WO2018186399A1 - Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit - Google Patents

Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit Download PDF

Info

Publication number
WO2018186399A1
WO2018186399A1 PCT/JP2018/014271 JP2018014271W WO2018186399A1 WO 2018186399 A1 WO2018186399 A1 WO 2018186399A1 JP 2018014271 W JP2018014271 W JP 2018014271W WO 2018186399 A1 WO2018186399 A1 WO 2018186399A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
plate
light
light diffusing
Prior art date
Application number
PCT/JP2018/014271
Other languages
French (fr)
Japanese (ja)
Inventor
和田 直哉
順子 宮坂
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2018186399A1 publication Critical patent/WO2018186399A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction

Definitions

  • the present invention relates to a glass plate for a light diffusion plate, a light diffusion plate, and a backlight unit.
  • An object of the present invention is to provide a glass plate for a light diffusing plate having a sufficient heat-scattering characteristic even if it is thin and having high heat resistance, a light diffusing plate including the same, and a backlight unit.
  • a glass plate having two main surfaces facing each other, wherein the thickness of the glass plate is 0.3 mm or more and 2.0 mm or less,
  • the glass plate has an average coefficient of thermal expansion of 50 ⁇ 10 ⁇ 7 / K or less at 50 ° C.
  • the total light transmittance of the glass plate at wavelengths of 450 nm, 550 nm, and 630 nm is 10% or more and 60% or less
  • the total of the total light transmittance and the total light reflectance at wavelengths of 450 nm, 550 nm, and 630 nm is 90% or more
  • the glass plate is expressed in terms of mol percentage based on oxide, SiO 2 is 55 to 68%, Al the 2 O 3 0 ⁇ 9%, B 2 O 3 0 to 19% of MgO 4 ⁇ 15%, 0 ⁇ 4% of BaO, made of glass containing Na 2 O 0 ⁇ 4%, the light diffusion plate A glass plate is provided.
  • a glass plate for a light diffusion plate having high heat resistance while having sufficient transmission and scattering characteristics even if it is thin a light diffusion plate including the same, and a backlight unit.
  • FIG. 1 is a cross-sectional view of a direct type backlight unit using a light diffusing plate including a glass plate for a light diffusing plate of the present invention.
  • the diffusion plate may be read as a diffusion sheet.
  • the glass plate for a light diffusion plate of the present invention has a thickness of 0.3 mm or more.
  • the thickness of the glass plate is more preferably 0.4 mm or more, and further preferably 0.5 mm or more.
  • the plate thickness is 2.0 mm or less.
  • the plate thickness is more preferably 1.8 mm or less, further preferably 1.7 mm or less, further preferably 1.5 mm or less, and particularly preferably 1.3 mm or less.
  • the glass plate for a light diffusion plate of the present invention is preferably a rectangle (rectangle) having a dimension of at least one side of 200 mm or more. Moreover, it is more preferable that the dimension of at least one side is 400 mm or more, and it is further more preferable that it is 600 mm or more. Further, the dimension of at least one side is preferably 2500 mm or less, more preferably 2200 mm or less, further preferably 2000 mm or less, and particularly preferably 1800 mm or less.
  • the glass plate for a light diffusion plate of the present invention has an average coefficient of thermal expansion at 50 ° C. to 350 ° C. of 60 ⁇ 10 ⁇ 7 / K or less.
  • the warpage is caused by the fact that a temperature distribution is generated in the surface as the temperature of the light diffusion plate rises. If the average thermal expansion coefficient is less than 60 ⁇ 10 ⁇ 7 / K, warpage due to temperature distribution can be suppressed, and display unevenness is less likely to occur.
  • the average coefficient of thermal expansion is more preferably 55 ⁇ 10 ⁇ 7 / K or less, further preferably 53 ⁇ 10 ⁇ 7 / K or less, and particularly preferably 50 ⁇ 10 ⁇ 7 / K or less.
  • the total light transmittance (hereinafter also simply referred to as total light transmittance) at wavelengths of 450 nm, 550 nm, and 630 nm of the glass plate for light diffusion plate of the present invention is 10% or more. If the total light transmittance is 10% or more, the transmittance necessary to function as a direct type backlight can be obtained.
  • the total light transmittance is more preferably 15% or more, and further preferably 20% or more. On the other hand, if the total light transmittance is 60% or less, display unevenness can be suppressed.
  • the total light transmittance is more preferably 55% or less, and further preferably 50%.
  • the total light reflectance (hereinafter also simply referred to as total light reflectance) at wavelengths of 450 nm, 550 nm, and 630 nm of the glass plate for light diffusion plate of the present invention is preferably 40% or more. If the total light reflectance is 40% or more, the homogeneity necessary to function as a direct type backlight can be obtained.
  • the total light reflectance is more preferably 45% or more, and further preferably 50% or more.
  • the total light reflectance is preferably 90% or less. If the total light reflectance is 90% or less, sufficient luminance can be obtained.
  • the total light reflectance is more preferably 85% or less, and further preferably 80% or less.
  • the glass plate for a light diffusion plate of the present invention suppresses the amount of light absorbed by the glass plate if the total of the total light transmittance and total light reflectance at each wavelength of 450 nm, 550 nm, and 630 nm is 90% or more. It is preferable because the light quantity of the light source can be used efficiently.
  • the total of the total light transmittance and total light reflectance at each wavelength is more preferably 95% or more, and even more preferably 98% or more.
  • Examples of the glass having the total light transmittance and the total light reflectance described above include phase separation glass and crystallized glass.
  • the glass plate for light diffusion plates of the present invention is composed of phase-separated glass, the total light transmittance and total light reflectance can be adjusted by controlling the phase separation state described later.
  • the glass plate for light diffusing plates of this invention consists of crystallized glass, a total light transmittance and a total light reflectance can be adjusted by control of a crystallization state.
  • phase separation glass is mainly demonstrated, it is not limited to this.
  • the desired optical properties (total light transmittance and total light reflectance) of the glass constituting the glass plate for a light diffusion plate of the present invention are a refractive index difference between phases and a high refractive index phase.
  • the volume density, the plate thickness, and the like can be adjusted as appropriate.
  • the refractive index difference of the phase separation and the volume density of the high refractive index phase can be adjusted by the composition of the glass and heat treatment conditions (for example, conditions for the phase separation treatment).
  • the glass plate for light diffusing plates of the present invention is composed of phase-separated glass including two phase-separated phases.
  • Glass phase separation means that a single-phase glass is divided into two or more glass phases.
  • Examples of the method for phase separation of glass include a method for heat-treating glass.
  • the temperature is preferably 50 ° C. higher than the glass transition point, more preferably 75 ° C. higher temperature, more preferably 100 ° C. higher temperature. It is particularly preferred that However, the conditions for the heat treatment are typically preferably 400 ° C. or higher than the glass transition point, more preferably 350 ° C. or higher, and particularly preferably 300 ° C. or lower.
  • the time for heat-treating the glass is preferably 1 to 64 hours, more preferably 2 to 32 hours. From the viewpoint of mass productivity, it is preferably 24 hours or less, and more preferably within 12 hours.
  • phase separation temperature can be adjusted by the composition of the glass.
  • adjusting the amounts of Al 2 O 3 , alkali metal, and alkaline earth metal is effective for adjusting the phase separation temperature.
  • alkaline earth metals adjusting the amount of MgO is effective for adjusting the phase separation temperature.
  • the heat treatment time is 5 seconds or more in order to control the size of the phase separation structure. Preferably it is 10 seconds or more, More preferably, it is 1 minute or more, More preferably, it is 30 minutes or more. From the viewpoint of improving optical properties, the heat treatment time is preferably 10 hours or less, more preferably 8 hours or less, further preferably 6 hours or less, further preferably 4 hours or less, particularly preferably 2 hours or less, and most preferably 1 hour or less. preferable.
  • the phase separation temperature is preferably higher than the devitrification temperature. When the phase separation temperature is higher than the devitrification temperature, it becomes easier to form a phase-separated glass.
  • Whether the glass is phase-separated or not can be determined by SEM (scanning electron microscope, scanning electron microscope). That is, when the glass is phase-separated, it can be observed that it is divided into two or more phases when observed with an SEM.
  • the state of the separated glass there are a binodal state and a spinodal state.
  • the binodal state is a state in which one or more generally spherical phase separation structures are formed in a continuous phase by a nucleation-growth mechanism.
  • the spinodal state is a state in which each phase separated has a certain degree of regularity and is intertwined with each other in three dimensions. These phase separation structures exhibit a function as a light scatterer as described below.
  • the light scatterer Since the light scatterer has a different refractive index from the surroundings, it scatters the incident light.
  • a dispersed phase When one or more phase-separated structures are dispersed inside the glass plate (hereinafter also referred to as a dispersed phase), and there is a continuous phase around it, the dispersed phase is called a light scatterer.
  • a phase with a small volume fraction is called a light scatterer.
  • the average particle diameter of the phase functioning as a light scattering material (hereinafter abbreviated as a light scattering material) in the phase separation state inside the glass is 0. It is preferably 1 ⁇ m or more, more preferably 0.2 ⁇ m or more, and still more preferably 0.3 ⁇ m or more. Moreover, in order to improve light-scattering property, it is preferable that the average particle diameter of the said phase is 1.6 micrometers or less, More preferably, it is 1.0 micrometer or less, More preferably, it is 0.8 micrometer or less.
  • the average particle size of the phase can be measured by SEM observation.
  • the average particle size in the phase-separated state is an average of the widths of the phases having a small volume fraction in the spinodal state, which are intertwined with each other continuously.
  • the average value of the diameters and when one phase is elliptical, the average value of the values obtained by adding the major axis and minor axis and dividing by two.
  • the volume fraction of the light scatterer in the glass is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more. More preferably, it is particularly preferably 20% or more, particularly preferably 25% or more, and most preferably 30% or more.
  • the volume fraction is preferably 70% or less, more preferably 60% or less, and further preferably 50% or less.
  • the volume fraction of the light scatterer is estimated from the ratio of the dispersed particles by calculating the ratio of the dispersed particles distributed on the glass surface from the SEM observation photograph.
  • the refractive index of the whole glass has a positive correlation with the specific gravity.
  • the density is preferably 3.0 g / cm 3 or less, and 2.8 g / cm 3. The following is more preferable, 2.7 g / cm 3 or less is further preferable, and 2.6 g / cm 3 or less is most preferable.
  • the method for producing the phase-separated glass is not particularly limited.
  • an appropriate amount of various raw materials are prepared, heated to about 1500 to 1800 ° C. and melted, and then homogenized by defoaming, stirring, and the like.
  • various amounts of various raw materials are prepared, heated to about 1500-1800 ° C. and melted, and then homogenized by defoaming, stirring, and the like.
  • phase separation process After processing to lower and phase-separate, it is formed into a plate shape by the float method, downdraw method, press method or rollout method, etc., or cast into a block shape, and after slow cooling, it is processed into an arbitrary shape Thereafter, a phase separation process may be performed.
  • the glass is melted, homogenized, molded, slowly cooled, or shaped without any special phase separation process in steps such as melting, homogenizing, molding, annealing, or shaping.
  • phase-divided glass by heat processing shall also be included in phase-separated glass, and in this case, the step of phase-separating the glass is included in the step of melting or the like.
  • the glass plate for light diffusion plates of the present invention may be made of crystallized glass.
  • the crystallinity of the crystallized glass is preferably 1% or more, more preferably 5% or more, and further preferably 10% or more.
  • the crystallinity is preferably 90% or less, more preferably 60% or less, still more preferably 40% or less, particularly preferably 30% or less, and most preferably 20% or less.
  • the crystallinity of the crystallized glass By setting the crystallinity of the crystallized glass to 1% or more, the average thermal expansion coefficient can be reduced, sufficient scattering characteristics can be obtained, the Young's modulus can be improved, and the Vickers hardness can be increased. Further, by setting the crystallinity of the crystallized glass to 90% or less, sufficient rigidity can be obtained and productivity can be improved.
  • the crystallinity C of the crystallized glass is determined by performing X-ray diffraction measurement in addition to the crystallized glass to be measured using a crystal other than the crystal that is the main component of the crystallized glass to be measured as a reference sample.
  • the ratio a of the X-ray diffraction intensity of the crystal, which is the main component of the crystallized glass, is obtained, and is calculated by the following equation (1) from the mass ratio b and a of the reference sample and crystallized glass.
  • A is a constant referred to as a reference intensity ratio (RIR)
  • RIR reference intensity ratio
  • RIR reference intensity ratio
  • the average particle diameter in the crystallized glass is preferably 50 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more. Moreover, it is preferable that an average particle diameter is 10,000 nm or less, More preferably, it is 50000 nm or less, More preferably, it is 20000 nm or less.
  • the average particle diameter in the crystallized glass is an average value of the diameter when the dispersed crystal phase is spherical, and in the case of an elliptical sphere, a value obtained by adding the major axis and the minor axis and dividing by two.
  • the average value, which is not spherical, is the average value of the values obtained by adding the long and short sides of the crystal phase cross section and dividing by two.
  • the average particle diameter in the crystallized glass is 50 nm or more, moderate light scattering is expressed by having an appropriate haze. Further, when the average particle diameter is 10,000 nm or less, appropriate transparency is exhibited by having an appropriate total light transmittance.
  • the average particle diameter in the crystallized glass can be measured by a scanning electron microscope (also referred to as Scanning Electron Microscope, SEM).
  • the difference in refractive index between the crystal phase in the crystallized glass and the surrounding amorphous glass phase is large.
  • the refractive index difference is preferably 0.0001 or more, more preferably 0.001 or more, and still more preferably 0.01 or more.
  • the refractive index difference can be estimated from the difference between the refractive index of the crystal based on the crystal data and the refractive index of the residual glass estimated by the Appen equation using the composition analysis value of the residual glass phase.
  • the volume ratio of the crystal phase in the crystallized glass is preferably 10% or more, and more preferably 20% or more.
  • the volume ratio of the crystal phase is estimated from the ratio of the crystal phase by calculating the ratio of the crystal phase distributed on the glass surface from the SEM observation photograph.
  • the particle diameter has a distribution.
  • the difference between the average value Ds of the lower 10% and the average value Dl of the upper 10% (Dl ⁇ Ds) of the particle diameter (nm) measured by SEM observation except for a small contribution of less than 50 nm to the optical characteristics in the visible region (Dl ⁇ Ds) is preferably 100 nm or more, more preferably 200 nm or more, further preferably 400 nm or more, further preferably 700 nm or more, particularly preferably 1000 nm or more, and 2000 nm or more. Most preferred.
  • the control of the particle size distribution in the glass can be obtained, for example, by controlling the thermal history of the crystallization process.
  • a particle size distribution in the plate thickness direction is generated by giving a temperature difference to the upper surface, the inside, and the lower surface of the glass.
  • heating methods that give a temperature difference to the upper, inner, and lower surfaces of the glass include, for example, changing the temperature and number of heating heaters on the upper and lower surfaces, changing the distance between the heater and the glass plate, induction heating, and laser. For example, use of local heating is used.
  • the same effect can be obtained by controlling the flow velocity distribution in the plate thickness direction.
  • the time for passing through the temperature zone for crystallization treatment may be controlled. By passing slowly through the crystallization temperature zone, the particle size increases, and by passing faster, the particle size decreases.
  • a method for controlling the time for passing through the crystallization temperature zone for example, a method for precisely controlling the temperature profile of the heat treatment furnace or a glass flow rate if crystallization is performed in the course of passing through the glass forming process. Can also be obtained.
  • the glass plate for a light diffusion plate of the present invention preferably has an arithmetic average roughness Ra of at least one main surface of 0.03 nm or more.
  • the glass plate for a light diffusing plate of the present invention may have an uneven surface on at least one surface in order to increase light diffusibility as a light diffusing plate.
  • the arithmetic average roughness (Ra) of the outer surface is not particularly limited in order to improve the light diffusibility of the light diffusion plate, but is 0.05 nm or more. More preferably, it is 0.1 nm or more.
  • the upper limit is not particularly limited, but is preferably 10,000 nm or less, more preferably 7000 nm or less, still more preferably 3000 nm or less, particularly preferably 2000 nm or less, and most preferably 1000 nm or less.
  • the arithmetic average roughness (Ra) of the outer surface is preferably 10 nm or more, more preferably 100 nm or more, still more preferably 1000 nm or more, and most preferably 5000 nm or more.
  • the arithmetic average roughness Ra can be measured based on Japanese Industrial Standard JIS B0601 (1994).
  • the first main surface and the second main surface may have the same or different arithmetic average roughness Ra.
  • the glass plate for light diffusing plate of the present invention may have at least one surface concavo-convex by blasting, acid etching or imprinting, or a combination of these methods.
  • the half width of the intensity distribution of the transmitted scattered light on the surface (hereinafter also referred to as the half width of the transmitted scattered light) is preferably 5 ° or more, more preferably 10 ° or more, and even more preferably 20 °. That's it.
  • an upper limit is not restrict
  • the half width at half maximum of the transmitted scattered light can be measured using a spectrophotometer with a variable measurement angle. However, it is necessary to distinguish between scattering due to phase separation and scattering due to surface shape.
  • a smooth surface is formed by filling the half-width a ° of the transmitted scattered light, measured with a phase-separated glass having irregularities on at least one surface, and the irregularities with a resin having a refractive index approximately equal to that of the glass matrix.
  • the difference between the measured half-width b ° of the transmitted scattered light and (a ⁇ b) ° is defined as the half-width of the transmitted scattered light on the uneven surface.
  • Examples of the method for adjusting the arithmetic average roughness Ra of the glass surface and the half width at half maximum of scattering on the surface include polishing, blasting, etching and imprinting.
  • the first main surface and the second main surface of the glass may be coated with silica, titania, alumina, or the like.
  • composition of the glass of the present invention will be described.
  • content of the glass component will be described using an oxide-based molar percentage display (%) unless otherwise specified.
  • SiO 2 is a component that improves the weather resistance and scratch resistance as glass, and is contained by 55% or more.
  • the content of SiO 2 is more preferably 57% or more, further preferably 59% or more, and particularly preferably 61% or more.
  • the content of SiO 2 is 68% or less, the viscosity of the glass can be lowered to improve productivity.
  • the content of SiO 2 is more preferably 67% or less, further preferably 66% or less, and particularly preferably 65% or less.
  • Al 2 O 3 is an optional component. When Al 2 O 3 is contained, it is preferable to contain 1% or more because the chemical durability of the glass can be improved and the average thermal expansion coefficient can be reduced.
  • the content of Al 2 O 3 is more preferably 2% or more, further preferably 3% or more, and particularly preferably 4% or more.
  • the phase separation treatment can be performed in a short time by increasing the phase separation temperature of the glass.
  • the content of Al 2 O 3 is more preferably 8% or less, further preferably 7% or less, and particularly preferably 6% or less.
  • B 2 O 3 is an optional component.
  • B 2 O 3 When B 2 O 3 is contained, it is preferable to contain 5% or more because the viscosity of the glass is lowered, the solubility is improved, and the dispersion stability between SiO 2 and other components is remarkably improved.
  • the content of B 2 O 3 is more preferably 7% or more, further preferably 9% or more, and particularly preferably 11% or more.
  • the content of B 2 O 3 is 19% or less, the chemical durability of the glass can be improved.
  • the content of B 2 O 3 is more preferably 18% or less, still more preferably 17% or less, and particularly preferably 16% or less.
  • MgO is a component that can reduce the viscosity of the glass and reduce the average thermal expansion coefficient, and is contained at 4% or more.
  • the content of MgO is more preferably 5% or more, and further preferably 6% or more.
  • the glass can be stabilized by lowering the devitrification temperature.
  • the content of MgO is more preferably 10% or less, further preferably 9% or less, and particularly preferably 8% or less.
  • BaO is an optional component. When BaO is contained, if the content is 0.5% or more, the viscosity of the glass is lowered, and the average thermal expansion coefficient can be reduced.
  • the content of BaO is more preferably 1% or more. On the other hand, if the content of BaO is 4% or less, the specific gravity can be reduced and deformation of its own weight can be prevented.
  • the BaO content is more preferably 3% or less, still more preferably 2% or less, and particularly preferably 1.5% or less.
  • Na 2 O is an optional component. When Na 2 O is contained, the average thermal expansion coefficient can be reduced if it is 4% or less.
  • the content of Na 2 O is more preferably 3% or less, further preferably 2% or less, and particularly preferably substantially free.
  • P 2 O 5 is an optional component, but since it is a basic component that promotes phase separation in combination with SiO 2 , MgO, and Na 2 O, the phase-separated glass is used as the glass plate for the light diffusion plate of the present invention. When used, it is preferably contained.
  • the content of P 2 O 5 is preferably 0.5% or more, more preferably 1% or more, still more preferably 3% or more, and particularly preferably 4% or more. is there. Further, the content of P 2 O 5 is preferably 15% or less, more preferably 14% or less, still more preferably 10% or less, particularly preferably 7% or less, and most preferably 4.5% or less. is there.
  • the glass of the present invention it may be preferable to contain the following components in addition to the SiO 2 , B 2 O 3 , Al 2 O 3 , and MgO components.
  • the total content of the components is preferably 85% or more, and typically 90% or more.
  • the average thermal expansion coefficient can be reduced, which is preferable.
  • the total content of the components is more preferably 0.7% or less, still more preferably 0.5% or less, particularly preferably 0.3% or less, and most preferably substantially free.
  • ZrO 2 is an optional component, but is preferably contained in an amount of 1% or more and more preferably 2% or more in order to significantly improve chemical durability. In order to lower the refractive index of the glass and reduce the reflectance on the glass surface, it is preferably 4.5% or less, more preferably 4% or less, and even more preferably 3% or less.
  • CaO, SrO and BaO are all optional components, but in order to improve the light diffusion function, it is preferable to contain one or more of these components in an amount of 0.2% or more, more preferably 0.5% or more, even more preferably Is 1% or more.
  • CaO When CaO is contained, its content is preferably 7% or less. By setting the content of CaO to 7% or less, the average thermal expansion coefficient can be reduced, and the glass is difficult to devitrify.
  • the content of CaO is more preferably 6% or less, still more preferably 5% or less.
  • the total content of CaO, SrO and BaO is preferably 12% or less, more preferably 8% or less, further preferably 6% or less, particularly preferably 4% or less, and typically 3% or less. It is. By making the total 12% or less, the glass is less likely to be devitrified.
  • the value of MgO / (MgO + CaO + SrO + BaO) is 0.2 or more because the viscosity can be reduced while reducing the average thermal expansion coefficient.
  • This value is more preferably 0.3 or more, still more preferably 0.4 or more, and particularly preferably 0.5 or more.
  • La 2 O 3 is suitable in terms of improving the light diffusion function of the glass, and can be contained in an amount of 0 to 5%, preferably 3% or less, more preferably 2% or less. By making the content of La 2 O 3 5% or less, the glass can be prevented from becoming brittle.
  • the glass of the present invention may contain SO 3 as a fining agent.
  • the content of SO 3 is preferably more than 0% and 0.5% or less in terms of mass percentage.
  • the content of SO 3 is more preferably 0.4% or less, further preferably 0.3% or less, and further preferably 0.25% or less.
  • the glass of the present invention may contain one or more of Sb 2 O 3 , SnO 2 and As 2 O 3 as an oxidizing agent and a fining agent.
  • the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is preferably 0 to 0.5% in terms of mass percentage.
  • the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is more preferably 0.2% or less, further preferably 0.1% or less, and still more preferably substantially not contained.
  • Sb 2 O 3 , SnO 2 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass.
  • As 2 O 3 is not positively contained from the environmental viewpoint.
  • the glass of the present invention may contain Fe 2 O 3.
  • Fe 2 O 3 when Fe 2 O 3 is contained, since Fe 2 O 3 also functions as a coloring component, the content of Fe 2 O 3 is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • Fe 2 O 3 is preferably 200 ppm or less, more preferably 100 ppm or less, and more preferably 80 ppm or less from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility. More preferably, it is most preferable to set it as 50 ppm or less.
  • the glass of the present invention may contain NiO.
  • NiO functions also as a coloring component
  • the content of NiO is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • NiO is preferably 1.0 ppm or less, more preferably 0.5 ppm or less, from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
  • the glass of the present invention may contain Cr 2 O 3 .
  • Cr 2 O 3 When Cr 2 O 3 is contained, Cr 2 O 3 also functions as a coloring component. Therefore, the content of Cr 2 O 3 is preferably 10 ppm or less with respect to the total amount of the glass composition described above.
  • Cr 2 O 3 is preferably 1.0 ppm or less, more preferably 0.5 ppm or less, from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
  • the glass of the present invention may contain MnO 2 .
  • MnO 2 When MnO 2 is contained, since MnO 2 functions also as a component that absorbs visible light, the content of MnO 2 is preferably 50 ppm or less with respect to the total amount of the glass composition described above. In particular, MnO 2 is preferably 10 ppm or less from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
  • the glass of the present invention may contain TiO 2 .
  • TiO 2 When TiO 2 is contained, TiO 2 also functions as a component that absorbs visible light. Therefore, the content of TiO 2 is preferably 1000 ppm or less with respect to the total amount of the glass composition described above.
  • the content of TiO 2 is more preferably 500 ppm or less, and particularly preferably 100 ppm or less, from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
  • the content of TiO 2 is preferably 3% or less, more preferably 2% or less. % Or less is more preferable.
  • the glass of the present invention may contain CeO 2.
  • CeO 2 has the effect of reducing the redox of iron and can reduce the absorption of glass at a wavelength of 400 to 700 nm.
  • the CeO 2 content is preferably 1000 ppm or less with respect to the total amount of the glass composition described above.
  • the CeO 2 content is more preferably 500 ppm or less, further preferably 400 ppm or less, particularly preferably 300 ppm or less, and most preferably 250 ppm or less.
  • the content of CeO 2 must be adjusted so that the content of divalent iron converted to Fe 2 O 3 is 1 mass ppm or more and 900 mass ppm or less.
  • FIG. 1 shows a cross-sectional view of a direct type backlight (direct type backlight unit) constituted by a glass plate for a light diffusion plate made of glass according to an embodiment of the present invention.
  • a direct type backlight unit 1 constituted by a glass plate for a light diffusion plate made of glass according to an embodiment of the present invention.
  • a light source 3 is provided on a reflector 2 having a frame 8 at a predetermined interval, and a light diffusing plate (light diffusing of the present invention) is provided thereon.
  • a light diffusion plate 4 including a glass plate for plates) is provided. The light emitted from the light source 3 is diffused by the light diffusion plate 4.
  • a light diffusing sheet 5 On the light diffusing plate 4, a light diffusing sheet 5, a prism sheet 6, and a polarization separating sheet 7 are provided in this order.
  • an electromagnetic wave shielding sheet for shielding electromagnetic waves emitted from the light source may be provided between the light diffusion plate 4 and the light diffusion sheet 5.
  • the glass plate for a light diffusing plate of the present invention can have a function of a light diffusing sheet by coating particles having a particle diameter of 100 nm or more, porous silica, or the like.
  • the glass plate for a light diffusing plate of the present invention itself has the function of the light diffusing sheet 5, the light diffusing sheet 5 can be omitted.
  • Glasses B to G are examples, and glass A, glass H, glass I, and resin are comparative examples.
  • Glasses A to I were produced by the following method. First, a glass material prepared in advance was melted, homogenized, and degassed at 1650 ° C. to produce a molten glass. The molten glass was cooled to the phase separation treatment temperature described in Tables 1 and 2 at a cooling rate of 50 ° C. per minute, then held at the phase separation treatment temperature for 30 minutes, poured into a mold, and 1 ° C. at 700 ° C.
  • the glass was cooled to room temperature at a cooling rate of 1 ° C. per minute to produce phase-separated glass. It was observed with a scanning microscope that the glass was phase-separated and separated into two phases.
  • the total light transmittance and total light reflectance were measured using an integrating sphere unit of a spectrophotometer (trade name: Lamda 950) manufactured by PerkinElmer. The density was measured by the Archimedes method. The thermal conductivity was measured by a laser flash method. The average thermal expansion coefficient was measured with a thermomechanical analyzer. Tables 1 and 2 show thermal expansion coefficients at 50 to 350 ° C. Young's modulus and Poisson's ratio were measured by the ultrasonic method.
  • a plurality of LEDs (light emitting diodes) constituting a plurality of light sources 3 are arranged behind the light diffusion plate 4.
  • One long side of the light diffusing plate 4 is fixed to the frame 8.
  • the distance between the light diffusing plate 4 and each LED was set to 13 mm, and the distance between adjacent LEDs was set to 18 mm.
  • the surface temperature of the LEDs reached 140 ° C.
  • the light diffusion plate was warped to the side where the LED was not installed. The maximum in-plane curvature at that time was measured with a three-dimensional length measuring device.
  • Samples with a glass thickness of 1 mm to 1.5 mm in glass I had a maximum warpage of less than 1 mm, but samples with a thickness of 0.3 mm to 0.5 mm had a maximum warpage of 1 mm or more. It was NG.
  • the samples with the glass B to G and the plate thickness of 0.3 mm to 1.5 mm all had a maximum warpage amount of less than 1 mm and the overall evaluation was OK, and uneven brightness could be suppressed.
  • the diffuser plate used in VIERA TH-32D300 manufactured by Panasonic was changed to a light diffuser plate made of glass BG, and a backlight unit for diffusivity evaluation was constructed, the shape of the LED was visible. It was not possible to show good diffusibility.
  • arithmetic mean roughness Ra of the surface of the glass plate for light diffusing plates by the glass B was 0.2 micrometer. Therefore, it was found that the light diffusing plate of the present invention includes a glass plate for a light diffusing plate having high heat resistance, so that even if it is thin, it has sufficient diffusibility and can easily achieve uniform luminance.

Abstract

A glass sheet for a light diffusion sheet, said glass sheet having two main surfaces facing each other, wherein: the thickness of the glass sheet is 0.3-2.0 mmm inclusive; the average thermal expansion coefficient of the glass sheet at 50-350oC is 60x10-7/K or less; the total light transmittance of the glass sheet at a wavelength of 450 nm, 550 nm or 630 nm is 10-60% inclusive and the sum of the total light transmittance and the total light reflectance at a wavelength of 450 nm, 550 nm or 630 nm is 90% or more; and the glass sheet is formed of a glass which comprises, in terms of mol% on oxide basis, 55-68% of SiO2, 0-9% of Al2O3, 0-19% of B2O3, 4-15% of MgO, 0-4% of BaO and 0-4% of Na2O.

Description

光拡散板用ガラス板、光拡散板およびバックライトユニットGlass plate for light diffusion plate, light diffusion plate and backlight unit
 本発明は、光拡散板用ガラス板、光拡散板およびバックライトユニットに関する。 The present invention relates to a glass plate for a light diffusion plate, a light diffusion plate, and a backlight unit.
 近年、液晶テレビおよび液晶モニター等の薄板軽量化、大型化に伴って、直下型バックライトユニットに用いられる拡散板として、剛性が高く自重変形しにくいガラス製の拡散板が検討されている。さらに、直下型バックライトユニット自体の薄板軽量化が望まれている。 In recent years, with the reduction in the weight and size of liquid crystal televisions and liquid crystal monitors, a glass diffusion plate that is highly rigid and difficult to deform by its own weight has been studied as a diffusion plate used in a direct type backlight unit. Furthermore, it is desired to reduce the thickness of the direct backlight unit itself.
日本国特許第3749568号公報Japanese Patent No. 3749568 日本国特許第3100853号公報Japanese Patent No. 3100853 日本国特開2006-339033号公報Japanese Unexamined Patent Publication No. 2006-339033
 バックライトユニットの薄板化に伴って、光源と光拡散板との距離が近づくと、光拡散板の温度が上昇し、拡散板に経時的な変形として反りが発生する場合がある。それによって、液晶表示装置に表示ムラや輝度不均一等の不具合が発生し、この不具合は光源の高輝度化に伴ってより顕著になるおそれがある。 When the distance between the light source and the light diffusing plate approaches as the backlight unit becomes thinner, the temperature of the light diffusing plate increases, and the diffusing plate may be warped as a deformation over time. As a result, problems such as display unevenness and uneven brightness occur in the liquid crystal display device, and this problem may become more conspicuous as the brightness of the light source increases.
 本発明は、薄くても十分な透過散乱特性を備えつつ、耐熱性の高い光拡散板用ガラス板、それを含む光拡散板、バックライトユニットを提供することを目的とする。 An object of the present invention is to provide a glass plate for a light diffusing plate having a sufficient heat-scattering characteristic even if it is thin and having high heat resistance, a light diffusing plate including the same, and a backlight unit.
 上記課題を解決するため、本発明の一態様によれば、互いに対向する2つの主面を有するガラス板であって、前記ガラス板の板厚が0.3mm以上2.0mm以下であり、前記ガラス板の50℃~350℃における平均熱膨張係数が60×10-7/K以下であり、前記ガラス板の波長450nm、550nm、630nmの全光線透過率が10%以上60%以下であり、かつ前記全光線透過率と波長450nm、550nm、630nmの全光線反射率との合計が90%以上であり、前記ガラス板が酸化物基準のmol百分率表示で、SiOを55~68%、Alを0~9%、Bを0~19%、MgOを4~15%、BaOを0~4%、NaOを0~4%含むガラスからなる、光拡散板用ガラス板が提供される。 In order to solve the above-described problem, according to one aspect of the present invention, a glass plate having two main surfaces facing each other, wherein the thickness of the glass plate is 0.3 mm or more and 2.0 mm or less, The glass plate has an average coefficient of thermal expansion of 50 × 10 −7 / K or less at 50 ° C. to 350 ° C., and the total light transmittance of the glass plate at wavelengths of 450 nm, 550 nm, and 630 nm is 10% or more and 60% or less, The total of the total light transmittance and the total light reflectance at wavelengths of 450 nm, 550 nm, and 630 nm is 90% or more, the glass plate is expressed in terms of mol percentage based on oxide, SiO 2 is 55 to 68%, Al the 2 O 3 0 ~ 9%, B 2 O 3 0 to 19% of MgO 4 ~ 15%, 0 ~ 4% of BaO, made of glass containing Na 2 O 0 ~ 4%, the light diffusion plate A glass plate is provided.
 本発明の一態様によれば、薄くても十分な透過散乱特性を備えつつ、耐熱性の高い光拡散板用ガラス板、それを含む光拡散板、バックライトユニットが提供される。 According to one aspect of the present invention, there are provided a glass plate for a light diffusion plate having high heat resistance while having sufficient transmission and scattering characteristics even if it is thin, a light diffusion plate including the same, and a backlight unit.
図1は、本発明の光拡散板用ガラス板を含む光拡散板を用いた直下型バックライトユニットの断面図である。FIG. 1 is a cross-sectional view of a direct type backlight unit using a light diffusing plate including a glass plate for a light diffusing plate of the present invention.
 本明細書において、拡散板は拡散シートと読み替えてもよい。 In this specification, the diffusion plate may be read as a diffusion sheet.
 本発明の光拡散板用ガラス板は、板厚が0.3mm以上である。ガラス板の板厚を0.3mm以上とすることにより、面内で温度分布が生じにくくでき、光拡散板として使用したときの反り量を抑制できる。さらに光拡散板に用いる際に求められる強度を保持し、適切な機能を発揮する観点から、ガラス板の板厚は0.4mm以上であることがより好ましく、0.5mm以上であることがさらに好ましく、0.6mm以上であることが特に好ましい。また、バックライト(バックライトユニット)軽量化の観点から、板厚は2.0mm以下である。板厚は1.8mm以下がより好ましく、1.7mm以下がさらに好ましく、1.5mm以下が一段と好ましく、1.3mm以下が特に好ましい。 The glass plate for a light diffusion plate of the present invention has a thickness of 0.3 mm or more. By setting the thickness of the glass plate to 0.3 mm or more, it is difficult to cause temperature distribution in the surface, and the amount of warpage when used as a light diffusion plate can be suppressed. Further, from the viewpoint of maintaining the strength required when used for the light diffusion plate and exhibiting an appropriate function, the thickness of the glass plate is more preferably 0.4 mm or more, and further preferably 0.5 mm or more. Preferably, it is 0.6 mm or more. Further, from the viewpoint of reducing the weight of the backlight (backlight unit), the plate thickness is 2.0 mm or less. The plate thickness is more preferably 1.8 mm or less, further preferably 1.7 mm or less, further preferably 1.5 mm or less, and particularly preferably 1.3 mm or less.
 本発明の光拡散板用ガラス板は、少なくとも一辺の寸法が200mm以上の長方形(矩形)であることが好ましい。また、少なくとも一辺の寸法が400mm以上であることがより好ましく、600mm以上であることがさらに好ましい。また、少なくとも一辺の寸法は2500mm以下であることが好ましく、2200mm以下であることがより好ましく、2000mm以下であることがさらに好ましく、1800mm以下であることが特に好ましい。ガラス板の少なくとも一辺の寸法を200mm以上とすることで、ガラスの剛性を生かした光拡散板を提供できる。 The glass plate for a light diffusion plate of the present invention is preferably a rectangle (rectangle) having a dimension of at least one side of 200 mm or more. Moreover, it is more preferable that the dimension of at least one side is 400 mm or more, and it is further more preferable that it is 600 mm or more. Further, the dimension of at least one side is preferably 2500 mm or less, more preferably 2200 mm or less, further preferably 2000 mm or less, and particularly preferably 1800 mm or less. By setting the size of at least one side of the glass plate to 200 mm or more, a light diffusing plate utilizing the rigidity of the glass can be provided.
 本発明の光拡散板用ガラス板は50℃~350℃における平均熱膨張係数が60×10-7/K以下である。反りは、光拡散板の温度上昇に伴い、面内で温度分布が生ずることに起因して生ずる。平均熱膨張係数が60×10-7/K未満であれば温度分布による反りを抑制できるので、表示ムラが起こりにくくなる。平均熱膨張係数は55×10-7/K以下であることがより好ましく、53×10-7/K以下であることがさらに好ましく、50×10-7/K以下であることが特に好ましい。 The glass plate for a light diffusion plate of the present invention has an average coefficient of thermal expansion at 50 ° C. to 350 ° C. of 60 × 10 −7 / K or less. The warpage is caused by the fact that a temperature distribution is generated in the surface as the temperature of the light diffusion plate rises. If the average thermal expansion coefficient is less than 60 × 10 −7 / K, warpage due to temperature distribution can be suppressed, and display unevenness is less likely to occur. The average coefficient of thermal expansion is more preferably 55 × 10 −7 / K or less, further preferably 53 × 10 −7 / K or less, and particularly preferably 50 × 10 −7 / K or less.
 本発明の光拡散板用ガラス板の波長450nm、550nm、630nmにおける全光線透過率(以下、単に全光線透過率ともいう)は10%以上である。全光線透過率が10%以上であれば、直下型バックライトとして機能するのに必要な透過率が得られる。全光線透過率は15%以上がより好ましく、20%以上がさらに好ましい。一方、全光線透過率が60%以下であれば表示ムラを抑制できる。全光線透過率は55%以下がより好ましく、50%がさらに好ましい。 The total light transmittance (hereinafter also simply referred to as total light transmittance) at wavelengths of 450 nm, 550 nm, and 630 nm of the glass plate for light diffusion plate of the present invention is 10% or more. If the total light transmittance is 10% or more, the transmittance necessary to function as a direct type backlight can be obtained. The total light transmittance is more preferably 15% or more, and further preferably 20% or more. On the other hand, if the total light transmittance is 60% or less, display unevenness can be suppressed. The total light transmittance is more preferably 55% or less, and further preferably 50%.
 本発明の光拡散板用ガラス板の波長450nm、550nm、630nmにおける全光線反射率(以下、単に全光線反射率ともいう)は40%以上であることが好ましい。全光線反射率が40%以上であれば、直下型バックライトとして機能するのに必要な均質性が得られる。全光線反射率は45%以上がより好ましく、50%以上がさらに好ましい。一方、全光線反射率が90%以下であることが好ましい。全光線反射率は90%以下であれば十分な輝度を得ることができる。全光線反射率は85%以下がより好ましく、80%以下がさらに好ましい。 The total light reflectance (hereinafter also simply referred to as total light reflectance) at wavelengths of 450 nm, 550 nm, and 630 nm of the glass plate for light diffusion plate of the present invention is preferably 40% or more. If the total light reflectance is 40% or more, the homogeneity necessary to function as a direct type backlight can be obtained. The total light reflectance is more preferably 45% or more, and further preferably 50% or more. On the other hand, the total light reflectance is preferably 90% or less. If the total light reflectance is 90% or less, sufficient luminance can be obtained. The total light reflectance is more preferably 85% or less, and further preferably 80% or less.
 本発明の光拡散板用ガラス板は、450nm、550nm、630nmの各波長における全光線透過率と全光線反射率との合計が90%以上であれば、ガラス板に吸収される光量を抑制し、光源の光量を効率的に利用できるので好ましい。各波長における全光線透過率と全光線反射率との合計は、95%以上がより好ましく、98%以上がさらに好ましい。 The glass plate for a light diffusion plate of the present invention suppresses the amount of light absorbed by the glass plate if the total of the total light transmittance and total light reflectance at each wavelength of 450 nm, 550 nm, and 630 nm is 90% or more. It is preferable because the light quantity of the light source can be used efficiently. The total of the total light transmittance and total light reflectance at each wavelength is more preferably 95% or more, and even more preferably 98% or more.
 上記した全光線透過率、全光線反射率を有するガラスとしては、たとえば分相ガラス、結晶化ガラスがある。本発明の光拡散板用ガラス板が分相ガラスからなる場合、全光線透過率、全光線反射率は、後述する分相状態の制御によって調整可能である。また、本発明の光拡散板用ガラス板が結晶化ガラスからなる場合、全光線透過率、全光線反射率は、結晶化状態の制御によって調整可能である。以下では、主として分相ガラスの場合について説明するが、これに限定されるものではない。 Examples of the glass having the total light transmittance and the total light reflectance described above include phase separation glass and crystallized glass. When the glass plate for light diffusion plates of the present invention is composed of phase-separated glass, the total light transmittance and total light reflectance can be adjusted by controlling the phase separation state described later. Moreover, when the glass plate for light diffusing plates of this invention consists of crystallized glass, a total light transmittance and a total light reflectance can be adjusted by control of a crystallization state. Below, although the case of phase separation glass is mainly demonstrated, it is not limited to this.
 本発明の光拡散板用ガラス板を構成するガラス(以下、単にガラスともいう)における所望の光学特性(全光線透過率および全光線反射率)は、分相の屈折率差、高屈折率相の体積密度、板厚等により適宜調整できる。 The desired optical properties (total light transmittance and total light reflectance) of the glass constituting the glass plate for a light diffusion plate of the present invention (hereinafter also simply referred to as glass) are a refractive index difference between phases and a high refractive index phase. The volume density, the plate thickness, and the like can be adjusted as appropriate.
 なお、分相の屈折率差および高屈折率相の体積密度は、ガラスの組成、熱処理条件(例えば、分相処理の条件等)により調整できる。 In addition, the refractive index difference of the phase separation and the volume density of the high refractive index phase can be adjusted by the composition of the glass and heat treatment conditions (for example, conditions for the phase separation treatment).
 本発明の光拡散板用ガラス板は、分相した二つの相を含む分相ガラスからなる。
 ガラスの分相とは、単一相のガラスが、二つ以上のガラス相に分かれることをいう。ガラスを分相させる方法としては、例えば、ガラスを熱処理する方法が挙げられる。
The glass plate for light diffusing plates of the present invention is composed of phase-separated glass including two phase-separated phases.
Glass phase separation means that a single-phase glass is divided into two or more glass phases. Examples of the method for phase separation of glass include a method for heat-treating glass.
 ガラスを分相するために熱処理する条件としては、典型的には、ガラス転移点より50℃高い温度以上であることが好ましく、75℃高い温度以上であることがより好ましく、100℃高い温度以上であることが特に好ましい。ただし熱処理する条件は、典型的には、ガラス転移点より400℃高い温度以下であることが好ましく、350℃高い温度以下であることがより好ましく、300℃高い温度以下であることが特に好ましい。 As a condition for heat treatment for phase separation of glass, typically, the temperature is preferably 50 ° C. higher than the glass transition point, more preferably 75 ° C. higher temperature, more preferably 100 ° C. higher temperature. It is particularly preferred that However, the conditions for the heat treatment are typically preferably 400 ° C. or higher than the glass transition point, more preferably 350 ° C. or higher, and particularly preferably 300 ° C. or lower.
 ガラスを熱処理する時間は、1~64時間が好ましく、2~32時間がより好ましい。量産性の観点からは24時間以下が好ましく、12時間以内がさらに好ましい。 The time for heat-treating the glass is preferably 1 to 64 hours, more preferably 2 to 32 hours. From the viewpoint of mass productivity, it is preferably 24 hours or less, and more preferably within 12 hours.
 より短時間でガラスを分相させるためには、分相温度が1000℃以上のガラスを使用し、1000℃以上で熱処理することが好ましい。分相温度はガラスの組成によって調整できる。特に、Al、アルカリ金属、アルカリ土類金属の量を調整することが、分相温度の調整に効果的である。アルカリ土類金属の中では、MgO量を調整することが分相温度の調整に効果的である。Alを含有することで分相温度を下げる効果がある。特に、アルカリ金属を含有しないホウ硅酸ガラスでは、Al量が多すぎると分相温度が1000℃以下になり、短時間での分相処理がきわめて難しくなる。 In order to phase separate the glass in a shorter time, it is preferable to use a glass having a phase separation temperature of 1000 ° C. or higher and heat-treat at 1000 ° C. or higher. The phase separation temperature can be adjusted by the composition of the glass. In particular, adjusting the amounts of Al 2 O 3 , alkali metal, and alkaline earth metal is effective for adjusting the phase separation temperature. Among alkaline earth metals, adjusting the amount of MgO is effective for adjusting the phase separation temperature. By containing Al 2 O 3 , there is an effect of lowering the phase separation temperature. In particular, in a borosilicate glass not containing an alkali metal, if the amount of Al 2 O 3 is too large, the phase separation temperature becomes 1000 ° C. or less, and phase separation treatment in a short time becomes extremely difficult.
 熱処理する時間は分相構造の大きさを制御するために5秒以上である。好ましくは10秒以上であり、より好ましくは1分以上であり、さらに好ましくは30分以上である。光学特性を向上する観点から、熱処理時間は10時間以下が好ましく、8時間以下がより好ましく、6時間以下がさらに好ましく、4時間以下が一段と好ましく、2時間以下が特に好ましく、1時間以下が最も好ましい。
 分相温度は失透温度よりも高いことが好ましい。分相温度が失透温度よりも高い場合、分相したガラスを成形しやすくなる。
The heat treatment time is 5 seconds or more in order to control the size of the phase separation structure. Preferably it is 10 seconds or more, More preferably, it is 1 minute or more, More preferably, it is 30 minutes or more. From the viewpoint of improving optical properties, the heat treatment time is preferably 10 hours or less, more preferably 8 hours or less, further preferably 6 hours or less, further preferably 4 hours or less, particularly preferably 2 hours or less, and most preferably 1 hour or less. preferable.
The phase separation temperature is preferably higher than the devitrification temperature. When the phase separation temperature is higher than the devitrification temperature, it becomes easier to form a phase-separated glass.
 ガラスが分相しているか否かは、SEM(scanning electron microscope、走査型電子顕微鏡)により判断できる。すなわち、ガラスが分相している場合、SEMで観察すると、2つ以上の相に分かれていることが観察できる。 Whether the glass is phase-separated or not can be determined by SEM (scanning electron microscope, scanning electron microscope). That is, when the glass is phase-separated, it can be observed that it is divided into two or more phases when observed with an SEM.
 分相したガラスの状態としては、バイノーダル状態およびスピノーダル状態がある。バイノーダル状態は、核生成-成長機構により、連続的な相の中に一般的には球状の分相構造が1以上形成された状態である。また、スピノーダル状態とは、分相した各相がある程度規則性を持ち、3次元で相互かつ連続的に絡み合った状態である。これらの分相構造は、以下に述べるように光散乱体としての機能を発現する。 状態 As the state of the separated glass, there are a binodal state and a spinodal state. The binodal state is a state in which one or more generally spherical phase separation structures are formed in a continuous phase by a nucleation-growth mechanism. Further, the spinodal state is a state in which each phase separated has a certain degree of regularity and is intertwined with each other in three dimensions. These phase separation structures exhibit a function as a light scatterer as described below.
 光散乱体は、その周りと屈折率が異なるため、入射した光を散乱する。ガラス板の内部に1以上の分相構造が分散されており(以下、これを分散相ともいう)、その周辺に連続的な相がある場合、分散相を光散乱体と呼ぶ。また、ガラス板の内部に、連続的に絡まった相がある場合は、体積分率が少ない相を光散乱体と呼ぶ。ガラス板の内部に光散乱体が多数存在する場合、光源から入射した光は散乱を繰り返し、透過光を均質に分散できる。 Since the light scatterer has a different refractive index from the surroundings, it scatters the incident light. When one or more phase-separated structures are dispersed inside the glass plate (hereinafter also referred to as a dispersed phase), and there is a continuous phase around it, the dispersed phase is called a light scatterer. In addition, when there is a continuously entangled phase inside the glass plate, a phase with a small volume fraction is called a light scatterer. When a large number of light scatterers are present inside the glass plate, the light incident from the light source repeats scattering, and the transmitted light can be uniformly dispersed.
 本発明のガラスにおいては、光散乱性の波長依存性を低減するために、ガラス内部の分相状態において光散乱体として機能する相(以下、光散乱体と略称する)の平均粒子径が0.1μm以上であることが好ましく、より好ましくは0.2μm以上であり、さらに好ましくは0.3μm以上である。また、光散乱性を高めるために、前記相の平均粒子径が1.6μm以下であることが好ましく、より好ましくは1.0μm以下であり、さらに好ましくは0.8μm以下である。前記相の平均粒子径はSEM観察をすることにより測定可能である。 In the glass of the present invention, in order to reduce the wavelength dependency of the light scattering property, the average particle diameter of the phase functioning as a light scattering material (hereinafter abbreviated as a light scattering material) in the phase separation state inside the glass is 0. It is preferably 1 μm or more, more preferably 0.2 μm or more, and still more preferably 0.3 μm or more. Moreover, in order to improve light-scattering property, it is preferable that the average particle diameter of the said phase is 1.6 micrometers or less, More preferably, it is 1.0 micrometer or less, More preferably, it is 0.8 micrometer or less. The average particle size of the phase can be measured by SEM observation.
 ここで、分相状態における平均粒子径とは、スピノーダル状態にあっては相互かつ連続的に絡み合った相で、体積分率が少ない相の幅の平均であり、バイノーダル状態にあっては一方の相が球状の場合はその直径の平均値、一方の相が楕円球状の場合はその長径と短径を足して2で割った値の平均値である。 Here, the average particle size in the phase-separated state is an average of the widths of the phases having a small volume fraction in the spinodal state, which are intertwined with each other continuously. When the phase is spherical, the average value of the diameters, and when one phase is elliptical, the average value of the values obtained by adding the major axis and minor axis and dividing by two.
 適度な光散乱性を発現するためには、光散乱体がガラス内に占める体積分率が5%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましく、20%以上であることが特に好ましく、25%以上であることが特に好ましく、30%以上であることが最も好ましい。また、体積分率は70%以下であることが好ましく、60%以下であることがより好ましく、50%以下であることがさらに好ましい。光散乱体の体積分率は、SEM観察写真からガラス表面に分布している分散粒子の割合を計算し、該分散粒子の割合から見積もる。 In order to develop an appropriate light scattering property, the volume fraction of the light scatterer in the glass is preferably 5% or more, more preferably 10% or more, and more preferably 15% or more. More preferably, it is particularly preferably 20% or more, particularly preferably 25% or more, and most preferably 30% or more. The volume fraction is preferably 70% or less, more preferably 60% or less, and further preferably 50% or less. The volume fraction of the light scatterer is estimated from the ratio of the dispersed particles by calculating the ratio of the dispersed particles distributed on the glass surface from the SEM observation photograph.
 ガラス全体の屈折率は比重と正の相関があることが知られている。屈折率を低くし、分相ガラス表面での反射率を低減させるため、または、自重変形によるたわみを低減させるためには、密度は3.0g/cm以下が好ましく、2.8g/cm以下がより好ましく、2.7g/cm以下がさらに好ましく、2.6g/cm以下が最も好ましい。 It is known that the refractive index of the whole glass has a positive correlation with the specific gravity. In order to reduce the refractive index and reduce the reflectivity on the surface of the phase separation glass, or to reduce the deflection due to its own weight deformation, the density is preferably 3.0 g / cm 3 or less, and 2.8 g / cm 3. The following is more preferable, 2.7 g / cm 3 or less is further preferable, and 2.6 g / cm 3 or less is most preferable.
 分相したガラスの製造方法は特に限定されないが、例えば種々の原料を適量調合し、約1500~1800℃に加熱し溶融した後、脱泡、撹拌などにより均質化し、さらに周知の、フロート法、ダウンドロー法、プレス法またはロールアウト法などによって板状等に、またはキャストによってブロック状に成形し、徐冷後、任意の形状に加工した後、分相させる処理をする。また、特に分相時間を短縮してコストを下げたい場合には、種々の原料を適量調合し、約1500~1800℃に加熱し溶融した後、脱泡、撹拌などにより均質化し、さらに温度を低下させて分相させる処理をした後、フロート法、ダウンドロー法、プレス法またはロールアウト法などによって板状等に、またはキャストによってブロック状に成形し、徐冷後、任意の形状に加工した後、分相させる処理をしてもよい。 The method for producing the phase-separated glass is not particularly limited. For example, an appropriate amount of various raw materials are prepared, heated to about 1500 to 1800 ° C. and melted, and then homogenized by defoaming, stirring, and the like. Forming into a plate shape or the like by a downdraw method, a press method, a roll-out method, or the like, or a block shape by casting, slowly cooling, processing into an arbitrary shape, and then performing phase separation. In particular, when it is desired to shorten the phase separation time and reduce the cost, various amounts of various raw materials are prepared, heated to about 1500-1800 ° C. and melted, and then homogenized by defoaming, stirring, and the like. After processing to lower and phase-separate, it is formed into a plate shape by the float method, downdraw method, press method or rollout method, etc., or cast into a block shape, and after slow cooling, it is processed into an arbitrary shape Thereafter, a phase separation process may be performed.
 なお、本発明においては、ガラスを溶融、均質化、成形、徐冷または形状加工等の工程において特段の分相させる処理を行うことなく、溶融、均質、成形、徐冷または形状加工のための熱処理によりガラスが分相したものも分相ガラスに含むものとし、この場合ガラスを分相させる工程は当該溶融等の工程に含まれるものとする。 In the present invention, the glass is melted, homogenized, molded, slowly cooled, or shaped without any special phase separation process in steps such as melting, homogenizing, molding, annealing, or shaping. What phase-divided glass by heat processing shall also be included in phase-separated glass, and in this case, the step of phase-separating the glass is included in the step of melting or the like.
 本発明の光拡散板用ガラス板は、結晶化ガラスからなっていてもよい。
 結晶化ガラスの結晶化度は、1%以上であることが好ましく、より好ましくは5%以上であり、さらに好ましくは10%以上である。また、結晶化度は90%以下であることが好ましく、より好ましくは60%以下であり、さらに好ましくは40%以下、特に好ましくは30%以下、最も好ましくは20%以下である。
The glass plate for light diffusion plates of the present invention may be made of crystallized glass.
The crystallinity of the crystallized glass is preferably 1% or more, more preferably 5% or more, and further preferably 10% or more. The crystallinity is preferably 90% or less, more preferably 60% or less, still more preferably 40% or less, particularly preferably 30% or less, and most preferably 20% or less.
 結晶化ガラスの結晶化度を1%以上とすることにより、平均熱膨張係数を低減し、十分な散乱特性を得られ、ヤング率を向上でき、ビッカース硬度を高めることができる。また、結晶化ガラスの結晶化度を90%以下とすることにより、十分な剛性を得ることができ、生産性を向上できる。 By setting the crystallinity of the crystallized glass to 1% or more, the average thermal expansion coefficient can be reduced, sufficient scattering characteristics can be obtained, the Young's modulus can be improved, and the Vickers hardness can be increased. Further, by setting the crystallinity of the crystallized glass to 90% or less, sufficient rigidity can be obtained and productivity can be improved.
 結晶化ガラスの結晶化度Cは、測定対象の結晶化ガラスの主成分である結晶以外の結晶を参照試料として測定対象の結晶化ガラスに加え、X線回折測定を行って参照試料および測定対象の結晶化ガラスの主成分である結晶のX線回折強度の比aを求め、参照試料と結晶化ガラスの質量比bとaとから次の式(1)によって算出する。 The crystallinity C of the crystallized glass is determined by performing X-ray diffraction measurement in addition to the crystallized glass to be measured using a crystal other than the crystal that is the main component of the crystallized glass to be measured as a reference sample. The ratio a of the X-ray diffraction intensity of the crystal, which is the main component of the crystallized glass, is obtained, and is calculated by the following equation (1) from the mass ratio b and a of the reference sample and crystallized glass.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、Aは参照強度比(Reference Intensity Ratio:RIR)と言われる定数であり、International Centre for Diffraction Data(http://www.icdd.com/)よりデーターベース化されているPowder Diffraction File PDF-2 Release 2006に示されている値を用いる。 Here, A is a constant referred to as a reference intensity ratio (RIR), and the PowderDiffertFractionPriffDriffrFriffDrfDrFriffDrFriffDrDrFriffDrFrIDPrDiffrFriffDrDrFrIDPrDrFriffDrPtDrDrFrFrDrFrDrFrPDrFrPDFrFrDrPrDrFrPDrFrPDRdPrFrDrFrPtDrFrFrDFrFrPDrFrPDPrDrFrPDRtFrPDFrPtDrFrFrDtPrDrFrPDRdPrFtDrFrFrPdDrFrFrDtPrFtDrPFrDiFrPdFrPtDrFrFrPtDrFrPDRtFrAPFrFtDrFrFrPdDrFrDtFrCDP -2 Use the value shown in Release 2006.
 結晶化ガラスにおける平均粒子径は50nm以上であることが好ましく、より好ましくは100nm以上であり、さらに好ましくは200nm以上である。また、平均粒子径は10000nm以下であることが好ましく、より好ましくは50000nm以下であり、さらに好ましくは20000nm以下である。 The average particle diameter in the crystallized glass is preferably 50 nm or more, more preferably 100 nm or more, and further preferably 200 nm or more. Moreover, it is preferable that an average particle diameter is 10,000 nm or less, More preferably, it is 50000 nm or less, More preferably, it is 20000 nm or less.
 ここで、結晶化ガラスにおける平均粒子径とは、分散された結晶相が球状の場合はその直径の平均値であり、楕円球状の場合はその長径と短径を足して2で割った値の平均値であり、球形でない場合は、結晶相の断面の長辺と短辺を足して2で割った値の平均値である。 Here, the average particle diameter in the crystallized glass is an average value of the diameter when the dispersed crystal phase is spherical, and in the case of an elliptical sphere, a value obtained by adding the major axis and the minor axis and dividing by two. The average value, which is not spherical, is the average value of the values obtained by adding the long and short sides of the crystal phase cross section and dividing by two.
 結晶化ガラスにおける平均粒子径が50nm以上であることにより、適度なヘイズを有することで適度な光散乱性を発現する。また、平均粒子径が10000nm以下であることにより、適度な全光線透過率を有することで適度な透明性を発現する。結晶化ガラスにおける平均粒子径は、走査型電子顕微鏡(Scanning Electron Microscope、SEMともいう)により測定できる。 When the average particle diameter in the crystallized glass is 50 nm or more, moderate light scattering is expressed by having an appropriate haze. Further, when the average particle diameter is 10,000 nm or less, appropriate transparency is exhibited by having an appropriate total light transmittance. The average particle diameter in the crystallized glass can be measured by a scanning electron microscope (also referred to as Scanning Electron Microscope, SEM).
 適度なヘイズを有することで適度な光散乱性を発現するという観点から、結晶化ガラスにおける結晶相とその周りの非晶質ガラス相における屈折率差が大きいことが好ましい。該屈折率差は0.0001以上であることが好ましく、より好ましくは0.001以上であり、さらに好ましくは0.01以上である。該屈折率差は、結晶データによる結晶の屈折率と、残留ガラス相の組成分析値を利用してアッペンの式により推算される残留ガラスの屈折率との差より、推算できる。 From the viewpoint of expressing an appropriate light scattering property by having an appropriate haze, it is preferable that the difference in refractive index between the crystal phase in the crystallized glass and the surrounding amorphous glass phase is large. The refractive index difference is preferably 0.0001 or more, more preferably 0.001 or more, and still more preferably 0.01 or more. The refractive index difference can be estimated from the difference between the refractive index of the crystal based on the crystal data and the refractive index of the residual glass estimated by the Appen equation using the composition analysis value of the residual glass phase.
 適度なヘイズを有することで適度な光散乱性を発現するという観点から、結晶化ガラスにおける結晶相の体積の割合は10%以上であることが好ましく、20%以上であることがより好ましい。ここで、結晶相の体積の割合は、SEM観察写真からガラス表面に分布している結晶相の割合を計算し、該結晶相の割合から見積もる。 From the viewpoint of expressing an appropriate light scattering property by having an appropriate haze, the volume ratio of the crystal phase in the crystallized glass is preferably 10% or more, and more preferably 20% or more. Here, the volume ratio of the crystal phase is estimated from the ratio of the crystal phase by calculating the ratio of the crystal phase distributed on the glass surface from the SEM observation photograph.
 光散乱性の波長依存性をより低減するためには、粒子径に分布がある方が好ましい。可視域での光学特性に対する寄与が小さい50nm未満を除いてSEM観察により測定された粒子径(nm)のうち下位10%の平均値Dsと上位10%の平均値Dlの差(Dl-Ds)が、100nm以上であることが好ましく、200nm以上であることがより好ましく、400nm以上であることがさらに好ましく、700nm以上であることが一段と好ましく、1000nm以上であることが特に好ましく、2000nm以上であることが最も好ましい。 In order to further reduce the wavelength dependence of the light scattering property, it is preferable that the particle diameter has a distribution. The difference between the average value Ds of the lower 10% and the average value Dl of the upper 10% (Dl−Ds) of the particle diameter (nm) measured by SEM observation except for a small contribution of less than 50 nm to the optical characteristics in the visible region (Dl−Ds) However, it is preferably 100 nm or more, more preferably 200 nm or more, further preferably 400 nm or more, further preferably 700 nm or more, particularly preferably 1000 nm or more, and 2000 nm or more. Most preferred.
 結晶化ガラスの場合、ガラス内における粒子径分布の制御は、例えば結晶過程の熱履歴を制御することにより得られる。一例として、ガラス上面、内部、下面に温度差を与えることにより、板厚方向での粒子径分布を生じさせる。ガラスの上面、内部、下面に温度差を与える加熱方法としては、例えば、上面と下面に配した加熱用ヒーターの温度や数、ヒーターとガラス板間の距離を変えることや、誘導加熱やレーザーを利用した局所加熱を用いること等が挙げられる。 In the case of crystallized glass, the control of the particle size distribution in the glass can be obtained, for example, by controlling the thermal history of the crystallization process. As an example, a particle size distribution in the plate thickness direction is generated by giving a temperature difference to the upper surface, the inside, and the lower surface of the glass. Examples of heating methods that give a temperature difference to the upper, inner, and lower surfaces of the glass include, for example, changing the temperature and number of heating heaters on the upper and lower surfaces, changing the distance between the heater and the glass plate, induction heating, and laser. For example, use of local heating is used.
 また、溶融状態のガラスにおいて結晶化処理をする場合は、板厚方向での流速分布を制御することでも同様の効果を得ることができる。また、ガラス内の板厚方向で一様な粒子径分布を付与するためには、結晶化処理する温度帯を通過する時間を制御すればよい。結晶化温度帯をゆっくりと通過することにより粒子径は大きくなり、早く通過することで、粒子径は小さくなる。結晶化温度帯を通過する時間の制御方法としては、例えば熱処理炉の温度プロファイルを精密に制御する方法や、ガラスの成形プロセスを通過する過程で結晶化させるのであればガラスの流速を制御することによっても得られる。 Also, when crystallization treatment is performed on glass in a molten state, the same effect can be obtained by controlling the flow velocity distribution in the plate thickness direction. Moreover, in order to provide a uniform particle size distribution in the plate thickness direction in the glass, the time for passing through the temperature zone for crystallization treatment may be controlled. By passing slowly through the crystallization temperature zone, the particle size increases, and by passing faster, the particle size decreases. As a method for controlling the time for passing through the crystallization temperature zone, for example, a method for precisely controlling the temperature profile of the heat treatment furnace or a glass flow rate if crystallization is performed in the course of passing through the glass forming process. Can also be obtained.
 本発明の光拡散板用ガラス板は、少なくとも一つの主面の算術平均粗さRaが0.03nm以上であることが好ましい。 The glass plate for a light diffusion plate of the present invention preferably has an arithmetic average roughness Ra of at least one main surface of 0.03 nm or more.
 本発明の光拡散板用ガラス板は、光拡散板としての光拡散性を上げるため、少なくとも一方の面の表面に凹凸面を有していてもよい。少なくとも一方の面の表面に凹凸面を有する場合、外面の算術平均粗さ(Ra)は光拡散板の光拡散性を向上するためには、下限は特に限定されないが、0.05nm以上であることがより好ましく、より好ましくは0.1nm以上である。また、上限も特に限定されないが、10000nm以下が好ましく、7000nm以下がより好ましく、3000nm以下であることがさらに好ましく、特に好ましくは2000nm以下であり、最も好ましくは1000nm以下である。取り扱い中に発生する傷の影響を低減するためには、外面の算術平均粗さ(Ra)は10nm以上が好ましく、100nm以上がより好ましく、1000nm以上がさらに好ましく、5000nm以上が最も好ましい。 The glass plate for a light diffusing plate of the present invention may have an uneven surface on at least one surface in order to increase light diffusibility as a light diffusing plate. When the surface of at least one surface has an uneven surface, the arithmetic average roughness (Ra) of the outer surface is not particularly limited in order to improve the light diffusibility of the light diffusion plate, but is 0.05 nm or more. More preferably, it is 0.1 nm or more. The upper limit is not particularly limited, but is preferably 10,000 nm or less, more preferably 7000 nm or less, still more preferably 3000 nm or less, particularly preferably 2000 nm or less, and most preferably 1000 nm or less. In order to reduce the influence of scratches generated during handling, the arithmetic average roughness (Ra) of the outer surface is preferably 10 nm or more, more preferably 100 nm or more, still more preferably 1000 nm or more, and most preferably 5000 nm or more.
 前記算術平均粗さRaは、日本工業規格JIS B0601(1994年)に基づいて測定できる。一方、第一の主面と第二の主面は算術平均粗さRaが同じであってもよく、異なっていてもよい。 The arithmetic average roughness Ra can be measured based on Japanese Industrial Standard JIS B0601 (1994). On the other hand, the first main surface and the second main surface may have the same or different arithmetic average roughness Ra.
 本発明の光拡散板用ガラス板は、光散乱板の光拡散性を上げるため、少なくとも一方に面をブラスト、酸エッチング若しくはインプリント等、またはそれらの方法の組み合わせによって凹凸を形成してもよい。その場合、面における透過散乱光の強度分布の半値半幅(以下、透過散乱光の半値半幅ともいう)が5°以上であることが好ましく、より好ましくは10°以上であり、さらに好ましくは20°以上である。また、上限は特に制限されないが、ガラスの強度を維持するために、40°以下が好ましく、より好ましくは35°以下である。 In order to increase the light diffusibility of the light scattering plate, the glass plate for light diffusing plate of the present invention may have at least one surface concavo-convex by blasting, acid etching or imprinting, or a combination of these methods. . In that case, the half width of the intensity distribution of the transmitted scattered light on the surface (hereinafter also referred to as the half width of the transmitted scattered light) is preferably 5 ° or more, more preferably 10 ° or more, and even more preferably 20 °. That's it. Moreover, although an upper limit is not restrict | limited in particular, in order to maintain the intensity | strength of glass, 40 degrees or less are preferable, More preferably, it is 35 degrees or less.
 前記透過散乱光の半値半幅は、測定角可変の分光光度計を用いて測定できる。ただし、分相による散乱と面形状による散乱を区別する必要がある。そのために、少なくとも一方の面に凹凸を有する分相ガラスで測定した、透過散乱光の半値半幅a°と、凹凸をガラスマトリクスと屈折率のおよそ等しい樹脂で埋めて、平滑面を形成した上で測定した、透過散乱光の半値半幅b°との差分、(a-b)°を、凹凸面における透過散乱光の半値半幅とする。 The half width at half maximum of the transmitted scattered light can be measured using a spectrophotometer with a variable measurement angle. However, it is necessary to distinguish between scattering due to phase separation and scattering due to surface shape. For this purpose, a smooth surface is formed by filling the half-width a ° of the transmitted scattered light, measured with a phase-separated glass having irregularities on at least one surface, and the irregularities with a resin having a refractive index approximately equal to that of the glass matrix. The difference between the measured half-width b ° of the transmitted scattered light and (a−b) ° is defined as the half-width of the transmitted scattered light on the uneven surface.
 ガラス表面の算術平均粗さRaおよび表面における散乱の半値半幅を調整する方法としては、例えば、研磨、ブラスト、エッチングおよびインプリント等が挙げられる。ガラスの第一の主面、第二の主面は、シリカ、チタニアまたはアルミナ等によりコーティングをしてもよい。 Examples of the method for adjusting the arithmetic average roughness Ra of the glass surface and the half width at half maximum of scattering on the surface include polishing, blasting, etching and imprinting. The first main surface and the second main surface of the glass may be coated with silica, titania, alumina, or the like.
 本発明のガラスの組成について説明する。なお、本明細書において、ガラス成分の含有量は、特に断らない限り酸化物基準のモル百分率表示(%)を用いて説明する。 The composition of the glass of the present invention will be described. In the present specification, the content of the glass component will be described using an oxide-based molar percentage display (%) unless otherwise specified.
 SiOはガラスとしての耐候性および耐傷性が向上する成分であり、55%以上含有する。SiOの含有量は、より好ましくは57%以上、さらに好ましくは59%以上、特に好ましくは61%以上である。一方、SiOの含有量が68%以下であれば、ガラスの粘性を下げて生産性を向上できる。SiOの含有量はより好ましくは67%以下、さらに好ましくは66%以下、特に好ましくは65%以下である。 SiO 2 is a component that improves the weather resistance and scratch resistance as glass, and is contained by 55% or more. The content of SiO 2 is more preferably 57% or more, further preferably 59% or more, and particularly preferably 61% or more. On the other hand, if the content of SiO 2 is 68% or less, the viscosity of the glass can be lowered to improve productivity. The content of SiO 2 is more preferably 67% or less, further preferably 66% or less, and particularly preferably 65% or less.
 Alは任意成分である。Alを含有する場合、1%以上含有するとガラスの化学的耐久性を向上させ、かつ平均熱膨張係数を小さくできるため好ましい。Alの含有量はより好ましくは2%以上、さらに好ましくは3%以上、特に好ましくは4%以上である。一方、Alの含有量が9%以下であれば、ガラスの分相温度を高くして短時間で分相処理を実施できる。Alの含有量はより好ましくは8%以下、さらに好ましくは7%以下、特に好ましくは6%以下である。 Al 2 O 3 is an optional component. When Al 2 O 3 is contained, it is preferable to contain 1% or more because the chemical durability of the glass can be improved and the average thermal expansion coefficient can be reduced. The content of Al 2 O 3 is more preferably 2% or more, further preferably 3% or more, and particularly preferably 4% or more. On the other hand, if the content of Al 2 O 3 is 9% or less, the phase separation treatment can be performed in a short time by increasing the phase separation temperature of the glass. The content of Al 2 O 3 is more preferably 8% or less, further preferably 7% or less, and particularly preferably 6% or less.
 Bは任意成分である。Bを含有する場合、5%以上含有するとガラスの粘度を低下させ、溶解性を向上させるとともに、SiOと他の成分との分散安定性を著しく向上させるので好ましい。Bの含有量はより好ましくは7%以上、さらに好ましくは9%以上、特に好ましくは11%以上である。一方、Bの含有量が19%以下であれば、ガラスの化学的耐久性を向上できる。Bの含有量はより好ましくは18%以下、さらに好ましくは17%以下、特に好ましくは16%以下である。 B 2 O 3 is an optional component. When B 2 O 3 is contained, it is preferable to contain 5% or more because the viscosity of the glass is lowered, the solubility is improved, and the dispersion stability between SiO 2 and other components is remarkably improved. The content of B 2 O 3 is more preferably 7% or more, further preferably 9% or more, and particularly preferably 11% or more. On the other hand, if the content of B 2 O 3 is 19% or less, the chemical durability of the glass can be improved. The content of B 2 O 3 is more preferably 18% or less, still more preferably 17% or less, and particularly preferably 16% or less.
 MgOは、ガラスの粘度を低下させ、平均熱膨張係数を小さくできる成分であり、4%以上含有する。MgOの含有量はより好ましくは5%以上、さらに好ましくは6%以上である。一方、MgOの含有量が15%以下であれば、失透温度を低くしてガラスを安定化できる。MgOの含有量はより好ましくは10%以下、さらに好ましくは9%以下、特に好ましくは8%以下である。 MgO is a component that can reduce the viscosity of the glass and reduce the average thermal expansion coefficient, and is contained at 4% or more. The content of MgO is more preferably 5% or more, and further preferably 6% or more. On the other hand, if the content of MgO is 15% or less, the glass can be stabilized by lowering the devitrification temperature. The content of MgO is more preferably 10% or less, further preferably 9% or less, and particularly preferably 8% or less.
 BaOは任意成分である。BaOを含有する場合、0.5%以上含有するとガラスの粘度を低下させ、平均熱膨張係数を小さくできる。BaOの含有量はより好ましくは1%以上である。一方、BaOの含有量が4%以下であれば比重を低下させ、自重変形を防止できる。BaOの含有量はより好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは1.5%以下である。 BaO is an optional component. When BaO is contained, if the content is 0.5% or more, the viscosity of the glass is lowered, and the average thermal expansion coefficient can be reduced. The content of BaO is more preferably 1% or more. On the other hand, if the content of BaO is 4% or less, the specific gravity can be reduced and deformation of its own weight can be prevented. The BaO content is more preferably 3% or less, still more preferably 2% or less, and particularly preferably 1.5% or less.
 NaOは任意成分である。NaOを含有する場合、4%以下であれば平均熱膨張係数を小さくできる。NaOの含有量はより好ましくは3%以下、さらに好ましくは2%以下、特に好ましくは実質的に含有しない。 Na 2 O is an optional component. When Na 2 O is contained, the average thermal expansion coefficient can be reduced if it is 4% or less. The content of Na 2 O is more preferably 3% or less, further preferably 2% or less, and particularly preferably substantially free.
 Pは任意成分であるが、SiO、MgO、NaOと相俟って分相を促進する基本成分であるため、分相したガラスを本発明の光拡散板用ガラス板に用いる場合、含有させることが好ましい。Pを含有する場合、Pの含有量は、0.5%以上であることが好ましく、より好ましくは1%以上、さらに好ましくは3%以上、特に好ましくは4%以上である。また、Pの含有量は、15%以下であることが好ましく、より好ましくは14%以下、さらに好ましくは10%以下、特に好ましくは7%以下、最も好ましくは4.5%以下である。 P 2 O 5 is an optional component, but since it is a basic component that promotes phase separation in combination with SiO 2 , MgO, and Na 2 O, the phase-separated glass is used as the glass plate for the light diffusion plate of the present invention. When used, it is preferably contained. When P 2 O 5 is contained, the content of P 2 O 5 is preferably 0.5% or more, more preferably 1% or more, still more preferably 3% or more, and particularly preferably 4% or more. is there. Further, the content of P 2 O 5 is preferably 15% or less, more preferably 14% or less, still more preferably 10% or less, particularly preferably 7% or less, and most preferably 4.5% or less. is there.
 Pの含有量を0.5%以上とすることにより、光拡散機能が十分に得られる。また、Pの含有量を15%以下とすることにより、揮散が生じにくくなり、光拡散板として用いた場合に輝度のムラが生じにくい。 By setting the content of P 2 O 5 to 0.5% or more, a light diffusion function can be sufficiently obtained. Further, by setting the content of P 2 O 5 to 15% or less, volatilization hardly occurs, and unevenness in luminance hardly occurs when used as a light diffusion plate.
 本発明のガラスにおいては、SiO、B、Al、MgO成分の外に、以下のような成分を含有することが好適な場合がある。なお、この場合においても前記成分の含有量の合計は85%以上であることが好ましく、典型的には90%以上である。 In the glass of the present invention, it may be preferable to contain the following components in addition to the SiO 2 , B 2 O 3 , Al 2 O 3 , and MgO components. In this case, the total content of the components is preferably 85% or more, and typically 90% or more.
 LiO、NaO、KOの含有量の合計を1%以下にすることにより平均熱膨張係数を小さくできるので好ましい。前記成分の含有量の合計はより好ましくは0.7%以下、さらに好ましくは0.5%以下、特に好ましくは0.3%以下、最も好ましくは実質的に含有しない。 By making the total content of Li 2 O, Na 2 O, and K 2 O 1% or less, the average thermal expansion coefficient can be reduced, which is preferable. The total content of the components is more preferably 0.7% or less, still more preferably 0.5% or less, particularly preferably 0.3% or less, and most preferably substantially free.
 ZrOは任意成分であるが、化学耐久性を著しく向上させるために1%以上含有することが好ましく、2%以上であることがより好ましい。ガラスの屈折率を低下させてガラス表面での反射率を低減させるためには、4.5%以下とすることが好ましく、より好ましくは4%以下、さらに好ましくは3%以下である。 ZrO 2 is an optional component, but is preferably contained in an amount of 1% or more and more preferably 2% or more in order to significantly improve chemical durability. In order to lower the refractive index of the glass and reduce the reflectance on the glass surface, it is preferably 4.5% or less, more preferably 4% or less, and even more preferably 3% or less.
 CaO、SrOおよびBaOはいずれも任意成分であるが、光拡散機能を向上させるためにこれら成分の1以上を0.2%以上含有することが好ましく、より好ましくは0.5%以上、さらに好ましくは1%以上である。 CaO, SrO and BaO are all optional components, but in order to improve the light diffusion function, it is preferable to contain one or more of these components in an amount of 0.2% or more, more preferably 0.5% or more, even more preferably Is 1% or more.
 CaOを含有する場合その含有量は7%以下であることが好ましい。CaOの含有量を7%以下とすることにより、平均熱膨張係数を小さくでき、かつガラスが失透しにくくなる。CaOの含有量はより好ましくは6%以下、さらに好ましくは5%以下である。 When CaO is contained, its content is preferably 7% or less. By setting the content of CaO to 7% or less, the average thermal expansion coefficient can be reduced, and the glass is difficult to devitrify. The content of CaO is more preferably 6% or less, still more preferably 5% or less.
 CaO、SrOおよびBaOの含有量の合計は12%以下であることが好ましく、より好ましくは8%以下、さらに好ましくは6%以下、特に好ましくは4%以下であり、典型的には3%以下である。該合計を12%以下とすることにより、ガラスが失透しにくくなる。 The total content of CaO, SrO and BaO is preferably 12% or less, more preferably 8% or less, further preferably 6% or less, particularly preferably 4% or less, and typically 3% or less. It is. By making the total 12% or less, the glass is less likely to be devitrified.
 また、MgO/(MgO+CaO+SrO+BaO)の値を0.2以上にすると平均熱膨張係数を小さくしながら粘性を低減できるので好ましい。この値はより好ましくは0.3以上、さらに好ましくは0.4以上であり、特に好ましくは0.5以上である。 Further, it is preferable that the value of MgO / (MgO + CaO + SrO + BaO) is 0.2 or more because the viscosity can be reduced while reducing the average thermal expansion coefficient. This value is more preferably 0.3 or more, still more preferably 0.4 or more, and particularly preferably 0.5 or more.
 Laはガラスの光拡散機能を向上させる点で好適であり、0~5%含有することができ、好ましくは3%以下、より好ましくは2%以下である。Laの含有量を5%以下とすることにより、ガラスが脆くなるのを防止できる。 La 2 O 3 is suitable in terms of improving the light diffusion function of the glass, and can be contained in an amount of 0 to 5%, preferably 3% or less, more preferably 2% or less. By making the content of La 2 O 3 5% or less, the glass can be prevented from becoming brittle.
 また、本発明のガラスは、清澄剤としてSOを含有してもよい。この場合、SOの含有量は、質量百分率表示で0%超、0.5%以下が好ましい。SOの含有量は0.4%以下がより好ましく、0.3%以下がさらに好ましく、0.25%以下であることがさらに好ましい。 Moreover, the glass of the present invention may contain SO 3 as a fining agent. In this case, the content of SO 3 is preferably more than 0% and 0.5% or less in terms of mass percentage. The content of SO 3 is more preferably 0.4% or less, further preferably 0.3% or less, and further preferably 0.25% or less.
 また、本発明のガラスは、酸化剤及び清澄剤としてSb、SnO及びAsのうちの一つ以上を含有してもよい。この場合、Sb、SnOまたはAsの含有量は、質量百分率表示で0~0.5%が好ましい。Sb、SnOまたはAsの含有量は、0.2%以下がより好ましく、0.1%以下がさらに好ましく、実質的に含有しないことがさらに好ましい。 Moreover, the glass of the present invention may contain one or more of Sb 2 O 3 , SnO 2 and As 2 O 3 as an oxidizing agent and a fining agent. In this case, the content of Sb 2 O 3 , SnO 2 or As 2 O 3 is preferably 0 to 0.5% in terms of mass percentage. The content of Sb 2 O 3 , SnO 2 or As 2 O 3 is more preferably 0.2% or less, further preferably 0.1% or less, and still more preferably substantially not contained.
 ただし、Sb、SnO及びAsは、ガラスの酸化剤として作用するため、ガラスのFe2+の量を調節する目的により上記範囲内で添加してもよい。ただし、Asは、環境面から積極的に含有させるものではない。 However, since Sb 2 O 3 , SnO 2 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass. However, As 2 O 3 is not positively contained from the environmental viewpoint.
 また、本発明のガラスは、Feを含有してもよい。Feを含有する場合、Feは、着色成分としても機能するので、Feの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、Feは、全光線透過率の低下を抑制し、均一で高い光拡散性を得る観点から、200ppm以下とするのが好ましく、100ppm以下とすることがより好ましく、80ppm以下とすることがさらに好ましく、50ppm以下とすることが最も好ましい。 The glass of the present invention may contain Fe 2 O 3. When Fe 2 O 3 is contained, since Fe 2 O 3 also functions as a coloring component, the content of Fe 2 O 3 is preferably 10 ppm or less with respect to the total amount of the glass composition described above. In particular, Fe 2 O 3 is preferably 200 ppm or less, more preferably 100 ppm or less, and more preferably 80 ppm or less from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility. More preferably, it is most preferable to set it as 50 ppm or less.
 また、本発明のガラスは、NiOを含有してもよい。NiOを含有する場合、NiOは、着色成分としても機能するので、NiOの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、NiOは、全光線透過率の低下を抑制し、均一で高い光拡散性を得る観点から、1.0ppm以下とするのが好ましく、0.5ppm以下とすることがより好ましい。 Moreover, the glass of the present invention may contain NiO. When NiO is contained, since NiO functions also as a coloring component, the content of NiO is preferably 10 ppm or less with respect to the total amount of the glass composition described above. In particular, NiO is preferably 1.0 ppm or less, more preferably 0.5 ppm or less, from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
 本発明のガラスは、Crを含有してもよい。Crを含有する場合、Crは、着色成分としても機能するので、Crの含有量は、上記したガラス組成の合量に対し、10ppm以下とするのが好ましい。特に、Crは、全光線透過率の低下を抑制し、均一で高い光拡散性を得る観点から、1.0ppm以下とするのが好ましく、0.5ppm以下とすることがより好ましい。 The glass of the present invention may contain Cr 2 O 3 . When Cr 2 O 3 is contained, Cr 2 O 3 also functions as a coloring component. Therefore, the content of Cr 2 O 3 is preferably 10 ppm or less with respect to the total amount of the glass composition described above. In particular, Cr 2 O 3 is preferably 1.0 ppm or less, more preferably 0.5 ppm or less, from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
 本発明のガラスは、MnOを含有してもよい。MnOを含有する場合、MnOは、可視光を吸収する成分としても機能するので、MnOの含有量は、上記したガラス組成の合量に対し、50ppm以下とするのが好ましい。特に、MnOは、全光線透過率の低下を抑制し、均一で高い光拡散性を得る観点から、10ppm以下とするのが好ましい。 The glass of the present invention may contain MnO 2 . When MnO 2 is contained, since MnO 2 functions also as a component that absorbs visible light, the content of MnO 2 is preferably 50 ppm or less with respect to the total amount of the glass composition described above. In particular, MnO 2 is preferably 10 ppm or less from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility.
 本発明のガラスは、TiOを含んでいてもよい。TiOを含有する場合、TiOは、可視光を吸収する成分としても機能するので、TiOの含有量は、上記したガラス組成の合量に対し、1000ppm以下とするのが好ましい。TiOは、全光線透過率の低下を抑制し、均一で高い光拡散性を得る観点から、含有量を500ppm以下とすることがより好ましく、100ppm以下とすることが特に好ましい。また、失透温度を低くしたい場合やガラスの屈折率を低下させてガラス表面での反射を低減するためには、TiOの含有量は3%以下が好ましく、2%以下がより好ましく、1%以下がさらに好ましい。 The glass of the present invention may contain TiO 2 . When TiO 2 is contained, TiO 2 also functions as a component that absorbs visible light. Therefore, the content of TiO 2 is preferably 1000 ppm or less with respect to the total amount of the glass composition described above. The content of TiO 2 is more preferably 500 ppm or less, and particularly preferably 100 ppm or less, from the viewpoint of suppressing a decrease in total light transmittance and obtaining uniform and high light diffusibility. Further, in order to lower the devitrification temperature or to reduce the reflection on the glass surface by lowering the refractive index of the glass, the content of TiO 2 is preferably 3% or less, more preferably 2% or less. % Or less is more preferable.
 本発明のガラスは、CeOを含んでいてもよい。CeOには鉄のレドックスを下げる効果があり、波長400~700nmにおけるガラスの吸収を低減できる。しかし、CeOを多量に含有する場合、CeOは、可視光を吸収する成分としても機能し、また2価の鉄の含有量を下げすぎてしまう可能性があり、好ましくない。したがって、CeOの含有量は、上記したガラス組成の合量に対し、1000ppm以下とするのが好ましい。また、CeOの含有量は、500ppm以下とするのがより好ましく、400ppm以下とするのがさらに好ましく、300ppm以下とするのが特に好ましく、250ppm以下とするのが最も好ましい。ただし、CeOの含有量は、Feに換算した2価の鉄の含有量が1質量ppm以上900質量ppm以下となるように調節されなければならない。 The glass of the present invention may contain CeO 2. CeO 2 has the effect of reducing the redox of iron and can reduce the absorption of glass at a wavelength of 400 to 700 nm. However, if containing CeO 2 in a large amount, CeO 2 also functions as a component which absorbs visible light and there is a possibility that excessively lowering the content of divalent iron, not preferred. Therefore, the CeO 2 content is preferably 1000 ppm or less with respect to the total amount of the glass composition described above. The CeO 2 content is more preferably 500 ppm or less, further preferably 400 ppm or less, particularly preferably 300 ppm or less, and most preferably 250 ppm or less. However, the content of CeO 2 must be adjusted so that the content of divalent iron converted to Fe 2 O 3 is 1 mass ppm or more and 900 mass ppm or less.
 本発明の光拡散板用ガラス板は、上記したガラスからなる。図1に、本発明の一実施形態のガラスからなる光拡散板用ガラス板により構成される直下型バックライト(直下型バックライトユニット)の断面図を示す。図1に示される直下型バックライトユニット1においては、枠8を有する反射板2の上に光源3が所定の間隔を隔てて設けられており、その上に光拡散板(本発明の光拡散板用ガラス板を含む光拡散板)4が設けられている。光源3から出てきた光は光拡散板4により拡散する。 The glass plate for light diffusion plate of the present invention is made of the glass described above. FIG. 1 shows a cross-sectional view of a direct type backlight (direct type backlight unit) constituted by a glass plate for a light diffusion plate made of glass according to an embodiment of the present invention. In the direct type backlight unit 1 shown in FIG. 1, a light source 3 is provided on a reflector 2 having a frame 8 at a predetermined interval, and a light diffusing plate (light diffusing of the present invention) is provided thereon. A light diffusion plate 4 including a glass plate for plates) is provided. The light emitted from the light source 3 is diffused by the light diffusion plate 4.
 光拡散板4の上に光拡散シート5、プリズムシート6、偏光分離シート7が順に設けられている。なお、図1には示されていないが、光拡散板4と光拡散シート5との間に光源から出る電磁波を遮断するための電磁波遮断シートが設けられていてもよい。 On the light diffusing plate 4, a light diffusing sheet 5, a prism sheet 6, and a polarization separating sheet 7 are provided in this order. Although not shown in FIG. 1, an electromagnetic wave shielding sheet for shielding electromagnetic waves emitted from the light source may be provided between the light diffusion plate 4 and the light diffusion sheet 5.
 本発明の光拡散板用ガラス板は、粒子径100nm以上の粒子、または多孔質シリカ等をコーティングすることにより、光拡散シートの機能を持たせることができる。本発明の光拡散板用ガラス板自体に光拡散シート5の機能を持たせる場合は、光拡散シート5は省略することが可能となる。 The glass plate for a light diffusing plate of the present invention can have a function of a light diffusing sheet by coating particles having a particle diameter of 100 nm or more, porous silica, or the like. When the glass plate for a light diffusing plate of the present invention itself has the function of the light diffusing sheet 5, the light diffusing sheet 5 can be omitted.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 光拡散板用ガラス板には、表1及び表2に示すような組成のガラスA~I、樹脂のそれぞれのサンプルを使用した。なお、ガラスB~Gは実施例であり、ガラスA、ガラスH、ガラスI、樹脂は比較例である。
 ガラスA~Iのガラスは以下の方法で作製した。先ず、予め調製したガラス原料を1650℃で溶解、均質化、脱泡し、溶融ガラスを作製した。その溶融ガラスを、毎分50℃の冷却速度にて表1及び表2に記載の分相処理温度まで冷却した後、分相処理温度で30分保持し、型材に流し込み、700℃にて1時間保持後、毎分1℃の冷却速度にて室温まで冷却し、分相ガラスを作製した。ガラスが分相し、2相に分かれていることを走査型顕微鏡により観察した。
 全光線透過率、全光線反射率は、パーキンエルマー社製分光光度計(商品名:Lamda950)の積分球ユニットを用いて測定した。
 密度はアルキメデス法により測定した。
 熱伝導率はレーザーフラッシュ法により測定した。
 平均熱膨張係数は熱機械分析装置により測定した。表1及び表2では50~350℃での熱膨張係数を示す。
 ヤング率とポアソン比は超音波法で測定した。
As the glass plate for the light diffusing plate, samples of glasses A to I and resins having compositions as shown in Tables 1 and 2 were used. Glasses B to G are examples, and glass A, glass H, glass I, and resin are comparative examples.
Glasses A to I were produced by the following method. First, a glass material prepared in advance was melted, homogenized, and degassed at 1650 ° C. to produce a molten glass. The molten glass was cooled to the phase separation treatment temperature described in Tables 1 and 2 at a cooling rate of 50 ° C. per minute, then held at the phase separation treatment temperature for 30 minutes, poured into a mold, and 1 ° C. at 700 ° C. After maintaining the time, the glass was cooled to room temperature at a cooling rate of 1 ° C. per minute to produce phase-separated glass. It was observed with a scanning microscope that the glass was phase-separated and separated into two phases.
The total light transmittance and total light reflectance were measured using an integrating sphere unit of a spectrophotometer (trade name: Lamda 950) manufactured by PerkinElmer.
The density was measured by the Archimedes method.
The thermal conductivity was measured by a laser flash method.
The average thermal expansion coefficient was measured with a thermomechanical analyzer. Tables 1 and 2 show thermal expansion coefficients at 50 to 350 ° C.
Young's modulus and Poisson's ratio were measured by the ultrasonic method.
Figure JPOXMLDOC01-appb-T000002
 
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
 
Figure JPOXMLDOC01-appb-T000003
 
 
 
(反り量の評価)
 図1に示すように、光拡散板4の後方に、複数の光源3を構成する複数のLED(light emitting diode)を配置した。光拡散板4の長辺の1辺を枠8に固定している。光拡散板4と各LEDの距離は13mm、隣接するLED同士の間隔は18mmに設定した。全LEDを点灯させたころ、LEDの表面温度は140℃に達した。LEDを点灯させた状態を30分間維持した後、光拡散板はLEDが設置されていない側に反っていた。その時の面内の最大反り量を3次元測長器で測定した。
(Evaluation of warpage)
As shown in FIG. 1, a plurality of LEDs (light emitting diodes) constituting a plurality of light sources 3 are arranged behind the light diffusion plate 4. One long side of the light diffusing plate 4 is fixed to the frame 8. The distance between the light diffusing plate 4 and each LED was set to 13 mm, and the distance between adjacent LEDs was set to 18 mm. When all the LEDs were turned on, the surface temperature of the LEDs reached 140 ° C. After maintaining the state where the LED was lit for 30 minutes, the light diffusion plate was warped to the side where the LED was not installed. The maximum in-plane curvature at that time was measured with a three-dimensional length measuring device.
 以下、試験結果を表3及び表4に示す。一般的に、光拡散板とLEDの距離が1mm以上変動すると、面内輝度の均一性が悪化すると考えられるため、反りが1mmを下回るサンプルは適正(OK)と判定し、反りが1mm以上のサンプルは不適格(NG)と判定した。総合評価として、板厚0.3mm~1.5mmのサンプルに対して反りが1mm以下のものを(OK)と判断し、板厚0.3mm~1.5mmのサンプルのいずれか一つ以上の厚みで反り1mm以上のサンプルは不適合(NG)と判断した。 The test results are shown in Tables 3 and 4 below. Generally, if the distance between the light diffusing plate and the LED fluctuates by 1 mm or more, it is considered that the uniformity of in-plane luminance is deteriorated. Therefore, a sample whose warpage is less than 1 mm is determined to be appropriate (OK), and the warpage is 1 mm or more. The sample was judged as ineligible (NG). As a comprehensive evaluation, a sample having a thickness of 0.3 mm to 1.5 mm and a warp of 1 mm or less is judged as (OK), and any one or more of the samples having a thickness of 0.3 mm to 1.5 mm is determined. Samples with a warp of 1 mm or more in thickness were judged as non-conforming (NG).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3及び表4から明らかなように、板厚がうすくなるほど反りは大きくなる。樹脂で板厚が厚い1.5mmのサンプルでも最大反り量が1mm以上となり表示ムラが大きかった。ガラスAとガラスHで板厚が0.5mm~1.5mmのサンプルは、最大反り量が1mmより小さかったが、板厚が0.3mmのサンプルは最大反り量が1mm以上となり、総合評価としてはNGであった。ガラスAとガラスHは50~350℃での平均熱膨張係数が適切でないため、板厚によって反り量が適正範囲の場合とそうでない場合とがあることを示唆していると考えられる。ガラスIで板厚が1mm~1.5mmのサンプルは、最大反り量が1mmより小さかったが、板厚が0.3mm~0.5mmのサンプルは最大反り量が1mm以上となり、総合評価としてはNGであった。一方、ガラスB~Gで板厚が0.3mm~1.5mmのサンプルは、いずれも最大反り量が1mmより小さく総合評価はOKであり、輝度ムラを抑えることができた。 As is clear from Tables 3 and 4, the warpage increases as the plate thickness decreases. Even with a 1.5 mm thick sample made of resin, the maximum warpage amount was 1 mm or more, and display unevenness was large. Samples with a glass thickness of 0.5 mm to 1.5 mm with glass A and glass H had a maximum warpage of less than 1 mm, but samples with a plate thickness of 0.3 mm had a maximum warpage of 1 mm or more. Was NG. It is considered that Glass A and Glass H have an average coefficient of thermal expansion at 50 to 350 ° C., which suggests that the warping amount may or may not be in an appropriate range depending on the plate thickness. Samples with a glass thickness of 1 mm to 1.5 mm in glass I had a maximum warpage of less than 1 mm, but samples with a thickness of 0.3 mm to 0.5 mm had a maximum warpage of 1 mm or more. It was NG. On the other hand, the samples with the glass B to G and the plate thickness of 0.3 mm to 1.5 mm all had a maximum warpage amount of less than 1 mm and the overall evaluation was OK, and uneven brightness could be suppressed.
(拡散性の評価)
 さらに、Panasonic社製のVIERA TH-32D300に使用されている拡散板をガラスB~Gによる光拡散板に変更し、拡散性評価用のバックライトユニットを構成したところ、いずれもLEDの形状が視認できず、良好な拡散性を示した。
 なお、ガラスBによる光拡散板用ガラス板の表面の算術平均粗さRaは、0.2μmであった。
 従って、本発明の光拡散板は、耐熱性の高い光拡散板用ガラス板を含むことにより、薄くても十分な拡散性を有し、輝度の均質化を図りやすいことがわかった。
(Diffusion evaluation)
Furthermore, when the diffuser plate used in VIERA TH-32D300 manufactured by Panasonic was changed to a light diffuser plate made of glass BG, and a backlight unit for diffusivity evaluation was constructed, the shape of the LED was visible. It was not possible to show good diffusibility.
In addition, arithmetic mean roughness Ra of the surface of the glass plate for light diffusing plates by the glass B was 0.2 micrometer.
Therefore, it was found that the light diffusing plate of the present invention includes a glass plate for a light diffusing plate having high heat resistance, so that even if it is thin, it has sufficient diffusibility and can easily achieve uniform luminance.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 本出願は、2017年4月6日に日本国特許庁に出願した特願2017-076105号に基づく優先権を主張するものであり、特願2017-076105号の全内容を本出願に援用する。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application claims priority based on Japanese Patent Application No. 2017-076105 filed with the Japan Patent Office on April 6, 2017. The entire contents of Japanese Patent Application No. 2017-076105 are incorporated herein by reference. .
1 直下型バックライトユニット
2 反射板
3 光源
4 光拡散板(本発明の光拡散板用ガラス板を含む光拡散板)
5 光拡散シート
6 プリズムシート
7 偏光分離シート
8 枠
DESCRIPTION OF SYMBOLS 1 Direct type backlight unit 2 Reflecting plate 3 Light source 4 Light diffusing plate (Light diffusing plate containing the glass plate for light diffusing plates of this invention)
5 Light diffusion sheet 6 Prism sheet 7 Polarization separation sheet 8 Frame

Claims (7)

  1.  互いに対向する2つの主面を有する光拡散板用ガラス板であって、
     前記ガラス板の板厚が0.3mm以上2.0mm以下であり、
     前記ガラス板の50℃~350℃における平均熱膨張係数が60×10-7/K以下であり、
     前記ガラス板の波長450nm、550nm、630nmの全光線透過率が10%以上60%以下であり、かつ前記全光線透過率と波長450nm、550nm、630nmの全光線反射率との合計が90%以上であり、
     前記ガラス板が酸化物基準のmol百分率表示で、SiOを55~68%、Alを0~9%、Bを0~19%、MgOを4~15%、BaOを0~4%、NaOを0~4%含むガラスからなる、光拡散板用ガラス板。
    A glass plate for a light diffusing plate having two main surfaces facing each other,
    The plate thickness of the glass plate is 0.3 mm or more and 2.0 mm or less,
    The glass plate has an average coefficient of thermal expansion at 50 ° C. to 350 ° C. of 60 × 10 −7 / K or less,
    The total light transmittance of wavelengths of 450 nm, 550 nm, and 630 nm of the glass plate is 10% or more and 60% or less, and the total of the total light transmittance and the total light reflectance of wavelengths of 450 nm, 550 nm, and 630 nm is 90% or more. And
    The glass plate is expressed in mol percentage on the basis of oxide, SiO 2 55-68%, Al 2 O 3 0-9%, B 2 O 3 0-19%, MgO 4-15% and BaO. A glass plate for a light diffusing plate made of glass containing 0 to 4% and Na to 4% of Na 2 O.
  2.  前記ガラスが、酸化物基準のmol百分率表示で、LiO、NaO、KOの含有量の合計を0~1%含む請求項1に記載の光拡散板用ガラス板。 The glass plate for a light diffusing plate according to claim 1, wherein the glass contains 0 to 1% of the total content of Li 2 O, Na 2 O and K 2 O in terms of mol percentage based on oxide.
  3.  前記ガラスが分相ガラスである、請求項1または2に記載の光拡散板用ガラス板。 The glass plate for a light diffusing plate according to claim 1 or 2, wherein the glass is a phase separation glass.
  4.  少なくとも一辺の寸法が200mm以上である請求項1~3のいずれか1項に記載の光拡散板用ガラス板。 The glass plate for a light diffusing plate according to any one of claims 1 to 3, wherein a dimension of at least one side is 200 mm or more.
  5.  前記主面のうち少なくともいずれか一方の算術平均粗さRaが0.03nm以上である請求項1~4のいずれか1項に記載の光拡散板用ガラス板。 The glass plate for a light diffusing plate according to any one of claims 1 to 4, wherein an arithmetic average roughness Ra of at least one of the main surfaces is 0.03 nm or more.
  6.  請求項1~5のいずれか1項に記載の光拡散板用ガラス板を含む光拡散板。 A light diffusing plate comprising the glass plate for a light diffusing plate according to any one of claims 1 to 5.
  7.  請求項6に記載の光拡散板および光源を備えるバックライトユニット。 A backlight unit comprising the light diffusing plate according to claim 6 and a light source.
PCT/JP2018/014271 2017-04-06 2018-04-03 Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit WO2018186399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-076105 2017-04-06
JP2017076105 2017-04-06

Publications (1)

Publication Number Publication Date
WO2018186399A1 true WO2018186399A1 (en) 2018-10-11

Family

ID=63712470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014271 WO2018186399A1 (en) 2017-04-06 2018-04-03 Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit

Country Status (1)

Country Link
WO (1) WO2018186399A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208985A (en) * 2005-01-31 2006-08-10 Ohara Inc Light diffusing member and method for manufacturing same
JP2016518304A (en) * 2013-04-29 2016-06-23 コーニング インコーポレイテッド Solar cell module package
WO2016195015A1 (en) * 2015-06-02 2016-12-08 旭硝子株式会社 Light diffusion plate
WO2018025884A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Light diffuser plate, backlight, and method for manufacturing light diffuser plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006208985A (en) * 2005-01-31 2006-08-10 Ohara Inc Light diffusing member and method for manufacturing same
JP2016518304A (en) * 2013-04-29 2016-06-23 コーニング インコーポレイテッド Solar cell module package
WO2016195015A1 (en) * 2015-06-02 2016-12-08 旭硝子株式会社 Light diffusion plate
WO2018025884A1 (en) * 2016-08-05 2018-02-08 旭硝子株式会社 Light diffuser plate, backlight, and method for manufacturing light diffuser plate

Similar Documents

Publication Publication Date Title
WO2016195015A1 (en) Light diffusion plate
KR102138067B1 (en) Light guide plate
JP6516085B2 (en) Light guide plate
JP6765628B2 (en) Light guide plate
US9580353B2 (en) Manufacturing method for phase-separated glass, and phase-separated glass
WO2016181864A1 (en) Glass sheet
JP2019502626A (en) Borosilicate glass, light guide plate including the same, and method for manufacturing the same
JP2019517726A (en) Glass articles comprising light extraction features
TWI738867B (en) High transmission glasses with alkaline earth oxides as a modifier
JP7429093B2 (en) Light guide plate
WO2018186399A1 (en) Glass sheet for light diffusion sheet, light diffusion sheet and backlight unit
WO2018025884A1 (en) Light diffuser plate, backlight, and method for manufacturing light diffuser plate
WO2020004140A1 (en) Plate glass
WO2018159385A1 (en) Light guide plate
JP2017091940A (en) Glass lenticular structure
WO2018021279A1 (en) Glass sheet
WO2016208451A1 (en) Light guide plate
US20220402809A1 (en) Precursor glasses and transparent glass-ceramic articles formed therefrom and having improved mechanical durability
US11897808B2 (en) Tunable glass compositions having improved mechanical durability
WO2023105895A1 (en) Low-thermal-expansion glass
JP2019032376A (en) Light diffusion plate and surface light emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18780691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18780691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP