JP2006208985A - Light diffusing member and method for manufacturing same - Google Patents

Light diffusing member and method for manufacturing same Download PDF

Info

Publication number
JP2006208985A
JP2006208985A JP2005023765A JP2005023765A JP2006208985A JP 2006208985 A JP2006208985 A JP 2006208985A JP 2005023765 A JP2005023765 A JP 2005023765A JP 2005023765 A JP2005023765 A JP 2005023765A JP 2006208985 A JP2006208985 A JP 2006208985A
Authority
JP
Japan
Prior art keywords
light diffusing
diffusing member
light
range
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005023765A
Other languages
Japanese (ja)
Inventor
Hiroyuki Namikawa
弘行 南川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2005023765A priority Critical patent/JP2006208985A/en
Publication of JP2006208985A publication Critical patent/JP2006208985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light diffusing member capable of adjusting an average coefficient of linear expansion in a wide range and having excellent heat resistance, high rigidity and excellent dimensional stability with respect to the the light diffusing member using crystallized glass and having preferable light diffusing property, and to provide a method for manufacturing the light diffusing member. <P>SOLUTION: The light diffusing member contains a crystal in a glass phase and shows ≥0.1% haze to C-light when the member has 0.1 mm thickness. The method for manufacturing the light diffusing member comprises the steps of: melting a glass source material; molding the melted glass; gradually cooling the molded glass; and performing a heat treatment after gradual cooling. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は結晶化ガラスを用い、良好な光拡散性を有する光拡散部材に関し、また広範囲で平均線膨張係数を調整でき、耐熱性に優れており、高い剛性を有し寸法安定性に優れた光拡散部材、およびそれらの製造方法に関する。   The present invention relates to a light diffusing member using crystallized glass and having good light diffusibility, and can adjust an average linear expansion coefficient in a wide range, has excellent heat resistance, has high rigidity, and has excellent dimensional stability. The present invention relates to a light diffusing member and a manufacturing method thereof.

光拡散板として使用されている材料は樹脂やガラスが知られている。これらの材料からなる光拡散板は、例えば材料自体に光拡散性を有する乳白色のポリカーボネート樹脂を用いたり、材料の表面に酸処理や砂ずり等の加工を施して光拡散性を付与したり、材料自体を基板として光拡散性を有するフィルムや乳白色膜をつける等の方法が用いられている。   Resins and glass are known as materials used as the light diffusion plate. The light diffusing plate made of these materials is, for example, using a milky white polycarbonate resin having light diffusibility in the material itself, or imparting light diffusibility by subjecting the surface of the material to processing such as acid treatment or sand scouring, A method of applying a light diffusive film or a milky white film using the material itself as a substrate is used.

これら従来の光拡散板は膨張係数が高いものが多く、剛性も低いため寸法安定性に問題があった。また耐熱性も低いため高温環境下では軟化してしまうと言う問題があった。樹脂からなる光拡散部材の場合には射出成形の方向によって生じる線膨張係数の異方性も寸法安定性に問題を生じる原因となっている。   Many of these conventional light diffusing plates have a high expansion coefficient and low rigidity, which causes a problem in dimensional stability. In addition, since the heat resistance is low, there is a problem that softening occurs in a high temperature environment. In the case of a light diffusing member made of a resin, the anisotropy of the linear expansion coefficient caused by the direction of injection molding also causes a problem in dimensional stability.

一方で、近年種々の分野に使用される光拡散部材において、寸法安定性などの諸物性に対しての要求が厳しいものとなっている。
例えば、液晶ディスプレーやプロジェクターテレビなどの表示装置の大型化に伴い、これらに使用される拡散板に高い寸法安定性が求められるようになっている。
また、温度変化を伴う環境下で拡散光を精密に測定する場合において、測定器の光拡散部材が温度変化によって変形し、光拡散性が変化することが無いように、光拡散部材を支持する部材と膨張特性を合わせることが求められる。また、温度変化が少ない環境であっても被拡散光源がレーザー光など大きなエネルギーを持つ場合には光拡散部材の温度が高温となり変形や破損を生じたり、光拡散性が不安定なものとなってしまう。このような場合は光拡散部材が極低膨張であることが求められる場合もある。
On the other hand, in recent years, in light diffusing members used in various fields, demands for various physical properties such as dimensional stability are severe.
For example, with an increase in the size of display devices such as liquid crystal displays and projector televisions, high dimensional stability is required for diffusion plates used for these devices.
In addition, when measuring diffused light precisely in an environment with temperature change, the light diffusing member of the measuring device is supported so that the light diffusing property does not change due to temperature change and the light diffusibility does not change. It is required to match the expansion characteristics with the member. Even in an environment where the temperature change is small, if the diffused light source has a large energy such as laser light, the temperature of the light diffusing member becomes high, causing deformation or breakage, and the light diffusibility becomes unstable. End up. In such a case, the light diffusing member may be required to have extremely low expansion.

前述の問題点を解決し、これらの厳しい要求を満足するためには、膨張特性に異方性がなく、負の線膨特性からほぼ膨張がゼロである極低膨張、ひいては高膨張に至るまで、使用用途や使用環境に合わせ広範囲に平均線膨張係数を調整でき、耐熱性にすぐれており、高い剛性と寸法安定性を有する必要がある。しかし、このような良好な特性を有する光拡散部材は存在しなかった。   In order to solve the above-mentioned problems and satisfy these strict requirements, there is no anisotropy in the expansion characteristic, and from the negative linear expansion characteristic to the extremely low expansion, which is almost zero expansion, and eventually high expansion. The average linear expansion coefficient can be adjusted over a wide range according to the intended use and usage environment, it must have excellent heat resistance, and must have high rigidity and dimensional stability. However, there has been no light diffusing member having such good characteristics.

特許文献1においては、良好な剛性、寸法安定性を目的として、樹脂組成物からなる光拡散板が提案されているが、Tgが80℃〜250℃と耐熱性が低く、線膨張係数の異方性が存在し、剛性、寸法安定性とも満足のいくものではない。   Patent Document 1 proposes a light diffusing plate made of a resin composition for the purpose of good rigidity and dimensional stability. However, Tg is low at 80 ° C. to 250 ° C. and has a low coefficient of linear expansion. There is a directionality, and neither rigidity nor dimensional stability is satisfactory.

特開2004−175963号公報JP 2004-175963 A

本発明の課題は上記のような従来技術における問題点を解決し、良好な光拡散性を有しつつ、膨張特性に異方性がなく、広範囲で平均線膨張係数を調整でき、耐熱性に優れており、高い剛性を有し寸法精度に優れた光拡散部材、およびそれらの製造方法を提供することである。   The problem of the present invention is to solve the above-mentioned problems in the prior art, have good light diffusibility, have no anisotropy in expansion characteristics, can adjust the average linear expansion coefficient over a wide range, and is heat resistant. It is an object to provide a light diffusing member that is excellent and has high rigidity and excellent dimensional accuracy, and a method for manufacturing the same.

本発明の発明者は上記課題を解決するため鋭意試験研究を行った結果、ガラス相に結晶を析出させた結晶化ガラスを用いた光拡散部材は、良好な光拡散性を有しつつも、使用される環境や目的に合わせ広範囲に平均線膨張係数を調節でき、膨張特性が等方性であり、耐熱性に優れており、剛性も高く、寸法安定性も良好であることを見いだし、本発明を完成するに至った。   The inventor of the present invention, as a result of diligent test research to solve the above-mentioned problems, results in a light diffusing member using crystallized glass having crystals precipitated in the glass phase, while having good light diffusibility, The average linear expansion coefficient can be adjusted over a wide range according to the environment and purpose of use, the expansion characteristics are isotropic, it has excellent heat resistance, high rigidity, and good dimensional stability. The invention has been completed.

本発明の好適な態様は以下に列挙する構成のいずれかで表わされる。
(構成1)ガラス相中に結晶を含み、厚さが0.1mmの時のC光に対するヘイズ値が0.1%以上であることを特徴とする光拡散部材。
(構成2)ガラス相中に含まれる結晶はSi、Al、P、B、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Co、Moの中から選ばれる少なくとも2成分以上を含有する事を特徴とする構成1に記載の光拡散部材。
(構成3)厚さが0.1mmの時のC光に対する全光線透過率が5%以上であることを特徴とする構成1または2に記載の光拡散部材。
(構成4)波長200〜2500nmの光線反射率が1%以上であることを特徴とする構成1から3に記載の光拡散部材。
(構成5)平均線膨張係数が0〜50℃の温度範囲で+200×10−7/℃以下であることを特徴とする構成1から4に記載の光拡散部材。
(構成6)平均線膨張係数が0〜50℃の温度範囲で−100×10−7/℃〜+200×10−7/℃の範囲であることを特徴とする構成1から5に記載の光拡散部材。
(構成7)平均結晶粒子径が5nm以上であることを特徴とする構成1から6に記載の光拡散部材。
(構成8)平均結晶粒子径が5nm〜2000nmの範囲であることを特徴とする構成1から7に記載の光拡散部材。
(構成9)ガラス相中に含まれる結晶は質量%で、
SiO2 5%〜90%、
Li2O3 0%〜50%、
Al2O3 0%〜50%、
の各成分を含むことを特徴とする構成1から8に記載の光拡散部材。
(構成10)ガラス相中に含まれる結晶はモル%で、
SiO2 3%〜95%、
Li2O3 0%〜90%、
Al2O3 0%〜50%、
の各成分を含むことを特徴とする構成1から8に記載の光拡散部材。
(構成11)ガラス原料を溶融する工程と、溶融したガラスを成形する工程と、成形したガラスを徐冷する工程と、徐冷後加熱処理をする工程とを含むことを特徴とする光拡散部材の製造方法。
Preferred embodiments of the present invention are represented by any of the configurations listed below.
(Structure 1) A light diffusing member, wherein the glass phase contains crystals and has a haze value of 0.1% or more for C light when the thickness is 0.1 mm.
(Configuration 2) Crystals contained in the glass phase are selected from Si, Al, P, B, Li, Na, K, Cs, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Co, and Mo. 2. The light diffusing member according to Configuration 1, comprising at least two components.
(Configuration 3) The light diffusing member according to Configuration 1 or 2, wherein the total light transmittance with respect to the C light when the thickness is 0.1 mm is 5% or more.
(Structure 4) The light diffusing member according to Structures 1 to 3, wherein the light reflectance at a wavelength of 200 to 2500 nm is 1% or more.
(Constitution 5) The light diffusing member according to any one of Constitutions 1 to 4, wherein the average linear expansion coefficient is + 200 × 10 −7 / ° C. or less in a temperature range of 0 to 50 ° C.
(Structure 6) The light according to any one of Structures 1 to 5, wherein the average linear expansion coefficient is in the range of −100 × 10 −7 / ° C. to + 200 × 10 −7 / ° C. in the temperature range of 0 to 50 ° C. Diffusion member.
(Arrangement 7) The light diffusing member according to Arrangements 1 to 6, wherein the average crystal particle diameter is 5 nm or more.
(Structure 8) The light diffusing member according to Structures 1 to 7, wherein the average crystal particle diameter is in the range of 5 nm to 2000 nm.
(Configuration 9) The crystals contained in the glass phase are in mass%,
SiO2 5% to 90%,
Li2O3 0% -50%,
Al2O3 0% -50%,
The light-diffusion member of the structure 1-8 characterized by including each component of these.
(Configuration 10) The crystals contained in the glass phase are mol%,
SiO2 3% to 95%,
Li2O3 0% -90%,
Al2O3 0% -50%,
The light-diffusion member of the structure 1-8 characterized by including each component of these.
(Structure 11) A light diffusing member comprising a step of melting a glass raw material, a step of forming molten glass, a step of gradually cooling the formed glass, and a step of performing heat treatment after slow cooling Manufacturing method.

本発明の光拡散部材の態様の一つにおいては、ガラスを再加熱し、ガラス相に結晶を析出させたものであることが重要である。本発明はガラス相に微細な結晶を析出させることにより高い剛性と耐熱性を実現している。また、本発明は析出した結晶が主要な光拡散因子となることにより、光拡散性を実現している。ガラスを再加熱することによる結晶の析出は部材に一様に分布するため、良好な光拡散性能を実現でき、拡散光の均一性も良好である。さらに、本発明の光拡散部材はガラス相に結晶を析出させたものであるので、樹脂組成物からなる光拡散部材の様な線膨張係数の異方性は存在しないか、もしくは無視できる程に微小である。   In one embodiment of the light diffusing member of the present invention, it is important that the glass is reheated to precipitate crystals in the glass phase. The present invention achieves high rigidity and heat resistance by precipitating fine crystals in the glass phase. Further, the present invention realizes light diffusibility by the precipitated crystal becoming a main light diffusion factor. Crystal precipitation due to reheating of the glass is uniformly distributed on the member, so that it is possible to achieve good light diffusion performance and good uniformity of diffused light. Furthermore, since the light diffusing member of the present invention is obtained by precipitating crystals in the glass phase, there is no anisotropy of the linear expansion coefficient like the light diffusing member made of the resin composition, or it can be ignored. It is minute.

本発明の光拡散部材が良好な光拡散性を有するためにはガラス相中に含まれる結晶の平均結晶粒子径は5nm以上であることが好ましく、5nm〜2000nmの範囲であると広範囲に光拡散性能を調整できるためより好ましい。最も好ましくは100nm〜1000nmの範囲である。   In order for the light diffusing member of the present invention to have good light diffusibility, the average crystal particle diameter of the crystals contained in the glass phase is preferably 5 nm or more, and light diffusion is wide in the range of 5 nm to 2000 nm. Since performance can be adjusted, it is more preferable. Most preferably, it is the range of 100 nm-1000 nm.

さらに析出させる結晶を適宜選択し、部材全体の質量に対して析出する結晶の割合を調整することにより、光拡散部材の平均線膨張係数やヘイズ値、全光線透過率、光線反射率等を広範囲に調節することが可能となる。   Furthermore, by appropriately selecting the crystals to be precipitated and adjusting the ratio of the crystals to be precipitated with respect to the mass of the entire member, the average linear expansion coefficient and haze value of the light diffusing member, the total light transmittance, the light reflectance, etc. can be broadly selected. It becomes possible to adjust to.

本発明の光拡散部材のヘイズ値は、良好な拡散性を得る為に、厚さが0.1mmの時のC光に対して、0.1%以上であることが好ましく、1%以上であることがより好ましく、5%以上であることが最も好ましい。   In order to obtain good diffusibility, the haze value of the light diffusing member of the present invention is preferably 0.1% or more with respect to C light when the thickness is 0.1 mm, and is preferably 1% or more. More preferably, it is most preferably 5% or more.

ここでヘイズ値とは、材料の光拡散性を定量化したものであり、その値が高い(大きい)程光拡散性が良好なものであると言うことができる。
本発明で表されるヘイズ値とは以下の方法により測定されたものを言う。
すなわち、具体的には、20×20×0.1mmの板状の試料を用意し、その両面を光学研磨する。光学研磨が良好になされているかどうかは、研磨面に砂目が観察されないことにより容易に確認することができる。研磨された試料を洗浄した後、ヘイズメーター(「HGM-2DP」スガ試験機株式会社製)を用いて測定する。
Here, the haze value is obtained by quantifying the light diffusibility of the material, and it can be said that the higher (larger) the value, the better the light diffusibility.
The haze value represented by the present invention refers to that measured by the following method.
Specifically, a 20 × 20 × 0.1 mm plate-like sample is prepared, and both surfaces thereof are optically polished. Whether optical polishing is satisfactorily confirmed can be easily confirmed by the fact that no grain is observed on the polished surface. After the polished sample is washed, it is measured using a haze meter (“HGM-2DP” manufactured by Suga Test Instruments Co., Ltd.).

なお、C光とは、国際照明委員会(CIE)が規定した標準光Cである。これは色温度が6740°Kであり、一定の規定で点灯したガス入りタングステン電球に規定のフィルターをかけることにより得られる。この光の性質は青空の光を含む昼光に相当する。   The C light is standard light C defined by the International Commission on Illumination (CIE). This is obtained by applying a specified filter to a gas-filled tungsten light bulb having a color temperature of 6740 ° K., which is lit with a specified rule. The nature of this light corresponds to daylight including blue sky light.

光拡散部材を透過する光を拡散させる目的で使用する場合には、光の透過率は高いことが光量の損失が少なくなるため好ましい。従って、本発明の光拡散部材の態様の一つにおいては、厚さが0.1mmの時のC光に対する全光線透過率が5%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが最も好ましい。
本発明で表わされる全光線透過率とは、JIS K 7361−1に示される方法で評価されるものであり、具体的には波長380〜770nmでの平均透過率を示す。
When using for the purpose of diffusing the light which permeate | transmits a light-diffusion member, it is preferable that the transmittance | permeability of light is high since the loss of light quantity decreases. Therefore, in one aspect of the light diffusing member of the present invention, the total light transmittance for C light when the thickness is 0.1 mm is preferably 5% or more, more preferably 7% or more. Preferably, it is most preferably 10% or more.
The total light transmittance represented by the present invention is evaluated by the method shown in JIS K 7361-1, and specifically shows the average transmittance at a wavelength of 380 to 770 nm.

本発明の光拡散部材は反射した光を拡散させる目的で使用することも可能である。この場合には反射率が高いことが光量の損失が少なくなるため好ましい。従って、本発明の光拡散部材の態様の一つにおいては、波長200〜2500nmの光線反射率が1%以上であることが好ましく、2%以上であることがより好ましく、3%以上であることが最も好ましい。
本発明で表わされる光線反射率とは波長200〜2500nmの範囲で測定した各波長の反射率の平均値を意味する。
The light diffusing member of the present invention can also be used for the purpose of diffusing reflected light. In this case, it is preferable that the reflectance is high because the loss of light amount is reduced. Accordingly, in one aspect of the light diffusing member of the present invention, the light reflectance at a wavelength of 200 to 2500 nm is preferably 1% or more, more preferably 2% or more, and 3% or more. Is most preferred.
The light reflectance represented by the present invention means an average value of the reflectance of each wavelength measured in the wavelength range of 200 to 2500 nm.

本発明の光拡散部材の平均線膨張係数は使用環境や使用目的に合わせて広い範囲で調整できることが好ましい。このため、平均線膨張係数が0〜50℃の温度範囲で+200×10−7/℃以下であることが好ましく、−100×10−7/℃〜+200×10−7/℃の範囲であることがより好ましい。この範囲内であれば金属、セラミック、結晶化ガラス、ガラス、樹脂等の材料と平均線膨張係数を合わせることが可能である。
また、0〜50℃の温度範囲で−5×10−7/℃〜+5×10−7/℃の極低膨張の範囲を有していると、光拡散部材自身が高い寸法安定性を持つため最も好ましい。
It is preferable that the average linear expansion coefficient of the light diffusing member of the present invention can be adjusted in a wide range according to the use environment and the purpose of use. Therefore, the average linear expansion coefficient is preferably + 200 × 10 −7 / ° C. or less in the temperature range of 0 to 50 ° C., and is in the range of −100 × 10 −7 / ° C. to + 200 × 10 −7 / ° C. It is more preferable. Within this range, it is possible to match the average linear expansion coefficient with materials such as metal, ceramic, crystallized glass, glass and resin.
In addition, the light diffusing member itself has high dimensional stability when it has an extremely low expansion range of −5 × 10 −7 / ° C. to + 5 × 10 −7 / ° C. in the temperature range of 0 to 50 ° C. Therefore, it is most preferable.

本発明の光拡散部材の態様の一つにおいては、ガラス相中に含まれる結晶は、Si、Al、P、B、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Co、Moの中から選ばれる少なくとも2成分以上を含有する事が好ましい。
ガラス相中に含まれる結晶がこれらの各成分から選ばれる少なくとも2成分以上を含有することによって、平均線膨張係数やヘイズ値、全光線透過率、光線反射率などを広範囲に調整するための結晶の種類をほぼカバーすることができ、所望の結晶の種類や割合を様々に変化させることが可能となる。
In one aspect of the light diffusing member of the present invention, the crystals contained in the glass phase are Si, Al, P, B, Li, Na, K, Cs, Mg, Ca, Sr, Ba, Zn, Cu. It is preferable to contain at least two components selected from Ni, Co, and Mo.
A crystal for adjusting the average linear expansion coefficient, haze value, total light transmittance, light reflectance, etc. over a wide range by containing at least two or more components selected from these components. It is possible to cover almost all kinds of the crystal and to change the kind and ratio of the desired crystal in various ways.

本発明の光拡散部材の態様の一つにおいては、ガラス相中に含まれる結晶は質量%で、
SiO 5〜90%、Al 0〜50%、LiO 0〜50%、の各成分を含むことが好ましい。
この範囲内であれは、平均線膨張係数を広範囲に調整するための主要な結晶の種類をカバーすることが可能となる。
In one of the embodiments of the light diffusing member of the present invention, the crystals contained in the glass phase are in mass%,
SiO 2 5~90%, Al 2 O 3 0~50%, Li 2 O 0~50%, preferably includes the components of.
Within this range, it is possible to cover the main crystal types for adjusting the average linear expansion coefficient over a wide range.

本発明の光拡散部材の態様の一つにおいては、ガラス相中に含まれる結晶はモル%で、
SiO 3〜95%、Al 0〜90%、LiO 0〜50%、の各成分を含むことが好ましい。
上述と同様、この範囲内であれは、平均線膨張係数を広範囲に調整するための主要な結晶の種類をカバーすることが可能となる。
In one embodiment of the light diffusing member of the present invention, the crystal contained in the glass phase is mol%,
SiO 2 3~95%, Al 2 O 3 0~90%, Li 2 O 0~50%, preferably includes the components of.
As described above, within this range, it is possible to cover the main crystal types for adjusting the average linear expansion coefficient over a wide range.

結晶中に上記の各成分を含有させるには、溶融するガラス原料中にこれらの成分を含ませるようにしておき、ガラスを再加熱する際の加熱条件(結晶化条件)を適宜調節すればよい。   In order to contain each of the above components in the crystal, these components may be included in the glass material to be melted, and the heating conditions (crystallization conditions) for reheating the glass may be adjusted as appropriate. .

β−ユークリプタイト、および/またはβ−ユークリプタイト固溶体、および/またはβ−石英、および/またはβ−石英固溶体をガラス相中に含ませる場合には、0〜50℃の温度範囲の平均線膨張係数を−100×10−7/℃〜+50×10−7/℃の範囲で調節することができる。 When β-eucryptite and / or β-eucryptite solid solution and / or β-quartz and / or β-quartz solid solution are included in the glass phase, the average temperature range of 0 to 50 ° C. The linear expansion coefficient can be adjusted in the range of −100 × 10 −7 / ° C. to + 50 × 10 −7 / ° C.

β−石英および/またはβ−石英固溶体、および/またはβ−スポジューメン(β−LiO・Al・SiO)および/またはβ−スポジューメン固溶体(β−LiO・Al・SiO固溶体)をガラス相中に含ませる場合には、0〜50℃の温度範囲の平均線膨張係数を−10×10−7/℃〜+10×10−7/℃の範囲で調節することができる。 β-quartz and / or β-quartz solid solution, and / or β-spodumene (β-Li 2 O.Al 2 O 3 .SiO 2 ) and / or β-spodumene solid solution (β-Li 2 O.Al 2 O 3) · a SiO 2 solid solution) when included in the glass phase, adjusts the average linear expansion coefficient of the temperature range of 0 to 50 ° C. in the range of -10 × 10 -7 / ℃ ~ + 10 × 10 -7 / ℃ be able to.

特に光拡散部材の平均線膨張係数が0〜50℃の温度範囲で−5×10−7/℃〜+5×10−7/℃である極低膨張特性を実現するためには、ガラス相中にβ−石英および/またはβ−石英固溶体を含み、ガラス相中の結晶が質量%で、SiO50〜62%、P5〜10%、Al22〜26%、LiO3〜5%、TiO1〜4%、ZrO1〜4%の各成分を含有することが好ましい。 In particular, in order to realize an extremely low expansion characteristic in which the average linear expansion coefficient of the light diffusing member is −5 × 10 −7 / ° C. to + 5 × 10 −7 / ° C. in the temperature range of 0 to 50 ° C., Contains β-quartz and / or β-quartz solid solution, and the crystals in the glass phase are in mass%, SiO 2 50 to 62%, P 2 O 5 5 to 10%, Al 2 O 3 22 to 26%, Li 2 O3~5%, TiO 2 1~4% , preferably contains the respective components of the ZrO 2 1 to 4%.

α−石英(α−SiO)、および/またはα−石英固溶体(α−SiO固溶体)、および/またはα−クリストバライト(α−SiO)、および/またはα−クリストバライト固溶体(α−SiO固溶体)をガラス相中に含ませる場合には、0〜50℃の温度範囲の平均線膨張係数を+50×10−7/℃〜+200×10−7/℃の範囲で調節することができる。 α-quartz (α-SiO 2 ), and / or α-quartz solid solution (α-SiO 2 solid solution), and / or α-cristobalite (α-SiO 2 ), and / or α-cristobalite solid solution (α-SiO 2) When the solid solution is included in the glass phase, the average linear expansion coefficient in the temperature range of 0 to 50 ° C. can be adjusted in the range of + 50 × 10 −7 / ° C. to + 200 × 10 −7 / ° C.

その他、ガラス相中に含ませる結晶の種類を選択することによって、光拡散部材の平均線膨張係数や結晶の平均結晶粒子径を様々に調節することができる。   In addition, the average linear expansion coefficient of the light diffusing member and the average crystal particle diameter of the crystal can be variously adjusted by selecting the type of crystal included in the glass phase.

二珪酸リチウム(LiO・2SiO)、および/または
α−石英(α−SiO)、および/または
α−石英固溶体(α−SiO固溶体)、および/または
α−クリストバライト(α−SiO)、および/または
α−クリストバライト固溶体(α−SiO固溶体)
をガラス相中に含ませると、−50〜+70℃における平均線膨張係数は+65×10−7/℃〜+130×10−7/℃の範囲内、平均結晶粒子径は0.01〜1.00μmの範囲内とすることができる。
Lithium disilicate (Li 2 O.2SiO 2 ) and / or α-quartz (α-SiO 2 ) and / or α-quartz solid solution (α-SiO 2 solid solution) and / or α-cristobalite (α-SiO 2 ), and / or α-cristobalite solid solution (α-SiO 2 solid solution)
Is included in the glass phase, the average linear expansion coefficient at −50 to + 70 ° C. is in the range of + 65 × 10 −7 / ° C. to + 130 × 10 −7 / ° C., and the average crystal grain size is 0.01 to 1. It can be in the range of 00 μm.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 70 〜79%、
LiO 5 〜12%、
O 0 〜 4%、
MgO 0 〜 2%未満、
ZnO 0 〜 2%未満、
1.5〜 3%、
ZrO 1.5〜 7%、
Al 3 〜 9%、
Sb2O3+As2O3 0 〜 2%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 70 ~79%,
Li 2 O 5 ~12%,
K 2 O 0-4%,
MgO 0 to less than 2%,
ZnO 0 to less than 2%,
P 2 O 5 1.5~ 3%,
ZrO 2 1.5-7%,
Al 2 O 3 3-9%,
Sb2O3 + As2O3 0-2%,
It is preferable to contain each component of the range.

α−石英(α−SiO)、および/または
α−石英固溶体(α−SiO固溶体)、
をガラス相中に含ませると、−50〜+70℃における平均線膨張係数は+60×10−7/℃〜+130×10−7/℃の範囲内、平均結晶粒子径は1.00μm以下とすることができる。
α-quartz (α-SiO 2 ) and / or α-quartz solid solution (α-SiO 2 solid solution),
Is included in the glass phase, the average linear expansion coefficient at −50 to + 70 ° C. is in the range of + 60 × 10 −7 / ° C. to + 130 × 10 −7 / ° C., and the average crystal particle size is 1.00 μm or less. be able to.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 70 〜77%、
LiO 5 〜 9%未満、
O 2 〜 5%、
MgO+ZnO+SrO+BaO 1 〜 2%、
+WO+La+Bi 1 〜 3%、
1.0〜 2.5%、
ZrO 2.0〜 7%、
Al 5 〜10%、
NaO 0 〜 1%、
Sb+As 0 〜 2%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 70 ~77%,
Li 2 O 5 to less than 9%,
K 2 O 2 ~ 5%,
MgO + ZnO + SrO + BaO 1-2%,
Y 2 O 3 + WO 3 + La 2 O 3 + Bi 2 O 3 1 ~ 3%,
P 2 O 5 1.0-2.5%,
ZrO 2 2.0-7%,
Al 2 O 3 5-10%,
Na 2 O 0 to 1%,
Sb 2 O 3 + As 2 O 3 0 ~ 2%,
It is preferable to contain each component of the range.

コージェライト(MgAlSi18)、および/または
コージェライト固溶体(MgAlSi18固溶体)、および/または
スピネル、および/または
スピネル固溶体、および/または
エンスタタイト(MgSiO)、および/または
エンスタタイト固溶体(MgSiO固溶体)、および/または
β−石英(β−SiO)、および/または
β−石英固溶体(β−SiO固溶体)、および/または
チタン酸マグネシウム(MgTi)、および/または
チタン酸マグネシウム固溶体(MgTi固溶体)
をガラス相中に含ませると、−50〜+70℃における平均線膨張係数は+30×10−7/℃〜+65×10−7/℃の範囲内とすることができる。
Cordierite (Mg 2 Al 4 Si 5 O 18 ), and / or cordierite solid solution (Mg 2 Al 4 Si 5 O 18 solid solution), and / or spinel, and / or spinel solid solution, and / or enstatite (MgSiO 3 ), And / or enstatite solid solution (MgSiO 3 solid solution), and / or β-quartz (β-SiO 2 ), and / or β-quartz solid solution (β-SiO 2 solid solution), and / or magnesium titanate (MgTi) 2 O 5 ) and / or magnesium titanate solid solution (MgTi 2 O 5 solid solution)
Is included in the glass phase, the average linear expansion coefficient at −50 to + 70 ° C. can be in the range of + 30 × 10 −7 / ° C. to + 65 × 10 −7 / ° C.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 40 〜60%、
MgO 10 〜18%、
Al 10 〜20%未満、
0 〜 4%、
0 〜 4%、
CaO 0.5〜 4%、
SrO 0 〜 2%、
BaO 0 〜 5%、
ZrO 0 〜 5%、
TiO 2.5〜12%、
Bi 0 〜 6%、
Sb 0 〜 1%、
As 0 〜 1%、
Fe 0 〜 2%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 40 ~60%,
MgO 10-18%,
Al 2 O 3 10 to less than 20%,
P 2 O 5 0 ~ 4% ,
B 2 O 3 0-4%,
CaO 0.5-4%,
SrO 0-2%,
BaO 0-5%,
ZrO 2 0-5%,
TiO 2 2.5-12%,
Bi 2 O 3 0-6%,
Sb 2 O 3 0 to 1%,
As 2 O 3 0 to 1%,
Fe 2 O 3 0-2%,
It is preferable to contain each component of the range.

エンスタタイト(MgSiO)、および/または
エンスタタイト固溶体(MgSiO固溶体)、および/または
チタン酸マグネシウム(MgTi)、および/または
チタン酸マグネシウム固溶体(MgTi固溶体)、および/または
スピネル、および/または
スピネル固溶体、
をガラス相中に含ませると、−50〜+70℃における平均線膨張係数は+40×10−7/℃〜+60×10−7/℃の範囲内、平均結晶粒子径は0.05μm〜0.30μmの範囲内とすることができる。
Enstatite (MgSiO 3 ), and / or enstatite solid solution (MgSiO 3 solid solution), and / or magnesium titanate (MgTi 2 O 5 ), and / or magnesium titanate solid solution (MgTi 2 O 5 solid solution), and / or Spinel and / or spinel solid solution,
In the glass phase, the average linear expansion coefficient at −50 to + 70 ° C. is in the range of + 40 × 10 −7 / ° C. to + 60 × 10 −7 / ° C., and the average crystal particle size is 0.05 μm to 0.00. It can be in the range of 30 μm.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 40〜60%、
MgO 10〜20%、
Al 10〜20%未満、
CaO 0.5〜4%、
SrO 0.5〜4%、
BaO 0〜5%、
ZrO 0〜5%、
TiO 8%を越え12%まで、
Bi 0〜6%、
Sb 0〜1%、
As 0〜1%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 40~60%,
MgO 10-20%,
Al 2 O 3 less than 10-20%,
CaO 0.5-4%,
SrO 0.5-4%,
BaO 0-5%,
ZrO 2 0-5%,
Over TiO 2 8% to 12%,
Bi 2 O 3 0-6%,
Sb 2 O 3 0 to 1%,
As 2 O 3 0-1%,
It is preferable to contain each component of the range.

β−石英(β−SiO)、および/または
β−石英固溶体(β−SiO固溶体)、および/または
エンスタタイト(MgSiO)、および/または
エンスタタイト固溶体(MgSiO固溶体)および/または
フォルステライト、および/または
フォルステライト固溶体
をガラス相中に含ませると平均結晶粒子径は0.05μm〜0.30μmの範囲内とすることができる。
β-quartz (β-SiO 2 ) and / or β-quartz solid solution (β-SiO 2 solid solution) and / or enstatite (MgSiO 3 ) and / or enstatite solid solution (MgSiO 3 solid solution) and / or When stellite and / or forsterite solid solution is contained in the glass phase, the average crystal particle diameter can be in the range of 0.05 μm to 0.30 μm.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 40 〜60%、
MgO 10 〜20%、
Al 10 〜20%未満、
0.5〜 2.5%、
1 〜 4%、
LiO 0.5〜 4%、
CaO 0.5〜 4%、
ZrO 0.5〜 5%、
TiO 2.5〜 8%、
Sb 0.01〜0.5%、
As 0 〜 0.5%、
SnO 0 〜 5%、
MoO 0 〜 3%、
CeO 0 〜 5%、
Fe 0 〜 5%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 40 ~60%,
MgO 10-20%,
Al 2 O 3 10 to less than 20%,
P 2 O 5 0.5~ 2.5%,
B 2 O 3 1 ~ 4% ,
Li 2 O 0.5-4%,
CaO 0.5-4%,
ZrO 2 0.5-5%,
TiO 2 2.5-8%,
Sb 2 O 3 0.01~0.5%,
As 2 O 3 0-0.5%,
SnO 2 0-5%,
MoO 3 0 ~ 3%,
CeO 0-5%,
Fe 2 O 3 0-5%,
It is preferable to contain each component of the range.

β−石英(β−SiO)、および/または
β−石英固溶体(β−SiO固溶体)、および/または
β−スポジューメン(β−LiO・Al・SiO)、および/または
β−スポジューメン固溶体(β−LiO・Al・SiO固溶体)、および/または
β−ユークリプタイト(β−LiO・Al・2SiO、但しLi2Oの一部はMgOおよび/またはZnOとの置換可能)、および/または
β−ユークリプタイト固溶体(β−LiO・Al・2SiO固溶体、但しLi2Oの一部はMgOおよび/またはZnOとの置換可能)および/または
をガラス相中に含ませると、−50〜+600℃における平均線膨張係数は−10×10−7/℃〜+35×10−7/℃の範囲内、平均結晶粒子径は5nm〜0.10μmの範囲内とすることができる。
β-quartz (β-SiO 2 ), and / or β-quartz solid solution (β-SiO 2 solid solution), and / or β-spodumene (β-Li 2 O.Al 2 O 3 .SiO 2 ), and / or β- spodumene solid solution (β-Li 2 O · Al 2 O 3 · SiO 2 solid solution), and / or β- eucryptite (β-Li 2 O · Al 2 O 3 · 2SiO 2, provided that a part of Li2O is substitutable), and / or β- eucryptite solid solution (β-Li 2 O · Al 2 O 3 · 2SiO 2 solid solution, although some of Li2O substitution of MgO and / or ZnO with MgO and / or ZnO Possible) and / or the glass phase contains an average coefficient of linear expansion at −50 to + 600 ° C. within the range of −10 × 10 −7 / ° C. to + 35 × 10 −7 / ° C. The crystal particle diameter can be in the range of 5 nm to 0.10 μm.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 50〜65%、
0〜10%、
Al 22〜30%、
LiO 1.5〜 5%、
MgO 0.5〜2%、
ZnO 0.2〜15%、
CaO 0.3〜4%、
BaO 0.5〜5%、
TiO 1〜4%、
ZrO 1〜5%、
Nb 0〜5%、
La 0〜5%、
0〜5%、
As+Sb 0〜4%、
の範囲の各成分を含有しながらも、PbO、NaO、KOを実質的に含まないことが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 50~65%,
P 2 O 5 0-10%,
Al 2 O 3 22-30%,
Li 2 O 1.5-5%,
MgO 0.5-2%,
ZnO 0.2-15%,
CaO 0.3-4%,
BaO 0.5-5%,
TiO 2 1-4%,
ZrO 2 1-5%,
Nb 2 O 5 0-5%,
La 2 O 3 0-5%,
Y 2 O 3 0-5%,
As 2 O 3 + Sb 2 O 3 0-4%,
It is preferable that PbO, Na 2 O, and K 2 O are substantially not included while containing each component in the range.

スピネル型結晶(好ましくはガーナイト(ZnAl))および/または
スピネル型結晶の固溶体(好ましくはガーナイト固溶体(ZnAl固溶体))
をガラス相中に含ませると、−50〜+600℃における平均線膨張係数は+35×10−7/℃〜+65×10−7/℃の範囲内とすることができる。
Spinel crystals (preferably garnite (ZnAl 2 O 4 )) and / or solid solutions of spinel crystals (preferably garnite solid solution (ZnAl 2 O 4 solid solution))
Is included in the glass phase, the average linear expansion coefficient at −50 to + 600 ° C. can be in the range of + 35 × 10 −7 / ° C. to + 65 × 10 −7 / ° C.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO 30〜65%、
Al 5〜35%、
ZnO 5〜35%、
MgO 1〜20%、
TiO 1〜15%、
CaO+SrO+BaO+B+La+Y+Gd+Ta+Nb+WO+Bi 0.5〜20%、
但し、B 0〜10%、
Ta+Nb+WO+Bi 0〜10%、
ZrO 0〜2%未満、
0〜5%、
SnO 0〜2%、
但し、ZrO+P+SnO 0〜7%、
As+Sb 0〜4%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 30~65%,
Al 2 O 3 5~35%,
ZnO 5-35%,
MgO 1-20%,
TiO 2 1-15%,
CaO + SrO + BaO + B 2 O 3 + La 2 O 3 + Y 2 O 3 + Gd 2 O 3 + Ta 2 O 5 + Nb 2 O 5 + WO 3 + Bi 2 O 3 0.5-20%,
However, B 2 O 3 0-10%,
Ta 2 O 5 + Nb 2 O 5 + WO 3 + Bi 2 O 3 0-10%,
ZrO 2 0 to less than 2%,
P 2 O 5 0-5%,
SnO 2 0-2%,
However, ZrO 2 + P 2 O 5 + SnO 2 0-7%,
As 2 O 3 + Sb 2 O 3 0-4%,
It is preferable to contain each component of the range.

β−ユークリプタイト、および/または、
β−ユークリプタイト固溶体、および/または、
β−石英(β−SiO2)および/または、
β−石英固溶体(β−SiO2固溶体)および/または、
をガラス相中に含ませると、−40℃〜+80℃における平均線膨張係数は−25×10−7/℃〜−15×10−7/℃の範囲内、ヤング率は60GPa以上とすることができる。
β-eucryptite, and / or
β-eucryptite solid solution, and / or
β-quartz (β-SiO 2 ) and / or
β-quartz solid solution (β-SiO 2 solid solution) and / or
The the inclusion in the glass phase, in the range of average linear expansion coefficient of -25 × 10 -7 / ℃ ~- 15 × 10 -7 / ℃ at -40 ℃ ~ + 80 ℃, Young's modulus be at least 60GPa Can do.

上記の結晶を含ませるにはガラス原料が酸化物基準の質量百分率で、
SiO2 40〜59%、
Al23 10〜30%、
Li2O 1〜5.4%、
を含有し、且つSiO2/(Al23+Li2O)≧1.5、
ZnO 3〜10%、
BaO+SrO 0.5〜6%、
TiO2+ZrO2 1.0〜5.0%、
23 0〜5%、
BaO 0〜4%、
SrO 0〜4%、
CaO 0〜2%、
ZrO2 0.5〜3%、
TiO2 0.5〜3%、
HfO2 0〜3%、
As23+Sb23 0〜2%、
の範囲の各成分を含有しつつも、P25含有量が4質量%未満であり、MgO、PbO、Na2OおよびK2Oを実質的に含有しないことが好ましい。
In order to include the above crystals, the glass raw material is a mass percentage based on oxide,
SiO 2 40~59%,
Al 2 O 3 10-30%,
Li 2 O 1-5.4%,
And SiO 2 / (Al 2 O 3 + Li 2 O) ≧ 1.5,
ZnO 3-10%,
BaO + SrO 0.5-6%,
TiO 2 + ZrO 2 1.0-5.0%,
B 2 O 3 0-5%,
BaO 0-4%,
SrO 0-4%,
CaO 0-2%,
ZrO 2 0.5-3%,
TiO 2 0.5-3%,
HfO 2 0-3%,
As 2 O 3 + Sb 2 O 3 0-2%,
It is preferable that the P 2 O 5 content is less than 4% by mass and MgO, PbO, Na 2 O and K 2 O are not substantially contained, while containing each component in the range.

Li1+x+yAlTi2−xSi3−y(0≦x≦1、0≦y≦1)で表わされる結晶をガラス相中に含ませると100℃〜300℃における平均線膨張係数は+60×10−7/℃〜+300×10−7/℃の範囲内平均結晶粒子径は0.1μm〜2μmの範囲内とすることができる。 When a crystal represented by Li 1 + x + y Al x Ti 2-x Si y P 3-y (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) is included in the glass phase, the average coefficient of linear expansion at 100 ° C. to 300 ° C. is The average crystal particle diameter in the range of + 60 × 10 −7 / ° C. to + 300 × 10 −7 / ° C. can be in the range of 0.1 μm to 2 μm.

上記の結晶を含ませるにはガラス原料が酸化物基準のmol%で
LiO 12〜18%、
Al+Ga 5〜10%、
TiO+GeO 35〜45%、
SiO 1〜10%、
30〜40%、
の範囲の各成分を含有することが好ましい。
In order to include the above crystals, the glass raw material is mol% based on oxides and Li 2 O 12-18%,
Al 2 O 3 + Ga 2 O 3 5~10%,
TiO 2 + GeO 2 35~45%,
SiO 2 1~10%,
P 2 O 5 30~40%,
It is preferable to contain each component of the range.

その他、ガラス相中に含ませることができる結晶はα―トリジマイト、ぺタライト、AlTiO、コージェライト系スピネル型結晶、フォルステライト、ウォラストナイト、ディオプサイト、ネフェリン、クリノエンスタタイト、アノーサイト、セルシアン、ゲーレナイト、フェルスパー、ウィレマイト、ムライト、コランダム、ランキナイト、ラルナイト、およびこれらの固溶体等である。 Other crystals that can be included in the glass phase are α-tridymite, petalite, Al 2 TiO 5 , cordierite spinel crystals, forsterite, wollastonite, diopsite, nepheline, nephrin, clinoenstatite, ano Sites, celsian, gelenite, felsper, willemite, mullite, corundum, lanquinite, larnite, and solid solutions thereof.

本発明の光拡散部材はガラス相中に含まれる結晶により高い剛性を実現することが可能であり、ヤング率は70GPa〜160GPaの範囲とすることができる。
高い寸法安定性のためには60GPa以上とすることが好ましく、70GPa以上とすることがより好ましく、80GPa以上とすることが最も好ましい。
The light diffusing member of the present invention can achieve high rigidity due to the crystals contained in the glass phase, and the Young's modulus can be in the range of 70 GPa to 160 GPa.
For high dimensional stability, it is preferably 60 GPa or more, more preferably 70 GPa or more, and most preferably 80 GPa or more.

本発明の光拡散部材は高い耐熱性を有する。本発明の光拡散部材が軟化せず、室温状態とほぼ同等の形状、強度等を保つ温度の上限はおおよそ400℃〜1000℃の間となる。   The light diffusing member of the present invention has high heat resistance. The upper limit of the temperature at which the light diffusing member of the present invention is not softened and maintains a shape, strength, and the like substantially equal to those at room temperature is approximately between 400 ° C and 1000 ° C.

本発明の光拡散部材は、ガラス原料を溶解し、熱間成形又は冷間加工を行った後に徐冷し、その後第1の熱処理を行いガラス相中に結晶核を形成し、続いて第2の熱処理によって結晶化することにより製造される。さらに第2の熱処理後室温まで冷却された後、再度第3の熱処理を施し再度結晶化させてもよい。
このとき、ガラス原料の溶解温度は1000℃〜1800℃の範囲が好ましく、1100℃〜1700℃の範囲がより好ましく、1200℃〜1600℃の範囲が最も好ましい。
第1の熱処理の温度は400℃〜900℃の範囲が好ましく、450℃〜850℃の範囲がより好ましく、500℃〜800℃の範囲が最も好ましい。この時の加熱時間は0.1〜100時間が好ましく、1〜100時間がより好ましい。
第2の熱処理の温度は550℃〜1200℃の範囲が好ましく、600℃〜1150℃の範囲がより好ましく、650℃〜1100℃の範囲が最も好ましい。この時の加熱時間は0.1〜100時間が好ましく、1〜100時間がより好ましい。
第3の熱処理の温度は550℃〜1250℃の範囲が好ましく、600℃〜1200℃の範囲がより好ましく、650℃〜1150℃の範囲が最も好ましい。この時の加熱時間は0.1〜100時間が好ましく、0.5〜100時間がより好ましい。
The light diffusing member of the present invention dissolves a glass raw material, performs hot forming or cold working and then slowly cools, and then performs a first heat treatment to form crystal nuclei in the glass phase, followed by second It is manufactured by crystallization by heat treatment. Further, after cooling to room temperature after the second heat treatment, a third heat treatment may be performed again to recrystallize.
At this time, the melting temperature of the glass raw material is preferably in the range of 1000 ° C to 1800 ° C, more preferably in the range of 1100 ° C to 1700 ° C, and most preferably in the range of 1200 ° C to 1600 ° C.
The temperature of the first heat treatment is preferably in the range of 400 ° C to 900 ° C, more preferably in the range of 450 ° C to 850 ° C, and most preferably in the range of 500 ° C to 800 ° C. The heating time at this time is preferably 0.1 to 100 hours, and more preferably 1 to 100 hours.
The temperature of the second heat treatment is preferably in the range of 550 ° C to 1200 ° C, more preferably in the range of 600 ° C to 1150 ° C, and most preferably in the range of 650 ° C to 1100 ° C. The heating time at this time is preferably 0.1 to 100 hours, and more preferably 1 to 100 hours.
The temperature of the third heat treatment is preferably in the range of 550 ° C to 1250 ° C, more preferably in the range of 600 ° C to 1200 ° C, and most preferably in the range of 650 ° C to 1150 ° C. The heating time at this time is preferably 0.1 to 100 hours, and more preferably 0.5 to 100 hours.

本発明の光拡散部材は、その表面がフレネルレンズ形状やシリンドリカルレンズ形状等の表面形状を有するものであってもよく、またかかる形状を別途他の材料によって積層した積層板とすることも可能である。本発明の光拡散部材は、直接フレネルレンズ形状やシリンドリカルレンズ形状を付与する場合、これらの形状の金型に溶融ガラスをキャストして成型することができる。   The light diffusing member of the present invention may have a surface having a surface shape such as a Fresnel lens shape or a cylindrical lens shape, or may be a laminated plate in which such a shape is separately laminated with another material. is there. When the light diffusing member of the present invention directly imparts a Fresnel lens shape or a cylindrical lens shape, the molten glass can be cast and molded into a mold having these shapes.

また、本発明に係る光拡散部材は、光源からの光の反射を防止するため各種の光反射防止膜等各種成膜をすることができる。
前記成膜は蒸着(物理蒸着、化学蒸着等)、メッキ(電気メッキ、無電解メッキ、溶融メッキ等)、塗装、コーティング、印刷等の手段で表層上に新たな層を形成させることを言う。表面に金属層又は金属酸化物層を積層する方法としては、例えば、物理蒸着法、化学蒸着法、溶射法及びメッキ法が挙げられる。物理蒸着法としては、真空蒸着法、スパッタリング及びイオンプレーティングなどが適用でき、化学蒸着(CVD)法としては、熱CVD法、プラズマCVD法及び光CVD法等が適用できる。また、溶射法としては、大気圧プラズマ溶射法及び減圧プラズマ溶射法等が適用できる。メッキ法としては、無電解メッキ(化学メッキ)法、溶融メッキ及び電気メッキ法等が挙げられ、電気メッキ法においてはレーザーメッキ法を用いることができる。
The light diffusing member according to the present invention can be formed into various films such as various antireflection films in order to prevent reflection of light from the light source.
The film formation means that a new layer is formed on the surface layer by means of vapor deposition (physical vapor deposition, chemical vapor deposition, etc.), plating (electroplating, electroless plating, hot dipping, etc.), painting, coating, printing, and the like. Examples of the method for laminating a metal layer or metal oxide layer on the surface include physical vapor deposition, chemical vapor deposition, thermal spraying, and plating. As the physical vapor deposition method, a vacuum vapor deposition method, sputtering, ion plating, or the like can be applied. As the chemical vapor deposition (CVD) method, a thermal CVD method, a plasma CVD method, a photo CVD method, or the like can be applied. As the thermal spraying method, an atmospheric pressure plasma spraying method, a low pressure plasma spraying method, or the like can be applied. Examples of the plating method include an electroless plating (chemical plating) method, a hot dipping method, and an electroplating method. In the electroplating method, a laser plating method can be used.

本発明の光拡散部材はガラス相中に均一に分散した結晶によって、拡散光の均一性が高く、すぐれた光拡散性を有する。
本発明によって、良好な光拡散性を有し、また、広範囲で平均線膨張係数を調整でき、耐熱性に優れており、高い剛性を有し寸法安定性に優れた光拡散部材、およびそれらの製造方法を提供することができる。
The light diffusing member of the present invention has high uniformity of diffused light and excellent light diffusibility due to crystals uniformly dispersed in the glass phase.
According to the present invention, a light diffusing member having good light diffusibility, capable of adjusting an average linear expansion coefficient in a wide range, excellent in heat resistance, high rigidity and excellent in dimensional stability, and their A manufacturing method can be provided.

本発明の好適な態様について説明する。なお、本発明はこれらの態様に限定するものではない。 A preferred embodiment of the present invention will be described. Note that the present invention is not limited to these embodiments.

本発明の実施例を表1に表わす。
表1の組成のガラス原料を1300〜1600℃で溶融し、100mm角の大きさに成形、徐冷した後600〜800℃で5〜100時間核形成、650〜900℃で1〜100時間結晶化した後、研削、研磨して板状体の光拡散部材を得た。個々の実施例の結晶化条件の詳細については表1に示す。
得られた光拡散部材の主結晶相、0℃〜50℃における平均線膨張係数、主結晶相の平均結晶粒子径、厚さが0.1mmの時のC光に対する全光線透過率、波長200〜2500nmの光線反射率、ヤング率、厚さが0.1mmの時のC光に対するヘイズ値をそれぞれ表1に記載した。


















Examples of the present invention are shown in Table 1.
Glass raw materials having the composition shown in Table 1 were melted at 1300 to 1600 ° C., formed into a 100 mm square, annealed, and then nucleated at 600 to 800 ° C. for 5 to 100 hours, and crystallized at 650 to 900 ° C. for 1 to 100 hours Then, grinding and polishing were performed to obtain a plate-shaped light diffusion member. The details of the crystallization conditions for each example are shown in Table 1.
The main crystal phase of the obtained light diffusing member, the average linear expansion coefficient at 0 ° C. to 50 ° C., the average crystal particle diameter of the main crystal phase, the total light transmittance for C light when the thickness is 0.1 mm, wavelength 200 Table 1 shows the haze value with respect to C light when the light reflectivity, the Young's modulus, and the thickness are ˜2500 nm.


















Figure 2006208985
Figure 2006208985

本発明の光拡散部材は表示装置の光拡散板、各種測定装置の光拡散板、電灯カバー、メーター、看板、画像読取装置、車輌用屋根材、船舶用屋根材、住宅用屋根材及び太陽電池カバー等に好適である。
The light diffusing member of the present invention includes a light diffusing plate of a display device, a light diffusing plate of various measuring devices, a light cover, a meter, a signboard, an image reading device, a roof material for a vehicle, a roof material for a ship, a roof material for a house, and a solar cell. Suitable for covers and the like.

Claims (11)

ガラス相中に結晶を含み、厚さが0.1mmの時のC光に対するヘイズ値が0.1%以上であることを特徴とする光拡散部材。 A light diffusing member comprising a crystal in a glass phase and having a haze value of 0.1% or more for C light when the thickness is 0.1 mm. ガラス相中に含まれる結晶はSi、Al、P、B、Li、Na、K、Cs、Mg、Ca、Sr、Ba、Zn、Cu、Ni、Co、Moの中から選ばれる少なくとも2成分以上を含有する事を特徴とする請求項1に記載の光拡散部材。 Crystals contained in the glass phase include at least two components selected from Si, Al, P, B, Li, Na, K, Cs, Mg, Ca, Sr, Ba, Zn, Cu, Ni, Co, and Mo. The light diffusing member according to claim 1, comprising: 厚さが0.1mmの時のC光に対する全光線透過率が5%以上であることを特徴とする請求項1または2に記載の光拡散部材。 3. The light diffusing member according to claim 1, wherein the total light transmittance for C light when the thickness is 0.1 mm is 5% or more. 4. 波長200〜2500nmの光線反射率が1%以上であることを特徴とする請求項1から3に記載の光拡散部材。 4. The light diffusing member according to claim 1, wherein the light reflectance at a wavelength of 200 to 2500 nm is 1% or more. 平均線膨張係数が0〜50℃の温度範囲で+200×10−7/℃以下であることを特徴とする請求項1から4に記載の光拡散部材。 5. The light diffusing member according to claim 1, wherein an average linear expansion coefficient is + 200 × 10 −7 / ° C. or less in a temperature range of 0 to 50 ° C. 5. 平均線膨張係数が0〜50℃の温度範囲で−100×10−7/℃〜+200×10−7/℃の範囲であることを特徴とする請求項1から5に記載の光拡散部材。 6. The light diffusing member according to claim 1, wherein an average linear expansion coefficient is in a range of −100 × 10 −7 / ° C. to + 200 × 10 −7 / ° C. in a temperature range of 0 to 50 ° C. 6. 平均結晶粒子径が5nm以上であることを特徴とする請求項1から6に記載の光拡散部材。 7. The light diffusing member according to claim 1, wherein an average crystal particle diameter is 5 nm or more. 平均結晶粒子径が5nm〜2000nmの範囲であることを特徴とする1から7に記載の光拡散部材。 8. The light diffusing member according to 1 to 7, wherein the average crystal particle diameter is in the range of 5 nm to 2000 nm. ガラス相中に含まれる結晶は質量%で、
SiO2 5%〜90%、
Li2O3 0%〜50%、
Al2O3 0%〜50%、
の各成分を含むことを特徴とする請求項1から8に記載の光拡散部材。
The crystals contained in the glass phase are mass%,
SiO2 5% to 90%,
Li2O3 0% -50%,
Al2O3 0% -50%,
The light diffusing member according to claim 1, comprising the following components.
ガラス相中に含まれる結晶はモル%で、
SiO2 3%〜95%、
Li2O3 0%〜90%、
Al2O3 0%〜50%、
の各成分を含むことを特徴とする請求項1から8に記載の光拡散部材。
The crystals contained in the glass phase are mol%,
SiO2 3% to 95%,
Li2O3 0% -90%,
Al2O3 0% -50%,
The light diffusing member according to claim 1, comprising the following components.
ガラス原料を溶融する工程と、溶融したガラスを成形する工程と、成形したガラスを徐冷する工程と、徐冷後加熱処理をする工程とを含むことを特徴とする光拡散部材の製造方法。
A method for producing a light diffusing member, comprising: a step of melting a glass raw material; a step of forming molten glass; a step of gradually cooling the formed glass; and a step of performing heat treatment after slow cooling.
JP2005023765A 2005-01-31 2005-01-31 Light diffusing member and method for manufacturing same Pending JP2006208985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023765A JP2006208985A (en) 2005-01-31 2005-01-31 Light diffusing member and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023765A JP2006208985A (en) 2005-01-31 2005-01-31 Light diffusing member and method for manufacturing same

Publications (1)

Publication Number Publication Date
JP2006208985A true JP2006208985A (en) 2006-08-10

Family

ID=36965883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023765A Pending JP2006208985A (en) 2005-01-31 2005-01-31 Light diffusing member and method for manufacturing same

Country Status (1)

Country Link
JP (1) JP2006208985A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098893A1 (en) * 2006-12-27 2009-09-09 Kao Corporation Light diffusing member
JP2010170969A (en) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd Substrate electrode and method of manufacturing the same, and organic led element and method of manufacturing the same
JPWO2009060916A1 (en) * 2007-11-09 2011-03-24 旭硝子株式会社 Translucent substrate, manufacturing method thereof, organic LED element and manufacturing method thereof
JP2014078508A (en) * 2012-10-11 2014-05-01 Samsung Corning Precision Materials Co Ltd Metal oxide thin film substrate for organic light-emitting element and method of fabricating the same
CN103791443A (en) * 2012-10-29 2014-05-14 三星康宁精密素材株式会社 Light diffusing plate, method for manufacturing the same, and led illumination apparatus comprising the same
EP2282978A4 (en) * 2008-04-11 2015-07-29 Glidewell James R Dental Ceramics Inc Lithium silicate glass ceramic and method for fabrication of dental appliances
WO2016195015A1 (en) * 2015-06-02 2016-12-08 旭硝子株式会社 Light diffusion plate
US9745218B2 (en) 2008-04-11 2017-08-29 James R. Glidewell Dental Ceramics, Inc. Lithium silicate glass ceramic for fabrication of dental appliances
WO2018025884A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Light diffuser plate, backlight, and method for manufacturing light diffuser plate
WO2018186399A1 (en) * 2017-04-06 2018-10-11 Agc株式会社 Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit
CN108793735A (en) * 2018-07-02 2018-11-13 芜湖东旭光电装备技术有限公司 A kind of glass composition and the glass of resistance to greasy dirt and the preparation method and application thereof
CN115667168A (en) * 2020-04-29 2023-01-31 康宁公司 Composition and method for making glass-ceramic articles
WO2023136224A1 (en) * 2022-01-14 2023-07-20 Agc株式会社 Crystallized glass, glass substrate for high frequency device, liquid crystal antenna, amorphous glass and method for producing crystallized glass

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158035B2 (en) 2006-12-27 2012-04-17 Kao Corporation Light diffusing member with ceramic particles containing magnesium oxide and aluminum oxide
EP2098893A4 (en) * 2006-12-27 2010-01-20 Kao Corp Light diffusing member
EP2098893A1 (en) * 2006-12-27 2009-09-09 Kao Corporation Light diffusing member
JP2015092505A (en) * 2007-11-09 2015-05-14 旭硝子株式会社 Translucent substrate for organic led element, manufacturing method thereof, organic led element and manufacturing method thereof
US8431943B2 (en) 2007-11-09 2013-04-30 Asahi Glass Company, Limited Light transmitting substrate, method for manufacturing light transmitting substrate, organic LED element and method for manufacturing organic LED element
JPWO2009060916A1 (en) * 2007-11-09 2011-03-24 旭硝子株式会社 Translucent substrate, manufacturing method thereof, organic LED element and manufacturing method thereof
US10301209B2 (en) 2008-04-11 2019-05-28 James R. Glidewell Dental Ceramics, Inc. Lithium silicate glass ceramic for fabrication of dental appliances
EP2282978A4 (en) * 2008-04-11 2015-07-29 Glidewell James R Dental Ceramics Inc Lithium silicate glass ceramic and method for fabrication of dental appliances
US9745218B2 (en) 2008-04-11 2017-08-29 James R. Glidewell Dental Ceramics, Inc. Lithium silicate glass ceramic for fabrication of dental appliances
US10968132B2 (en) 2008-04-11 2021-04-06 James R. Glidewell Dental Ceramics, Inc. Lithium silicate glass ceramic for fabrication of dental appliances
JP2010170969A (en) * 2009-01-26 2010-08-05 Asahi Glass Co Ltd Substrate electrode and method of manufacturing the same, and organic led element and method of manufacturing the same
JP2014078508A (en) * 2012-10-11 2014-05-01 Samsung Corning Precision Materials Co Ltd Metal oxide thin film substrate for organic light-emitting element and method of fabricating the same
CN103791443A (en) * 2012-10-29 2014-05-14 三星康宁精密素材株式会社 Light diffusing plate, method for manufacturing the same, and led illumination apparatus comprising the same
JP2014089450A (en) * 2012-10-29 2014-05-15 Samsung Corning Precision Materials Co Ltd Light diffusion plate, method for producing the same, and led luminaire including the same
KR101454757B1 (en) * 2012-10-29 2014-10-27 코닝정밀소재 주식회사 Light diffusing plate, method for manufacturing the same, and led illumination apparatus comprising the same
WO2016195015A1 (en) * 2015-06-02 2016-12-08 旭硝子株式会社 Light diffusion plate
WO2018025884A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Light diffuser plate, backlight, and method for manufacturing light diffuser plate
WO2018186399A1 (en) * 2017-04-06 2018-10-11 Agc株式会社 Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit
CN108793735A (en) * 2018-07-02 2018-11-13 芜湖东旭光电装备技术有限公司 A kind of glass composition and the glass of resistance to greasy dirt and the preparation method and application thereof
CN115667168A (en) * 2020-04-29 2023-01-31 康宁公司 Composition and method for making glass-ceramic articles
WO2023136224A1 (en) * 2022-01-14 2023-07-20 Agc株式会社 Crystallized glass, glass substrate for high frequency device, liquid crystal antenna, amorphous glass and method for producing crystallized glass

Similar Documents

Publication Publication Date Title
JP2006208985A (en) Light diffusing member and method for manufacturing same
TWI255261B (en) Low expansion transparent glass-ceramics, glass-ceramic substrates, and optical waveguide elements
EP3330754A1 (en) Light guiding panel and laminated light guiding panel using same
WO2016195015A1 (en) Light diffusion plate
TW201925129A (en) Black lithium silicate glass ceramics
JP4977372B2 (en) Crystallized glass and method for producing the same
TW202106645A (en) Colored glass-ceramics having petalite and lithium silicate structures
WO2004094327A2 (en) Lamp reflector substrate, glass, glass-ceramic materials and process for making the same
US11554983B2 (en) Glass substrate, semiconductor device, and display device
KR20150031268A (en) Crystalline glass substrate, crystallized glass substrate, diffusion plate, and illumination device provided with same
KR101498938B1 (en) Composite substrate
JPWO2019151321A1 (en) Glass substrate with antireflection film and optical components
JP6066060B2 (en) Crystallized glass substrate and method for producing the same
JP5510885B2 (en) Light reflecting substrate
JP2007197310A (en) Crystallized glass, reflection mirror base material and reflection mirror using the same
US7943539B2 (en) Glass-ceramics and method for manufacturing the same
TW202124320A (en) Transparent hexagonal stuffed β–quartz glass-ceramic articles having large grain size
JP2015090387A (en) Optical image forming member, glass laminate for the same, and manufacturing methods for both
US11629089B2 (en) Plate glass
JP2006206412A (en) Light diffusion member and method of manufacturing light diffusion member
WO2018025884A1 (en) Light diffuser plate, backlight, and method for manufacturing light diffuser plate
JP2016060650A (en) Li2O-Al2O3-SiO2-BASED CRYSTALLIZATION GLASS AND MANUFACTURING METHOD THEREFOR
JP4736207B2 (en) Crystallized glass for optical filter substrate and optical filter
JP2021172547A (en) Crystallized glass
JP2005037906A (en) Reflection mirror and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118