JP2006210137A - Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube - Google Patents

Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube Download PDF

Info

Publication number
JP2006210137A
JP2006210137A JP2005020580A JP2005020580A JP2006210137A JP 2006210137 A JP2006210137 A JP 2006210137A JP 2005020580 A JP2005020580 A JP 2005020580A JP 2005020580 A JP2005020580 A JP 2005020580A JP 2006210137 A JP2006210137 A JP 2006210137A
Authority
JP
Japan
Prior art keywords
getter
powder
getter material
evaporation
metal container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020580A
Other languages
Japanese (ja)
Inventor
Hiromichi Horie
宏道 堀江
Yoshiyuki Fukuda
悦幸 福田
Hiromasa Kato
寛正 加藤
Nobuaki Nakajima
信昭 中島
Yasuhisa Makino
泰久 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2005020580A priority Critical patent/JP2006210137A/en
Publication of JP2006210137A publication Critical patent/JP2006210137A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method in which vaporization amount of getter components becomes possible to appropriately control without excess or deficiency in a stable state, and furthermore, the time from heating initiation until the getter components start evaporation is short, and a getter material and an evaporation type getter device with excellent responsiveness can be obtained. <P>SOLUTION: This is the getter material which is constituted of a compact blend composed of Ba-Al alloy powder and Ni powder, and when this getter material is heated in vacuum or in inert gas, the temperature in which the compact blend starts exothermic reaction is in the range of 750°C or more and 900°C or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は陰極線管(CRT)等の電子管内部の不要なガス成分を吸着し、電子管に必要な真空状態を実現するために使用されるゲッタ材料の製造方法およびそれを用いた蒸発型ゲッタ装置の製造方法並びに電子管の製造方法に関する。   The present invention adsorbs unnecessary gas components inside an electron tube such as a cathode ray tube (CRT), and a method for producing a getter material used for realizing a vacuum state necessary for the electron tube, and an evaporative getter device using the method. The present invention relates to a manufacturing method and a manufacturing method of an electron tube.

陰極線管(CRT)など電子管では真空排気が不十分な状態で電子管を動作させると特性に悪影響を及ぼす。このため、電子管内には不要なガスを十分に除去し高真空を実現するためのゲッタ装置が設けられている。最近、例えば民生用テレビの分野においては、32インチから37インチ程度の大型テレビが普及しており、このような大型テレビに使用するCRTも大型化している。このような大型電子管になると、管内部品点数やその体積も多くなると同時に管容積も増大するため、電子管製造工程で排気ポンプによる真空排気終了後の管内残留ガスおよび真空容器を含む電子管内の各部品から放出される不要なガスを吸着して電子管内を高真空に保つためのゲッタ装置の特性とその安定性向上がますます重要になってきている。
具体的には、Ba、Alを主成分とするBaAl合金粉末とNi粉末との混合体から成るゲッタ材料を用い、そのゲッタ材料をFeやNiなどを主成分とする合金、例えば鉄鋼、Ni合金、ステンレス鋼などから成る金属容器に充填した蒸発型ゲッタ装置がCRTに代表される電子管内の不純物ガス吸着のために装備されている。
When an electron tube such as a cathode ray tube (CRT) is operated with insufficient evacuation, the characteristics are adversely affected. For this reason, a getter device is provided in the electron tube for sufficiently removing unnecessary gas and realizing a high vacuum. Recently, for example, in the field of consumer televisions, large televisions of about 32 inches to 37 inches have become widespread, and CRTs used for such large televisions are also becoming larger. When such a large electron tube is used, the number of components in the tube and the volume of the tube increase, and at the same time the tube volume increases. Therefore, the components in the electron tube including the residual gas in the tube after the evacuation by the exhaust pump in the electron tube manufacturing process and the vacuum vessel are included. It is becoming more and more important to improve the characteristics and stability of getter devices for adsorbing unnecessary gases released from the gas and maintaining a high vacuum inside the electron tube.
Specifically, a getter material composed of a mixture of BaAl alloy powder mainly containing Ba and Al and Ni powder is used, and the getter material is an alloy mainly containing Fe or Ni, such as steel or Ni alloy. An evaporation type getter device filled in a metal container made of stainless steel or the like is equipped for impurity gas adsorption in an electron tube typified by a CRT.

このゲッタ装置においては、Ba−Al合金粉末とNi粉末との混合体から成るゲッタ材料を加熱して温度を上げて行くと、ある一定温度でAl成分とNi成分とが化合する発熱反応が開始され、ゲッタ材料中のBa成分が蒸発気化(ゲッタフラッシュ)し、このBa成分により不純物ガス吸着機能が発揮される結果、電子管内の真空度が所定の値に保持される。
このように電子管内に装備される蒸発型ゲッタ装置は、電子管内の不純物ガスを吸着して真空度を高めるために一定量のBaを蒸発させることが必要とされる。すなわちBa蒸発量が少ないと電子管に必要とされる所定の真空度が得られない。逆にBa蒸発量が過剰になると、電子管内壁等の構成部品に付着するBa量が過大となるため、異常放電の原因となったり、管壁から一部が脱落して電子管内の他の部分に付着することにより電子管の正常な動作に不具合を生じたりする原因となる。したがってBa蒸発量は電子管に必要とされる或一定の範囲に制御することが重要である。このような蒸発型ゲッタ装置として特開平10−27541号公報(特許文献1)のようなBa−Al合金粉末とNi粉末を用いたものが知られている。
In this getter device, when the temperature is raised by heating a getter material composed of a mixture of Ba-Al alloy powder and Ni powder, an exothermic reaction is started in which the Al component and Ni component combine at a certain temperature. Then, the Ba component in the getter material evaporates (getter flash), and the impurity gas adsorption function is exhibited by this Ba component. As a result, the degree of vacuum in the electron tube is maintained at a predetermined value.
Thus, the evaporative getter device equipped in the electron tube is required to evaporate a certain amount of Ba in order to adsorb the impurity gas in the electron tube and increase the degree of vacuum. That is, when the amount of Ba evaporation is small, a predetermined degree of vacuum required for the electron tube cannot be obtained. Conversely, if the amount of evaporated Ba is excessive, the amount of Ba adhering to the components such as the inner wall of the electron tube becomes excessive, which may cause abnormal discharge or drop off from the tube wall and other parts in the electron tube. Adhering to the surface may cause problems in the normal operation of the electron tube. Therefore, it is important to control the amount of Ba evaporation within a certain range required for the electron tube. As such an evaporative getter device, a device using Ba-Al alloy powder and Ni powder as disclosed in JP-A-10-27541 (Patent Document 1) is known.

特開平10−27541号公報Japanese Patent Laid-Open No. 10-27541

しかしながら従来のゲッタ材料では上記Ba蒸発量にゲッタ材料の発熱反応開始温度が大きく影響することについては全く把握されておらず、もとより発熱反応開始温度の明確な範囲は定められていなかった。そのため、ゲッタ材料の発熱反応のばらつきが大きくなり、Ba蒸発量を十分に制御することができないという問題点があった。さらにゲッタ材料は一般にゲッタリングと称されるBa蒸発のための開口面を持つ金属容器に充填して使用されるが、ゲッタ材料の発熱反応開始温度が高過ぎると金属容器自体の熱変形や溶融が起こり易くなり、Baの蒸発を安定した状態で継続することができないという問題点もあった。
電子管内に装備したゲッタ装置からBaを蒸発させる方法としては、一般的に、電子管内に設置されたゲッタ材料に対して電子管外から非接触状態で一定の高周波電力による高周波磁界を印加してゲッタ材料を加熱する方法が採用されている。この加熱方法によれば、真空状態に封止した電子管においてゲッタ装置以外の部分への影響を少なくしてゲッタ材料を加熱できること、また急速な加熱が容易で電子管生産の上で工程時間が短くて済むという利点がある。
しかしながら、高周波磁界の印加による加熱方法では、ゲッタ材料の加熱に際して、ゲッタ材料を充填した金属容器も加熱してしまう。このとき従来のゲッタ装置では、この金属容器の仕様と高周波加熱条件との関係には全く配慮がなされていないために下記のような問題も生起していた。すなわち金属容器への高周波電力による加熱の割合がゲッタ材料に対する加熱割合よりも著しく大きい場合には、金属容器の温度上昇がゲッタ材料の温度上昇より著しく大きくなり、ゲッタ材料の発熱反応が始まる前に容器が変形したり溶融したりしてしまう結果、ゲッタ成分を安定した状態で蒸発させることが困難になるという問題が起こると共に、ゲッタ材料自体の温度上昇が遅くなりゲッタ材料の加熱蒸発工程時間を長くとらないと電子管において所定の真空度を得るまでのBa蒸発量が得られず(加熱時間に対するBa蒸発量および所定の真空度を得るまでの応答性が低下)、電子管生産工程のネックになる。他方、加熱蒸発工程時間を短くするとBa蒸発量が不足して電子管に必要な真空度を得ることが困難になるという問題も生じていた。
However, in the conventional getter material, it has not been understood at all that the exothermic reaction start temperature of the getter material greatly affects the Ba evaporation amount, and the clear range of the exothermic reaction start temperature has not been determined. For this reason, the variation in the exothermic reaction of the getter material becomes large, and there is a problem that the amount of Ba evaporation cannot be controlled sufficiently. Further, the getter material is generally used by filling a metal container having an opening surface for Ba evaporation called gettering, but if the exothermic reaction start temperature of the getter material is too high, the metal container itself is thermally deformed or melted. There is also a problem that the evaporation of Ba cannot be continued in a stable state.
As a method for evaporating Ba from a getter device installed in an electron tube, generally, a getter material installed in the electron tube is applied with a high-frequency magnetic field by a constant high-frequency power in a non-contact state from outside the electron tube. A method of heating the material is employed. According to this heating method, the getter material can be heated in the electron tube sealed in a vacuum state with less influence on parts other than the getter device, and rapid heating is easy and the process time is short in the production of the electron tube. There is an advantage that it can be done.
However, in the heating method by applying a high frequency magnetic field, the metal container filled with the getter material is also heated when the getter material is heated. At this time, in the conventional getter device, since the relationship between the specification of the metal container and the high-frequency heating condition is not considered at all, the following problems have also occurred. That is, when the heating rate of the high frequency power to the metal container is significantly larger than the heating rate for the getter material, the temperature rise of the metal container becomes significantly larger than the temperature rise of the getter material, and before the exothermic reaction of the getter material starts. As a result of the container being deformed or melted, it becomes difficult to evaporate the getter component in a stable state, and the temperature rise of the getter material itself is slowed down, and the heating evaporation process time of the getter material is reduced. If the length is not long, the amount of Ba evaporation until a predetermined degree of vacuum is obtained in the electron tube cannot be obtained (the amount of Ba evaporation with respect to the heating time and the responsiveness until a predetermined degree of vacuum is reduced), which becomes a bottleneck in the electron tube production process. . On the other hand, if the heating and evaporating process time is shortened, there is a problem that the amount of Ba evaporation becomes insufficient and it is difficult to obtain the degree of vacuum necessary for the electron tube.

本発明のゲッタ材料の製造方法は、Ba−Al合金粉末とNi粉末とから成る圧粉混合体から構成されたゲッタ材料の製造方法において、このゲッタ材料を真空中または不活性ガス中で加熱した場合に、上記圧粉混合体が発熱反応を開始する温度が750℃以上900℃以下の範囲であるゲッタ材料を用いたことを特徴とするものである。
また、前記Ni粉末の平均粒径が10μm以下であることが好ましい。また、前記Ni粉末において粒径が20μm以上のNi粉末の割合が10質量%以下であることが好ましい。
また、前記圧粉混合体が前記Ba−Al合金粉末とNi粉末との混合体を400MPa以上の圧力で加圧成形した圧粉成形体であることが好ましい。また、前記圧粉成形体の電気抵抗率が20mΩ−cm以下であることが好ましい。
また、本発明の蒸発型ゲッタ装置の製造方法は、上記のようなゲッタ材料を金属容器内に充填したことを特徴とするものである。
The method for producing a getter material according to the present invention is a method for producing a getter material composed of a compact mixture composed of Ba-Al alloy powder and Ni powder, and the getter material is heated in vacuum or in an inert gas. In this case, a getter material having a temperature at which the green compact starts an exothermic reaction is in the range of 750 ° C. to 900 ° C. is used.
The average particle size of the Ni powder is preferably 10 μm or less. In the Ni powder, the proportion of Ni powder having a particle size of 20 μm or more is preferably 10% by mass or less.
Moreover, it is preferable that the said compacting body is a compacting body which pressure-molded the mixture of the said Ba-Al alloy powder and Ni powder with the pressure of 400 Mpa or more. Moreover, it is preferable that the electrical resistivity of the said compacting body is 20 m (ohm) -cm or less.
In addition, a method of manufacturing an evaporation type getter device according to the present invention is characterized in that a getter material as described above is filled in a metal container.

また、前記金属容器はFe、Ni、Fe合金およびNi合金のいずれかから構成されており、上記金属容器の板厚をtcm、ゲッタ材料からBaを蒸発させるために用いる加熱用交流磁界の周波数をfHzとしたときに、上記金属容器の板厚tおよび交流磁界周波数fが関係式t≦12.7/(f)1/2を満足することが好ましい。
また、上記のような蒸発型ゲッタ装置を用いて電子管を製造することも可能である。
Further, the metal container is made of any one of Fe, Ni, Fe alloy and Ni alloy, the thickness of the metal container is tcm, and the frequency of the heating AC magnetic field used for evaporating Ba from the getter material is set. It is preferable that the thickness t and the alternating magnetic field frequency f of the metal container satisfy the relational expression t ≦ 12.7 / (f) 1/2 when fHz is set.
It is also possible to manufacture an electron tube using the evaporative getter device as described above.

本発明によれば、ゲッタ成分の蒸発量を安定した状態で適正に制御することが可能であり、また加熱開始からゲッタ成分が蒸発を開始するまでの時間が短く(加熱時間に対するBa蒸発量および所定の真空度を得るまでの)応答性に優れたゲッタ材料の製造方法およびそれを用いた蒸発型ゲッタ装置の製造方法並びに電子管の製造方法を提供することを目的とする。
またゲッタ材料を充填する金属容器が変形したり溶融することが無く、ゲッタ材料の加熱蒸発工程時間を短くでき電子管が所定の真空度を得るまでの時間が短い優れた蒸発型ゲッタ装置の製造方法およびそれを用いた電子管の製造方法を提供することも可能である。
According to the present invention, the amount of evaporation of the getter component can be appropriately controlled in a stable state, and the time from the start of heating to the start of evaporation of the getter component is short (the amount of Ba evaporation relative to the heating time and It is an object of the present invention to provide a method for manufacturing a getter material having excellent responsiveness (until a predetermined degree of vacuum is obtained), a method for manufacturing an evaporation type getter device using the method, and a method for manufacturing an electron tube.
In addition, the metal container filled with the getter material is not deformed or melted, the heat evaporation process time of the getter material can be shortened, and the time for the electron tube to obtain a predetermined degree of vacuum is short. It is also possible to provide an electron tube manufacturing method using the same.

上記目的を達成するために本発明者らは種々の粒径を有する原料粉末を用意し種々の成形圧力にてゲッタ材料を調製し、そのゲッタ材料を種々の厚さを有する金属容器に充填してゲッタ装置を組立てて、ゲッタ材料の発熱反応開始温度等の条件がゲッタ成分の蒸発量の大小、その制御性、安定性、ゲッタ成分が蒸発を開始するまでの加熱時間で示される応答性の良否、および金属容器の変形・溶融の有無等に及ぼす影響を比較検討した。その結果、特に所定の微細粒径を有する原料粉末を所定の成形圧力にて成形し圧粉混合体の発熱反応開始温度を所定の範囲に規定することによりゲッタ成分の蒸発量を安定した状態で適正に制御することが可能となり、また加熱開始からゲッタ成分が蒸発を開始するまでの時間が短く応答性に優れたゲッタ材料および蒸発型ゲッタ装置が初めて得られるという知見を得た。

また、ゲッタ材料を充填するFeやNiなどを主成分とする合金、例えば鉄鋼、Ni合金、ステンレス鋼などで構成される金属容器の厚さと電子管内でゲッタからBaを蒸発させるために用いる加熱用高周波の周波数とが一定の関係となるように両者を調整した時に、金属容器が変形したり溶融することが無く、ゲッタ材料の加熱蒸発工程時間を短くでき電子管が所定の真空度を得るまでの時間が短く応答性に優れた蒸発型ゲッタ装置が初めて得られるという知見を得た。本発明は上記知見に基づいて完成されたものである。
すなわち、本発明に係るゲッタ材料は、Ba―Al合金粉末とNi粉末とから成る圧粉混合体から構成されたゲッタ材料であり、このゲッタ材料を真空中または不活性ガス中で加熱した場合に、上記圧粉混合体が発熱反応を開始する温度が750℃以上900℃以下の範囲であることを特徴とする。
In order to achieve the above object, the present inventors prepare raw material powders having various particle sizes, prepare getter materials at various molding pressures, and fill the getter materials into metal containers having various thicknesses. Assembling the getter device, the conditions such as the exothermic reaction start temperature of the getter material are large and small in the amount of evaporation of the getter component, its controllability and stability, and the responsiveness indicated by the heating time until the getter component starts to evaporate. A comparative study was conducted on the effects on quality and on the presence or absence of deformation and melting of the metal container. As a result, in particular, the raw material powder having a predetermined fine particle diameter is molded at a predetermined molding pressure, and the exothermic reaction start temperature of the green compact mixture is regulated within a predetermined range so that the evaporation amount of the getter component is stabilized. It has been found that it is possible to appropriately control, and that a getter material and an evaporation type getter device having a short response time from the start of heating to the start of evaporation of the getter component and having excellent responsiveness can be obtained for the first time.

Further, the thickness of a metal container composed of an alloy mainly composed of Fe, Ni, etc., which fills the getter material, such as steel, Ni alloy, stainless steel, etc. and for heating used to evaporate Ba from the getter in the electron tube When both are adjusted so that the frequency of the high frequency is in a fixed relationship, the metal container will not be deformed or melted, the heating evaporation process time of the getter material can be shortened, and the electron tube can obtain a predetermined degree of vacuum. It was found that an evaporative getter device with a short time and excellent response was obtained for the first time. The present invention has been completed based on the above findings.
That is, the getter material according to the present invention is a getter material composed of a powder mixture composed of Ba—Al alloy powder and Ni powder, and when this getter material is heated in vacuum or in an inert gas. The temperature at which the powder mixture starts an exothermic reaction is in the range of 750 ° C. to 900 ° C.

上記ゲッタ材料を構成するBa−Al合金粉末としては、BaAl粉末に限定されることはなく、基本的にはNi成分とAl成分とを発熱反応させてNi―Al合金を形成し、その際にゲッタ成分としてのBaを蒸発させる原料であれば使用することができる。このような発熱反応はBa―Al合金とNiとを微細な粉末として混合加熱したときに生起し易い。ここで、粒径が10μm以下のNi粉末はカーボニルニッケルとして容易に入手できる。一方、Ba―Al合金粉末は溶解した合金塊を粉砕する方法で製造される。その際に特に金属間化合物であるBaAlは脆くなるため粉砕操作が容易となる。なお、粉砕の観点から実用上は厳密に化学量論的組成を有するBaAl化合物である必要はなく、BaAl近傍の組成、すなわちAl質量比がBaAlの組成中のAl量+10%から同じく金属間化合物であるBaAlの間の組成、さらに具体的にはBa―Al合金中のAl量が質量比で27〜50%であるBa―Al合金粉末が好適に使用可能である。
上記ゲッタ材料において、Ba、Alを主成分とするBaAl合金粉末とNi粉末との圧粉混合体から成るゲッタ材料が加熱されて温度が上昇すると、下記の発熱反応の反応式(1)に従ってNi成分とAl成分が化合すると同時に、Ba成分が蒸発して不純物を吸着することにより蒸発型ゲッタとしての機能が発揮される。
BaAl+4Ni→4NiAl+Ba …(1)
The Ba—Al alloy powder constituting the getter material is not limited to BaAl 4 powder, and basically a Ni—Al alloy is formed by an exothermic reaction between a Ni component and an Al component. Any raw material that evaporates Ba as a getter component can be used. Such an exothermic reaction is likely to occur when Ba—Al alloy and Ni are mixed and heated as a fine powder. Here, Ni powder having a particle size of 10 μm or less can be easily obtained as carbonyl nickel. On the other hand, Ba—Al alloy powder is manufactured by a method of pulverizing a molten alloy lump. At that time, especially BaAl 4 which is an intermetallic compound becomes brittle, so that the pulverization operation becomes easy. From the viewpoint of pulverization, it is not necessary to be a BaAl 4 compound having a strictly stoichiometric composition in practical use. The composition in the vicinity of BaAl 4 , that is, the Al mass ratio is the same from the Al amount in the composition of BaAl 4 + 10%. A composition between BaAl 2 that is an intermetallic compound, more specifically, Ba—Al alloy powder in which the Al content in the Ba—Al alloy is 27 to 50% by mass can be suitably used.
In the above getter material, when the getter material composed of a powder mixture of BaAl 4 alloy powder mainly containing Ba and Al and Ni powder is heated and the temperature rises, the following exothermic reaction formula (1) is followed. Simultaneously with the combination of the Ni component and the Al component, the Ba component evaporates and adsorbs impurities, thereby exhibiting a function as an evaporation type getter.
BaAl 4 + 4Ni → 4NiAl + Ba (1)

上記ゲッタ材料の発熱反応式から明らかなように、ゲッタ材料中のBaAl合金粉末とNi粉末との質量比率は50%:50%に近い値をとることが一般的である。ゲッタ材料の発熱反応では他のNi:Al比率が1:1以外の組成の合金を生じたり、BaAl中のBaが全て蒸発することなくBaAlとは組成比が異なる合金となって残留したりするものもあるため、ゲッタ材料の状態、ゲッタ材料を金属容器に入れたゲッタ装置の状態、ゲッタ材料に加える温度や時間等の条件により、同一ゲッタ材料を同一量だけ使用したゲッタ装置であってもBaの蒸発量は大きく異なる。
本発明に係るゲッタ材料において、圧粉混合体から成るゲッタ材料を真空中または不活性ガス中で加熱した場合に、この圧粉混合体が発熱反応を開始する温度は750℃以上900℃以下の範囲に規定される。この発熱反応開始温度が750℃未満の場合には、ゲッタ成分であるBaが低温度で過剰に蒸発し易くなりBaの蒸発量の制御が困難に成ると共に、大気中で反応し易い状態になるために、電子管の組立工程に必要とされる低温度の加熱操作によっても容易に酸化などによる劣化を生じ易くなる。
As is apparent from the exothermic reaction formula of the getter material, the mass ratio of the BaAl 4 alloy powder to the Ni powder in the getter material generally takes a value close to 50%: 50%. Ni other in an exothermic reaction of the getter material: Al ratio of 1: 1 or cause the alloy composition except, or residual becomes different composition ratios alloys and BaAl 4 without Ba in BaAl is completely evaporated This is a getter device that uses the same amount of getter material depending on conditions such as the state of the getter material, the state of the getter device in which the getter material is put in a metal container, and the temperature and time applied to the getter material. However, the amount of evaporation of Ba is greatly different.
In the getter material according to the present invention, when the getter material composed of the powder mixture is heated in vacuum or in an inert gas, the temperature at which the powder mixture starts an exothermic reaction is 750 ° C. or more and 900 ° C. or less. Specified in range. When the exothermic reaction start temperature is less than 750 ° C., the getter component Ba tends to be excessively evaporated at a low temperature, making it difficult to control the evaporation amount of Ba, and to react easily in the atmosphere. Therefore, deterioration due to oxidation or the like is easily caused even by a low-temperature heating operation required for the assembly process of the electron tube.

一方、上記発熱反応開始温度が900℃を超えるように過度に高い場合には、ゲッタ材料に加えなければならない加熱エネルギー量が大きくなるので加熱を開始しても反応開始温度に至るまでの時間が長くなり短時間でゲッタ成分の十分な蒸発量が確保できず、この場合においても蒸発量自体の制御が困難になる上に、電子管内において所定の真空度を得るまでの応答時間が遅れることになる。従って、上記の発熱反応開始温度は750℃以上900℃以下の範囲に規定される。
なお、ゲッタ材料を調製する際に混合するBaAl合金粉末およびNi粉末の粒径を1μm程度以下の極めて微細な領域に設定すれば、発熱反応開始温度そのものを700℃未満まで下げゲッタ成分の蒸発量を高めることは可能である。しかしながら、前記のようにBa―Al合金粉末は大気中で酸化等の反応で劣化し易い性質を有しており、電子管製造工程においてBa―Al合金粉末を含むゲッタ装置は電子管内に取り付けられて真空排気されるまでの工程間に大気に暴露されて劣化することを防止することは現実的に極めて困難である。さらにCRT(ブラウン管等の陰極線管)ではゲッタ装置の取り付け部位によっては真空排気以前にフェイス部とファンネル部とのガラスフリット工程で高温にさらされる場合がある。
On the other hand, when the exothermic reaction start temperature is excessively high so as to exceed 900 ° C., the amount of heating energy that must be added to the getter material becomes large, so even if heating is started, the time until the reaction start temperature is reached. In this case, it is difficult to control the evaporation amount itself and the response time until a predetermined degree of vacuum is obtained in the electron tube is delayed. Become. Therefore, the exothermic reaction start temperature is defined in the range of 750 ° C. or higher and 900 ° C. or lower.
If the particle size of the BaAl 4 alloy powder and Ni powder mixed when preparing the getter material is set to a very fine region of about 1 μm or less, the exothermic reaction start temperature itself is lowered to less than 700 ° C. and the getter component is evaporated. It is possible to increase the amount. However, as described above, the Ba-Al alloy powder has a property of being easily deteriorated by a reaction such as oxidation in the atmosphere, and the getter device including the Ba-Al alloy powder is attached to the electron tube in the electron tube manufacturing process. In practice, it is extremely difficult to prevent deterioration due to exposure to the atmosphere during the process until evacuation. Furthermore, CRTs (cathode ray tubes such as cathode ray tubes) may be exposed to high temperatures in the glass frit process between the face part and the funnel part before evacuation depending on the attachment part of the getter device.

このときBaAl等のBa−Al合金は活性なため、ある程度の酸化等による劣化は不可避である。特にBa―Al合金粉末の粒径が、1μm程度以下の極めて微細な領域になると、劣化現象が急速に顕著になり、ゲッタ性能が大幅に低下してしまう。そこでBaAl合金粉末については粒径が1μm未満の微細粉末がBaAl原料中に質量比で10%以下となるよう調整することが望ましい。一方、Ni粉末はBaAlと比較して酸化劣化が起こり難いため、特に粒径の下限値を制限する必要はない。
上記構成に係るゲッタ材料によれば、圧粉混合体が発熱反応を開始する温度が750℃以上900℃以下の範囲に規定されているために、ゲッタ成分の蒸発量を過不足なく安定した状態で適正に制御することが可能となり、また加熱開始からゲッタ成分が蒸発を開始するまでの時間が短く応答性に優れたゲッタ材料および蒸発型ゲッタ装置が得られる。またゲッタ材料を充填する金属容器が変形したり溶融することが無く、ゲッタ材料の加熱蒸発工程時間を短くでき電子管が所定の真空度を得るまでの時間が短く応答性に優れた蒸発型ゲッタ装置が得られる。
At this time, since a Ba—Al alloy such as BaAl 4 is active, a certain degree of deterioration due to oxidation is inevitable. In particular, when the particle diameter of the Ba—Al alloy powder is an extremely fine region of about 1 μm or less, the deterioration phenomenon becomes noticeable rapidly, and the getter performance is greatly reduced. Therefore, it is desirable to adjust the BaAl 4 alloy powder so that a fine powder having a particle size of less than 1 μm is 10% or less by mass ratio in the BaAl 4 raw material. On the other hand, since Ni powder is less susceptible to oxidative degradation than BaAl 4 , it is not necessary to limit the lower limit of particle size.
According to the getter material according to the above configuration, since the temperature at which the compacting mixture starts an exothermic reaction is defined in the range of 750 ° C. or more and 900 ° C. or less, the amount of evaporation of the getter component is stable without excess or deficiency. Thus, it is possible to appropriately control, and it is possible to obtain a getter material and an evaporation type getter device which have a short response time from the start of heating to the start of evaporation of the getter component and have excellent responsiveness. In addition, the metal container filled with the getter material is not deformed or melted, the heat evaporation process time of the getter material can be shortened, and the time required for the electron tube to obtain a predetermined vacuum degree is short, and the responsive evaporation getter device is excellent. Is obtained.

上記蒸発型ゲッタを用いたCRT(陰極線管)等の電子管では電子管本体内部に残留する不要なガスおよび電子管内で電子管を構成する真空容器を含む各部分品から発生する不要なガスを吸着して真空度を高めるために、一定量のBaをゲッタ成分(ガス吸着成分)として蒸発させることが必要とされる。ここでBa蒸発量が少ないと電子管に必要とされる真空度が得られない。逆にBa蒸発量が過剰になると、電子管内壁等に付着するBa量が過大となるため、異常放電の原因となったり、管壁から付着物の一部が脱落して電子管内の他の部分に付着することで電子管の正常な動作に不具合を生ずる原因となったりする。したがってBa蒸発量は電子管に必要とされる一定の範囲に制御することが重要である。
これに対して従来のゲッタ材料では、発熱反応開始温度の適当な範囲が定まっていなかったため、発熱反応のばらつきが大きく、Ba蒸発量を十分に制御することが困難であった。さらにゲッタ材料はゲッタリングと称されるBa蒸発のための開口面を持つ金属容器に充填して用いられるが、ゲッタ材料の発熱反応開始温度が高すぎると金属容器の熱変形や溶融を引き起こすという問題も生じていた。
An electron tube such as a cathode ray tube (CRT) using the evaporative getter absorbs unnecessary gas remaining inside the electron tube main body and unnecessary gas generated from each part including the vacuum vessel constituting the electron tube in the electron tube. In order to increase the degree of vacuum, it is necessary to evaporate a certain amount of Ba as a getter component (gas adsorption component). Here, when the amount of Ba evaporation is small, the degree of vacuum required for the electron tube cannot be obtained. On the contrary, if the amount of evaporated Ba becomes excessive, the amount of Ba adhering to the inner wall of the electron tube becomes excessive, which may cause abnormal discharge, or some of the deposits may fall off from the tube wall and other parts in the electron tube. It may cause a malfunction in the normal operation of the electron tube. Therefore, it is important to control the Ba evaporation amount within a certain range required for the electron tube.
On the other hand, in the conventional getter material, since an appropriate range of the exothermic reaction start temperature has not been determined, the variation in the exothermic reaction is large, and it is difficult to sufficiently control the Ba evaporation amount. Furthermore, the getter material is used by filling a metal container having an opening surface for Ba evaporation called gettering. However, if the start temperature of the exothermic reaction of the getter material is too high, the metal container will be thermally deformed or melted. There was also a problem.

また、ゲッタ材料はBaAlなどのBa−Al合金粉末とNi粉末との混合体を圧縮成形して得られる圧粉混合体として形成されるが、その圧粉混合体の発熱反応開始温度はゲッタ材料中のBaAlなどのBa−Al合金粉末とNi粉末との組成比、それぞれの原料粉末の粒子サイズ、原料混合体を圧縮成成形する際の成形圧力などにより変化する。この発熱反応開始温度はゲッタの加熱時間が少なくて済み、金属容器の溶融の問題も小さくなるように低い温度であることが適当と考えられるが、実際のゲッタではBa蒸発量を制御するうえで、反応開始温度との関係が明らかになっていなかった。
これに対して本発明に係るゲッタ材料とそれを用いたゲッタ装置は、BaAlなどのBa−Al合金粉末とNi粉末との混合体から成るゲッタ材料を用いた蒸発型ゲッタにおいて、その発熱反応開始温度を750℃以上900℃以下の範囲に定めることにより、ゲッタの高周波磁界による加熱開始以後Ba成分の蒸発開始までの時間が短く、且つBa蒸発量が安定した一定の範囲に入ることを見出し、その知見に基づいて完成したものである。
The getter material is formed as a powder mixture obtained by compression molding a mixture of Ba—Al alloy powder such as BaAl 4 and Ni powder, and the exothermic reaction start temperature of the powder mixture is a getter material. It varies depending on the composition ratio between the Ba—Al alloy powder such as BaAl 4 in the material and the Ni powder, the particle size of each raw material powder, the molding pressure when compression molding the raw material mixture, and the like. This exothermic reaction start temperature is considered to be appropriate to be low so that the heating time of the getter is short and the problem of melting of the metal container is reduced. However, in actual getters, in order to control the amount of Ba evaporation, The relationship with the reaction start temperature was not clarified.
On the other hand, the getter material according to the present invention and the getter device using the getter material are an exothermic reaction in an evaporation type getter using a getter material made of a mixture of Ba—Al alloy powder such as BaAl 4 and Ni powder. By setting the start temperature in the range of 750 ° C. or more and 900 ° C. or less, it is found that the time from the start of heating by the high frequency magnetic field of the getter to the start of evaporation of the Ba component is short, and the Ba evaporation amount falls within a stable range. And completed based on that knowledge.

上記ゲッタ装置に用いたゲッタ材料の発熱反応開始温度は、BaAlなどのBa−Al合金粉末およびNi粉末の粒径を微細化すると低温度側へ移り、反対に粒径を大きくすると高温度側へ移る。これは原料粉の微細化によりBa―Al合金粉末とNi粉末との接触面積が増加するなどの理由で発熱開始温度が低温側に移行するためである。BaAlなどのBa−Al合金粉末およびNi粉末の双方の粒子経をいずれも10μm以下に設定すると発熱反応開始温度が750℃や700℃未満のゲッタ材料を製作することも可能である。しかしながら、BaAlなどのBa−Al合金粉末は本来化学的に活性な原料であるため、1μm以下の粉末では電子管の生産工程で電子管部品が暴露される雰囲気環境下(大気中)でも酸化などにより特性が容易に変動劣化してしまう難点がある。
そこで本発明では、Ba―Al合金粉末の粒径としてゲッタ装置が装備される電子管の製造プロセス条件の範囲内でより安定な特性を維持させるために平均粒径で44μm以下(但し、BaAlなどのBa−Al合金については粒径が1μm未満の微細粉末がBaAl原料粉末中に質量比で10%を越えない範囲が望ましい)或いは平均粒径で数十〜150μmの範囲(粒径の最大値は300μmを越えない範囲が望ましい)に設定することにより、750℃以上900℃以下の発熱反応開始温度範囲で十分なBa蒸発量が安定して得られることが判明した。
The exothermic reaction start temperature of the getter material used in the getter device is shifted to the lower temperature side when the particle size of Ba-Al alloy powder such as BaAl 4 and Ni powder is made finer, and conversely, when the particle size is increased, the higher temperature side. Move on. This is because the heat generation start temperature shifts to the low temperature side because the contact area between the Ba—Al alloy powder and the Ni powder increases due to the refinement of the raw material powder. When both the particle diameters of Ba—Al alloy powder such as BaAl 4 and Ni powder are set to 10 μm or less, it is possible to produce a getter material having an exothermic reaction start temperature of 750 ° C. or less than 700 ° C. However, since Ba—Al alloy powders such as BaAl 4 are inherently chemically active raw materials, with powders of 1 μm or less, oxidation or the like may occur even in an atmosphere environment (in the atmosphere) where electron tube components are exposed in the electron tube production process. There is a drawback that the characteristics easily fluctuate and deteriorate.
Therefore, in the present invention, in order to maintain more stable characteristics within the range of the manufacturing process conditions of the electron tube equipped with the getter device as the particle diameter of the Ba—Al alloy powder, the average particle diameter is 44 μm or less (however, BaAl 4 or the like In the case of Ba-Al alloy, a fine powder having a particle size of less than 1 μm is preferably within a range not exceeding 10% by mass in the BaAl 4 raw material powder) or an average particle size in the range of several tens to 150 μm (maximum particle size) It was found that a sufficient amount of Ba evaporation can be stably obtained in the exothermic reaction start temperature range of 750 ° C. or more and 900 ° C. or less by setting the value to a range not exceeding 300 μm.

一方、Ni粉末はBaAlなどのBa−Al合金粉末よりも電子管の製造環境下で安定な特性を有し、また酸化による劣化も少ないため、粉末粒径は小さくなっても問題はない。ただBa―Al合金粉末との接触面積を高め反応性を向上させるために10μm以下の粒径が望ましいことも判明した。なお、Ni粉末とBaAl粉末との混合比(質量比)が48:52〜56:44とした時に、Ba蒸発量が最大になることも判明した。なお、BaAlからやや組成がずれたBa―Al合金粉末を使用する場合には、Niに対するAl混合比を上記のBaAl合金とほぼ同一の範囲とすることが望ましい。
また、BaAl粉末とNi粉末との接触面積を考慮すると、Ba―Al合金粉末の粒径の絶対値が1μm以下であるBa―Al合金粉末が質量比で10%未満の粉末であり、最大粒径は300μm以下であることが好ましい。一方、Ni粉末として最大粒径が20μm以下であり、平均粒径が10μm以下の範囲であることが好ましい。
さらに上記ゲッタ材料のNi粉末において、粒径が20μm以上のNi粉末の割合が10質量%以下であることが好ましい。Ni粉末の粒径が過度に大きいとBa―Al合金粉末とNi粉末との接触面積が小さくなるので発熱反応開始温度が高くなり、Ba蒸発量が不十分になり易い。したがって、Ni粉末原料粉末において粒径が20μm以上のNi粉末の割合は10質量%以下であることが好ましい。
On the other hand, Ni powder has more stable characteristics in an electron tube manufacturing environment than Ba—Al alloy powder such as BaAl 4 and is less deteriorated by oxidation. Therefore, there is no problem even if the powder particle size is reduced. However, it has also been found that a particle size of 10 μm or less is desirable in order to increase the contact area with the Ba—Al alloy powder and improve the reactivity. It has also been found that when the mixing ratio (mass ratio) of Ni powder and BaAl 4 powder is 48:52 to 56:44, the amount of Ba evaporation is maximized. When using the BaAl alloy powder slightly shifted the composition from BaAl 4, it is preferable to set the Al mixing ratio for Ni and approximately the same range as the above BaAl 4 alloy.
Further, considering the contact area between the BaAl powder and the Ni powder, the Ba—Al alloy powder having an absolute particle size of 1 μm or less is a powder having a mass ratio of less than 10%, and the maximum particle size The diameter is preferably 300 μm or less. On the other hand, the Ni powder preferably has a maximum particle size of 20 μm or less and an average particle size of 10 μm or less.
Furthermore, in the Ni powder of the getter material, the proportion of Ni powder having a particle size of 20 μm or more is preferably 10% by mass or less. If the particle size of the Ni powder is excessively large, the contact area between the Ba—Al alloy powder and the Ni powder becomes small, so the exothermic reaction start temperature becomes high and the amount of Ba evaporation tends to be insufficient. Accordingly, the proportion of Ni powder having a particle size of 20 μm or more in the Ni powder raw material powder is preferably 10% by mass or less.

また上記ゲッタ材料において、前記圧粉混合体が前記Ba―Al合金粉末とNi粉末との混合体を400MPa以上の圧力で加圧成形した圧粉成形体であることが好ましい。
同一のBaAl合金粉末とNi粉末との圧粉混合体を加圧成形によりゲッタ材料として製造した場合には、このゲッタ材料は、ある成形圧力以下では発熱反応開始温度が急上昇し、その圧力以上では比較的安定した発熱反応開始温度を有することも判明している。実用的な粒径である44μm以下あるいは数十〜150μmの範囲のBaAl粉末と10μm以下のNi粉末とを原料とした加圧成形法により製造したゲッタ材料においては、400MPa以上の成形圧力を付加することにより所望範囲内の発熱反応開始温度が得られる。ところが、Ni粉末の粒径を10〜20μmに設定した場合には、1000MPa未満の成形圧力で発熱反応開始温度が上昇し安定したBa蒸発量が得られる750℃〜900℃の発熱反応開始温度が得られなかった。つまり、適正なBa蒸発量を得るためには、上記のようにゲッタ材料の原料粉末の粒径に応じて成形圧力を適正に調整することが重要である。
In the getter material, the powder mixture is preferably a powder compact obtained by pressure-molding a mixture of the Ba—Al alloy powder and Ni powder at a pressure of 400 MPa or more.
When a compact mixture of the same BaAl 4 alloy powder and Ni powder is produced as a getter material by pressure molding, this getter material has an exothermic reaction start temperature that suddenly rises below a certain molding pressure. Has also been found to have a relatively stable exothermic reaction initiation temperature. In the getter material manufactured by the pressure molding method using BaAl 4 powder having a practical particle size of 44 μm or less or a range of several tens to 150 μm and Ni powder of 10 μm or less as raw materials, a molding pressure of 400 MPa or more is applied. By doing so, an exothermic reaction start temperature within the desired range can be obtained. However, when the particle size of the Ni powder is set to 10 to 20 μm, the exothermic reaction start temperature of 750 ° C. to 900 ° C. at which the exothermic reaction start temperature rises and a stable Ba evaporation amount is obtained at a molding pressure of less than 1000 MPa. It was not obtained. In other words, in order to obtain an appropriate amount of Ba evaporation, it is important to appropriately adjust the molding pressure according to the particle size of the raw material powder of the getter material as described above.

本発明に係る蒸発型ゲッタ装置は、上記圧縮成形体としてのゲッタ材料を金属容器内に充填して構成される。
上記ゲッタ材料は金属容器内に圧着した状態で充填し、金属容器と充填したゲッタ材料との間に隙間が形成されないようにすることが重要である。ゲッタ材料と金属容器との間に遊びが形成されると、金属粉末の圧縮成形体であるゲッタ材料全体または一部が金属容器から脱落する危険が高くなる。僅かな量のゲッタ材料が脱落しても、異常放電の原因になったり、CRTのシャドウマスクの穴に目詰まりを生じたりして電子管の性能を低下させることに繋がる。
電子管内に装備されたゲッタ装置からBaを蒸発させる操作は、一般的に電子管内に設置されたゲッタ装置に対して電子管外から非接触で一定の高周波電力による高周波磁界を印加して加熱する方式が採用される。この方式によれば、真空状態に封止した電子管においてゲッタ装置以外の部分への熱影響を低減して少なくしてゲッタ装置のみを加熱できること、急速な加熱が容易で電子管生産の上で工程時間が短くて済むという利点がある。
しかしながら、高周波磁界の印加による加熱方式でゲッタ材料を加熱する場合には、ゲッタ材料のみならず、ゲッタ材料を充填した金属容器も同時に加熱してしまう。この点、従来のゲッタ装置では、この金属容器と加熱高周波条件との相互関係については全く着目されていないために以下に示すような問題点が生起されていた。すなわち、高周波電力による金属容器への加熱割合がゲッタ材料に対する加熱割合よりも著しく大きくなる場合には、金属容器の温度上昇がゲッタ材料の温度上昇より著しく大きくなる結果、ゲッタ材料の発熱反応が開始される前に金属容器が変形したり溶融したりしてBa蒸発が阻害されてしまう問題があった。またゲッタ材料の温度上昇が遅く、ゲッタ材料の加熱蒸発工程時間が長くなってしまうという問題も生じていた。
The evaporative getter device according to the present invention is configured by filling a metal container with the getter material as the compression molded body.
It is important that the getter material is filled in a pressed state in a metal container so that no gap is formed between the metal container and the filled getter material. When play is formed between the getter material and the metal container, there is a high risk that all or part of the getter material, which is a compression-molded body of the metal powder, is dropped from the metal container. Even if a small amount of getter material falls off, it may cause abnormal discharge or cause clogging in the hole of the shadow mask of the CRT, leading to deterioration of the performance of the electron tube.
The operation of evaporating Ba from the getter device installed in the electron tube is generally a method of heating the getter device installed in the electron tube by applying a high-frequency magnetic field by a constant high-frequency power in a non-contact manner from outside the electron tube. Is adopted. According to this method, in the electron tube sealed in a vacuum state, only the getter device can be heated by reducing and reducing the thermal influence on the parts other than the getter device, rapid heating is easy, and the process time in the production of the electron tube Has the advantage of being short.
However, when the getter material is heated by a heating method by applying a high frequency magnetic field, not only the getter material but also the metal container filled with the getter material is heated at the same time. In this regard, in the conventional getter device, since the attention is not paid to the mutual relationship between the metal container and the heating high-frequency condition, the following problems have occurred. That is, when the heating rate of the metal container by the high frequency power is significantly higher than the heating rate of the getter material, the temperature rise of the metal container becomes significantly larger than the temperature rise of the getter material, and the exothermic reaction of the getter material starts. There is a problem that the Ba evaporation is hindered by deformation or melting of the metal container before being performed. Further, the temperature rise of the getter material is slow, and there has been a problem that the heat evaporation process time of the getter material becomes long.

これらの問題に対して本発明では、ゲッタ材料を充填するFeやNiなどを主成分とする合金、例えば鉄鋼、Ni合金、ステンレス鋼などで構成される金属容器の厚さと加熱用高周波の周波数とが一定の関係となるように両者を調整することにより、金属容器が変形したり溶融することが無く、ゲッタ材料の加熱蒸発工程時間を短くでき電子管が所定の真空度を得るまでの時間が短く応答性に優れた蒸発型ゲッタ装置を得ている。
すなわち、本発明に係る蒸発型ゲッタ装置は、Fe、Ni、Fe合金およびNi合金のいずれかから構成された金属容器内にBaAl合金粉末とNi粉末との圧粉混合体から成るゲッタ材料を充填した蒸発型ゲッタ装置において、上記金属容器の板厚をtcmとし、ゲッタ材料を加熱してゲッタ材料からBa成分を蒸発させるために用いる加熱用交流磁界の周波数をfHzとした場合に、上記金属容器の板厚tおよび交流磁界周波数fが関係式t≦12.7/(f)1/2を満足することを特徴とする。
ゲッタ材料とそれを充填した金属容器とから成るゲッタ装置に対して、高周波電力を磁界発生コイルに加えて発生させた高周波磁界を印加する方法で加熱をした場合、高周波電力により投入される熱エネルギーはゲッタ材料と金属容器とにそれぞれに付加されることになる。
金属容器の構成材としては、ゲッタ材料の発熱反応温度よりも融点が十分に高く構造強度および耐熱性に優れたFe、Fe基合金、Ni、Ni基合金、FeまたはNiとFe、Ni、Cr、Mnから選択される少なくとも1種以上の元素とから成る合金材で形成される。合金材としては、例えば不銹鋼(ステンレス鋼)などが好適に採用できる。特にステンレス鋼としては、Feの他に合金中に含まれるCrやNi、Mnなどの成分量が数質量%から数十質量%の合金材が用いられる。またFeやNiの構造強度や耐熱性を増加させる目的で1〜5質量%程度のCr、Mn、Ni(Feへの添加のみ)、Fe(Niへの添加のみ)などを添加した合金材、例えばクロム鋼を使用することもできる。
With respect to these problems, in the present invention, the thickness of a metal container made of an alloy mainly composed of Fe, Ni, or the like filled with a getter material, for example, steel, Ni alloy, stainless steel, etc. By adjusting the two so that there is a fixed relationship, the metal container will not be deformed or melted, the heat evaporation process time of the getter material can be shortened, and the time until the electron tube obtains a predetermined vacuum degree is shortened An evaporative getter device with excellent responsiveness is obtained.
That is, the evaporative getter device according to the present invention is filled with a getter material composed of a powder mixture of BaAl alloy powder and Ni powder in a metal container composed of any of Fe, Ni, Fe alloy and Ni alloy. In the evaporative getter apparatus, when the plate thickness of the metal container is tcm and the frequency of the heating AC magnetic field used for heating the getter material and evaporating the Ba component from the getter material is fHz, the metal container The thickness t and the AC magnetic field frequency f satisfy the relational expression t ≦ 12.7 / (f) 1/2 .
When a getter device composed of a getter material and a metal container filled with the getter device is heated by applying a high-frequency magnetic field generated by applying high-frequency power to a magnetic field generating coil, the thermal energy input by the high-frequency power Will be added to the getter material and the metal container, respectively.
Fe, Fe-base alloy, Ni, Ni-base alloy, Fe or Ni and Fe and Ni, Fe, Ni, Cr have melting points sufficiently higher than the exothermic reaction temperature of the getter material and excellent structural strength and heat resistance. , And an alloy material composed of at least one element selected from Mn. As the alloy material, for example, stainless steel (stainless steel) can be suitably employed. In particular, as stainless steel, an alloy material in which the amount of components such as Cr, Ni, and Mn contained in the alloy in addition to Fe is several mass% to several tens mass% is used. Also, an alloy material to which about 1 to 5% by mass of Cr, Mn, Ni (only addition to Fe), Fe (only addition to Ni), etc. is added for the purpose of increasing the structural strength and heat resistance of Fe and Ni, For example, chrome steel can be used.

これらの金属材料で形成した金属容器に対して高周波磁界発生コイルで高周波電力を加えた場合に、その高周波電力の周波数(fHz)および金属容器の板厚(tcm)が下記の関係式(2)を満足する範囲に設定した場合において、金属容器中に充填されたゲッタ材料に良好に高周波電力が付加され十分な温度上昇速度が得られ金属容器の変形や溶解を生じることなく効率的にBa蒸発量を確保できることが判明している。
t≦12.7/(f)1/2 …(2)
上記高周波磁界発生装置で、ある周波数(fHz)おける板厚(tcm)が上記関係式で計算される値よりも大きい場合には、高周波電力は金属容器に集中されるため、ゲッタ材料に付加される電力が相対的に小さくなり、ゲッタ材料の温度上昇が遅くなって、短時間での高周波加熱により所望のBa蒸発量を得ることが困難となる。この時点でさらに加熱電力を増加したり、より長時間の加熱を継続したりすると、金属容器がその構成材の2次再結晶温度を遙かに超えるまで加熱されるため、変形を生じたり、さらに温度が上昇して金属容器が溶融したりするのでいずれにしても電子管の特性に悪影響を及ぼすことになる。
When high frequency power is applied to a metal container formed of these metal materials using a high frequency magnetic field generating coil, the frequency (fHz) of the high frequency power and the thickness (tcm) of the metal container are expressed by the following relational expression (2). Is set within a range that satisfies the above, the high-frequency power is applied to the getter material filled in the metal container, a sufficient temperature rise rate is obtained, and Ba evaporation is efficiently performed without causing deformation or melting of the metal container. It has been found that the amount can be secured.
t ≦ 12.7 / (f) 1/2 (2)
In the above high frequency magnetic field generator, when the plate thickness (tcm) at a certain frequency (fHz) is larger than the value calculated by the above relational expression, the high frequency power is concentrated in the metal container and is added to the getter material. Therefore, it is difficult to obtain a desired Ba evaporation amount by high-frequency heating in a short time. If the heating power is further increased at this point, or if the heating is continued for a longer time, the metal container is heated until it exceeds the secondary recrystallization temperature of its constituent material, causing deformation, Furthermore, since the temperature rises and the metal container is melted, the characteristics of the electron tube are adversely affected anyway.

ここで上記金属容器(ゲッタリング)2は図1に概略的に示すように、金属平板を絞り加工して中心部に突起を立設した有底円筒状に形成され、厚さt1の外側側壁2aと、厚さがt2の底壁2bと、厚さがt3の内側側面2cと、厚さがt4の中心頂部壁2dとから成る。しかしながら、高周波加熱により熱影響を受ける大きさの順序は、第1位は外側側壁2aであり、第2位が底壁2bである。そのため、少なくとも上記外側側壁2aの厚さt1と底壁2bの厚さt2とが前記関係式(2)で算出される板厚(tcm)以下となるように薄くすることが必要である。なお、金属容器(ゲッタリング)2の各部の熱容量を均一にして高周波加熱による熱影響を容器全体で均一にするために、上記金属容器2における各部の厚さt1、t2、t3、t4の全てが関係式(2)で算出される板厚(tcm)以下となるように薄くすることがより好ましい。
BaAlなどのBa−Al合金粉末とNi粉末との混合体を加圧成形したゲッタ材料の電気抵抗は、BaAlなどのBa−Al合金やNiの固有な電気抵抗率よりも高くなる。他方、金属容器の電気抵抗は容器を構成する金属材料の固有の電気抵抗率に等しい。
Here, as schematically shown in FIG. 1, the metal container (gettering) 2 is formed into a bottomed cylindrical shape having a protrusion formed in the center by drawing a metal flat plate, and has an outer side wall having a thickness t1. 2a, a bottom wall 2b having a thickness of t2, an inner side surface 2c having a thickness of t3, and a central top wall 2d having a thickness of t4. However, in the order of the magnitude affected by heat by high frequency heating, the first position is the outer side wall 2a and the second position is the bottom wall 2b. Therefore, it is necessary to reduce the thickness so that at least the thickness t1 of the outer side wall 2a and the thickness t2 of the bottom wall 2b are equal to or less than the plate thickness (tcm) calculated by the relational expression (2). In addition, in order to make the heat capacity of each part of the metal container (gettering) 2 uniform and to make the heat effect by the high frequency heating uniform in the whole container, all the thicknesses t1, t2, t3, t4 of each part in the metal container 2 are all included. Is more preferably reduced to be equal to or less than the plate thickness (tcm) calculated by the relational expression (2).
The electrical resistance of the getter material obtained by press-molding a mixture of Ba—Al alloy powder such as BaAl 4 and Ni powder is higher than the specific electrical resistivity of Ba—Al alloy such as BaAl 4 and Ni. On the other hand, the electrical resistance of the metal container is equal to the intrinsic electrical resistivity of the metal material constituting the container.

本発明に係るゲッタ材料または蒸発型ゲッタ装置において、前記圧粉成形体の電気抵抗率が20mΩ−cm以下であることが好ましい。すなわち、BaAlなどのBa−Al合金粉末とNi粉末との混合体を加圧成形したゲッタ材料の電気抵抗率が20mΩ−cmを超えるように過大になると、一般的に使用されるBa蒸発部の直径(楕円形など外形が円形でないゲッタではその短径)が10mm〜数十mmであるゲッタ装置では高周波加熱の効率が極端に悪化するため、ゲッタ装置に用いるゲッタ材料の電気抵抗率は20mΩ−cm以下であることが望ましい。ゲッタ材料の電気抵抗率は電気抵抗や粒径が異なる原料粉末を適宜組み合わせ、成形圧力を制御することにより調整できる。なお原料粉末の粒径を過度に微細化すると、ゲッタ材料の電気抵抗率が大きくなって高周波加熱が困難になる。したがって、前記のような粒径範囲または平均粒径を有するBa―Al合金粉末とNi粉末とを用いることが肝要である。
本発明に係る電子管の製造方法は上記のように構成した蒸発型ゲッタ装置を装着したことを特徴とする。本発明の電子管によれば、大型電子管とした場合においても十分なゲッタ材を安定した状態で飛散させることができ、大型電子管の品質および信頼性の向上に大きく寄与する。
In the getter material or the evaporative getter device according to the present invention, it is preferable that the electric resistivity of the green compact is 20 mΩ-cm or less. That is, when the electrical resistivity of the getter material obtained by press-molding a mixture of Ba—Al alloy powder such as BaAl 4 and Ni powder is excessive so as to exceed 20 mΩ-cm, a commonly used Ba evaporation section is used. Since the efficiency of high-frequency heating is extremely deteriorated in a getter device having a diameter of 10 mm to several tens of millimeters (the short diameter of an ellipse such as an ellipse whose outer shape is not circular), the electrical resistivity of the getter material used in the getter device is 20 mΩ. -Cm or less is desirable. The electrical resistivity of the getter material can be adjusted by appropriately combining raw material powders having different electrical resistances and particle sizes and controlling the molding pressure. When the particle size of the raw material powder is excessively refined, the electrical resistivity of the getter material increases and high-frequency heating becomes difficult. Therefore, it is important to use Ba—Al alloy powder and Ni powder having the above-mentioned particle size range or average particle size.
The electron tube manufacturing method according to the present invention is characterized in that the evaporative getter device configured as described above is mounted. According to the electron tube of the present invention, even in the case of a large electron tube, sufficient getter material can be scattered in a stable state, which greatly contributes to improving the quality and reliability of the large electron tube.

次に本発明に係るゲッタ材料の製造方法の実施形態について以下に示す実施例および比較例を参照して具体的に説明する。
(実施例1〜4および比較例1)
平均粒径が5μmであり20μm以上の粒径を有する割合がNi全質量の5%であるNi粉末を54質量%と、残部が粒径44μm以下であり平均粒径が31μmであるBaAl組成の合金粉末とから成る混合物を各実施例用および比較例用のゲッタ材料の原料として調製した。なお、ゲッタ材料を構成する各粉末の平均粒径および最大粒径は篩分け方法による粒度分布測定およびレーザ散乱回折法を用いた粒度分布測定により求めた。
次に調製したゲッタ材料の原料を表1に示すようにそれぞれ成形圧力を変化させて加圧成形することにより各圧粉混合体から成る実施例1〜4および比較例1に係るゲッタ材料3を調製した。これらの各実施例および比較例に係るゲッタ材料3の発熱反応開始温度を、示差熱重量分析装置(DTA)を用い室温から10℃/分の速度で温度を上げる方法で測定した。上記各ゲッタ材料の発熱反応開始温度は、過熱操作の継続中においてゲッタ材料における発熱量が急激に増加して形成された発熱量のピークに対応する加熱温度として容易に測定することができた。なお発熱反応開始温度が本発明で規定する範囲外のゲッタ材料を比較例1とした。
Next, an embodiment of a method for manufacturing a getter material according to the present invention will be specifically described with reference to the following examples and comparative examples.
(Examples 1-4 and Comparative Example 1)
BaAl 4 composition having an average particle diameter of 5 μm and a ratio of having a particle diameter of 20 μm or more is 54% by mass of Ni powder, and the remaining is a particle diameter of 44 μm or less and the average particle diameter is 31 μm. A mixture consisting of the above alloy powders was prepared as a raw material for the getter material for each example and comparative example. The average particle size and the maximum particle size of each powder constituting the getter material were determined by particle size distribution measurement using a sieving method and particle size distribution measurement using a laser scattering diffraction method.
Next, the getter materials 3 according to Examples 1 to 4 and Comparative Example 1 made of each of the powder compacts were prepared by changing the molding pressure and molding the raw materials of the prepared getter materials as shown in Table 1, respectively. Prepared. The exothermic reaction start temperature of the getter material 3 according to each of these examples and comparative examples was measured by a method of increasing the temperature from room temperature at a rate of 10 ° C./min using a differential thermogravimetric analyzer (DTA). The exothermic reaction start temperature of each getter material could be easily measured as the heating temperature corresponding to the peak of the calorific value formed by the rapid increase in the calorific value of the getter material during the overheating operation. A getter material having an exothermic reaction start temperature outside the range specified in the present invention was used as Comparative Example 1.

次いで図1に示すように外周側壁2aおよび底壁2bの板厚t1、t2が0.02cmであるSUS304製の金属容器2にゲッタ材料3を1.1gずつ充填して、発熱反応開始温度を測定した際に使用した成形圧力と同一の押圧力でゲッタ材料3を金属容器2に成形圧着して各実施例1〜4および比較例1に係るゲッタ装置1を調製した。図1は各実施例および比較例に係るゲッタ装置1の断面構造を模式的に示す断面図であり、各ゲッタ装置1は絞り加工によって形成されたSUS304製の金属容器2と、この金属容器2の凹部に圧着により充填されたゲッタ材料3とから構成される。
上記のように調製した各実施例および比較例に係るゲッタ装置1を、周波数が300kHzで一定強度の高周波磁界で加熱した際の加熱開始からBa蒸発開始までの時間と30秒間加熱後のBa蒸発量とを測定した。なお、Ba蒸発量は蒸発前と蒸発後におけるゲッタ材料の重量差から求めた。上記Ba蒸発量の測定結果を上記成形圧力と共に表1にまとめて示す。
Next, as shown in FIG. 1, 1.1 g of getter material 3 is filled into a metal container 2 made of SUS304 having thicknesses t1 and t2 of the outer peripheral side wall 2a and the bottom wall 2b of 0.02 cm, and an exothermic reaction start temperature is set. The getter material 3 was molded and pressure-bonded to the metal container 2 with the same pressing force as the molding pressure used at the time of measurement to prepare getter devices 1 according to Examples 1 to 4 and Comparative Example 1. FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a getter device 1 according to each example and comparative example. Each getter device 1 includes a metal container 2 made of SUS304 formed by drawing and the metal container 2. And a getter material 3 filled in the concave portion by pressure bonding.
The time from the start of heating to the start of Ba evaporation and the Ba evaporation after heating for 30 seconds when the getter device 1 according to each of the examples and comparative examples prepared as described above is heated with a high-frequency magnetic field having a frequency of 300 kHz and a constant intensity. The amount was measured. The Ba evaporation amount was obtained from the difference in weight of the getter material before and after evaporation. Table 1 summarizes the measurement results of the Ba evaporation amount together with the molding pressure.

Figure 2006210137
Figure 2006210137

上記表1に示す結果から明らかなように、各圧粉混合体から成るゲッタ材料の発熱反応開始温度を782℃以上883℃以下の所定範囲に規定した実施例1〜4に係るゲッタ装置においては、30秒間加熱後のBa蒸発量も多く、その値も安定しており、ゲッタ成分の優れた蒸発特性を発揮することが確認できた。また加熱開始からBa蒸発開始までの時間はいずれも9秒台と短時間であり優れた応答性が実証された。
一方、ゲッタ材料の発熱反応開始温度が900℃を越えるように過大な条件となるように作成したゲッタ材料を充填した比較例1に係るゲッタ装置においては、Ba蒸発量は他の実施例と比較して急激に低下するとともに、加熱開始からBa蒸発開始までの時間は11秒超と相対的に長く応答性が劣ることが判明した。
As is clear from the results shown in Table 1 above, in the getter devices according to Examples 1 to 4 in which the exothermic reaction start temperature of the getter material composed of each compact mixture is defined within a predetermined range of 782 ° C. to 883 ° C. The amount of evaporation of Ba after heating for 30 seconds was large, and the value was stable, and it was confirmed that excellent evaporation characteristics of the getter component were exhibited. Also, the time from the start of heating to the start of Ba evaporation was as short as 9 seconds, and excellent responsiveness was demonstrated.
On the other hand, in the getter device according to the comparative example 1 filled with the getter material prepared so that the exothermic reaction start temperature of the getter material exceeds 900 ° C., the Ba evaporation amount is compared with the other examples. It was found that the time from the start of heating to the start of Ba evaporation was relatively long, exceeding 11 seconds, and the responsiveness was poor.

一方、上記比較例の他に、BaAl合金粉末をさらに微細に粉砕して平均粒径を10μm以下にすることにより発熱反応開始温度を750℃よりも降下させ700〜740℃に規定したゲッタ材料も調製した。これらのゲッタ材料を充填したゲッタ装置について同様に30秒間加熱後のBa蒸発量を測定したところ、いずれの場合もBa蒸発量は十分で安定していた。しかしながら、このゲッタ材料を用いたゲッタ装置は、ゲッタ材料の大気中での劣化が迅速であるため、ゲッタ装置を電子管に組み込み固定する工程において酸化による劣化が急速に進行し、実用時において十分なBa蒸発量が得られなかった。したがって、ゲッタ材料の実用上の発熱反応開始温度としては750℃以上がより望ましい範囲と言える。 On the other hand, in addition to the above comparative example, the BaAl 4 alloy powder is further finely pulverized so that the average particle size is 10 μm or less, whereby the exothermic reaction start temperature is lowered from 750 ° C., and is defined as 700 to 740 ° C. Was also prepared. Similarly, when the getter device filled with these getter materials was measured for the amount of Ba evaporation after heating for 30 seconds, the amount of Ba evaporation was sufficient and stable in all cases. However, in the getter device using this getter material, the getter material is rapidly deteriorated in the atmosphere. Therefore, the deterioration due to oxidation proceeds rapidly in the process of mounting and fixing the getter device in the electron tube. The amount of Ba evaporation could not be obtained. Therefore, it can be said that the practical exothermic reaction start temperature of the getter material is more preferably 750 ° C. or higher.

(実施例5)
実施例5として粒径分布が異なる3種類の原料混合物を800〜1500MPaの成形圧力で加圧成形して試料1〜3のゲッタ材料を調製した例を示す。
すなわち試料1用の原料混合物として平均粒径が6.5μmであり20μm以上の粒径割合が5質量%であるNi粉末を53質量%と、残部が最大粒径150μmであり平均粒径が77μmのBaAl組成の合金粉末とから成る混合物をゲッタ材料の原料として調製した。
また試料2用の原料混合物として、平均粒径が13μmであり20μm以上の粒径割合が8質量%であるNi粉末を53質量%と、残部が最大粒径150μmであり平均粒径が77μmであるBaAl組成の合金粉末とから成る混合物をゲッタ材料の原料として調製した。
さらに試料3用の原料混合物として、平均粒径が8μmであり20μm以上の粒径割合が13質量%Ni粉末を53質量%と、残部が最大粒径150μmであり平均粒径77μmであるBaAl組成の合金粉末とから成る混合物をゲッタ材料の原料として調製した。
(Example 5)
Example 5 shows an example in which three types of raw material mixtures having different particle size distributions are pressure-molded at a molding pressure of 800 to 1500 MPa to prepare the getter materials of Samples 1 to 3.
That is, the raw material mixture for sample 1 is 53% by mass of Ni powder having an average particle size of 6.5 μm and a particle size ratio of 20 μm or more of 5% by mass, the balance being the maximum particle size of 150 μm and the average particle size of 77 μm. A mixture consisting of an alloy powder of the BaAl 4 composition was prepared as a raw material for the getter material.
Further, as the raw material mixture for Sample 2, 53% by mass of Ni powder having an average particle size of 13 μm and a particle size ratio of 20 μm or more of 8% by mass, and the balance having a maximum particle size of 150 μm and an average particle size of 77 μm A mixture composed of an alloy powder having a certain BaAl 4 composition was prepared as a raw material for the getter material.
Further, as a raw material mixture for Sample 3, BaAl 4 having an average particle size of 8 μm, a particle size ratio of 20 μm or more of 13% by mass of Ni powder, 53% by mass of Ni powder, and the balance having a maximum particle size of 150 μm and an average particle size of 77 μm. A mixture consisting of alloy powders of composition was prepared as a raw material for the getter material.

こうして調製した各試料用のゲッタ材料の原料を、図2に示すように800MPa〜1500MPaの成形圧力で成形して各試料のゲッタ材料を調製し、さらに各ゲッタ材料について実施例1と同様にして発熱反応開始温度を測定し、その測定結果を図2に示す。
図2に示す結果から明らかなように、試料1に係るゲッタ材料では800MPa〜1500MPaの成形圧力の範囲において、反応開始温度が860〜880℃の範囲であり、好適なゲッタ成分の蒸発量が期待できる。一方、試料1、2に係るゲッタ材料においては成形圧力が800〜900MPaと低圧力範囲で処理したものでは、急激に発熱反応開始温度が上昇してしまい、ゲッタ成分の十分な蒸発が期待できないことが判明した。この場合でも成形圧力が1000〜1200MPaであれば、所定の発熱反応開始温度が得られている。したがって、ゲッタ材料の原料粉末の粒径と成形圧力とを調整することにより、好適な反応開始温度を得ることができる。
The getter material for each sample thus prepared was molded at a molding pressure of 800 MPa to 1500 MPa as shown in FIG. 2 to prepare a getter material for each sample, and each getter material was the same as in Example 1. The exothermic reaction start temperature was measured, and the measurement result is shown in FIG.
As is clear from the results shown in FIG. 2, the getter material according to Sample 1 has a reaction start temperature in the range of 860 to 880 ° C. in the molding pressure range of 800 MPa to 1500 MPa, and a suitable amount of evaporation of the getter component is expected. it can. On the other hand, in the getter material according to Samples 1 and 2, when the molding pressure is processed in a low pressure range of 800 to 900 MPa, the exothermic reaction start temperature suddenly increases, and sufficient getter component evaporation cannot be expected. There was found. Even in this case, if the molding pressure is 1000 to 1200 MPa, a predetermined exothermic reaction start temperature is obtained. Therefore, a suitable reaction start temperature can be obtained by adjusting the particle size of the raw material powder of the getter material and the molding pressure.

(実施例6)
この実施例6では前記実施例5よりもさらに微細なNi粉末とBa−Al合金粉末との混合体をゲッタ材料の原料として使用した例を示す。すなわち、平均粒径が4.5μmであり20μm以上の粒径割合が2質量%であるのNi粉末を53質量%と、残部が平均粒径44μmであるBaAl組成の合金粉末を35質量%含有し残部が粒径70〜44μmであるBaAl組成の合金粉末とから成る混合物をゲッタ材料の原料として調製した。次に、この原料を図3に示すように、成形圧力を300〜800MPaの範囲で変化させて加圧成形したゲッタ材料をそれぞれ調製し、各ゲッタ材料の発熱反応開始温度を実施例1と同様にして測定した。測定結果を図3に示す。
図3に示す結果から明らかなように、実施例6に係るゲッタ材料では400MPa〜800MPaの成形圧力の範囲において、反応開始温度が800〜900℃の範囲であり、好適なゲッタ成分の蒸発量が得られることが明白である。一方、成形圧力が400MPa未満と低圧力で処理した場合には、発熱反応開始温度が急激に上昇してしまい、ゲッタ成分の十分な蒸発が期待できないことが判明した。
(Example 6)
Example 6 shows an example in which a finer mixture of Ni powder and Ba—Al alloy powder than that in Example 5 is used as a raw material for the getter material. That is, 53% by mass of Ni powder having an average particle size of 4.5 μm and a particle size ratio of 20 μm or more being 2% by mass, and 35% by mass of BaAl 4 composition alloy powder having an average particle size of 44 μm as the balance. A mixture composed of an alloy powder having a BaAl 2 composition with a balance of 70 to 44 μm in particle size was prepared as a raw material for the getter material. Next, as shown in FIG. 3, getter materials obtained by press molding are prepared by changing the molding pressure in the range of 300 to 800 MPa, and the exothermic reaction start temperatures of the respective getter materials are the same as in Example 1. And measured. The measurement results are shown in FIG.
As is clear from the results shown in FIG. 3, the getter material according to Example 6 has a reaction start temperature in the range of 800 to 900 ° C. within a molding pressure range of 400 MPa to 800 MPa, and a suitable getter component evaporation amount. It is clear that it is obtained. On the other hand, it has been found that when the molding pressure is less than 400 MPa, the exothermic reaction start temperature rapidly increases, and sufficient getter component evaporation cannot be expected.

(実施例7〜9および比較例2〜4)
粒径分布が異なる3種類のゲッタ原料混合体を用意する一方、板厚が異なる2種類の金属容器を用意し、各ゲッタ原料混合体を各金属容器に充填し所定圧力で圧着して各実施例および比較例に係るゲッタ装置を作成し、その特性を比較した。
すなわち、平均粒径が4.5μmであり20μm以上の粒径割合が2質量%であるNi粉末を54質量%と、平均粒径が44μm以下であるBaAl組成の合金粉末を35質量%と、残部が粒径53〜44μmのBaAl組成の合金粉末とから成る混合物をゲッタ材料の第1原料として用意した(実施例7および比較例2)。
また、平均粒径が4μmで20μm以上の粒径割合が3質量%であるNi粉末を50質量%と、平均粒径が44μm以下のBaAl組成の合金粉末を10質量%、残部が粒径44〜53μmのBaAl組成の合金粉末とから成る混合物をゲッタ材料の第2原料として用意した(実施例8および比較例3)。
さらに、粒径が3〜10μmのNi粉末を54質量%と、平均粒径が44μm以下のBaAl組成の合金粉末を10質量%と、残部が粒径53〜44μmのBaAl組成の合金粉末とから成る混合物をゲッタ材料の第3原料として用意した(実施例9および比較例4)。
(Examples 7-9 and Comparative Examples 2-4)
While preparing three types of getter raw material mixtures with different particle size distributions, prepare two types of metal containers with different plate thicknesses, filling each metal container with each getter raw material mixture, and press-bonding them at a predetermined pressure. A getter device according to an example and a comparative example was created, and the characteristics were compared.
That is, 54% by mass of Ni powder having an average particle size of 4.5 μm and a particle size ratio of 20 μm or more of 2% by mass, and 35% by mass of alloy powder of BaAl 4 composition having an average particle size of 44 μm or less. A mixture consisting of an alloy powder having a BaAl 4 composition with the remaining particle size of 53 to 44 μm was prepared as the first raw material of the getter material (Example 7 and Comparative Example 2).
Further, Ni powder having an average particle size of 4 μm and a particle size ratio of 20 μm or more of 3% by mass is 50% by mass, BaAl 4 composition alloy powder having an average particle size of 44 μm or less is 10% by mass, and the balance is the particle size A mixture of 44 to 53 μm BaAl 4 composition alloy powder was prepared as a second raw material of the getter material (Example 8 and Comparative Example 3).
Furthermore, 54% by mass of Ni powder having a particle size of 3 to 10 μm, 10% by mass of alloy powder of BaAl 4 composition having an average particle size of 44 μm or less, and the rest of the alloy powder having a BaAl 4 composition having a particle size of 53 to 44 μm. As a third raw material of the getter material, Example 9 and Comparative Example 4 were prepared.

一方、図1に示す形状を有し外側側壁2aおよび低壁2bを含めた全ての部位の板厚tが0.02cmまたは0.025cmである2種類のSUS316製金属容器2を調製した。
そして、上記板厚tが0.02cmである薄いSUS316製金属容器2に上記第1〜3原料を1.1g充填し、1000MPaの成形圧力で加圧成形してそれぞれ実施例7〜9に係るゲッタ装置を製造した。
一方、上記板厚tが0.025cmである厚いSUS316製金属容器2に上記第1〜3原料を1.1g充填し、1000MPaの成形圧力で加圧成形してそれぞれ比較例2〜4に係るゲッタ装置を製造した。
On the other hand, two types of SUS316 metal containers 2 having the shape shown in FIG. 1 and having a thickness t of 0.02 cm or 0.025 cm at all portions including the outer side wall 2a and the low wall 2b were prepared.
Then, 1.1 g of the above first to third raw materials are filled in a thin SUS316 metal container 2 having a thickness t of 0.02 cm, and pressure molding is performed at a molding pressure of 1000 MPa, respectively, according to Examples 7 to 9. A getter device was manufactured.
On the other hand, 1.1 g of the above first to third raw materials are filled into a thick SUS316 metal container 2 having a thickness t of 0.025 cm, and pressure molding is performed at a molding pressure of 1000 MPa, respectively, according to Comparative Examples 2 to 4. A getter device was manufactured.

このように製造した各実施例および比較例に係るゲッタ装置に、周波数が330kHzであって同一の強度を有する加熱用高周波磁界を印加して加熱した場合における加熱開始時刻からBa蒸発開始時刻までの所要時間、および30秒間加熱後のBa蒸発量を測定して図4に示す結果を得た。ここで前記(2)式であるt≦12.7/(f)1/2の関係式に加熱用高周波の周波数330kHzを代入して対応する金属容器の板厚tを算出するとt≦0.0221(cm)となる。すなわち、上記板厚tが0.02cmである薄い金属容器2を有する実施例7〜8に係るゲッタ装置の仕様は関係式(2)を満足するものである一方、板厚tが0.025cmである厚い金属容器2を有する比較例2〜4に係るゲッタ装置の仕様は関係式(2)を満足しない。
図4に示す結果から明らかなように、薄い金属容器2を使用した実施例7〜8に係るゲッタ装置においては、金属容器中のゲッタ材料に高周波電力が効果的に付加され十分な温度上昇速度が得られるために、30秒間加熱後におけるBaの蒸発量が十分であり、また加熱開始時刻からBa蒸発開始時刻までの所要時間も10秒未満であり、優れた応答性が実現している。
一方、厚い金属容器2を使用した比較例2〜4に係るゲッタ装置においては、金属容器に熱が奪われゲッタ材料の温度上昇が遅れるために、30秒間加熱後におけるBaの蒸発量が不十分であり、また加熱開始時刻からBa蒸発開始時刻までの所要時間も11秒を超えており応答性が劣ることが再確認された。
From the heating start time to the Ba evaporation start time when the heating high frequency magnetic field having the same intensity and the frequency of 330 kHz is applied to the getter device according to each of the examples and comparative examples manufactured as described above. The required time and the amount of Ba evaporation after heating for 30 seconds were measured, and the results shown in FIG. 4 were obtained. Here, when the plate thickness t of the corresponding metal container is calculated by substituting the frequency 330 kHz of the heating high frequency into the relational expression of t ≦ 12.7 / (f) 1/2 that is the equation (2), t ≦ 0. 0221 (cm). That is, the specifications of the getter devices according to Examples 7 to 8 having the thin metal container 2 with the plate thickness t of 0.02 cm satisfy the relational expression (2), while the plate thickness t is 0.025 cm. The specifications of the getter devices according to Comparative Examples 2 to 4 having the thick metal container 2 do not satisfy the relational expression (2).
As is clear from the results shown in FIG. 4, in the getter devices according to Examples 7 to 8 using the thin metal container 2, a sufficient temperature rise rate is obtained by effectively adding high-frequency power to the getter material in the metal container. Therefore, the amount of evaporation of Ba after heating for 30 seconds is sufficient, and the required time from the heating start time to the Ba evaporation start time is less than 10 seconds, and excellent responsiveness is realized.
On the other hand, in the getter devices according to Comparative Examples 2 to 4 using the thick metal container 2, the metal container is deprived of heat and the temperature rise of the getter material is delayed, so that the amount of evaporation of Ba after heating for 30 seconds is insufficient. In addition, the required time from the heating start time to the Ba evaporation start time was over 11 seconds, and it was reconfirmed that the responsiveness was inferior.

(実施例10〜11および比較例5〜6)
この例では実施例7〜9とは高周波加熱時の周波数を変えて検討してみた。
平均粒径4。5μmで20μm以上の粒径部分が2%未満のNi粉末を54質量%、平均粒径44μm以下のBaAl4組成の合金粉末を35質量%、残部が44〜53μmのBaAl4 組成の合金粉末からなる混合物をゲッタ材料の原料として1.1g用いたものから以下の方法でゲッタとしたものである。すなわち、板厚0.015cmの低炭素鋼板製容器に充填し、成形圧力800MPaで成形してゲッタとしたものを実施例10、板厚0.022cmの低炭素鋼板製容器に充填し、成形圧力800MPaで成形してゲッタとしたものを比較例6とした。実施例10と比較例5を500kHzの高周波で加熱し、実施例10のゲッタに対して加熱開始後Ba蒸発までの時間が9.5秒になるように高周波電力を設定すると、30秒加熱で228mgのBa蒸発量が得られた。一方、同一の高周波加熱電力で比較例6のゲッタを加熱すると、加熱開始後Ba蒸発までに11.6秒を要し、30秒加熱でのBa蒸発量は182mgであった。このときの周波数をt≦12.7/(f)1/2 の式にあてはめると、t≦0.018(cm)となる。
(Examples 10-11 and Comparative Examples 5-6)
In this example, Example 7-9 was examined by changing the frequency at the time of high-frequency heating.
54% by mass of Ni powder having an average particle size of 4.5 μm and a particle size portion of less than 2% of 20 μm or more, 35% by mass of BaAl 4 composition alloy powder having an average particle size of 44 μm or less, and the balance being 44 to 53 μm BaAl 4 A getter material is obtained by the following method from 1.1 g of a mixture of alloy powders having a composition as a raw material for the getter material. That is, a low carbon steel plate container having a thickness of 0.015 cm was filled and formed into a getter by forming at a forming pressure of 800 MPa into a low carbon steel plate container having a thickness of 0.022 cm. A comparative example 6 was obtained by molding at 800 MPa to obtain a getter. When Example 10 and Comparative Example 5 were heated at a high frequency of 500 kHz and the high frequency power was set so that the time from the start of heating to Ba evaporation was 9.5 seconds for the getter of Example 10, 228 mg of Ba evaporation was obtained. On the other hand, when the getter of Comparative Example 6 was heated with the same high-frequency heating power, 11.6 seconds were required until Ba evaporation after the start of heating, and the amount of Ba evaporation after 30 seconds of heating was 182 mg. When the frequency at this time is applied to the equation of t ≦ 12.7 / (f) 1/2 , t ≦ 0.018 (cm).

次に実施例10と同じゲッタ材料の原料を1.1g用い、以下の方法でゲッタとしたものを実施例11、比較例6とした。すなわち、板厚0.02cmのフェライト系ステンレス鋼板鋼板製容器に充填し、成形圧力1000MPaで成形してゲッタとしたものを実施例11、板厚0.03cmのフェライト系ステンレス鋼板鋼板製容器に充填し、成形圧力1000MPaで成形してゲッタとしたものを比較例7とした。実施例11と比較例7を250kHzの高周波で加熱し、実施例11のゲッタに対して加熱開始後Ba蒸発までの時間が9.6秒になるように高周波電力を設定すると、30秒加熱で230mgのBa蒸発量が得られた。一方、同一の高周波加熱電力で比較例7では加熱開始後Ba蒸発までの時間が11.7秒かかり、30秒加熱によるBa蒸発量は177mgであった。250kHzでt≦12.7/(f)1/2の式にて計算すると、t≦0.0254(cm)となる。
なお、各高周波加熱はゲッタを電子銃に取り付け電子管内に装着した後、行ったものである。
Next, 1.1 g of the same getter material as in Example 10 was used, and the getter was obtained as Example 11 and Comparative Example 6 by the following method. That is, a ferritic stainless steel sheet steel plate container having a thickness of 0.02 cm was filled, and a getter formed by forming at a molding pressure of 1000 MPa was filled into a ferritic stainless steel sheet steel container having a thickness of 0.03 cm. Then, a getter formed by molding at a molding pressure of 1000 MPa was used as Comparative Example 7. When Example 11 and Comparative Example 7 were heated at a high frequency of 250 kHz and the high frequency power was set so that the time from the start of heating to Ba evaporation was 9.6 seconds for the getter of Example 11, the heating was performed for 30 seconds. An amount of Ba evaporation of 230 mg was obtained. On the other hand, in Comparative Example 7 with the same high-frequency heating power, it took 11.7 seconds from the start of heating to Ba evaporation, and the amount of Ba evaporation by heating for 30 seconds was 177 mg. When calculated by the equation of t ≦ 12.7 / (f) 1/2 at 250 kHz, t ≦ 0.0254 (cm).
Each high-frequency heating was performed after the getter was attached to the electron gun and mounted in the electron tube.

本発明に係るゲッタ材料を金属容器中に充填して形成したゲッタ装置の一実施形態を模式的に示す断面図Sectional drawing which shows typically one Embodiment of the getter apparatus formed by filling the getter material which concerns on this invention in the metal container. ゲッタ原料粉末の成形圧力とその発熱反応の開始温度との関係の一例を示すグラフGraph showing an example of the relationship between the molding pressure of the getter raw material powder and the starting temperature of the exothermic reaction 仕様が異なる他の原料粉末を使用した場合におけるゲッタ原料粉末の成形圧力とその発熱反応の開始温度との関係の一例を示すグラフGraph showing an example of the relationship between the molding pressure of getter raw material powder and the start temperature of its exothermic reaction when other raw material powders with different specifications are used ゲッタ材料の加熱開始時からBa成分が蒸発を開始するまでの時間と、30秒間加熱した場合におけるBa成分の蒸発量との関係の一例を示すグラフThe graph which shows an example of the relationship between the time from the start of heating of the getter material until the Ba component starts to evaporate and the evaporation amount of the Ba component when heated for 30 seconds

符号の説明Explanation of symbols

1…蒸発型ゲッタ装置
2…金属容器
2a…金属容器の外側側壁
2b…金属容器の底壁
2c…金属容器の内側側壁
2d…金属容器の中心頂部壁
3…ゲッタ材料
DESCRIPTION OF SYMBOLS 1 ... Evaporative getter apparatus 2 ... Metal container 2a ... Outer side wall 2b of metal container ... Bottom wall 2c of metal container ... Inner side wall 2d of metal container ... Center top wall 3 of metal container ... Getter material

Claims (9)

Ba−Al合金粉末とNi粉末とから成る圧粉混合体から構成されたゲッタ材料の製造方法において、このゲッタ材料を真空中または不活性ガス中で加熱した場合に、上記圧粉混合体が発熱反応を開始する温度が750℃以上900℃以下の範囲であるゲッタ材料を用いたことを特徴とするゲッタ材料の製造方法。 In a method for producing a getter material comprising a powder mixture comprising Ba-Al alloy powder and Ni powder, the powder mixture generates heat when the getter material is heated in vacuum or in an inert gas. A method for producing a getter material, wherein a getter material having a temperature at which a reaction is started is in a range of 750 ° C to 900 ° C. 前記Ni粉末の平均粒径が10μm以下であることを特徴とする請求項1記載のゲッタ材料の製造方法。 The method for producing a getter material according to claim 1, wherein the Ni powder has an average particle size of 10 μm or less. 前記Ni粉末において粒径が20μm以上のNi粉末の割合が10質量%以下であることを特徴とする請求項1または請求項2のいずれか1項記載のゲッタ材料の製造方法。 The method for producing a getter material according to any one of claims 1 and 2, wherein a ratio of Ni powder having a particle size of 20 µm or more in the Ni powder is 10 mass% or less. 前記圧粉混合体が前記Ba−Al合金粉末とNi粉末との混合体を400MPa以上の圧力で加圧成形した圧粉成形体であることを特徴とする請求項1乃至請求項3のいずれか1項に記載のゲッタ材料の製造方法。 4. The powder compact according to claim 1, wherein the powder compact is a compact formed by pressing the mixture of the Ba—Al alloy powder and Ni powder at a pressure of 400 MPa or more. 5. 2. A method for producing a getter material according to item 1. 前記圧粉成形体の電気抵抗率が20mΩ−cm以下であることを特徴とする請求項4記載のゲッタ材料の製造方法。 5. The method for producing a getter material according to claim 4, wherein an electrical resistivity of the green compact is 20 mΩ-cm or less. 請求項1乃至請求項5いずれか1項に記載のゲッタ材料を金属容器内に充填したことを特徴とする蒸発型ゲッタ装置の製造方法。 A method for manufacturing an evaporation type getter device, wherein the getter material according to any one of claims 1 to 5 is filled in a metal container. 請求項6記載の蒸発型ゲッタ装置の製造方法において、前記金属容器はFe、Ni、Fe合金およびNi合金のいずれかから構成されており、上記金属容器の板厚をtcm、ゲッタ材料からBaを蒸発させるために用いる加熱用交流磁界の周波数をfHzとしたときに、上記金属容器の板厚tおよび交流磁界周波数fが関係式t≦12.7/(f)1/2を満足することを特徴とする蒸発型ゲッタ装置の製造方法。 7. The method of manufacturing an evaporation type getter device according to claim 6, wherein the metal container is composed of any one of Fe, Ni, an Fe alloy, and a Ni alloy, the plate thickness of the metal container is tcm, and Ba is obtained from the getter material. When the frequency of the heating AC magnetic field used for evaporation is fHz, the plate thickness t of the metal container and the AC magnetic field frequency f satisfy the relational expression t ≦ 12.7 / (f) 1/2. A method for manufacturing an evaporative getter device. Fe、Ni、Fe合金およびNi合金のいずれかから構成された金属容器内にBa−Al合金粉末とNi粉末との圧粉混合体から成るゲッタ材料を充填した蒸発型ゲッタ装置の製造方法において、上記金属容器の板厚をtcmとし、ゲッタ材料を加熱してゲッタ材料からBa成分を蒸発させるために用いる加熱用交流磁界の周波数をfHzとした場合に、上記金属容器の板厚tおよび交流磁界周波数fが関係式t≦12.7/(f)1/2を満足することを特徴とする蒸発型ゲッタ装置の製造方法。 In a method for manufacturing an evaporation type getter device in which a metal container composed of any one of Fe, Ni, Fe alloy and Ni alloy is filled with a getter material made of a compacted mixture of Ba-Al alloy powder and Ni powder. When the plate thickness of the metal container is tcm and the frequency of the heating AC magnetic field used for heating the getter material to evaporate the Ba component from the getter material is fHz, the plate thickness t of the metal container and the AC magnetic field A method of manufacturing an evaporation type getter device, wherein the frequency f satisfies the relational expression t ≦ 12.7 / (f) 1/2 . 請求項6、請求項7または請求項8のいずれか1項に記載の蒸発型ゲッタ装置を装着したことを特徴とする電子管の製造方法。 9. A method of manufacturing an electron tube comprising the evaporative getter device according to claim 6, wherein the evaporative getter device is attached.
JP2005020580A 2005-01-28 2005-01-28 Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube Pending JP2006210137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020580A JP2006210137A (en) 2005-01-28 2005-01-28 Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020580A JP2006210137A (en) 2005-01-28 2005-01-28 Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube

Publications (1)

Publication Number Publication Date
JP2006210137A true JP2006210137A (en) 2006-08-10

Family

ID=36966739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020580A Pending JP2006210137A (en) 2005-01-28 2005-01-28 Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube

Country Status (1)

Country Link
JP (1) JP2006210137A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014136151A1 (en) * 2013-03-04 2017-02-09 パナソニックIpマネジメント株式会社 Multi-layer glass and method for producing multi-layer glass
CN112169528A (en) * 2020-09-24 2021-01-05 有研工程技术研究院有限公司 Internal heating type getter sheet and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014136151A1 (en) * 2013-03-04 2017-02-09 パナソニックIpマネジメント株式会社 Multi-layer glass and method for producing multi-layer glass
CN112169528A (en) * 2020-09-24 2021-01-05 有研工程技术研究院有限公司 Internal heating type getter sheet and preparation method thereof
CN112169528B (en) * 2020-09-24 2022-07-12 有研工程技术研究院有限公司 Internal heating type getter sheet and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5049775B2 (en) Evaporative getter device and electron tube using the same
US5831385A (en) Mercury dispensing composition containing Cu-Si alloy promoter
US5520560A (en) Combination of materials for mercury-dispensing devices, method of preparation and devices thus obtained
JP2006210137A (en) Method of manufacturing getter material, method of manufacturing evaporation type getter device using it, as well as method of manufacturing electronic tube
RU2355064C1 (en) Composition for dosage of mercury
CN1209831C (en) Hydrogen absorbing alloy and Ni-metal hydride rechargable battery
US6104138A (en) Frittable-evaporable getters having discontinuous metallic members, radial recesses and indentations
JP2009543315A (en) Mercury release method
JP4659936B2 (en) Hydrogen storage alloy, method for producing the same, secondary battery using the same, and electric vehicle
JP5171503B2 (en) Electrode material for cold cathode fluorescent lamp
CN1149610C (en) Getter devices for calcium evaporation
JPH038233A (en) Contact material for vacuum switch tube and manufacture thereof
JP5171495B2 (en) Electrode material for cold cathode fluorescent lamp
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
EP1440176A1 (en) Getter alloys and devices for evaporating calcium
JP3106609B2 (en) Manufacturing method of electrode material
JP2000169902A (en) Production of magnesium - nickel alloy
CN101433816A (en) Thread-shaped evapotranspiration type tantalum-titanium alloy getter
JPS63162830A (en) Structure of hydrogen storage alloy and its production
JP3619635B2 (en) GETTER MATERIAL FOR ELECTRON TUBE, MANUFACTURING METHOD THEREOF, GETTER DEVICE FOR ELECTRON TUBE USING THE SAME, AND ELECTRON TUBE
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPS6273536A (en) Getter device
JP2008108580A (en) Electrode for cold-cathode fluorescent lamp
JPS63119999A (en) Brazing filler metal for magnetron
JPH01252736A (en) Manufacture of material for vacuum circuit breaker electrode