JP2006206993A - Low thermal-expansion material containing spherical vanadium carbide superior in abrasion resistance, and manufacturing method therefor - Google Patents

Low thermal-expansion material containing spherical vanadium carbide superior in abrasion resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2006206993A
JP2006206993A JP2005023155A JP2005023155A JP2006206993A JP 2006206993 A JP2006206993 A JP 2006206993A JP 2005023155 A JP2005023155 A JP 2005023155A JP 2005023155 A JP2005023155 A JP 2005023155A JP 2006206993 A JP2006206993 A JP 2006206993A
Authority
JP
Japan
Prior art keywords
weight
thermal expansion
low thermal
vanadium carbide
spherical vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005023155A
Other languages
Japanese (ja)
Other versions
JP4278060B2 (en
Inventor
Tadashi Kitsudo
忠 橘堂
Mamoru Takemura
守 武村
Mitsuaki Matsumuro
光昭 松室
Takashi Izumi
敬 出水
Hideto Matsumoto
秀人 松元
Ichizo Sakurai
市蔵 櫻井
Hisao Horie
尚男 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Corp
Osaka Prefecture
Sankyo Alloy Casting Co Ltd
Original Assignee
Okamoto Corp
Osaka Prefecture
Sankyo Alloy Casting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Corp, Osaka Prefecture, Sankyo Alloy Casting Co Ltd filed Critical Okamoto Corp
Priority to JP2005023155A priority Critical patent/JP4278060B2/en
Publication of JP2006206993A publication Critical patent/JP2006206993A/en
Application granted granted Critical
Publication of JP4278060B2 publication Critical patent/JP4278060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low thermal-expansion material showing high abrasion resistance in addition to low thermal-expansion properties, and to provide a manufacturing method therefor. <P>SOLUTION: The low thermal-expansion material containing spherical vanadium carbides includes 1.5-4.0 wt.% C, 6-15 wt.% V, 0.2-4.0 wt.% Si, 20-37 wt.% Ni and the balance iron (Fe) with unavoidable impurities, as a raw material of the alloy; and includes crystallized spherical vanadium carbides in its structure. The method for manufacturing the low thermal-expansion material containing the spherical vanadium carbide includes dissolving the raw material of the alloy having the above composition at 1,773 to 2,023 K to crystallize spherical vanadium carbides in the structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は耐摩耗性に優れた球状バナジウム炭化物含有低熱膨張材料及びこの製造方法に関する。
本発明の目的は、鉄−ニッケル合金や鉄−ニッケル−コバルト合金基地中に、高硬度の球状バナジウム炭化物を晶出・分散させることにより、低熱膨張性に加えて、高耐摩耗性を示す低熱膨張材料及びこの製造方法を提供することにある。
The present invention relates to a spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and a method for producing the same.
The object of the present invention is to provide a low heat exhibiting high wear resistance in addition to low thermal expansion by crystallizing and dispersing high hardness spherical vanadium carbide in an iron-nickel alloy or iron-nickel-cobalt alloy base. The object is to provide an intumescent material and a method of manufacturing the same.

近年、超精密加工を達成するために、要求される加工精度がミクロンオーダーからサブミクロンオーダーにまで高まっている。このような超精密加工を実現するには、精密加工機械の精度が問題となる。
精密加工機械の精度の維持・向上には、温度による精密加工機械の寸法変化を抑制することが必要である。このために、精密加工機械を構成する材料として、温度による寸法変化の少ない材料、即ち低熱膨張材料が使用されている。
In recent years, in order to achieve ultra-precision machining, the required machining accuracy has increased from the micron order to the submicron order. In order to realize such ultra-precision machining, the precision of precision machining machines becomes a problem.
In order to maintain and improve precision of precision processing machines, it is necessary to suppress dimensional changes of precision processing machines due to temperature. For this reason, a material having a small dimensional change due to temperature, that is, a low thermal expansion material is used as a material constituting the precision processing machine.

低熱膨張材料としては、インバー(Fe−36.5%Ni)やスーパーインバー(32%Ni−5%Co−Fe)が知られている。
インバーの熱膨張係数は、室温付近で約1.2×10−6/K、スーパーインバーの熱膨張係数は、室温付近で約0.1×10−6/Kであり、温度による寸法変化が少ないことから、標準尺や測量尺などの測定機器に用いられてきた。
しかしながら、インバーやスーパーインバーなどの低熱膨張材料は、切削加工性が悪く、高い寸法精度の製品を効率的に製造することが困難であった。また鋳造性が悪く、鋳造品として使用されることは少なかった。
Invar (Fe-36.5% Ni) and Super Invar (32% Ni-5% Co-Fe) are known as low thermal expansion materials.
The thermal expansion coefficient of Invar is about 1.2 × 10 −6 / K near room temperature, and the thermal expansion coefficient of Super Invar is about 0.1 × 10 −6 / K near room temperature. Because of its small number, it has been used in measuring instruments such as standard scales and surveying scales.
However, low thermal expansion materials such as Invar and Super Invar have poor machinability, and it has been difficult to efficiently produce products with high dimensional accuracy. In addition, castability was poor, and it was rarely used as a cast product.

一方、インバーなどの二元系合金やスーパーインバーなどの三元系合金に、各種元素を添加することにより、上記欠点の解消を目指した低熱膨張材料が提案されている。
例えば、特許文献1には、C:0.5%超〜1.5%未満、Si:0.5%〜1.5%、Mn:1.0%以下、Ni:25.0%〜32.0%、Co:6.5%超〜13.0%からなり、前記組成においてNi+Coの範囲が33.0%〜40.0%未満、残部は鉄及び不可避的元素からなる低熱膨張材料が開示されている。
特許文献2には、C:0.3〜2.5%、Si:0.8%以下、Mn:1.0%以下、Ni:25〜40%、Co:9.0%以下であって、NiとCoとの合計量が33〜43%、MgまたはCaを0.1%以下、希土類元素を0.2%以下、Nb,Ti,Zr,TaおよびHfから選択される少なくとも1種の炭化物形成元素を2.0%以下含有し、残部Feおよび不純物からなる低熱膨張材料が開示されている。
On the other hand, a low thermal expansion material has been proposed that aims to eliminate the above-mentioned drawbacks by adding various elements to binary alloys such as Invar and ternary alloys such as Super Invar.
For example, in Patent Document 1, C: more than 0.5% to less than 1.5%, Si: 0.5% to 1.5%, Mn: 1.0% or less, Ni: 25.0% to 32 0.0%, Co: more than 6.5% to 13.0%, and in the above composition, the range of Ni + Co is 33.0% to less than 40.0%, and the balance is a low thermal expansion material consisting of iron and inevitable elements. It is disclosed.
In Patent Document 2, C: 0.3 to 2.5%, Si: 0.8% or less, Mn: 1.0% or less, Ni: 25 to 40%, Co: 9.0% or less In addition, the total amount of Ni and Co is 33 to 43%, Mg or Ca is 0.1% or less, rare earth element is 0.2% or less, and at least one selected from Nb, Ti, Zr, Ta, and Hf A low thermal expansion material containing 2.0% or less of a carbide-forming element and the balance Fe and impurities is disclosed.

特開平11−158542号公報Japanese Patent Laid-Open No. 11-158542 特開平8−269613号公報JP-A-8-269613

しかしながら、インバー、スーパーインバー、或いは特許文献1及び2に開示される従来の低熱膨張材料は、低熱膨張性を示すものの、耐摩耗性に劣り、機械的強度に優れた低熱膨張材料ではなかった。
本発明の解決課題は、耐摩耗性などの機械的強度に優れた低熱膨張材料及びこの製造方法を提供することである。
However, Invar, Super Invar, or the conventional low thermal expansion materials disclosed in Patent Documents 1 and 2 exhibit low thermal expansion properties, but are not low thermal expansion materials with poor wear resistance and excellent mechanical strength.
The problem to be solved by the present invention is to provide a low thermal expansion material excellent in mechanical strength such as wear resistance and a method for producing the same.

請求項1に係る発明は、合金原料として、C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物を含有し、組織中に球状のバナジウム炭化物を晶出させてなることを特徴とする球状バナジウム炭化物含有低熱膨張材料に関する。
請求項2に係る発明は、Mn:0.04〜0.3重量%、Co:0.01〜16重量%及びMg:0.01〜0.1重量%からなる群から選択される一種以上の合金原料を含有することを特徴とする請求項1に記載の球状バナジウム炭化物含有低熱膨張材料に関する。
請求項3に係る発明は、C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物からなる合金原料を1773〜2023Kで溶解して、組織中に球状のバナジウム炭化物を晶出させることを特徴とする球状バナジウム炭化物含有低熱膨張材料の製造方法に関する。
請求項4に係る発明は、前記合金原料が、Mn:0.04〜0.3重量%、Co:0.01〜16重量%及びMg:0.01〜0.1重量%からなる群から選択される一種以上の合金原料を含有することを特徴とする請求項3に記載の球状バナジウム炭化物含有低熱膨張材料の製造方法に関する。
請求項5に係る発明は、C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物からなる合金原料を1773〜2023Kで溶解後、Mgを全重量に対して0.01〜0.1重量%の割合となるように添加した後鋳造することにより、組織中に球状のバナジウム炭化物を晶出させることを特徴とする球状バナジウム炭化物含有低熱膨張材料の製造方法に関する。
請求項6に係る発明は、前記鋳造の後、鋳放し又は1273K〜1423Kに加熱後急冷する熱処理を施すことを特徴とする請求項5記載の球状バナジウム炭化物含有低熱膨張材料の製造方法に関する。
請求項7に係る発明は、前記合金原料が、Mn:0.04〜0.3重量%及び/又はCo:0.01〜16重量%を含有することを特徴とする請求項5又は6に記載の球状バナジウム炭化物含有低熱膨張材料の製造方法に関する。
The invention according to claim 1 is as follows: C: 1.5-4.0 wt%, V: 6-15 wt%, Si: 0.2-4.0 wt%, Ni: 20-37 wt% %, The balance iron (Fe) and inevitable impurities, and a spherical vanadium carbide-containing low thermal expansion material characterized by crystallizing spherical vanadium carbide in the structure.
The invention according to claim 2 is one or more selected from the group consisting of Mn: 0.04 to 0.3% by weight, Co: 0.01 to 16% by weight, and Mg: 0.01 to 0.1% by weight. 2. The spherical vanadium carbide-containing low thermal expansion material according to claim 1, wherein the alloy raw material is contained.
The invention according to claim 3 is: C: 1.5-4.0% by weight, V: 6-15% by weight, Si: 0.2-4.0% by weight, Ni: 20-37% by weight, balance iron The present invention relates to a method for producing a spherical vanadium carbide-containing low thermal expansion material characterized in that an alloy raw material composed of (Fe) and inevitable impurities is dissolved at 1773 to 2023 K to cause spherical vanadium carbide to crystallize in the structure.
According to a fourth aspect of the present invention, the alloy raw material is selected from the group consisting of Mn: 0.04 to 0.3 wt%, Co: 0.01 to 16 wt%, and Mg: 0.01 to 0.1 wt%. The present invention relates to a method for producing a spherical vanadium carbide-containing low thermal expansion material according to claim 3, comprising at least one selected alloy raw material.
The invention according to claim 5 is: C: 1.5-4.0% by weight, V: 6-15% by weight, Si: 0.2-4.0% by weight, Ni: 20-37% by weight, balance iron (Fe) and an alloy material consisting of inevitable impurities are melted at 1773-2023K, then Mg is added in a proportion of 0.01 to 0.1% by weight with respect to the total weight, and then cast, The invention relates to a method for producing a spherical vanadium carbide-containing low thermal expansion material characterized by crystallizing spherical vanadium carbide.
The invention according to claim 6 relates to the method for producing a spherical vanadium carbide-containing low thermal expansion material according to claim 5, wherein after the casting, as-cast or heat treatment is performed to 1273K to 1423K and then rapidly cooled.
The invention according to claim 7 is characterized in that the alloy raw material contains Mn: 0.04 to 0.3% by weight and / or Co: 0.01 to 16% by weight. The present invention relates to a process for producing the spherical vanadium carbide-containing low thermal expansion material.

本発明に係る低熱膨張材料及びこの製造方法は、鉄−ニッケル合金や鉄−ニッケル−コバルト合金基地中に、高硬度の球状バナジウム炭化物を晶出・分散させているので、低熱膨張材料として汎用されているインバーやスーパーインバーなどと略同等の低熱膨張性を有するとともに、インバーやスーパーインバーなどの低熱膨張材料が持ち合わせていない高耐摩耗性を示す低熱膨張材料及びこの製造方法を提供することができる。   The low thermal expansion material and the manufacturing method according to the present invention are widely used as a low thermal expansion material because high hardness spherical vanadium carbide is crystallized and dispersed in an iron-nickel alloy or iron-nickel-cobalt alloy base. It is possible to provide a low thermal expansion material having a low thermal expansion property substantially equal to that of invar, super invar, etc., and exhibiting high wear resistance not possessed by low thermal expansion materials such as invar and super invar, and a method for manufacturing the same. .

以下、本発明に係る耐摩耗性に優れた球状バナジウム炭化物含有低熱膨張材料及びこの製造方法について詳述する。
本発明に係る球状バナジウム炭化物含有低熱膨張材料は、C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物からなる。
Hereinafter, the spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance according to the present invention and the production method thereof will be described in detail.
The spherical vanadium carbide-containing low thermal expansion material according to the present invention has C: 1.5 to 4.0 wt%, V: 6 to 15 wt%, Si: 0.2 to 4.0 wt%, Ni: 20 to 37 % By weight, balance iron (Fe) and inevitable impurities.

C及びVは、球状のバナジウム炭化物を晶出させるために配合される。
炭素(C)の含有量は、1.5〜4.0重量%、好ましくは1.9〜3.5重量%、より好ましくは2.1〜3.3重量%とされる。
Cの含有量が1.5重量%未満の場合、球状化不良のバナジウム炭化物が多くなり、1.5重量%を超えるとバナジウム炭化物の球状化が安定化する。
Cの含有量が4.0重量%を超えると、一部のCはFe−C系板状炭化物(セメンタイト)となり、機械的強度が低下する場合がある。
C and V are blended to crystallize spherical vanadium carbide.
The carbon (C) content is 1.5 to 4.0% by weight, preferably 1.9 to 3.5% by weight, and more preferably 2.1 to 3.3% by weight.
When the content of C is less than 1.5% by weight, the amount of vanadium carbide with poor spheroidization increases, and when it exceeds 1.5% by weight, the spheroidization of vanadium carbide is stabilized.
When the C content exceeds 4.0% by weight, a part of C becomes Fe—C type plate-like carbide (cementite), and the mechanical strength may decrease.

バナジウム(V)の含有量は、6.0〜15重量%、好ましくは8〜14重量%、より好ましくは、9〜13.5重量%とされる。
Vの含有量が6.0重量%未満の場合、バナジウム炭化物を球状で晶出させることができず、15重量%を超えて配合しても、それ以上の効果は期待できず、逆に偏析を起しやすくなり、いずれの場合も好ましくない。
また、球状のバナジウム炭化物は、VとCの原子数比が約1:1(重量比4.25:1)であるため、Vの含有量がCの含有量の3〜6重量倍、好ましくは3.5〜5.5重量倍、より好ましくは約4重量倍になるように配合するとよい。
The content of vanadium (V) is 6.0 to 15% by weight, preferably 8 to 14% by weight, and more preferably 9 to 13.5% by weight.
If the V content is less than 6.0% by weight, the vanadium carbide cannot be crystallized in a spherical shape, and even if it exceeds 15% by weight, no further effect can be expected and conversely segregation. In any case, it is not preferable.
Also, since the spherical vanadium carbide has an atomic ratio of V to C of about 1: 1 (weight ratio of 4.25: 1), the V content is preferably 3 to 6 times the C content, preferably May be blended so as to be 3.5 to 5.5 times by weight, more preferably about 4 times by weight.

ケイ素(Si)は溶解鋳造性、或いは耐摩耗性などの機械的特性向上のために配合される。
ケイ素(Si)は溶解時の酸化防止と脱酸および鋳造性確保のために配合される。Siの含有量は0.2〜4.0重量%、好ましくは0.5〜4.0重量%、より好ましくは0.5〜2.0重量%とされる。この理由は、0.2重量%未満の場合、Vの歩留りを悪化させるためにSi含有による効果を発揮することができず、一方、4.0重量%を超えると耐摩耗性が低下してしまい、いずれの場合も好ましくない。
Silicon (Si) is blended to improve mechanical properties such as melt castability or wear resistance.
Silicon (Si) is blended for the purpose of preventing oxidation during dissolution, deoxidation, and ensuring castability. The Si content is 0.2 to 4.0% by weight, preferably 0.5 to 4.0% by weight, and more preferably 0.5 to 2.0% by weight. The reason for this is that if it is less than 0.2% by weight, the effect of Si content cannot be exerted in order to deteriorate the yield of V. On the other hand, if it exceeds 4.0% by weight, the wear resistance decreases. In any case, it is not preferable.

ニッケル(Ni)は熱膨張係数の低下のために配合される。
Niの含有量は20〜37重量%、好ましくは20〜35重量%、より好ましくは23〜35重量%とされる。この理由は、Niの含有量が20重量%未満の場合、熱膨張係数が高値となり好ましくなく、37重量%を超えて含有すると、室温以下のような低温度域での熱膨張係数が高値となり、いずれの場合も好ましくない。
Nickel (Ni) is blended to reduce the thermal expansion coefficient.
The Ni content is 20 to 37% by weight, preferably 20 to 35% by weight, and more preferably 23 to 35% by weight. The reason for this is that when the Ni content is less than 20% by weight, the thermal expansion coefficient becomes high, which is not preferable. When the Ni content exceeds 37% by weight, the thermal expansion coefficient in a low temperature region such as room temperature or lower becomes high. In either case, it is not preferable.

以上の合金元素が主成分である鉄(Fe)に含有させる必須成分である。   The above alloy elements are essential components to be contained in iron (Fe) as a main component.

さらに、本発明では上記した必須成分に加えて、Mn:0.04〜0.3重量%、Co:0.01〜16重量%及びMg:0.01〜0.1重量%からなる群から選択される一種以上の合金原料を含有することができる。   Further, in the present invention, in addition to the above-mentioned essential components, Mn: 0.04 to 0.3% by weight, Co: 0.01 to 16% by weight, and Mg: 0.01 to 0.1% by weight One or more selected alloy raw materials can be contained.

マンガン(Mn)を含有すると、耐摩耗性などの機械的特性をより向上することができる。
マンガン(Mn)を含有すると、耐摩耗性などの機械的特性をより向上することができる。 Mnの含有量は0.04〜0.3重量%、好ましくは0.04〜0.25重量%、より好ましくは0.04〜0.2重量%とされる。
この理由は、0.04重量%未満の含有量では、耐摩耗性などの機械的特性を向上させることができず、また0.3重量%を超えて含有すると、熱膨張係数が高値となるため、いずれの場合も好ましくない。
When manganese (Mn) is contained, mechanical properties such as wear resistance can be further improved.
When manganese (Mn) is contained, mechanical properties such as wear resistance can be further improved. The Mn content is 0.04 to 0.3% by weight, preferably 0.04 to 0.25% by weight, more preferably 0.04 to 0.2% by weight.
This is because if the content is less than 0.04% by weight, mechanical properties such as wear resistance cannot be improved. If the content exceeds 0.3% by weight, the thermal expansion coefficient becomes high. Therefore, it is not preferable in either case.

コバルト(Co)を含有すると、熱膨張係数を低下させることができる。
Coの含有量は0.01〜16重量%、好ましくは0.1〜12重量%、より好ましくは1〜12重量%とされる。
この理由は、0.01重量%未満の含有量では、熱膨張率の低減効果が低く、また16重量%を超えて含有すると、逆に室温以下のような低温度域での熱膨張係数が高値となるため、いずれの場合も好ましくない。
When cobalt (Co) is contained, the thermal expansion coefficient can be lowered.
The Co content is 0.01 to 16% by weight, preferably 0.1 to 12% by weight, more preferably 1 to 12% by weight.
The reason for this is that when the content is less than 0.01% by weight, the effect of reducing the thermal expansion coefficient is low. Since it becomes a high price, it is not preferable in any case.

マグネシウム(Mg)を含有すると、バナジウム炭化物の球状化を促進することができる。
Mgの含有量は0.01〜0.1重量%、好ましくは0.02〜0.08重量%、より好ましくは0.03〜0.08重量%とされる。この理由は0.01重量%未満の場合にはバナジウム炭化物の球状化を促進することができず、また0.1重量%を超えることはマグネシウムの酸化物が多く散在することになり材質上好ましくない。
When magnesium (Mg) is contained, spheroidization of vanadium carbide can be promoted.
The Mg content is 0.01 to 0.1% by weight, preferably 0.02 to 0.08% by weight, and more preferably 0.03 to 0.08% by weight. The reason for this is that when the amount is less than 0.01% by weight, spheroidization of vanadium carbide cannot be promoted, and when it exceeds 0.1% by weight, a large amount of magnesium oxide is scattered, which is preferable in terms of material. Absent.

尚、本発明では、上記した成分にP及びSを含有しても構わない。
リン(P)の含有量は0.02〜0.1重量%、好ましくは0.02〜0.08重量%、より好ましくは0.02〜0.06重量%とされる。この理由は、0.01重量%未満にすることは現在用いる材料上困難なことであり、一方、0.1重量%を超えると偏析や脆性を起すために、いずれの場合も好ましくない。
硫黄(S)の含有量は0.006〜0.08重量%、好ましくは0.015〜0.05重量%とされる。この理由は、0.006重量%未満にすることは現在用いる材料上困難なことであり、0.08重量%を超えると、MnS(硫化マンガン)を晶出しやすくなり、脆性を起すために、いずれの場合も好ましくない。
In the present invention, P and S may be contained in the above components.
The phosphorus (P) content is 0.02 to 0.1% by weight, preferably 0.02 to 0.08% by weight, and more preferably 0.02 to 0.06% by weight. The reason for this is that it is difficult to use less than 0.01% by weight of the material currently used. On the other hand, if it exceeds 0.1% by weight, segregation and brittleness are caused.
The content of sulfur (S) is 0.006 to 0.08% by weight, preferably 0.015 to 0.05% by weight. The reason for this is that it is difficult to use less than 0.006% by weight on the material currently used. If it exceeds 0.08% by weight, MnS (manganese sulfide) is easily crystallized, and brittleness is caused. In either case, it is not preferable.

さらに、本発明では上記した各成分に加えて、(a)Mo:0.5〜4.0重量%、(b)Ta、Ti、W、Nbからなる群から選択される少なくとも二種以上の合金元素:0.5〜3.5重量%、(c)Ca、Ba、Srからなる群から選択される少なくとも二種以上の合金元素:0.01〜0.1重量%、の(a)〜(c)の中から選択された一以上の合金元素を配合することができる。   Further, in the present invention, in addition to the above-described components, (a) Mo: 0.5 to 4.0% by weight, (b) at least two or more selected from the group consisting of Ta, Ti, W, and Nb Alloy element: 0.5 to 3.5% by weight, (c) At least two or more kinds of alloy elements selected from the group consisting of Ca, Ba and Sr: 0.01 to 0.1% by weight (a) One or more alloy elements selected from (c) can be blended.

本発明に係る球状バナジウム炭化物含有低熱膨張材料を製造するには、上記組成からなる合金原料を、気泡化反応温度で溶解した後、鋳造すればよい。
気泡化反応温度は1773〜2073K、好ましくは1773〜1950K、より好ましくは1873〜1950Kである。
溶解温度が1773K未満であると、球状バナジウム炭化物が形成されず、非球状バナジウム炭化物がマトリックス中に晶出するために、耐摩耗性を向上することができない。また、処理溶湯の流動性が悪化し、鋳造することが困難となる。
溶解温度が2073Kを超えると、球状バナジウム炭化物の形成には影響を与えないが、合金原料の歩留まりが悪化する場合がある。
In order to produce the spherical vanadium carbide-containing low thermal expansion material according to the present invention, the alloy raw material having the above composition may be melted at the aeration reaction temperature and then cast.
The bubble formation reaction temperature is 1773-2073K, preferably 1773-1950K, more preferably 1873-1950K.
When the melting temperature is less than 1773 K, spherical vanadium carbide is not formed, and non-spherical vanadium carbide crystallizes in the matrix, so that the wear resistance cannot be improved. Moreover, the fluidity | liquidity of a process molten metal deteriorates and it becomes difficult to cast.
If the melting temperature exceeds 2073 K, the formation of spherical vanadium carbide is not affected, but the yield of alloy raw materials may deteriorate.

さらに、Mgを含有させる場合、前述のように他の合金原料とともに気泡化反応温度で溶解した後、鋳造しても構わないが、球状バナジウム炭化物の晶出を促進させるために、Mgを除く上記組成からなる合金原料を、気泡化反応温度で溶解した後、Mgを添加して鋳造を行うことが好ましい。
Mgは沸点(1373K)が比較的低いために、1773〜2073Kの溶湯中では気泡となる。Mg添加により、積極的に溶湯中にMg気泡の微細な球状空間を分散させ、この気泡の球状空間に共有結合性の球状バナジウム炭化物を優先的に晶出させることで、球状バナジウム炭化物の晶出を促進させ、さらに球状バナジウム炭化物をマトリックス中に均一に分散させることができる。この理由により、Mgは炭化物の球状化能が極めて高く、本合金には重要な要素である。
Mgは、純マグネシウム、Mg合金、Mgの塩化物、Mgのフッ化物等を使用することができ、Mg合金としては、塊状又はブリケットのMg−Ni、Mg−Fe、Mg−Si−Fe、Mg−Cu、Mg−Alなどを例示することができる。
Furthermore, when Mg is contained, it may be cast after melting at the bubble forming reaction temperature together with other alloy raw materials as described above, but in order to promote crystallization of spherical vanadium carbide, the above except for Mg It is preferable to carry out casting by adding Mg after melting the alloy raw material having the composition at the bubble formation reaction temperature.
Since Mg has a relatively low boiling point (1373K), it becomes bubbles in the melt of 1773-2073K. By adding Mg, the fine spherical space of Mg bubbles is positively dispersed in the molten metal, and the spherical vanadium carbide having a covalent bond is preferentially crystallized in the spherical space of the bubbles, thereby crystallizing the spherical vanadium carbide. And can further disperse the spherical vanadium carbide uniformly in the matrix. For this reason, Mg has an extremely high ability to spheroidize carbides and is an important factor for this alloy.
Mg may be pure magnesium, Mg alloy, Mg chloride, Mg fluoride, etc., and Mg alloy such as bulk or briquette Mg—Ni, Mg—Fe, Mg—Si—Fe, Mg -Cu, Mg-Al, etc. can be illustrated.

上記組成からなる球状バナジウム炭化物含有低熱膨張材料は、常法に準じて、鋳型内に溶湯を注ぎ込み、その後冷却する鋳放しにより得ることができる。
また、1273K〜1423Kに加熱後水中に急冷する熱処理を施すことも可能である。熱処理を施すことによって、鋳放しにより製造した場合に比べて、熱膨張係数を低下させることができ、低熱膨張性を向上させることができる。
The spherical vanadium carbide-containing low thermal expansion material having the above composition can be obtained by casting as molten metal is poured into a mold and then cooled according to a conventional method.
Moreover, it is also possible to perform the heat processing which quenches rapidly in water after heating to 1273K-1423K. By performing the heat treatment, the thermal expansion coefficient can be reduced and the low thermal expansion can be improved as compared with the case of manufacturing by casting.

本発明に係る球状バナジウム炭化物含有低熱膨張材料は、基地中に硬質な炭素粒子である球状バナジウム炭化物が略均一に分散して含まれている。このために、低熱膨張性を示すとともに、耐摩耗性などの機械的特性に優れた低熱膨張材料である。   The spherical vanadium carbide-containing low thermal expansion material according to the present invention contains spherical vanadium carbide, which is hard carbon particles, dispersed in a substantially uniform manner in the matrix. For this reason, it is a low thermal expansion material that exhibits low thermal expansion and is excellent in mechanical properties such as wear resistance.

以下、実施例を示して本発明をより詳細に説明する。但し、本発明は以下の実施例により何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

表1に記載した組成に従い、実施例1〜26の各試料を以下の方法で調製した。
まず各合金元素を、5kg高周波誘導炉(マグネシア坩堝)を用いて1923Kに昇温して溶解した。1873Kで鋳型内(試料部サイズ:60×70×10mm)に溶湯を注ぎ込み、その後冷却する鋳放しにより、ミクロ組織観察試験片、機械的試験片(55×55×10mm)及び耐摩耗性試験片(25×50×10mm)を採取した。
また、熱処理試料は上記溶解鋳造により得られた試料を1273K〜1423Kに加熱後水中に急冷することで得た。
According to the composition described in Table 1, each sample of Examples 1 to 26 was prepared by the following method.
First, each alloy element was melted by raising the temperature to 1923 K using a 5 kg high-frequency induction furnace (magnesia crucible). The molten metal is poured into the mold (sample size: 60 × 70 × 10 mm) at 1873K, and then cooled, as-cast, microstructured specimen, mechanical specimen (55 × 55 × 10 mm) and wear resistance specimen. (25 × 50 × 10 mm) was collected.
The heat-treated sample was obtained by heating the sample obtained by the above melt casting to 1273K-1423K and then rapidly cooling it in water.

尚、比較例1としては、SS400と呼称される一般構造用圧延鋼材(JIS G−3101)を、比較例2としては、インバー(Fe−36%Ni)を、比較例3としてはスーパーインバー(Fe−32%Ni−5%Co)を、比較例4としては、黒鉛鋼系低熱膨張材(Fe−0.2〜1.0%C−36%Ni)を、それぞれ用いた。   In addition, as comparative example 1, rolled steel for general structure called SS400 (JIS G-3101), as comparative example 2, invar (Fe-36% Ni), as comparative example 3, super invar ( Fe-32% Ni-5% Co) and, as Comparative Example 4, a graphite steel low thermal expansion material (Fe-0.2 to 1.0% C-36% Ni) was used.

Figure 2006206993
Figure 2006206993

[試験例1:光学顕微鏡観察]
ミクロ組織の観察のために、上記調製した各実施例の供試材の側部より12mm部を切断して、研磨後、光学顕微鏡で観察した。
各実施例の顕微鏡写真をそれぞれ図1〜21に示す。尚、図1〜21中、(A)は鋳放しにより製造した試料の顕微鏡写真であり、(B)は熱処理を施して製造した試料の顕微鏡写真である。
[Test Example 1: Optical microscope observation]
In order to observe the microstructure, a 12 mm portion was cut from the side portion of the specimen of each of the above-prepared examples, polished, and then observed with an optical microscope.
The micrographs of each example are shown in FIGS. 1 to 21, (A) is a photomicrograph of a sample manufactured by casting, and (B) is a photomicrograph of a sample manufactured by heat treatment.

図1〜21に示されるように、実施例の各試料では、組織中に球状のバナジウム炭化物が晶出していることが確認された。   As shown in FIGS. 1 to 21, it was confirmed that spherical vanadium carbide crystallized in the structure in each sample of the example.

[試験例2:硬さ試験(HV)]
実施例1〜26及び比較例1〜4の試料のビッカーズ硬さを測定した。結果を表2に記載する。
[Test Example 2: Hardness test (HV)]
The Vickers hardness of the samples of Examples 1 to 26 and Comparative Examples 1 to 4 was measured. The results are listed in Table 2.

[試験例3:硬さ試験(HRC)]
実施例1〜26の試料の硬度を、「ロックウェル硬さ(HR)」の「Cスケール」(HRC)を用いて測定した。試験方法は、「JIS Z−2245」に示される「ロックウェル硬さ試験方法」(ダイヤモンド圧子又は球圧子を用いて、まず基準荷重を加え、次に試験荷重を加え、再び基準荷重に戻したとき、前後2回の基準荷重における圧子の侵入深さの差によって定義式から求める)に準じて試験を行った。結果を表2に記載する。
[Test Example 3: Hardness test (HRC)]
The hardness of the samples of Examples 1 to 26 was measured using “C scale” (HRC) of “Rockwell hardness (HR)”. The test method is “Rockwell hardness test method” shown in “JIS Z-2245” (using a diamond indenter or a ball indenter, first applying a reference load, then applying a test load, and then returning to the reference load again. The test was carried out according to the definition formula) by the difference in penetration depth of the indenter at the reference load twice before and after. The results are listed in Table 2.

Figure 2006206993
Figure 2006206993

表2に示されるとおり、本発明に係る球状バナジウム炭化物含有低熱膨張材料は、比較例の低熱膨張材料に比べて、硬度が高いことが確認された。   As shown in Table 2, it was confirmed that the spherical vanadium carbide-containing low thermal expansion material according to the present invention has higher hardness than the low thermal expansion material of the comparative example.

[試験例3:耐摩耗試験]
理研−大越式迅速摩耗試験機(JTトーシ株式会社製)を用いて、以下の条件で摩耗試験を行った。尚、この摩耗試験機は、回転円盤を平面試料に押し付けて摩耗させ、そのときの摩耗痕の体積から摩耗量を測定する試験機である。
(摩耗試験条件)
荷重:1kgf,2kgf,4kgf
摩擦速度:0.59m/min,1.09m/min,2.28m/min
摩擦相手材:S45C未処理
摩擦距離:600m
無潤滑、大気中
[Test Example 3: Wear resistance test]
Using a RIKEN-Ogoshi quick wear tester (manufactured by JT Toshi Co., Ltd.), a wear test was performed under the following conditions. This wear tester is a tester for measuring the amount of wear from the volume of wear marks at the time when a rotating disk is pressed against a flat sample to be worn.
(Wear test conditions)
Load: 1kgf, 2kgf, 4kgf
Friction speed: 0.59m / min, 1.09m / min, 2.28m / min
Friction material: S45C untreated Friction distance: 600m
No lubrication, in the atmosphere

耐摩耗試験の結果を図22〜27に示す。図22〜27に示されるように、各実施例の試料はいずれも、比較例1〜4の試料に比べて摩耗量が少なく、耐摩耗性に優れることが確認された。   The results of the abrasion resistance test are shown in FIGS. As shown in FIGS. 22 to 27, it was confirmed that each of the samples of each example had a smaller wear amount and excellent wear resistance than the samples of Comparative Examples 1 to 4.

また、図28〜30に、耐摩耗試験に供した各試料の摩耗体積と、ロックウェル硬さ試験の結果の相関関係を示す。
耐摩耗試験の全ての条件下において、硬度が高い試料ほど摩耗量が少なく、硬度と摩耗性との間に相関関係が見られた。
28 to 30 show the correlation between the wear volume of each sample subjected to the wear resistance test and the results of the Rockwell hardness test.
Under all conditions of the wear resistance test, the higher the hardness of the sample, the smaller the wear amount, and a correlation was found between the hardness and the wear resistance.

[試験例4:熱膨張率の測定]
熱膨張率測定機(ブルカーエイエックスエス(株)製、TD5020S)を用いて、以下の条件で熱膨張率を測定した。
(熱膨張率測定条件)
示差熱膨張計:水平示差熱検出方式
基準試料:アルミナ
加熱速度:20K/min
測定試料長さ:20mm
荷重:10g
測定温度範囲:室温より478K(205℃)まで
測定雰囲気:大気中
測定試料長さ:20mm
[Test Example 4: Measurement of thermal expansion coefficient]
The thermal expansion coefficient was measured under the following conditions using a thermal expansion coefficient measuring machine (Bruker AXS Co., Ltd., TD5020S).
(Thermal expansion coefficient measurement conditions)
Differential thermal dilatometer: Horizontal differential heat detection method Reference sample: Alumina Heating rate: 20K / min
Measurement sample length: 20mm
Load: 10g
Measurement temperature range: from room temperature to 478K (205 ° C) Measurement atmosphere: in air Measurement sample length: 20mm

各試料の、323〜373Kの平均熱膨張率、303〜373Kの平均熱膨張率、303〜473Kの平均熱膨張率を、表3に示す。
また図31〜36に、各試料の熱膨張率の測定結果を示す。
Table 3 shows the average thermal expansion coefficient of 323 to 373 K, the average thermal expansion coefficient of 303 to 373 K, and the average thermal expansion coefficient of 303 to 473 K of each sample.
Moreover, the measurement result of the thermal expansion coefficient of each sample is shown in FIGS.

Figure 2006206993
Figure 2006206993

図31は、実施例5,9,18,24と比較例2〜4の平均熱膨張率を示すグラフである。
図31に示されるように、本発明に係る低熱膨張材料は、汎用の低熱膨張材料である比較例2〜4と略同等の低熱膨張性を示すことが分かる。比較例2や3は、低温域では膨張係数が低いが、高温域になるほど膨張係数が大きくなる傾向にある。本発明に係る低熱膨張材料は、高温域においても、低温域と略同等の膨張係数を示すことが分かる。
FIG. 31 is a graph showing average thermal expansion coefficients of Examples 5, 9, 18, and 24 and Comparative Examples 2 to 4.
As FIG. 31 shows, it turns out that the low thermal expansion material which concerns on this invention shows the low thermal expansion property substantially equivalent to Comparative Examples 2-4 which are general purpose low thermal expansion materials. In Comparative Examples 2 and 3, the expansion coefficient is low in the low temperature range, but the expansion coefficient tends to increase as the temperature increases. It can be seen that the low thermal expansion material according to the present invention exhibits an expansion coefficient substantially equal to that in the low temperature range even in the high temperature range.

図32は、実施例5、12〜14の平均熱膨張率を示すグラフである。
図33は、実施例2、8〜11の平均熱膨張率を示すグラフである。
図34は、実施例15〜20の平均熱膨張率を示すグラフである。
図35は、実施例21〜25の平均熱膨張率を示すグラフである。
図36は、各実施例における、コバルト添加量と平均熱膨張率との関係を示すグラフである。
図32〜35に示されるように、コバルトを添加することによって、熱膨張係数が低下して、低熱膨張性が向上することが確認された。コバルトの添加量が多いほど、特に高温域における熱膨張係数の低下に効果があることが分かった。
FIG. 32 is a graph showing the average coefficient of thermal expansion of Examples 5 and 12-14.
FIG. 33 is a graph showing the average coefficient of thermal expansion of Examples 2 and 8 to 11.
FIG. 34 is a graph showing the average thermal expansion coefficients of Examples 15 to 20.
FIG. 35 is a graph showing an average coefficient of thermal expansion of Examples 21 to 25.
FIG. 36 is a graph showing the relationship between the cobalt addition amount and the average coefficient of thermal expansion in each example.
As shown in FIGS. 32 to 35, it was confirmed that by adding cobalt, the thermal expansion coefficient is lowered and the low thermal expansion is improved. It has been found that the greater the amount of cobalt added, the more effective is the reduction in the coefficient of thermal expansion, particularly at high temperatures.

図37は、実施例1〜5の平均熱膨張率を示すグラフである。
図37に示されるように、ニッケルの含有量を高めることによって、高温域における熱膨張係数を低下できることが分かる。
FIG. 37 is a graph showing the average thermal expansion coefficients of Examples 1 to 5.
As shown in FIG. 37, it can be seen that the thermal expansion coefficient in the high temperature region can be lowered by increasing the nickel content.

図38は、実施例5〜7の平均熱膨張率を示すグラフである。
図38に示されるように、炭素含有量が増加するほど、熱膨張率が低下することが分かる。
FIG. 38 is a graph showing the average thermal expansion coefficients of Examples 5 to 7.
As FIG. 38 shows, it turns out that a coefficient of thermal expansion falls, so that carbon content increases.

実施例1の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 1, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例2の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 2, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例3の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 3, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例4の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 4, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例5の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 5, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例6の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 6, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例7の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 7, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例8の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 8, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例9の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 9, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例10の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 10, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例12の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 12, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例13の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 13, (A) is the sample manufactured by casting, (B) is the sample manufactured by giving heat processing. 実施例14の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 14, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例15の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 15, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例16の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 16, (A) is the sample manufactured by casting, (B) is the sample manufactured by giving heat processing. 実施例17の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 17, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例18の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 18, (A) is a sample manufactured by as-casting, (B) is a sample manufactured by giving heat processing. 実施例21の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 21, (A) is the sample manufactured by as-casting, (B) is the sample manufactured by giving heat processing. 実施例22の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 22, (A) is the sample manufactured by casting, (B) is the sample manufactured by giving heat processing. 実施例23の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 23, (A) is the sample manufactured by casting, (B) is the sample manufactured by giving heat processing. 実施例24の顕微鏡写真であり、(A)は鋳放しにより製造した試料であり、(B)は熱処理を施して製造した試料である。It is a microscope picture of Example 24, (A) is the sample manufactured by casting, (B) is the sample manufactured by giving heat processing. 実施例5,9,18,24及び比較例1〜4の耐摩耗試験の結果を、摩耗速度との関係で示すグラフと、荷重との関係で示すグラフである。It is a graph which shows the result of the abrasion-proof test of Example 5, 9, 18, 24 and Comparative Examples 1-4 by the relationship between a wear rate, and the relationship with a load. 実施例1〜5の耐摩耗試験の結果を、摩耗速度との関係で示すグラフと、荷重との関係で示すグラフである。It is a graph which shows the result of the abrasion-proof test of Examples 1-5 by the relationship between a graph which shows a wear rate, and a relationship with a load. 実施例5,12〜14の耐摩耗試験の結果を、摩耗速度との関係で示すグラフと、荷重との関係で示すグラフである。It is a graph which shows the result of the abrasion-proof test of Example 5, 12-14 by the relationship which shows with the relationship with a wear rate, and the relationship with a load. 実施例2,8〜11の耐摩耗試験の結果を、摩耗速度との関係で示すグラフと、荷重との関係で示すグラフである。It is a graph which shows the result of the abrasion-proof test of Example 2, 8-11 by the relationship which shows with a relationship with a wear rate, and the relationship with a load. 実施例15〜18の耐摩耗試験の結果を、摩耗速度との関係で示すグラフと、荷重との関係で示すグラフである。It is a graph which shows the result of the abrasion-proof test of Examples 15-18 by the graph which shows in relation with a wear rate, and the relationship with a load. 実施例21〜24の耐摩耗試験の結果を、摩耗速度との関係で示すグラフと、荷重との関係で示すグラフである。It is a graph which shows the result of the abrasion-proof test of Examples 21-24 by the graph which shows in relation with a wear rate, and the relationship with a load. 耐摩耗試験に供した試料のロックウェル硬さと摩耗体積との相関関係を示すグラフである。It is a graph which shows the correlation with the Rockwell hardness and wear volume of the sample which used for the abrasion resistance test. 耐摩耗試験に供した試料のロックウェル硬さと摩耗体積との相関関係を示すグラフである。It is a graph which shows the correlation with the Rockwell hardness and wear volume of the sample which used for the abrasion resistance test. 耐摩耗試験に供した試料のロックウェル硬さと摩耗体積との相関関係を示すグラフである。It is a graph which shows the correlation with the Rockwell hardness and wear volume of the sample which used for the abrasion resistance test. 実施例5,9,18,24と比較例2〜4の平均熱膨張率を示すグラフであり、(A)は303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Example 5, 9, 18, 24 and Comparative Examples 2-4, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as reference temperature, (B) is a graph which shows the average coefficient of thermal expansion at the time of raising 20K from each temperature. 実施例5、12〜14の平均熱膨張率を示すグラフであり、(A)は鋳放しにより製造した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は鋳放しにより製造した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフであり、(C)は熱処理を施した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(D)は熱処理を施した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Example 5, 12-14, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as a standard temperature in the sample manufactured by as-casting, (B) is a graph which shows the average coefficient of thermal expansion when 20K is raised from each temperature in the sample manufactured by as-casting, (C) is each temperature which used 303K as the reference temperature in the sample which heat-processed. (D) is a graph which shows the average coefficient of thermal expansion at the time of raising 20K from each temperature in the sample which heat-processed. 実施例2、8〜11の平均熱膨張率を示すグラフであり、(A)は鋳放しにより製造した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は鋳放しにより製造した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフであり、(C)は熱処理を施した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(D)は熱処理を施した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Example 2, 8-11, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as a reference temperature in the sample manufactured by as-casting, (B) is a graph which shows the average coefficient of thermal expansion when 20K is raised from each temperature in the sample manufactured by as-casting, (C) is each temperature which used 303K as the reference temperature in the sample which heat-processed. (D) is a graph which shows the average coefficient of thermal expansion at the time of raising 20K from each temperature in the sample which heat-processed. 実施例15〜20の平均熱膨張率を示すグラフであり、(A)は鋳放しにより製造した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は鋳放しにより製造した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフであり、(C)は熱処理を施した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(D)は熱処理を施した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Examples 15-20, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as a reference temperature in the sample manufactured by as-casting, (B ) Is a graph showing an average coefficient of thermal expansion when the temperature is increased by 20K from a sample manufactured by as-casting, and (C) is an average of each sample up to each temperature with 303K as a reference temperature in a heat-treated sample. It is a graph which shows a thermal expansion coefficient, (D) is a graph which shows the average thermal expansion coefficient at the time of raising 20K from each temperature in the sample which performed heat processing. 実施例21〜25の平均熱膨張率を示すグラフであり、(A)は鋳放しにより製造した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は鋳放しにより製造した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフであり、(C)は熱処理を施した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(D)は熱処理を施した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Examples 21-25, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as a reference temperature in the sample manufactured by as-casting, (B ) Is a graph showing an average coefficient of thermal expansion when the temperature is increased by 20K from a sample manufactured by as-casting, and (C) is an average of each sample up to each temperature with 303K as a reference temperature in a heat-treated sample. It is a graph which shows a thermal expansion coefficient, (D) is a graph which shows the average thermal expansion coefficient at the time of raising 20K from each temperature in the sample which performed heat processing. 各実施例における、平均熱膨張率とコバルト添加量との関係を示すグラフであり、(A)は、323K〜373Kの平均熱膨張率とコバルト添加量との関係を示すグラフであり、(B)は、303K〜373Kの平均熱膨張率とコバルト添加量との関係を示すグラフであり、(C)は、303K〜473Kの平均熱膨張率とコバルト添加量との関係を示すグラフである。It is a graph which shows the relationship between the average thermal expansion coefficient and cobalt addition amount in each Example, (A) is a graph which shows the relationship between the average thermal expansion coefficient of 323K-373K, and cobalt addition amount, (B ) Is a graph showing the relationship between the average thermal expansion coefficient of 303K to 373K and the cobalt addition amount, and (C) is a graph showing the relationship between the average thermal expansion coefficient of 303K to 473K and the cobalt addition amount. 実施例1〜5の平均熱膨張率を示すグラフであり、(A)は鋳放しにより製造した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は鋳放しにより製造した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフであり、(C)は熱処理を施した試料における、303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(D)は熱処理を施した試料における、各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Examples 1-5, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as a reference temperature in the sample manufactured by as-casting, (B ) Is a graph showing an average coefficient of thermal expansion when the temperature is increased by 20K from a sample manufactured by as-casting, and (C) is an average of each sample up to each temperature with 303K as a reference temperature in a heat-treated sample. It is a graph which shows a thermal expansion coefficient, (D) is a graph which shows the average thermal expansion coefficient at the time of raising 20K from each temperature in the sample which performed heat processing. 実施例5〜7の平均熱膨張率を示すグラフであり、(A)は303Kを基準温度とした各温度までの平均熱膨張率を示すグラフであり、(B)は、各温度から20K上昇した場合の平均熱膨張率を示すグラフである。It is a graph which shows the average thermal expansion coefficient of Examples 5-7, (A) is a graph which shows the average thermal expansion coefficient to each temperature which used 303K as a reference temperature, (B) is 20K rise from each temperature. It is a graph which shows the average coefficient of thermal expansion at the time of doing.

Claims (7)

合金原料として、C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物を含有し、組織中に球状のバナジウム炭化物を晶出させてなることを特徴とする球状バナジウム炭化物含有低熱膨張材料。 As alloy raw materials, C: 1.5 to 4.0% by weight, V: 6 to 15% by weight, Si: 0.2 to 4.0% by weight, Ni: 20 to 37% by weight, balance iron (Fe) and A spherical vanadium carbide-containing low thermal expansion material characterized by containing inevitable impurities and crystallizing spherical vanadium carbide in the structure. Mn:0.04〜0.3重量%、Co:0.01〜16重量%及びMg:0.01〜0.1重量%からなる群から選択される一種以上の合金原料を含有することを特徴とする請求項1に記載の球状バナジウム炭化物含有低熱膨張材料。 Containing at least one alloy raw material selected from the group consisting of Mn: 0.04 to 0.3 wt%, Co: 0.01 to 16 wt%, and Mg: 0.01 to 0.1 wt%. The spherical vanadium carbide-containing low thermal expansion material according to claim 1. C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物からなる合金原料を1773〜2023Kで溶解して、組織中に球状のバナジウム炭化物を晶出させることを特徴とする球状バナジウム炭化物含有低熱膨張材料の製造方法。 C: 1.5 to 4.0% by weight, V: 6 to 15% by weight, Si: 0.2 to 4.0% by weight, Ni: 20 to 37% by weight, balance iron (Fe) and inevitable impurities A method for producing a spherical vanadium carbide-containing low thermal expansion material, comprising melting alloy raw materials at 1773 to 2023 K to crystallize spherical vanadium carbide in the structure. 前記合金原料が、Mn:0.04〜0.3重量%、Co:0.01〜16重量%及びMg:0.01〜0.1重量%からなる群から選択される一種以上の合金原料を含有することを特徴とする請求項3に記載の球状バナジウム炭化物含有低熱膨張材料の製造方法。 The alloy raw material is one or more alloy raw materials selected from the group consisting of Mn: 0.04 to 0.3 wt%, Co: 0.01 to 16 wt%, and Mg: 0.01 to 0.1 wt% The manufacturing method of the low thermal expansion material containing spherical vanadium carbide of Claim 3 characterized by the above-mentioned. C:1.5〜4.0重量%、V:6〜15重量%、Si:0.2〜4.0重量%、Ni:20〜37重量%、残部鉄(Fe)及び不可避不純物からなる合金原料を1773〜2023Kで溶解後、Mgを全重量に対して0.01〜0.1重量%の割合となるように添加した後鋳造することにより、組織中に球状のバナジウム炭化物を晶出させることを特徴とする球状バナジウム炭化物含有低熱膨張材料の製造方法。 C: 1.5 to 4.0% by weight, V: 6 to 15% by weight, Si: 0.2 to 4.0% by weight, Ni: 20 to 37% by weight, balance iron (Fe) and inevitable impurities After melting the alloy raw material at 1773-2023K, adding Mg in a proportion of 0.01-0.1% by weight with respect to the total weight and then casting to crystallize spherical vanadium carbide in the structure A method for producing a spherical vanadium carbide-containing low thermal expansion material characterized by comprising: 前記鋳造の後、鋳放し又は1273K〜1423Kに加熱後急冷する熱処理を施すことを特徴とする請求項5記載の球状バナジウム炭化物含有低熱膨張材料の製造方法。 6. The method for producing a spherical vanadium carbide-containing low thermal expansion material according to claim 5, wherein after the casting, a heat treatment is performed as cast or heated to 1273K-1423K and then rapidly cooled. 前記合金原料が、Mn:0.04〜0.3重量%及び/又はCo:0.01〜16重量%を含有することを特徴とする請求項5又は6に記載の球状バナジウム炭化物含有低熱膨張材料の製造方法。

7. The low thermal expansion containing spherical vanadium carbide according to claim 5, wherein the alloy raw material contains Mn: 0.04 to 0.3% by weight and / or Co: 0.01 to 16% by weight. Material manufacturing method.

JP2005023155A 2005-01-31 2005-01-31 Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same Active JP4278060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005023155A JP4278060B2 (en) 2005-01-31 2005-01-31 Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005023155A JP4278060B2 (en) 2005-01-31 2005-01-31 Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006206993A true JP2006206993A (en) 2006-08-10
JP4278060B2 JP4278060B2 (en) 2009-06-10

Family

ID=36964165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005023155A Active JP4278060B2 (en) 2005-01-31 2005-01-31 Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4278060B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174788A (en) * 2007-01-18 2008-07-31 Osaka Prefecture High-hardness alloy cast iron material containing spheroidal vanadium carbide and its manufacturing method
CN102814491A (en) * 2012-09-09 2012-12-12 吉林大学 High-strength gray cast iron enhancer and strengthening treatment process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174788A (en) * 2007-01-18 2008-07-31 Osaka Prefecture High-hardness alloy cast iron material containing spheroidal vanadium carbide and its manufacturing method
JP4646926B2 (en) * 2007-01-18 2011-03-09 大阪府 Spherical vanadium carbide-containing high-hardness cast iron material and method for producing the same
CN102814491A (en) * 2012-09-09 2012-12-12 吉林大学 High-strength gray cast iron enhancer and strengthening treatment process thereof

Also Published As

Publication number Publication date
JP4278060B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
USRE47529E1 (en) Fe-base in-situ composite alloys comprising amorphous phase
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
JP2005520934A (en) Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with suppressed formation of intermetallic phases
JP4424503B2 (en) Steel bar and wire rod
JP6787238B2 (en) Manufacturing method of steel for machine structure
Youping et al. Effect of Ti-V-Nb-Mo addition on microstructure of high chromium cast iron.
JP6372348B2 (en) Low thermal expansion alloy
JP5316495B2 (en) Bearing steel
JP2012092401A (en) Spheroidal graphite cast iron article excellent in wear resistance
JP3737803B2 (en) Spherical vanadium carbide-containing high manganese cast iron material and method for producing the same
KR101723174B1 (en) High chromium white cast-iron alloy with excellent abrasion resistance, oxidation resistance and strength and method for preparing the same
JP4278060B2 (en) Spherical vanadium carbide-containing low thermal expansion material excellent in wear resistance and method for producing the same
JP2007051341A (en) Steel with high young&#39;s modulus
JP3654899B2 (en) Manufacturing method of high strength low expansion cast iron
JP2012036465A (en) Spheroidal graphite cast iron product excellent in wear resistance
CZ20032755A3 (en) Tool steel, process for producing parts of such steel and a steel part obtained in such a manner
WO2016194377A1 (en) Black heart malleable cast iron and method for manufacturing same
JP2014040645A (en) Free-cutting iron based shape memory alloy
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP6822237B2 (en) Low thermal expansion alloy
JP6504807B2 (en) High Young&#39;s modulus low thermal expansion alloy for plastic working or casting and method for producing the same
JP4646926B2 (en) Spherical vanadium carbide-containing high-hardness cast iron material and method for producing the same
JP2001073088A (en) Low thermal expansion cast steel excellent in machinability
JP2005154826A (en) High-rigidity ingot steel having excellent machinability
JP4718315B2 (en) Abrasion resistant high Cr cast iron and wear resistant members

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250