルの容積に対して80%の充填率で充填したビーズミル分散機(アイメックス社製 ウルトラビスコミル)を用いて、ディスク周速8m/s、処理速度600ml/minで21時間循環運転を行い、分散処理をした。さらに、連続してディスク周速を6m/sに変更して、2時間分散処理を行ない、分散溶液を得た。この分散溶液を、ディッピング法にて塗布して、膜厚が15μmの表面層を被覆形成し、ローラ形状の帯電部材を得た。
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
A charging roller as a charging member of the present invention was produced in the following manner.
Epichlorohydrin rubber: 100 parts by mass Quaternary ammonium salt: 2 parts by mass Calcium carbonate: 90 parts by mass Zinc oxide: 5 parts by mass Fatty acid: 5 parts by mass After kneading the above materials for 10 minutes in a closed mixer adjusted to 60 ° C. Then, 15 parts by mass of an ether ester plasticizer was added to 100 parts by mass of epichlorohydrin rubber, and the mixture was further kneaded for 20 minutes with a closed mixer cooled to 20 ° C. to prepare a raw material compound. To this compound, 100 parts by mass of epichlorohydrin rubber as a raw rubber, 1 part by mass of sulfur as a vulcanizing agent, 1 part by mass of noxeller DM (dibenzothiazyl sulfide) as a vulcanization accelerator, and noxeller TS (tetramethylthiuram monosulfide) 0.5 parts by mass was added and kneaded for 10 minutes in a two-roll mill cooled to 20 ° C. The obtained compound is molded in an extruder so as to form a roller around a φ6 mm stainless steel support, heated and steam vulcanized, and then polished to an outer diameter of φ12 mm to obtain an elastic layer. It was. The roller length was 230 mm.
Subsequently, the following materials:
Acrylic polyol solution (manufactured by Daicel Chemical Industries: PLACEL DC2016): 100 parts by mass;
Isocyanate A (IPDI) (manufactured by Degussa: VESTANAT B1370): 27 parts by mass;
Isocyanate B (HDI) (Asahi Kasei Chemicals Corporation: DURANATE TPA-B80E): 17 parts by mass;
Conductive particles (CS-Bk100Y manufactured by Toda Kogyo Co., Ltd .: silica particles coated with carbon black): 13 parts by mass;
Modified dimethyl silicone oil (SH28PA manufactured by Toray Dow Corning Silicone): 0.3 parts by mass; and methyl isobutyl ketone: 300 parts by mass were stirred using a mixer to prepare a mixed solution. Next, this mixed solution was mixed with a bead mill disperser (Ultra Visco Mill manufactured by IMEX Co., Ltd.) filled with glass beads having an average particle diameter of 0.8 mm as a medium at a filling rate of 80% with respect to the volume of the vessel. Circulation was carried out for 21 hours at a speed of 8 m / s and a processing speed of 600 ml / min to carry out dispersion treatment. Further, the disk peripheral speed was continuously changed to 6 m / s, and dispersion treatment was performed for 2 hours to obtain a dispersion solution. This dispersion solution was applied by a dipping method to coat and form a surface layer having a film thickness of 15 μm to obtain a roller-shaped charging member.

「ディッピング用塗布液の経時安定性評価」
上記方法にて作製したディッピング用塗布液の、作製初日と作製7日後の粘度測定を行った。粘度の測定には芝浦システム社製ビスメトロン粘度計(VDA-L型)にて、1号ローターを用いて60rpmで測定を行った。結果を表1に示す。作製後、分散性が低下していると思われる塗料は、粘度変化が大きくなっている。
“Evaluation of stability of dipping coating solution over time”
The viscosity of the coating solution for dipping produced by the above method was measured on the first day of production and 7 days after production. The viscosity was measured at 60 rpm using a No. 1 rotor with a Bismetron viscometer (VDA-L type) manufactured by Shibaura System. The results are shown in Table 1. After the production, the viscosity of the paint that is considered to have decreased dispersibility is large.

「帯電ローラに直流電圧のみを印加した時の画像評価」
図1に示す電子写真方式の画像形成装置に上記で得られた帯電ローラを取り付けて、L/L環境(温度15℃/湿度10%)において、ハーフトーン画像を出力し、目視にてその出力画像を評価した。なお、帯電部材による帯電後の電子写真感光体の表面電位(暗部電位)VDは−400V付近となるように印加電圧(直流電圧のみ)を調節した。表2中のAは得られた画像が非常に良い、Bは良い、Cはハーフトーン画像にわずかにスジ状の欠陥がある、Dはスジの画像欠陥が目立つ、ことを示す。
"Evaluation of image when only DC voltage is applied to charging roller"
The charging roller obtained above is attached to the electrophotographic image forming apparatus shown in FIG. 1, and a halftone image is output in an L / L environment (temperature 15 ° C./humidity 10%). Images were evaluated. The applied voltage (DC voltage only) was adjusted so that the surface potential (dark portion potential) VD of the electrophotographic photosensitive member charged by the charging member was around −400V. In Table 2, A indicates that the obtained image is very good, B indicates good, C indicates that the halftone image has a slight streak-like defect, and D indicates that the image defect of the streak is conspicuous.

また、画像出し評価を始める前に、帯電ローラの抵抗測定を図4に示すような方法で行った。結果を表2に示す。図中、2は導電性部材、11はステンレス製の円筒電極、12は抵抗、13はレコーダーを示す。これらの間の押圧力は用いられる画像形成装置と同様にし、外部電源S3から−200Vを印加した際の抵抗値を測定する。また、抵抗の均一性の評価として、測定した抵抗値の最大値と最小値の比を抵抗ムラとした。結果を表2に示す。   Further, before the image evaluation was started, the resistance of the charging roller was measured by the method shown in FIG. The results are shown in Table 2. In the figure, 2 is a conductive member, 11 is a cylindrical electrode made of stainless steel, 12 is a resistor, and 13 is a recorder. The pressing force between them is the same as that of the image forming apparatus used, and the resistance value when -200 V is applied from the external power source S3 is measured. In addition, as an evaluation of the uniformity of resistance, the ratio of the measured maximum resistance value to the minimum value was defined as resistance unevenness. The results are shown in Table 2.

上記評価を、作製初日と作製7日後のディッピング用塗布液を用いて作製した帯電ローラについてそれぞれ行なった。作製7日後の評価がA,Bのものは、作製された帯電ローラは良好であり、C,Dは画像結果も良くなかったものである。   The above evaluation was performed on each of the charging rollers prepared using the dipping coating liquid on the first day of production and 7 days after the production. When the evaluation after 7 days from the production was A or B, the produced charging roller was good, and for C and D, the image result was not good.

(実施例2)
導電性粒子の分散処理を、3段階として、3段階目のディスク周速を4m/sとして、2時間追加処理を行なった以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
(Example 2)
A charging member was produced in the same manner as in Example 1 except that the dispersion treatment of the conductive particles was performed in three stages, and the disk peripheral speed in the third stage was 4 m / s and additional treatment was performed for 2 hours. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(実施例3)
導電性粒子の分散時の1段階目のディスク周速を10m/sとした以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
(Example 3)
A charging member was produced in the same manner as in Example 1 except that the disk peripheral speed at the first stage when the conductive particles were dispersed was 10 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(実施例4)
導電性粒子にカーボンブラック(三菱化学社製 MA77)を用いた以外は、実施例1と同様にして帯電部材を作製した。
この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
Example 4
A charging member was produced in the same manner as in Example 1 except that carbon black (MA77 manufactured by Mitsubishi Chemical Corporation) was used as the conductive particles.
The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(比較例1)
導電性粒子の分散処理を、ディスク周速8m/sで1段階のみとした以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
(Comparative Example 1)
A charging member was produced in the same manner as in Example 1 except that the conductive particles were dispersed only in one stage at a disk peripheral speed of 8 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.

(比較例2)
導電性粒子の分散処理を、ディスク周速6m/sで1段階のみとした以外は、実施例1と同様にして帯電部材を作製した。この帯電ローラについて実施例1と同様にして評価を行い、その結果を表1及び表2に示す。
(比較例3)
導電性粒子の分散処理を、ディスク周速8m/sで1段階のみとした以外は、実施例4と同様にして帯電部材を作製した。
(Comparative Example 2)
A charging member was produced in the same manner as in Example 1 except that the conductive particles were dispersed only in one stage at a disk peripheral speed of 6 m / s. The charging roller was evaluated in the same manner as in Example 1, and the results are shown in Tables 1 and 2.
(Comparative Example 3)
A charging member was produced in the same manner as in Example 4 except that the dispersion treatment of the conductive particles was performed only at one stage at a disk peripheral speed of 8 m / s.

Figure 2006215388
Figure 2006215388

Figure 2006215388
Figure 2006215388

本発明の画像形成装置の概略構成図である。1 is a schematic configuration diagram of an image forming apparatus of the present invention. 帯電ローラの概略図である。It is the schematic of a charging roller. 他の実施例を示す帯電ローラの概略図である。It is the schematic of the charging roller which shows another Example. 帯電部材の抵抗測定装置の概略図である。It is the schematic of the resistance measuring apparatus of a charging member.

符号の説明Explanation of symbols

1;像担持体(電子写真感光体)
2;帯電部材(帯電ローラ)
3;像露光手段
4;現像手段
5;転写手段(転写ローラ)
6;クリーニング手段
S1,S2,S3;バイアス印加電源
P;転写材
11;円筒電極(金属ローラ)
12;固定抵抗器
13;レコーダー
1; Image carrier (electrophotographic photosensitive member)
2; Charging member (charging roller)
3; Image exposure means 4; Development means 5; Transfer means (transfer roller)
6; cleaning means S1, S2, S3; bias application power source P; transfer material 11; cylindrical electrode (metal roller)
12; Fixed resistor 13; Recorder

Claims (4)

導電性支持体上に、導電性粒子を含む導電性被覆層を少なくとも有する導電性部材の製造方法において、
層形成用材料と導電性粒子とを少なくとも含む混合物を用意する工程と、
前記混合物を攪拌して該混合物中に導電性粒子を分散させる工程と、
前記導電性粒子を分散状態で含む混合物から導電性層を形成する工程と、
前記導電性層を導電性支持体上の被覆層とする工程と
を有し、
前記混合物中への導電性粒子の分散を、分散シェアの異なるn段階(n≧2)の攪拌処理により行い、かつn段階の分散シェアよりもn+1段階目の分散シェアが小さい
ことを特徴とする導電性部材の製造方法。
In the method for producing a conductive member having at least a conductive coating layer containing conductive particles on a conductive support,
Preparing a mixture containing at least a layer forming material and conductive particles;
Stirring the mixture to disperse conductive particles in the mixture;
Forming a conductive layer from a mixture containing the conductive particles in a dispersed state;
Having the conductive layer as a coating layer on a conductive support,
Conductive particles are dispersed in the mixture by n-stage (n ≧ 2) stirring processes with different dispersion shares, and the dispersion share of the (n + 1) th stage is smaller than the dispersion share of the n-stage. A method for producing a conductive member.
前記導電性粒子を前記混合物中に分散する工程に用いる分散機がビーズミルである請求項1に記載の導電性部材の製造方法。   2. The method for producing a conductive member according to claim 1, wherein a disperser used in the step of dispersing the conductive particles in the mixture is a bead mill. 前記導電性粒子が複層構成のものであり、該導電性粒子の最外層に含まれる導電性物質がカーボンブラックである請求項1または2に記載の導電性部材の製造方法。   The method for producing a conductive member according to claim 1 or 2, wherein the conductive particles have a multilayer structure, and the conductive substance contained in the outermost layer of the conductive particles is carbon black. 前記最外層が、金属酸化物を含む層上に被覆されたものである請求項3に記載の導電性部材の製造方法。   The method for producing a conductive member according to claim 3, wherein the outermost layer is coated on a layer containing a metal oxide.
JP2005029523A 2005-02-04 2005-02-04 Method for manufacturing conductive member Active JP4727244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029523A JP4727244B2 (en) 2005-02-04 2005-02-04 Method for manufacturing conductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029523A JP4727244B2 (en) 2005-02-04 2005-02-04 Method for manufacturing conductive member

Publications (2)

Publication Number Publication Date
JP2006215388A true JP2006215388A (en) 2006-08-17
JP4727244B2 JP4727244B2 (en) 2011-07-20

Family

ID=36978663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029523A Active JP4727244B2 (en) 2005-02-04 2005-02-04 Method for manufacturing conductive member

Country Status (1)

Country Link
JP (1) JP4727244B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162106A (en) * 2001-11-29 2003-06-06 Mikuni Color Ltd Electrically conductive material for electrically conductive roll, dispersed liquid containing the same, electrically conductive roll and coating composition for electrically conductive roll
JP2003316112A (en) * 2002-04-19 2003-11-06 Canon Inc Electrostatic charging member, image forming device, and process cartridge
JP2006163145A (en) * 2004-12-09 2006-06-22 Canon Inc Electrifying member, process cartridge and electrophotographic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003162106A (en) * 2001-11-29 2003-06-06 Mikuni Color Ltd Electrically conductive material for electrically conductive roll, dispersed liquid containing the same, electrically conductive roll and coating composition for electrically conductive roll
JP2003316112A (en) * 2002-04-19 2003-11-06 Canon Inc Electrostatic charging member, image forming device, and process cartridge
JP2006163145A (en) * 2004-12-09 2006-06-22 Canon Inc Electrifying member, process cartridge and electrophotographic device

Also Published As

Publication number Publication date
JP4727244B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5140920B2 (en) Image forming apparatus
JP2006072318A (en) Charging member, process cartridge, and electrophotographic apparatus
JP2007292298A (en) Method for producing charging member
JP2009009028A (en) Contact type charging member, process cartridge, and electrophotographic image forming apparatus
JP2007101864A (en) Charging component and electrophotographic system
JP2008276021A (en) Charging member, process cartridge, and electrophotographic apparatus
JP7424139B2 (en) Charging member, charging device, process cartridge, and image forming device
JP4713900B2 (en) Manufacturing method of conductive member and conductive member for electrophotography
JP2008276020A (en) Electrifying member, process cartridge and electrophotographic device
JP4727244B2 (en) Method for manufacturing conductive member
JP4509957B2 (en) Coating apparatus and coating method
JP4371833B2 (en) Charging member, image forming apparatus, charging method, and process cartridge
JP7067172B2 (en) Charging member, charging device, process cartridge and image forming device
JP4289928B2 (en) Method for manufacturing conductive member
JP2007187900A (en) Conductive roller for electrophotography
JP2008058466A (en) Method for manufacturing electrifying roller
JP6801197B2 (en) Charging member, charging device, process cartridge, and image forming device
JP2004004146A (en) Conductive member, processing cartridge, and image forming apparatus
JP5768401B2 (en) Conductive member, charging device, process cartridge, and image forming apparatus
JP2005249944A (en) Conductive member, process cartridge and image forming apparatus
JP2002287467A (en) Image forming apparatus, process cartridge, and electrostatic charging member
JP2005249945A (en) Conductive member, process cartridge and image forming apparatus
JP2020181006A (en) Charging device, process cartridge, and image forming apparatus
JP2004361565A (en) Conductive elastic member, process cartridge having it and image forming apparatus
JP2004294849A (en) Electrifying member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4727244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350