JP2006214855A - Electric current sensor and watthour meter - Google Patents

Electric current sensor and watthour meter Download PDF

Info

Publication number
JP2006214855A
JP2006214855A JP2005027485A JP2005027485A JP2006214855A JP 2006214855 A JP2006214855 A JP 2006214855A JP 2005027485 A JP2005027485 A JP 2005027485A JP 2005027485 A JP2005027485 A JP 2005027485A JP 2006214855 A JP2006214855 A JP 2006214855A
Authority
JP
Japan
Prior art keywords
current
magnetic field
current sensor
measuring devices
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005027485A
Other languages
Japanese (ja)
Other versions
JP4910290B2 (en
Inventor
Yuji Matsuzoe
雄二 松添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005027485A priority Critical patent/JP4910290B2/en
Publication of JP2006214855A publication Critical patent/JP2006214855A/en
Application granted granted Critical
Publication of JP4910290B2 publication Critical patent/JP4910290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a working cost by dispensing with complicated work while achieving the widening of a measurement allowing range. <P>SOLUTION: Conventionally, hall ICs are used for many electric current sensors, but sensors of this type are expensive on the whole. This electric current sensor 3 is mounted with three or more magnetic impedance (MI) elements. The current sensor 3 is disposed in an illustrated positional relation with respect to current bars 2 through which a measuring object electric current flows, thereby giving a simple shape to the current bars 2 to reduce the cost while achieving range widening. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、被測定導体に流れる電流を非接触式で検出する電流センサと、これを用いた電力量計に関する。   The present invention relates to a current sensor that detects a current flowing through a conductor to be measured in a non-contact manner, and a watt hour meter using the current sensor.

図9に、例えば非特許文献1に開示されている、この種の小型電力量計の基本構成例を示す。なお、(a)は平面図、(b)はそのX−X断面図、(c)はX軸と直交する方向の側面図である。(c)の符号51は筺体を示す。
これは、ブレーカなどの遮断手段に直結した構造となっており、例えばA側の端子521が3相電源用ブレーカ側、B側の端子522が負荷側となるように、(b)に示す取り付けネジ54で配線する。そして、A側からB側の負荷側の各相に流れる電流と電圧を検出し、電力を演算するものである。また、液晶ディスプレイ58と、電力量に比例した周期で発光する計量パルス用LED(発光ダイオード)59とにより、外部より電力量をモニタリングできるようにしている。なお、3相の信号から電力量を演算するためには、少なくとも2相の電流信号と電圧信号が必要である。そのために、電流センサは電力量計当たり少なくとも2個必要となる。
FIG. 9 shows a basic configuration example of this type of small watt hour meter disclosed in Non-Patent Document 1, for example. 2A is a plan view, FIG. 2B is a sectional view taken along line XX, and FIG. 2C is a side view in a direction orthogonal to the X axis. Reference numeral 51 in (c) denotes a housing.
This is a structure directly connected to a breaking means such as a breaker. For example, the attachment shown in (b) is such that the A-side terminal 521 is the three-phase power breaker side and the B-side terminal 522 is the load side. Wiring is performed with screws 54. Then, the current and voltage flowing through each phase on the load side from the A side to the B side are detected, and the power is calculated. Further, the amount of electric power can be monitored from the outside by a liquid crystal display 58 and a metering pulse LED (light emitting diode) 59 that emits light at a period proportional to the amount of electric power. In order to calculate the amount of power from a three-phase signal, at least a two-phase current signal and a voltage signal are required. Therefore, at least two current sensors are required per watt-hour meter.

図10に図9から筺体51や電子回路を除去し、電流バーと電流検出用センサであるカレントトランスのみを抽出した主要部を示す。
電力量計用電流センサには通常、カレントトランスが用いられる。図10では、カレントトランス561,562の中心部に中空穴55を形成し、この中空穴55を貫通して配置される電流バー53に流れる電流から発生する磁界を検出し、磁界の強さを電流値として処理するものである。また、この電力量計ではA相とC相にのみ電流センサを配置し、電力量を演算できるようになっている。符号52は端子を示す。
FIG. 10 shows a main part from which the casing 51 and the electronic circuit are removed from FIG. 9 and only the current bar which is a current bar and a current detection sensor is extracted.
A current transformer is usually used as a current sensor for a watt-hour meter. In FIG. 10, a hollow hole 55 is formed at the center of the current transformers 561 and 562, and a magnetic field generated from a current flowing through the current bar 53 disposed through the hollow hole 55 is detected, and the strength of the magnetic field is determined. It is processed as a current value. In this watt-hour meter, current sensors are arranged only in the A phase and the C phase so that the electric energy can be calculated. Reference numeral 52 denotes a terminal.

図11に、例えば特許文献1に開示された一般的な電子式電力量計の基本構成例を示す。
すなわち、電子式電力量計は基本的にカレントトランス561,562と、ここでは具体的な説明が省略されている電圧センサ611,612とのそれぞれから得られる電流信号Iと電圧信号Vを、演算手段としてのマイクロコンピュータ(マイコン)60などに取り込み、このマイコン60内で演算して電力量を求めるものである。また、マイコン60は電力量に応じたパルスを発生させる計量パルス用LED(発光ダイオード)59の制御や、電力量を表示する液晶ディスプレイ58の制御を行なっている。
FIG. 11 shows a basic configuration example of a general electronic watt-hour meter disclosed in Patent Document 1, for example.
That is, the electronic watt-hour meter basically calculates the current signal I and the voltage signal V obtained from the current transformers 561 and 562 and the voltage sensors 611 and 612, which are not specifically described here. The data is taken into a microcomputer (microcomputer) 60 or the like as a means and calculated in the microcomputer 60 to obtain the electric energy. Further, the microcomputer 60 controls a metering pulse LED (light emitting diode) 59 that generates a pulse corresponding to the amount of electric power and a liquid crystal display 58 that displays the amount of electric power.

大崎電気工業株式会社:製品情報インデックス“コンパクトEM”[平成15年12月1日検索]インターネット<URL:http://www.osaki.co.jp/product/denryoku/cem_tan3san3.html>Osaki Electric Industry Co., Ltd .: Product Information Index “Compact EM” [Searched on December 1, 2003] Internet <URL: http: // www. osaki. co. jp / product / denryoku / cem_tan3san3. html> 特開2003−149276号公報(第2頁,図13)Japanese Patent Laying-Open No. 2003-149276 (second page, FIG. 13)

(1)カレントトランスは一般に高価であり、電力量計のコスト高の要因となっている。
(2)カレントトランスの穴は、カレントトランスの本体中心部に配置されているため、電流バーの形状や組立ての工夫が必要である。その結果、電力量計のコスト高の要因となっている。
(3)カレントトランスは、電力量計の電力量仕様(例えば5A仕様,30A仕様など)により、本体や周辺回路構成を変更する必要がある。つまり、各仕様により部品の共通化ができないため、在庫管理費用による電力量計のコスト高や、組立て誤りにより不良品の発生率が高まる。
(1) The current transformer is generally expensive, which is a factor of increasing the cost of the watt-hour meter.
(2) Since the hole of the current transformer is arranged at the center of the main body of the current transformer, it is necessary to devise the shape and assembly of the current bar. As a result, the watt-hour meter is a high cost factor.
(3) The current transformer needs to change the configuration of the main body and the peripheral circuit according to the electric energy specification (for example, 5A specification, 30A specification, etc.) of the watt hour meter. In other words, since parts cannot be shared by each specification, the watt-hour meter costs due to inventory management costs and the incidence of defective products increase due to assembly errors.

(4)大電流仕様のカレントトランスの場合、小さい電流まで検出できない(検出レンジが小さい)。
などの問題がある。
したがって、この発明の課題は、複雑な加工を不要にしてコスト低減化を図るとともに、ワイドレンジ化を図ることにある。
(4) In the case of a current transformer with a large current specification, even a small current cannot be detected (the detection range is small).
There are problems such as.
Accordingly, an object of the present invention is to reduce costs by eliminating complicated processing and to achieve a wide range.

このような課題を解決するため、請求項1の発明では、n(3以上の自然数)個の電流計測デバイスと、これらの電流計測デバイスを位置決めする位置決め手段と、前記n個の電流計測デバイスからの信号を外部磁界に比例する電圧信号に変換するn個の検出回路とを備えた電流センサにおいて、
前記n個の電流計測デバイスは測定対象となる導体からそれぞれ異なる距離位置に配置され、前記n個の検出回路からの各信号出力差を電流センサの出力信号とすることを特徴とする。
In order to solve such a problem, in the invention of claim 1, n (natural number of 3 or more) current measuring devices, positioning means for positioning these current measuring devices, and the n current measuring devices A current sensor including n detection circuits that convert the signal of into a voltage signal proportional to the external magnetic field,
The n current measuring devices are arranged at different distances from a conductor to be measured, and each signal output difference from the n detection circuits is used as an output signal of a current sensor.

上記請求項1の発明においては、前記n個の電流計測デバイスは、測定対象となる導体に流れる電流に対して同一平面上の同一ライン上で互いに異なる距離位置にそれぞれ配置し、前記n個の電流計測デバイス対応の検出回路のいずれか1つを基準として、それ以外の検出回路からの各信号出力差を電流センサの出力信号とすることができる(請求項2の発明)。また、この請求項2の発明においては、前記基準とならない電流計測デバイスの少なくとも1つを、基準となる電流計測デバイスと同一平面上の異なるライン上に配置することができ(請求項3の発明)、または前記基準とならない電流計測デバイスの少なくとも1つを、基準となる電流計測デバイスと異なる平面上に配置することができる(請求項4の発明)。   In the first aspect of the invention, the n current measuring devices are arranged at different distance positions on the same line on the same plane with respect to the current flowing through the conductor to be measured, respectively, With any one of the detection circuits corresponding to the current measuring device as a reference, each signal output difference from the other detection circuits can be used as an output signal of the current sensor (invention of claim 2). In the invention of claim 2, at least one of the current measurement devices not serving as the reference can be arranged on a different line on the same plane as the current measurement device serving as the reference (the invention of claim 3). ) Or at least one of the non-reference current measurement devices can be arranged on a different plane from the reference current measurement device (invention of claim 4).

上記請求項1〜4のいずれかの発明においては、前記電流計測デバイスは、磁気インピーダンス素子と、この磁気インピーダンス素子に外部磁界に比例する磁界を印加するための負帰還磁場印加手段と、前記磁気インピーダンス素子にバイアス磁界を印加するためのバイアス印加手段とから構成することができ(請求項5の発明)、この請求項5の発明においては、前記バイアス印加手段は永久磁石であることができる(請求項6の発明)。また、請求項1〜6に記載の電流センサの少なくとも1つを用いて電力量計を構成することができる(請求項7の発明)。   In the invention according to any one of claims 1 to 4, the current measuring device includes a magnetic impedance element, a negative feedback magnetic field applying means for applying a magnetic field proportional to an external magnetic field to the magnetic impedance element, and the magnetic And a bias applying means for applying a bias magnetic field to the impedance element. (Invention of claim 5) In the invention of claim 5, the bias applying means can be a permanent magnet. Invention of Claim 6). Moreover, a watt-hour meter can be comprised using at least 1 of the current sensor of Claims 1-6 (Invention of Claim 7).

この発明によれば、MI素子を用いその配置を工夫するようにしたので、電流バーの構造を簡単にでき、その結果、電流センサおよび電力量計の低コスト化を実現することができる。   According to the present invention, since the MI element is used and the arrangement thereof is devised, the structure of the current bar can be simplified, and as a result, the cost of the current sensor and the watt-hour meter can be reduced.

図1はこの発明の実施の形態を示す構成図である。
図1からも明らかなように、これは下側筺体1に取付けられた3個の凹型の電流バー2、そのA相,C相の電流バー2からそれぞれ一定の距離だけ離れた位置に配置された電流センサ3、この電流センサ3を実装している電流センサ基板4、この電流センサ基板4に対し垂直に配置され電気的に接続されている信号処理基板5、この信号処理基板5から平行に一定の距離だけ離れた位置に配置された電力量演算基板6等から構成される。電流バー2はここでは図2に示すように、3本とも同じシンプルな構造になっている。なお、上側筺体は図示を省略されている。
FIG. 1 is a block diagram showing an embodiment of the present invention.
As is apparent from FIG. 1, this is arranged at a certain distance from each of the three concave current bars 2 attached to the lower housing 1, its A-phase and C-phase current bars 2. The current sensor 3, the current sensor board 4 on which the current sensor 3 is mounted, the signal processing board 5 that is disposed perpendicularly to the current sensor board 4 and electrically connected thereto, and is parallel to the signal processing board 5. It is comprised from the electric energy calculation board | substrate 6 etc. which are arrange | positioned in the position away only by fixed distance. Here, the current bars 2 have the same simple structure as shown in FIG. The upper casing is not shown.

図2は電流センサと電流バーの構成を示す斜視図である。
すなわち、電流バー2に対し電流センサ3は図示のように設置される。ここで、電流バー2に電流が流れるとα面,β面,γ面の各面での電流は矢印で示すようになる。α面に流れる電流によって発生する回転磁界(磁場)Φは矢印で示すようになるので、電流センサ3によりこの磁界Φを効果的に検出するためには、電流センサ3を図示のように電流バー2のα面に対し、垂直に設置する必要がある。なお、このように、電流バー2から垂直方向に所定の距離Rだけ離れた位置に配置された電流センサ3には、距離Rに反比例し電流バー6に流れる電流Iに比例する、次式のような磁場Φが印加される。
Φ=αI/R…………(1)
FIG. 2 is a perspective view showing the configuration of the current sensor and the current bar.
That is, the current sensor 3 is installed with respect to the current bar 2 as illustrated. Here, when a current flows through the current bar 2, the currents on the α, β, and γ planes are indicated by arrows. Since the rotating magnetic field (magnetic field) Φ generated by the current flowing in the α plane is indicated by an arrow, in order to effectively detect the magnetic field Φ by the current sensor 3, the current sensor 3 is connected to the current bar as shown in the figure. It is necessary to install perpendicularly to the α plane of 2. In this way, the current sensor 3 disposed at a position that is separated from the current bar 2 by a predetermined distance R in the vertical direction is inversely proportional to the distance R and proportional to the current I flowing through the current bar 6 as follows: Such a magnetic field Φ is applied.
Φ = αI / R ………… (1)

図3に電流センサの拡大構成図を示す。
すなわち、電流センサは図3(a)に示すように、永久磁石30と電流計測デバイスであるMI素子31,32および33を樹脂によりモールドしたものとして構成される。ここで、MI素子31は、測定対象からなる電流バー2(図2参照)から距離Rの位置に配置され、MI素子32はMI素子31からΔR1の位置に配置され、MI素子33はMI素子31からΔR2の位置にそれぞれ配置される。
FIG. 3 shows an enlarged configuration diagram of the current sensor.
That is, as shown in FIG. 3A, the current sensor is configured as a permanent magnet 30 and MI elements 31, 32, and 33, which are current measuring devices, molded with resin. Here, the MI element 31 is disposed at a distance R from the current bar 2 (see FIG. 2) to be measured, the MI element 32 is disposed at a position ΔR1 from the MI element 31, and the MI element 33 is disposed at the MI element 33. 31 to ΔR2.

MI素子は図3(b)に示すように、ガラス36上にスパッタリングにより成膜された磁性膜を、フォトプロセスなどでつづら折れ状にパターニングした磁性体34、MI素子に巻かれた負帰還コイル35から構成される。一般に、MI素子はホール素子や磁気抵抗素子にくらべ、磁界に対して高感度であることが報告されている(たとえば、比嘉他5名「パルス電流によるスパッタ薄膜マイクロMIセンサ」日本応用磁気学会誌,vol.21,No.4−2,1997年を参照されたい)。   As shown in FIG. 3B, the MI element includes a magnetic material 34 formed by sputtering a magnetic film formed on a glass 36 by a photo process and the like, and a negative feedback coil wound around the MI element. 35. In general, MI elements have been reported to be more sensitive to magnetic fields than Hall elements and magnetoresistive elements (for example, Higa et al., “Sputtered thin-film micro-MI sensor by pulse current”, Journal of Japan Society of Applied Magnetics) , Vol. 21, No. 4-2, 1997).

図4に、MI素子に印加される磁界によるインピーダンス特性例を示す。
横軸は磁界強度、縦軸はインピーダンス(Ω)を示す。MI素子に印加される磁界が変化すると、MI素子のインピーダンスは図示のように変化する。一般に、MI素子のインピーダンスと磁界の関係は、0磁場付近では安定しない。そこで、この発明では例えば図3のように、MI素子と対向する面に永久磁石30を配置し、これによりバイアス磁界Φ0[A/m]を印加したときの磁場を基準(以下、動作磁界Φ0ともいう)に、外部磁界の変化によってMI素子のインピーダンス変化を検出するものである。ここで、外部磁界とは、例えば電線に流れる電流によって発生する磁界に相当する。
FIG. 4 shows an example of impedance characteristics due to a magnetic field applied to the MI element.
The horizontal axis represents the magnetic field strength, and the vertical axis represents the impedance (Ω). When the magnetic field applied to the MI element changes, the impedance of the MI element changes as shown. In general, the relationship between the impedance of the MI element and the magnetic field is not stable near zero magnetic field. Therefore, in the present invention, for example, as shown in FIG. 3, the permanent magnet 30 is arranged on the surface facing the MI element, and thereby the magnetic field when the bias magnetic field Φ0 [A / m] is applied is used as a reference (hereinafter, the operating magnetic field Φ0). In other words, the impedance change of the MI element is detected by the change of the external magnetic field. Here, the external magnetic field corresponds to, for example, a magnetic field generated by a current flowing through the electric wire.

また、MI素子を電流センサとして用いる場合、
1)レンジアビリティの向上
2)温度特性改善
等を目的に、外部磁界に比例し、外部磁界とは逆方向の磁場(負帰還磁場)をMI素子に印加する。図3(b)に示す負帰還コイル35は、この負帰還磁場を印加するものである。
When using the MI element as a current sensor,
1) Improvement of rangeability 2) For the purpose of improving temperature characteristics, etc., a magnetic field (negative feedback magnetic field) proportional to the external magnetic field and in the opposite direction to the external magnetic field is applied to the MI element. The negative feedback coil 35 shown in FIG. 3B applies this negative feedback magnetic field.

次に、電流バーに配置される電流センサの動作、および電力演算方法について説明する。
いま、電流バーに電流が流れると、電流バーの周辺には図5のような磁界が発生する。例えば、電流バーに50A相当の電流を流した場合、MI素子31,32および33には、それぞれ780A/m,420A/mおよび720A/mの磁界が印加され、各MI素子はこれらの磁界に比例してインピーダンスが変化することになる。
Next, the operation of the current sensor arranged on the current bar and the power calculation method will be described.
Now, when a current flows through the current bar, a magnetic field as shown in FIG. 5 is generated around the current bar. For example, when a current corresponding to 50 A is passed through the current bar, magnetic fields of 780 A / m, 420 A / m, and 720 A / m are applied to the MI elements 31, 32, and 33, respectively. The impedance changes proportionally.

図6に電流センサと電力演算部の回路ブロック図を示す。なお、411,412および413は発振回路、421,422および423は固定抵抗、431,432および433は整流回路、441,442および443は増幅回路、461,462および463は負帰還磁場発生回路、48はマイコン、481は液晶表示器、482は計量パルス用LED、31,32および33はMI素子、35は負帰還コイル、V1,V2は図示されない電圧センサからの信号をそれぞれ示す。 FIG. 6 shows a circuit block diagram of the current sensor and the power calculation unit. 411, 412 and 413 are oscillation circuits, 421, 422 and 423 are fixed resistors, 431, 432 and 433 are rectifier circuits, 441, 442 and 443 are amplifier circuits, 461, 462 and 463 are negative feedback magnetic field generation circuits, 48 is a microcomputer, 481 is a liquid crystal display, 482 is a metering pulse LED, 31, 32 and 33 are MI elements, 35 is a negative feedback coil, and V 1 and V 2 are signals from voltage sensors (not shown).

いま、図6のMI素子31,32,33に発振回路411,412,413から数MHz〜数十MHzの高周波信号を印加すると、各MI素子は図5のように外部磁界に比例してそのインピーダンスが変化する。そのため、整流回路431,432および433の入力部の信号は、外部磁界に比例した振幅を持つ高周波信号となり、これが整流回路431,432,433および増幅回路441,442,443を経て、電流信号A,BおよびCとしてマイコン48に取り込まれる。   Now, when a high frequency signal of several MHz to several tens of MHz is applied from the oscillation circuits 411, 412, and 413 to the MI elements 31, 32, and 33 in FIG. 6, each MI element is proportional to the external magnetic field as shown in FIG. Impedance changes. Therefore, the signals at the input parts of the rectifier circuits 431, 432 and 433 become high-frequency signals having an amplitude proportional to the external magnetic field, and this signal passes through the rectifier circuits 431, 432, 433 and the amplifier circuits 441, 442, 443, and the current signal A , B and C are taken into the microcomputer 48.

また、増幅回路441,442および443の各出力は、電流センサのレンジアビリティの向上,温度特性改善を目的に、負帰還磁場を発生するための負帰還磁場発生回路461,462,463から、MI素子31,32,33に設けられた負帰還コイル35へ所定の電流を流し、MI素子31,32,33に負帰還磁場を印加する。
マイコン48に取り込まれた電流信号A,B,Cは、電流バーよりR,R+ΔR1,R+ΔR2の距離にそれぞれ配置されたMI素子31,32,33から、インピーダンスの変化として検出したものである。そのため、電流信号A,B,Cは、
電流信号A=αI/R ………(2)
電流信号B=αI/(R+ΔR1)………(3)
電流信号C=αI/(R+ΔR2)………(4)
となる。
The outputs of the amplifier circuits 441, 442 and 443 are output from the negative feedback magnetic field generation circuits 461, 462 and 463 for generating a negative feedback magnetic field for the purpose of improving the rangeability and temperature characteristics of the current sensor. A predetermined current is supplied to the negative feedback coil 35 provided in the elements 31, 32, 33, and a negative feedback magnetic field is applied to the MI elements 31, 32, 33.
The current signals A, B, and C captured by the microcomputer 48 are detected as impedance changes from the MI elements 31, 32, and 33 disposed at distances R, R + ΔR1, and R + ΔR2 from the current bar, respectively. Therefore, the current signals A, B, C are
Current signal A = αI / R (2)
Current signal B = αI / (R + ΔR1) (3)
Current signal C = αI / (R + ΔR2) (4)
It becomes.

ここで、R<R+ΔR2<R+ΔR1なので、各電流センサの出力信号は、
電流信号A>電流信号C>電流信号B
である。そこで、この発明の電力量計では、外乱ノイズの影響を除去するために、各電流センサの出力差を電流信号の差とする。そこで、電力量計で用いる電流センサの信号として、
電流信号S=電流信号A−電流信号B
電流信号L=電流信号A−電流信号C
の2信号を用いることとする。
Here, since R <R + ΔR2 <R + ΔR1, the output signal of each current sensor is
Current signal A> Current signal C> Current signal B
It is. Therefore, in the watt-hour meter of the present invention, in order to eliminate the influence of disturbance noise, the output difference of each current sensor is used as the difference between the current signals. Therefore, as a current sensor signal used in the watt-hour meter,
Current signal S = current signal A−current signal B
Current signal L = current signal A−current signal C
These two signals are used.

ここで、電流信号Sは図5より磁界の差が大きく現れるので、小さい電流で発生する磁界でも、十分に検出することができる。よって、小電流検知用として用いて有効である。一方、電流信号Lは図5より磁界の差が小さく現れるので、大きい電流で発生する磁界検知に有効である。
これらの電流信号S,Lと、電圧センサからの電圧信号をマイコン48で計算することにより、電力量を演算することができる。また、電流信号S,Lを切り替えることにより、大電流〜小電流まで高い電流測定精度にて測定することが可能となる。なお、以上のような処理は、電流バーに取り付けられた全ての電流センサについて行なわれる。
Here, since the difference in the magnetic field appears larger than that in FIG. 5, the current signal S can be sufficiently detected even with a magnetic field generated with a small current. Therefore, it is effective for use for detecting a small current. On the other hand, the current signal L is effective in detecting a magnetic field generated with a large current because the difference in magnetic field appears smaller than that in FIG.
By calculating the current signals S and L and the voltage signal from the voltage sensor by the microcomputer 48, the electric energy can be calculated. Further, by switching the current signals S and L, it is possible to measure with high current measurement accuracy from a large current to a small current. The above processing is performed for all current sensors attached to the current bar.

以上のような構成とすることにより、
1)安価なMI素子を用いる構成とすることにより、低コスト化が実現可能となる。
2)大電流から小電流まで広範囲の電流測定ができるため、電流仕様毎に電流センサを準備する必要がなくなり、各仕様毎の部品の共通化が可能となる。
などの利点が得られる。
With the above configuration,
1) By using an inexpensive MI element, the cost can be reduced.
2) Since it is possible to measure a wide range of current from large current to small current, it is not necessary to prepare a current sensor for each current specification, and it is possible to share components for each specification.
Advantages such as are obtained.

より大きな電流まで検出可能にするには、MI素子31とMI素子33との間隔をさらに近づける必要がある。
図7はこのような例に相当するもので、MI素子33をMI素子31と同じ平面上で、距離がΔR3だけ(ΔR3<ΔR2)離れた位置に配置したものである。これにより、図3の場合よりも大電流の検出が可能となる。
図8も上記と同趣旨のものであるが、MI素子33をMI素子31と異なる平面上で、かつ水平方向の距離がΔR4だけ(ΔR4<ΔR3)離れた位置に配置したものである。これにより、図7の場合よりもさらに大電流の検出が可能となる。
In order to detect even a larger current, it is necessary to further reduce the distance between the MI element 31 and the MI element 33.
FIG. 7 corresponds to such an example, in which the MI element 33 is disposed on the same plane as the MI element 31 at a distance of ΔR3 (ΔR3 <ΔR2). This makes it possible to detect a larger current than in the case of FIG.
FIG. 8 also has the same concept as above, but the MI element 33 is arranged on a different plane from the MI element 31 and at a horizontal distance of ΔR4 (ΔR4 <ΔR3). This makes it possible to detect a larger current than in the case of FIG.

以上では、MI素子を3個用いる例について説明したが、この発明は4個以上の場合についても、上記と同様にして適用することができる。すなわち、いずれか1つのMI素子を基準として、それ以外のMI素子との各信号出力差を利用することにより、3つの場合よりも精度の向上を期待することが可能となる。   In the above, an example in which three MI elements are used has been described. However, the present invention can be applied to the case of four or more elements in the same manner as described above. That is, using any one of the MI elements as a reference and using each signal output difference from the other MI elements, it is possible to expect an improvement in accuracy as compared with the case of three.

この発明の実施の形態を示す構成図Configuration diagram showing an embodiment of the present invention 図1の電流バーと電流センサの設置構成を示す斜視図The perspective view which shows the installation structure of the current bar and current sensor of FIG. 図1の電流センサの具体例を示す構成図Configuration diagram showing a specific example of the current sensor of FIG. MI素子の磁界インピーダンス特性を示す特性図Characteristic diagram showing magnetic field impedance characteristics of MI element 電流バーに印加される電流によって発生する磁場分布例の説明図Illustration of magnetic field distribution example generated by current applied to current bar 図1に対する電流センサと電力量演算回路例を示すブロック図FIG. 1 is a block diagram showing an example of a current sensor and an electric energy calculation circuit for FIG. 電流センサの別の例を示す構成図Configuration diagram showing another example of current sensor 電流センサのさらに別の例を示す構成図Configuration diagram showing still another example of a current sensor 電力量計の従来例を示す構成図Configuration diagram showing a conventional example of a watt-hour meter 図9の電流検出部の例を示す斜視図The perspective view which shows the example of the electric current detection part of FIG. 電力量計の別の従来例を示す構成図Configuration diagram showing another conventional example of watt-hour meter

符号の説明Explanation of symbols

1…下側筺体、2…電流バー、3…電流センサ、4…電流センサ基板、5…信号処理基板、6…電力演算基板、30…永久磁石、31,32,33…MI(磁気インピーダンス)素子、34…磁性体、35…負帰還コイル、36…ガラス基板、411〜413…発振回路、421〜423…固定抵抗、431〜433…整流回路、441〜443…増幅回路、461〜463…負帰還磁場発生回路、48…マイクロコンピュータ(マイコン)、481…液晶表示器、482…発光ダイオード(LED)。

DESCRIPTION OF SYMBOLS 1 ... Lower casing, 2 ... Current bar, 3 ... Current sensor, 4 ... Current sensor board, 5 ... Signal processing board, 6 ... Power calculation board, 30 ... Permanent magnet, 31, 32, 33 ... MI (magnetic impedance) Element 34... Magnetic body 35. Negative feedback coil 36 Glass substrate 411 to 413 Oscillator circuit 421 to 423 Fixed resistor 431 to 433 Rectifier circuit 441 to 443 Amplifier circuit 461 to 463 Negative feedback magnetic field generation circuit, 48... Microcomputer (microcomputer), 481... Liquid crystal display, 482.

Claims (7)

n(3以上の自然数)個の電流計測デバイスと、これらの電流計測デバイスを位置決めする位置決め手段と、前記n個の電流計測デバイスからの信号を外部磁界に比例する電圧信号に変換するn個の検出回路とを備えた電流センサにおいて、
前記n個の電流計測デバイスは測定対象となる導体からそれぞれ異なる距離位置に配置され、前記n個の検出回路からの各信号出力差を電流センサの出力信号とすることを特徴とする電流センサ。
n (natural number of 3 or more) current measuring devices, positioning means for positioning these current measuring devices, and n pieces of signals for converting signals from the n current measuring devices into voltage signals proportional to an external magnetic field In a current sensor equipped with a detection circuit,
The n current measuring devices are arranged at different distances from a conductor to be measured, and each signal output difference from the n detecting circuits is used as an output signal of the current sensor.
前記n個の電流計測デバイスは、測定対象となる導体に流れる電流に対して同一平面上の同一ライン上で互いに異なる距離位置にそれぞれ配置し、前記n個の電流計測デバイス対応の検出回路のいずれか1つを基準として、それ以外の検出回路からの各信号出力差を電流センサの出力信号とすることを特徴とする請求項1に記載の電流センサ。   The n current measuring devices are respectively arranged at different distance positions on the same line on the same plane with respect to the current flowing through the conductor to be measured, and any of the detection circuits corresponding to the n current measuring devices. 2. The current sensor according to claim 1, wherein each of the signal output differences from the other detection circuits is used as an output signal of the current sensor with one of them as a reference. 前記基準とならない電流計測デバイスの少なくとも1つを、基準となる電流計測デバイスと同一平面上の異なるライン上に配置することを特徴とする請求項2に記載の電流センサ。   The current sensor according to claim 2, wherein at least one of the non-reference current measurement devices is arranged on a different line on the same plane as the reference current measurement device. 前記基準とならない電流計測デバイスの少なくとも1つを、基準となる電流計測デバイスと異なる平面上に配置することを特徴とする請求項2に記載の電流センサ。   The current sensor according to claim 2, wherein at least one of the non-reference current measurement devices is arranged on a different plane from the reference current measurement device. 前記電流計測デバイスは、磁気インピーダンス素子と、この磁気インピーダンス素子に外部磁界に比例する磁界を印加するための負帰還磁場印加手段と、前記磁気インピーダンス素子にバイアス磁界を印加するためのバイアス印加手段とからなることを特徴とする請求項1〜4のいずれかに記載の電流センサ。   The current measuring device includes a magneto-impedance element, a negative feedback magnetic field applying means for applying a magnetic field proportional to an external magnetic field to the magneto-impedance element, and a bias applying means for applying a bias magnetic field to the magneto-impedance element. The current sensor according to claim 1, comprising: 前記バイアス印加手段は永久磁石であることを特徴とする請求項5に記載の電流センサ。   The current sensor according to claim 5, wherein the bias applying unit is a permanent magnet. 請求項1〜6に記載の電流センサの少なくとも1つを用いて構成することを特徴とする電力量計。

A watt hour meter comprising at least one of the current sensors according to claim 1.

JP2005027485A 2005-02-03 2005-02-03 Current sensor and watt-hour meter Active JP4910290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027485A JP4910290B2 (en) 2005-02-03 2005-02-03 Current sensor and watt-hour meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027485A JP4910290B2 (en) 2005-02-03 2005-02-03 Current sensor and watt-hour meter

Publications (2)

Publication Number Publication Date
JP2006214855A true JP2006214855A (en) 2006-08-17
JP4910290B2 JP4910290B2 (en) 2012-04-04

Family

ID=36978212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027485A Active JP4910290B2 (en) 2005-02-03 2005-02-03 Current sensor and watt-hour meter

Country Status (1)

Country Link
JP (1) JP4910290B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099020A (en) * 2011-10-28 2013-05-20 Asahi Kasei Electronics Co Ltd Power distribution panel
JP2014106012A (en) * 2012-11-26 2014-06-09 Nidec Sankyo Corp Magnetic sensor apparatus
JP2015125019A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
JP2015125020A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
JP2019039928A (en) * 2018-10-25 2019-03-14 株式会社東芝 Current sensor, current measuring module, and smart meter
US11309590B2 (en) 2017-11-06 2022-04-19 Lg Energy Solution, Ltd. Battery pack with improved assembly structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296663A (en) * 1991-03-27 1992-10-21 Osaka Gas Co Ltd Current measuring device
JPH05232202A (en) * 1992-02-25 1993-09-07 Fujitsu Ltd Software gradiometer
JPH08194016A (en) * 1995-01-19 1996-07-30 Fuji Electric Co Ltd Electric current sensing device
JP2005017017A (en) * 2003-06-24 2005-01-20 Fuji Electric Holdings Co Ltd Magnetic field/current sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296663A (en) * 1991-03-27 1992-10-21 Osaka Gas Co Ltd Current measuring device
JPH05232202A (en) * 1992-02-25 1993-09-07 Fujitsu Ltd Software gradiometer
JPH08194016A (en) * 1995-01-19 1996-07-30 Fuji Electric Co Ltd Electric current sensing device
JP2005017017A (en) * 2003-06-24 2005-01-20 Fuji Electric Holdings Co Ltd Magnetic field/current sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013099020A (en) * 2011-10-28 2013-05-20 Asahi Kasei Electronics Co Ltd Power distribution panel
JP2014106012A (en) * 2012-11-26 2014-06-09 Nidec Sankyo Corp Magnetic sensor apparatus
JP2015125019A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
JP2015125020A (en) * 2013-12-25 2015-07-06 株式会社東芝 Current sensor, current measuring module, and smart meter
US10254315B2 (en) 2013-12-25 2019-04-09 Kabushiki Kaisha Toshiba Current sensor, current measuring module, and smart meter
US11309590B2 (en) 2017-11-06 2022-04-19 Lg Energy Solution, Ltd. Battery pack with improved assembly structure
JP2019039928A (en) * 2018-10-25 2019-03-14 株式会社東芝 Current sensor, current measuring module, and smart meter

Also Published As

Publication number Publication date
JP4910290B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
FI118931B (en) Apparatus and method for measuring electrical power
US6734661B2 (en) Current Sensor
JP4910290B2 (en) Current sensor and watt-hour meter
US7642768B1 (en) Current sensor having field screening arrangement including electrical conductors sandwiching magnetic permeability layer
US9910071B2 (en) Electricity meter having multiple hall devices
KR100344514B1 (en) Method and Apparatus for Sensing an Input Current with a Bridge Circuit
JP2004132790A (en) Current sensor
KR100389277B1 (en) Sheet resistance meter
WO2013145636A1 (en) Power measuring apparatus
EP1166132B1 (en) An improved current sensing device for low-voltage power circuit breakers
JP2005503565A (en) Circuit structure for current detector with gradiometer and detector chip comprising the circuit structure
US20230358789A1 (en) Current sensor and method
JP2011220952A (en) Current detection device and watt-hour meter using the same
JP4380420B2 (en) Electricity meter
JP2005195446A (en) Watt hour meter
KR200461065Y1 (en) Electronic watt hour meter
US20030111999A1 (en) Residential electricity meter
JP5793682B2 (en) Power measuring device
JP2019152558A (en) Current sensor and voltmeter
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
JP7222652B2 (en) Current sensor and electricity meter
KR20070100474A (en) Temperature sensor for shielding magnetic field
JP2006317402A (en) Current sensor and watt-hour arithmetic unit
JP2022189812A (en) Current sensor comprising magnetic field sensor in v-shaped arrangement
JP2022100597A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250