JP2006206398A - Highly heat insulating dimming glass and method of manufacturing the same - Google Patents

Highly heat insulating dimming glass and method of manufacturing the same Download PDF

Info

Publication number
JP2006206398A
JP2006206398A JP2005022328A JP2005022328A JP2006206398A JP 2006206398 A JP2006206398 A JP 2006206398A JP 2005022328 A JP2005022328 A JP 2005022328A JP 2005022328 A JP2005022328 A JP 2005022328A JP 2006206398 A JP2006206398 A JP 2006206398A
Authority
JP
Japan
Prior art keywords
light control
layer
vanadium dioxide
glass
automatic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005022328A
Other languages
Japanese (ja)
Other versions
JP4533996B2 (en
Inventor
Taira Kin
平 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005022328A priority Critical patent/JP4533996B2/en
Publication of JP2006206398A publication Critical patent/JP2006206398A/en
Application granted granted Critical
Publication of JP4533996B2 publication Critical patent/JP4533996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide highly heat-insulating dimming glass to which excellent light control characteristic is given by applying highly structural control and a method of manufacturing the same. <P>SOLUTION: The highly heat-insulating dimming glass has a vanadium dioxide light control layer formed on a transparent substrate by using a transparent conductive body thin film or the like having a crystal structure the same as or near to that of the vanadium oxide light control layer as a structural template layer and forming an inclined structure and/or multilayer structure on the interface between both layers to control the crystal structure highly precisely, and the method of manufacturing the same is provided. The optically uniform vanadium dioxide light control film having a large area is formed at a low temperature (150°C) by a sputtering method or the like. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高断熱自動調光ガラスに関するものであり、更に詳しくは、二酸化バナジウム系調光膜を低い基板温度で、大面積で、且つ光学的に均一に成膜するとともに、自動調光ガラスに高断熱性を付与するために、構造テンプレートを導入した高断熱自動調光ガラスに関するものである。本発明は、透明基材に、二酸化バナジウム系調光層を被膜した高断熱自動調光ガラスにおいて、二酸化バナジウム系調光層を、二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有し、透明導電体物質からなる構造テンプレート層の表面に形成した高断熱自動調光ガラスであって、高度な構造制御を施して優れた調光特性を付与した熱線反射機能を有する高断熱自動調光ガラスを提供するものである。本発明は、例えば、住宅、オフィスビル等の建築物や、自動車等の移動体において使用される調光ガラスの技術分野において、特に、構造テンプレートの高精度設計により、断熱効果を飛躍的に向上させるとともに、二酸化バナジウム系調光膜を低い基板温度で、大面積、且つ光学的に均一に成膜することが可能な高断熱自動調光ガラスの作製技術、及び、例えば、省エネルギー、環境浄化、デザイン性向上、プライバシー保護、無光害、室内快適照度等の多機能を付与した高断熱自動調光ガラスを提供するものである。   The present invention relates to a highly heat-insulating automatic light control glass, and more specifically, a vanadium dioxide-based light control film is formed at a low substrate temperature, in a large area, and optically uniformly, and the automatic light control glass. The present invention relates to a highly heat-insulating automatic light control glass into which a structural template is introduced in order to impart high heat insulation to the glass. The present invention provides a highly heat-insulating automatic light control glass in which a vanadium dioxide light control layer is coated on a transparent substrate, and the vanadium dioxide light control layer has a crystal structure that is the same as or close to the crystal structure of vanadium dioxide. High heat insulation automatic dimming glass formed on the surface of a structural template layer made of a transparent conductor material, and with high heat insulation automatic dimming with a high degree of structural control to give excellent light control characteristics Glass is provided. The present invention, for example, in the technical field of light control glass used in buildings such as houses and office buildings, and moving bodies such as automobiles, particularly improves the heat insulation effect by high-precision design of the structural template. And a technology for producing a highly heat-insulating automatic light control glass capable of forming a vanadium dioxide-based light control film at a low substrate temperature in a large area and optically uniformly, and, for example, energy saving, environmental purification, The present invention provides a highly heat-insulating automatic light control glass that is provided with various functions such as improved design, privacy protection, no light pollution, and indoor illuminance.

従来、調光可能な省エネルギー窓ガラスとして、エレクトロクロミック(EC:電圧の印加により可逆的に着色と消色で調光する)やガソクロミック(GC:水素ガスの導入により着色と消色で調光する)ガラスが研究されている。しかし、それらの窓ガラスでは、構造が複雑で、また、調光するためには、追加の設備(電圧印加系やガス導入系)が必要のため、コストが高くなる欠点がある。   Conventionally, dimmable energy-saving window glass, electrochromic (EC: reversibly dimmed by applying voltage and decoloring) or gasochromic (GC: dimming by decoloring and decoloring by introducing hydrogen gas) Glass) is being studied. However, these window glasses have a drawback in that the structure is complicated and the cost is increased because additional equipment (voltage application system and gas introduction system) is required for dimming.

また、可視光は透過するが赤外線(日射の一部や輻射熱)を反射する低放射ガラス(Low−Eガラス)、あるいは、主に、日射熱を遮断する熱線反射ガラス等(非特許文献1参照)があり、これらのガラスは、優れた光学特性を有し、比較的低コストであるために、その普及が広がっているが、いずれも固定した光学特性で熱線を反射するのみで、冬夏等の季節や環境の温度変化に応じて日射や熱輻射を調節する機能、すなわち、環境温度に応じて自動的に調光遮熱する機能がない。   Further, low radiation glass (Low-E glass) that transmits visible light but reflects infrared rays (part of solar radiation and radiant heat), or heat ray reflective glass that mainly blocks solar heat (see Non-Patent Document 1). These glasses have excellent optical properties and are relatively low cost, so their spread is widespread, but they all reflect heat rays with fixed optical properties, such as winter and summer There is no function to adjust solar radiation or heat radiation according to the season or environmental temperature change, that is, there is no function to automatically dimm and shield heat according to the environmental temperature.

他にも、熱によって調光する窓コーティング材料、例えば、特殊ハイドロゲルを使った自律応答型熱調光ガラス等がある(非特許文献2参照)。それは、優れた調光性を示す一方、熱で調光を行うとガラスが白濁となり、外が見えなくなる欠点があるため、クリアな視界が常に要求される建築物や、特に自動車のような移動体の窓材料には適応されにくい。一方、二酸化バナジウム(VO)結晶は、68℃で半導体・金属相転移によりサーモクロミック(温度による光特性の可逆的な変化)特性を示し、また、タングステン(W)等の金属元素の添加で、転移温度を室温付近にまで下げることができるので、環境温度によって太陽光を自動的に調節できる窓コーティング材料として研究されている(特許文献1、非特許文献3参照)。 In addition, there are window coating materials that are dimmed by heat, for example, autonomous response heat dimming glass using a special hydrogel (see Non-Patent Document 2). While it exhibits excellent dimming properties, when dimming with heat, the glass becomes cloudy and the outside cannot be seen. It is difficult to adapt to body window material. On the other hand, the vanadium dioxide (VO 2 ) crystal exhibits thermochromic characteristics (reversible change in optical characteristics with temperature) due to semiconductor-metal phase transition at 68 ° C., and the addition of metallic elements such as tungsten (W). Since the transition temperature can be lowered to around room temperature, it has been studied as a window coating material capable of automatically adjusting sunlight according to the environmental temperature (see Patent Document 1 and Non-Patent Document 3).

また、先行文献には、サーモクロミック材料として、バナジウム(V)とモリブデン(Mo)をターゲットとして反応性二元同時スパッタによる、窓ガラス等に適用されるサーモクロミック材料(特許文献2参照)が開示され、また、本発明者により、二酸化バナジウムを使用した高性能自動調光遮熱ガラスの最適膜厚の決定方法が開発されている。また、低温でのスパッタ法による薄膜の形成に関しては、アルミナ薄膜をスパッタ法等により形成する方法(特許文献3参照)が提案されているが、二酸化バナジウムに関する技術は見当たらない。このような二酸化バナジウム系調光ガラスについては、構造が非常に簡単な上、環境温度の変化によって自然に、且つ自動的に調光を行うため、余分な設備を必要としない利点がある。   In addition, the prior literature discloses a thermochromic material (see Patent Document 2) that is applied to a window glass or the like by reactive binary simultaneous sputtering using vanadium (V) and molybdenum (Mo) as targets. In addition, the present inventor has developed a method for determining the optimum film thickness of a high-performance automatic light-control glass using vanadium dioxide. As for the formation of a thin film by sputtering at a low temperature, a method of forming an alumina thin film by sputtering or the like (see Patent Document 3) has been proposed, but no technique relating to vanadium dioxide is found. Such vanadium dioxide dimming glass has an advantage that the structure is very simple and the dimming is performed automatically and automatically according to changes in the environmental temperature, so that no extra equipment is required.

しかし、従来型の二酸化バナジウム系サーモクロミック調光材料では、(1)もともと可視光を含め短波長での強い吸収により可視光透過率が小さいこと、(2)常温輻射熱に対する反射率が小さく断熱性に乏しいこと、(3)二酸化バナジウム単一相薄膜の形成が非常に難しいため、スパッタ等で作製するときに、通常、基板温度を400℃以上の高温にする必要があるのに加え、作製パラメーターを細かく制御しなければならないこと、また、(4)単一相調光膜の形成条件が厳しいため大面積且つ光学的に均一な被膜の形成が極めて困難であること、等の問題があった。更に、先行文献には、可視光透過率を向上させるには、適切な光学定数を持つ透明材料による反射防止薄膜の導入が有効であることが開示されている(特許文献4、5参照)。   However, conventional vanadium dioxide-based thermochromic light-modulating materials have (1) low visible light transmittance due to strong absorption at short wavelengths, including visible light, and (2) low thermal reflectivity for room temperature radiant heat. (3) Since it is very difficult to form a vanadium dioxide single-phase thin film, it is usually necessary to set the substrate temperature to a high temperature of 400 ° C. or higher when manufacturing by sputtering or the like. And (4) the formation conditions of the single-phase light control film are severe, and it is extremely difficult to form a large area and optically uniform film. . Furthermore, the prior literature discloses that introduction of an antireflection thin film using a transparent material having an appropriate optical constant is effective in improving the visible light transmittance (see Patent Documents 4 and 5).

特開平7−331430号公報JP-A-7-331430 特開平8−3546号公報JP-A-8-3546 特開2001−342556号公報JP 2001-342556 A 特開2004−4795号公報JP 2004-4795 A 特開2003−94551号公報JP 2003-94551 A ニューガラスハンドブック、ニューガラスハンドブック編集委員会編、1991年、丸善New Glass Handbook, New Glass Handbook Editorial Committee, 1991, Maruzen 渡辺晴男:太陽エネルギー、1997年23巻、49頁Haruo Watanabe: Solar Energy, 1997, 23, 49 S.M. Babulanam, T.S. Eriksson, G.A. Niklasson and C.G. Granqvist: Solar Energy Matrials 16(1987)347S.M.Babulanam, T.S.Eriksson, G.A.Niklasson and C.G.Granqvist: Solar Energy Matrials 16 (1987) 347

このような状況の中で、本発明者は、上記従来技術の問題点を解決するために鋭意研究を積み重ねた結果、透明導電物質等が二酸化バナジウム薄膜形成時に構造テンプレートとして働くことにより、低い基板温度で、大面積の光学的に均一な二酸化バナジウム薄膜を形成できることを見出し、本発明を完成させるに至った。本発明は、二酸化バナジウムと同じ、又はそれに近い結晶構造を持つ物質を、下地薄膜、即ち構造テンプレートとして、予め基板上に形成し、二酸化バナジウム結晶相の形成エネルギー障壁を低下させることにより、従来にない、100℃からの非常に低い基板温度で、且つ、大面積で、光学的均一に形成された高断熱自動調光ガラスを製造し、提供することを目的とするものである。また、本発明は、構造テンプレートを透明導電体物質等の熱線反射物質とすることで、その熱線反射効果により断熱効果を飛躍的に向上させた高断熱自動調光ガラスを提供することを目的とするものである。また、本発明は、二酸化バナジウムと構造テンプレートの界面を傾斜構造及び/又は多層構造にすることによって、二酸化バナジウム単一相の均一薄膜の形成エネルギー障壁を最小限にすることにより、大面積、且つ光学的に均一な二酸化バナジウム薄膜の形成を可能とする高断熱性自動調光ガラスの製造方法を提供することを目的とするものである。更に、本発明は、関連の高断熱自動調光ガラスの実用化に向けてのほとんどの障害を解決した、新しい省エネ快適窓ガラスとして直ちに応用が可能な、高断熱自動調光ガラスを提供することを目的とするものである。   Under such circumstances, the present inventor has conducted extensive research to solve the above-described problems of the prior art, and as a result, the transparent conductive material and the like serve as a structural template when forming the vanadium dioxide thin film, thereby reducing the substrate. It has been found that an optically uniform vanadium dioxide thin film having a large area can be formed at a temperature, and the present invention has been completed. According to the present invention, a material having a crystal structure that is the same as or close to that of vanadium dioxide is formed on a substrate in advance as a base thin film, that is, a structural template, and the formation energy barrier of the vanadium dioxide crystal phase is lowered. An object of the present invention is to produce and provide a highly heat-insulating self-adjusting glass which is optically uniformly formed with a large area and a very low substrate temperature from 100 ° C. Another object of the present invention is to provide a highly heat-insulating automatic light control glass having a heat insulation effect dramatically improved by its heat ray reflection effect by using a structural template as a heat ray reflective material such as a transparent conductor material. To do. The present invention also provides a large area by minimizing the formation energy barrier of a uniform thin film of vanadium dioxide single phase by making the interface between vanadium dioxide and the structural template an inclined structure and / or a multilayer structure. It is an object of the present invention to provide a method for producing a highly heat-insulating automatic light control glass capable of forming an optically uniform vanadium dioxide thin film. Furthermore, the present invention provides a high heat insulation automatic light control glass that can be immediately applied as a new energy-saving comfortable window glass, which has solved most obstacles to the practical application of the related high heat insulation automatic light control glass. It is intended.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)透明基材に、二酸化バナジウム系調光層を被膜した高断熱自動調光ガラスにおいて、二酸化バナジウム系調光層を、構造テンプレート層の表面に形成したことを特徴とする高断熱自動調光ガラス。
(2)調光層を、二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有し、透明導電体物質からなる構造テンプレート層の表面に形成した上記(1)に記載の高断熱自動調光ガラス。
(3)調光層を、透明導電体物質からなる構造テンプレート層の表面に形成した上記(1)に記載の高断熱自動調光ガラス。
(4)テンプレート層と上記調光層の界面を、傾斜構造及び/又は多層構造にした上記(1)に記載の高断熱自動調光ガラス。
(5)二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有するテンプレートが、ルチル構造を有する物質、又は二酸化バナジウムの結晶と類似した元素格子配列を有する上記(2)に記載の高断熱自動調光ガラス。
(6)ルチル構造を有する物質が、二酸化錫(SnO)、二酸化チタン(TiO)、又はその固溶体からなる物質であり、二酸化バナジウム結晶と類似した元素格子配列を有する物質が、酸化亜鉛(ZnO)、ITO、酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化鉄(Fe)、酸化チタン(Ti)、酸化セリウム(CeO)、又はその固溶体からなる物質である上記(5)に記載の高断熱自動調光ガラス。
(7)二酸化バナジウム系調光層が、MOx(Mはバナジウムを主成分とする元素、Oは酸素、xは1.96〜2.10の範囲にある値を示す。)の化合物からなる上記(1)に記載の高断熱自動調光ガラス。
(8)調光層及び/又はテンプレート層が、W、Mo、Nb、Ta、F、S、N、B、Cl、Br、Sb、Al、Ga、In、Si、Ge、Ti、Zr、Hf、Ag、Cuの中から選ばれた少なくとも1種類の元素及び/又はその化合物を、0.01〜15at%含有する上記(1)に記載の高断熱自動調光ガラス。
(9)高断熱自動調光ガラスが、熱線反射層、調光層、反射防止層、機能性層から選ばれた1又は2以上の層を有する請求項1に記載の高断熱自動調光ガラス。
(10)各層の膜厚が、2〜600nmの範囲にある上記(1)に記載の高断熱自動調光ガラス。
(11)高断熱自動調光ガラスを構成する各層が、スパッタ法により順次成長させて形成した複数の層からなる上記(1)に記載の高断熱自動調光ガラス。
(12)二酸化バナジウム系調光層が、バナジウム金属を主成分とする金属ターゲット、二酸化バナジウムを主成分とする化合物ターゲット、又はバナジウム酸化物の混合物若しくはバナジウム酸化物とバナジウム金属との混合物ターゲットを、スパッタ又は反応性スパッタすることにより作製された上記(1)に記載の高断熱自動遮光ガラス。
(13)赤外反射率(波長10μ付近)が少なくとも70%以上、可視光領域での調光率(ΔTv)が少なくとも10%以上、太陽光領域での調光率(ΔTs)が少なくとも20%以上、但し、各調光率は、次の式で定義する:
可視光調光率 ΔTv=(Tlv−Thv)/Thv (1)
太陽光調光率 ΔTs=(Tls−Ths)/Ths (2)
(式中、ΔTは調光率、hは高温時、lは低温時を表し、vは可視光、sは太陽光を表す。)である上記(1)に記載の高断熱自動調光ガラス。
(14)透明基材に、二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有する物質からなるテンプレート層を形成し、該テンプレート層の表面に二酸化バナジウム系調光層を形成することを特徴とする高断熱自動調光ガラスの製造方法。
(15)二酸化バナジウム系調光層を、350℃以下の基板温度で、スパッタ法により低温作製する上記(14)に記載の高断熱自動調光ガラスの製造方法。
(16)二酸化バナジウム系調光層を、スパッタ法により基板を非加熱により堆積し、次いで、200〜700℃の温度範囲内で熱処理する上記(15)に記載の高断熱自動調光ガラスの製造方法。
(17)フロートガラス製造ライン上、フロートバス又は徐冷窯の段階で、ガラス表面が100〜700℃の温度の下に、二酸化バナジウム系調光層を作製する上記(14)に記載の高断熱自動調光ガラスの製造方法。
(18)テンプレート層と上記調光層の界面を、傾斜構造及び/又は多層構造にする上記(14)に記載の高断熱自動調光ガラスの製造方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A highly heat-insulating automatic light control glass in which a vanadium dioxide-based light control layer is coated on a transparent substrate, and the vanadium dioxide-based light control layer is formed on the surface of the structural template layer. Light glass.
(2) The highly heat-insulating automatic adjustment according to (1) above, wherein the light control layer is formed on the surface of the structural template layer having a crystal structure that is the same as or close to the crystal structure of vanadium dioxide and made of a transparent conductor material. Light glass.
(3) The high heat insulation automatic light control glass as described in said (1) which formed the light control layer in the surface of the structure template layer which consists of a transparent conductor substance.
(4) The highly heat-insulating automatic light control glass according to (1), wherein the interface between the template layer and the light control layer has an inclined structure and / or a multilayer structure.
(5) The highly adiabatic automatic described in (2) above, wherein the template having a crystal structure that is the same as or close to the crystal structure of vanadium dioxide has an element lattice arrangement similar to a substance having a rutile structure or a vanadium dioxide crystal. Light control glass.
(6) The substance having a rutile structure is a substance made of tin dioxide (SnO 2 ), titanium dioxide (TiO 2 ), or a solid solution thereof, and the substance having an element lattice arrangement similar to a vanadium dioxide crystal is zinc oxide ( ZnO), ITO, aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), iron oxide (Fe 2 O 3 ), titanium oxide (Ti 2 O 3 ), cerium oxide (CeO 2 ), or The highly heat-insulating automatic light control glass according to the above (5), which is a substance made of a solid solution.
(7) The vanadium dioxide light control layer is composed of a compound of MOx (M is an element containing vanadium as a main component, O is oxygen, and x is a value in the range of 1.96 to 2.10). The highly heat-insulating automatic light control glass according to (1).
(8) The light control layer and / or the template layer are W, Mo, Nb, Ta, F, S, N, B, Cl, Br, Sb, Al, Ga, In, Si, Ge, Ti, Zr, Hf The high heat insulation automatic light control glass as described in said (1) which contains 0.01-15 at% of at least 1 sort (s) of element chosen from among Ag, Cu, and / or its compound.
(9) The high heat insulation automatic light control glass according to claim 1, wherein the high heat insulation automatic light control glass has one or more layers selected from a heat ray reflective layer, a light control layer, an antireflection layer, and a functional layer. .
(10) The highly heat-insulating automatic light control glass according to (1), wherein the thickness of each layer is in the range of 2 to 600 nm.
(11) The high heat insulation automatic light control glass according to (1), wherein each layer constituting the high heat insulation automatic light control glass is composed of a plurality of layers formed by sequentially growing by a sputtering method.
(12) The vanadium dioxide-based light control layer has a metal target containing vanadium metal as a main component, a compound target containing vanadium dioxide as a main component, a mixture of vanadium oxide, or a mixture target of vanadium oxide and vanadium metal. The highly heat-insulating automatic light-shielding glass according to (1), which is produced by sputtering or reactive sputtering.
(13) Infrared reflectivity (near wavelength 10 μ) is at least 70% or more, dimming rate (ΔTv) in the visible light region is at least 10%, and dimming rate (ΔTs) in the sunlight region is at least 20%. However, each dimming rate is defined by the following formula:
Visible light dimming rate ΔTv = (Tlv−Thv) / Thv (1)
Solar light control rate ΔTs = (Tls−Ths) / Ths (2)
(In the formula, ΔT is a dimming rate, h is a high temperature, l is a low temperature, v is visible light, and s is sunlight). .
(14) A template layer made of a material having a crystal structure that is the same as or close to the crystal structure of vanadium dioxide is formed on a transparent substrate, and a vanadium dioxide-based light control layer is formed on the surface of the template layer The manufacturing method of highly heat-insulating automatic light control glass.
(15) The method for producing highly heat-insulating automatic light control glass according to (14), wherein the vanadium dioxide light control layer is prepared at a low temperature by a sputtering method at a substrate temperature of 350 ° C. or lower.
(16) Manufacture of a highly heat-insulating automatic light control glass according to (15) above, wherein the vanadium dioxide light control layer is deposited by sputtering without heating the substrate, and then heat-treated within a temperature range of 200 to 700 ° C. Method.
(17) The high heat insulation according to (14) above, wherein the vanadium dioxide based light control layer is produced on the float glass production line at a float bath or a slow cooling kiln at a temperature of 100 to 700 ° C. Manufacturing method of automatic light control glass.
(18) The method for producing highly heat-insulating automatic light control glass according to the above (14), wherein the interface between the template layer and the light control layer has an inclined structure and / or a multilayer structure.

次に、本発明について更に詳細に説明する。
本発明の高断熱自動調光ガラスは、透明ガラス基板に、二酸化バナジウム系調光層を被膜した高断熱自動調光ガラスにおいて、二酸化バナジウム系調光層を、二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有する物質からなる構造テンプレート層の表面に形成したことを特徴とするものであり、構造テンプレート層を、傾斜構造及び/又は多層構造にすることによって、いっそう、その機能を向上させることができる。構造テンプレート層は、例えば、ルチル構造を有する物質として、二酸化錫(SnO)、二酸化チタン(TiO)、又はその固溶体からなる物質が好適であり、二酸化バナジウム結晶と類似した元素格子配列を有する物質としては、酸化亜鉛(ZnO)、ITO、酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化鉄(Fe)、酸化チタン(Ti)、酸化セリウム(CeO)、又はその固溶体からなる物質等が好適であり、更に、Sb、F、W,Mo等の元素を添加することにより、赤外線反射特性等を向上させることができる。本発明の調光ガラスは、透明導電体等による熱線反射層、他の反射防止層や機能性層を少なくとも2層以上組合せることにより性能を改善し、新たな機能を付加することが可能である。
Next, the present invention will be described in more detail.
The high heat insulation automatic light control glass of the present invention is a high heat insulation automatic light control glass in which a vanadium dioxide light control layer is coated on a transparent glass substrate, and the vanadium dioxide light control layer has the same crystal structure as vanadium dioxide, or It is characterized in that it is formed on the surface of a structural template layer made of a substance having a crystal structure close to that, and the function is further improved by making the structural template layer into a gradient structure and / or a multilayer structure. be able to. For the structural template layer, for example, a substance having a rutile structure is preferably a substance made of tin dioxide (SnO 2 ), titanium dioxide (TiO 2 ), or a solid solution thereof, and has an element lattice arrangement similar to that of vanadium dioxide crystals. As materials, zinc oxide (ZnO), ITO, aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), iron oxide (Fe 2 O 3 ), titanium oxide (Ti 2 O 3 ), cerium oxide (CeO 2 ) or a substance made of a solid solution thereof is suitable. Further, by adding elements such as Sb, F, W, and Mo, infrared reflection characteristics and the like can be improved. The light control glass of the present invention can be improved in performance by adding at least two heat ray reflective layers made of a transparent conductor or the like, other antireflection layers or functional layers, and can add new functions. is there.

本発明において、透明基材としては、好適には、例えば、石英ガラス、シリコン単結晶、サファイア、耐熱ガラス、ガラス等が例示されるが、これらに制限されるものではなく、これらと同効の透明基材であれば同様に使用することができる。酸化バナジウム系調光層としては、MOx(Mはバナジウムを主成分とする元素、Oは酸素、xは1.96〜2.10の範囲にある値を示す。)で示される材料が好適である。本発明の調光ガラスは、例えば、スパッタ法により、二酸化バナジウム系調光層を設けるにあたり、構造テンプレート層を設けることにより、スパッタする際の基材の温度を、低温度(100〜350℃)に低下することが可能となり、また、基材を非加熱でスパッタし、その後200〜700℃で数秒間加熱することによって設けることを可能とする。更に、本発明では、フロートガラス製造ライン上、フロートバス又は徐冷窯の段階で、CVD、PVD等のいずれかの方法により、ガラス表面が100〜700℃の高温度の下に、二酸化バナジウム系調光層を作製することが可能である。   In the present invention, the transparent substrate is preferably exemplified by quartz glass, silicon single crystal, sapphire, heat-resistant glass, glass and the like, but is not limited thereto, and has the same effect as these. Any transparent substrate can be used in the same manner. As the vanadium oxide light control layer, a material represented by MOx (M is an element containing vanadium as a main component, O is oxygen, and x is a value in the range of 1.96 to 2.10) is preferable. is there. When the light control glass of the present invention is provided with a structural template layer, for example, by providing a vanadium dioxide light control layer by sputtering, the temperature of the base material during sputtering is reduced to a low temperature (100 to 350 ° C.). In addition, the substrate can be sputtered without heating and then heated at 200 to 700 ° C. for several seconds to be provided. Further, in the present invention, on the float glass production line, at the float bath or slow cooling kiln stage, the glass surface is subjected to a vanadium dioxide system at a high temperature of 100 to 700 ° C. by any method such as CVD or PVD. It is possible to produce a light control layer.

二酸化バナジウム系薄膜を省エネ窓材料として利用する動きは以前からあったが、これらの材料には幾つかの欠点があるため、実用的ではなかった。まず、これらの材料には、遠赤外部分の輻射熱に対する反射率が低いため、冬に室内の暖房熱の逃げ防止には不十分であるという問題があり、また、バナジウム・酸素系の相図からも分かるように、VO組成の近傍に組成の僅かに違った数多くの化合物が存在するため、二酸化バナジウムの単一相からなる均一薄膜の形成は非常に難しいという問題があった。例えば、反応性スパッタ法では、酸素分圧等のプロセスパラメーターの精密な制御が必要の上、基板温度を、通常、400〜600℃にしなければならない。窓ガラスの製造において、高い基板温度は、成膜設備の複雑化、大型化、及び大量のエネルギー消費を意味する。したがって、断熱性を飛躍的にあげることによるガラスの高性能化、並びに成膜プロセスの低温化、及び大面積で光学的に均一な膜の成膜プロセスの確立が、高断熱自動調光ガラスの実用化にとって最も重要な課題である。 There has been a movement to use vanadium dioxide thin films as energy-saving window materials, but these materials have several disadvantages and are not practical. First of all, these materials have a problem that they are insufficient to prevent the escape of indoor heating heat in winter due to their low reflectivity to the radiant heat in the far-infrared region, and the phase diagram of vanadium / oxygen systems. As can be seen from the above, since there are many compounds having slightly different compositions in the vicinity of the VO 2 composition, there is a problem that it is very difficult to form a uniform thin film composed of a single phase of vanadium dioxide. For example, the reactive sputtering method requires precise control of process parameters such as oxygen partial pressure, and the substrate temperature must usually be 400 to 600 ° C. In the manufacture of window glass, a high substrate temperature means a complicated film formation facility, an increase in size, and a large amount of energy consumption. Therefore, high-insulation automatic light control glass has achieved high performance of glass by dramatically increasing the heat insulation property, lowering the film formation process, and establishing a film formation process of an optically uniform film over a large area. This is the most important issue for practical application.

本発明は、自動調光ガラスに高断熱性を加えるために、熱線反射機能を有する透明導電体薄膜を導入することを特徴とするものである。透明導電体物質は、自由電子密度の高い物質で、入射光(電磁波)に対しプラズマ共鳴を起こす。このプラズマ共鳴波長が近赤外付近にあるため、可視光を透過させるが、赤外線をよく反射する。また、可視光透明性が高く、且つ、適切な光学定数を持つものがあるため、二酸化バナジウム薄膜の可視光反射防止にも役立つ。更に、透明導電体や他の酸化物の中から、二酸化バナジウム調光薄膜と結晶構造が同じ、又はその結晶構造が近いものを、調光薄膜形成時の構造テンプレートとして活用すれば、調光膜の低温且つ大面積で光学的に均一な膜形成が可能である。
は、既に、酸化クロム構造テンプレートの使用により、スパッタ法でアルファアルミナ結晶質薄膜の形成温度の大幅な低減に成功し、構造テンプレートの効果を確認している( P. Jin, S. Nakao, S. Wang, L. Wang: Appl. Phys. Lett. 82(2003)1024. 、特開2001−342556号公報参照)。
The present invention is characterized by introducing a transparent conductor thin film having a heat ray reflection function in order to add high heat insulation to the automatic light control glass. The transparent conductive material is a material having a high free electron density and causes plasma resonance with respect to incident light (electromagnetic wave). Since this plasma resonance wavelength is in the vicinity of the near infrared, visible light is transmitted, but infrared is well reflected. Moreover, since there exists what has a high visible light transparency and an appropriate optical constant, it is useful also for the visible light reflection prevention of a vanadium dioxide thin film. Furthermore, among transparent conductors and other oxides, those having the same crystal structure as the vanadium dioxide light control thin film or a crystal structure close thereto can be used as a structural template when forming the light control thin film. It is possible to form an optically uniform film at a low temperature and a large area.
Has already succeeded in significantly reducing the formation temperature of the alpha alumina crystalline thin film by sputtering using the chromium oxide structure template and confirmed the effect of the structure template (P. Jin, S. Nakao, S Wang, L. Wang: Appl. Phys. Lett. 82 (2003) 1024., JP-A-2001-342556).

本発明において、最も重要な部分は、自動調光ガラス構造に、二酸化バナジウム結晶構造と同じ、又はそれに近い結晶構造を有する透明導電体薄膜や酸化物薄膜を構造テンプレートとして導入すること、及び二酸化バナジウムとの結晶格子不整を最小限にするための傾斜構造及び/又は多層構造を導入することである。適切な構造テンプレートとしては、例えば、透明導電体の酸化スズ(SnO,格子常数:a=4.74Å、c=3.19Å)や光触媒として知られる酸化チタン(TiO:a=4.59Å、c=2.96Å)が、二酸化バナジウム(a=4.530Å、c=2.87Å)の高温相と同じ四方晶系であり、その格子常数の差もわずか数パーセントであることから、好適なものとして例示される。また、これらは、二酸化バナジウムと固溶体を形成することにより、界面での格子不整を最小限にすることができる。類似した他の透明導電体として、例えば、酸化亜鉛(ZnO)系、ITO、酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化鉄(Fe)、酸化チタン(Ti)、酸化セリウム(CeO)、又はその固溶体からなる物質が例示される。これらは、直接に同じ結晶系ではないが、同じ基板(例えば、サファイア基板)上に、エピタキシアル成長する点で共通しているため、酸素原子のネットワークの類似性から、直接か又は傾斜組成や多層化等の高度な構造制御を施すことで、二酸化バナジウム系薄膜の低温形成に利用することができる。 In the present invention, the most important part is that a transparent conductor thin film or an oxide thin film having a crystal structure that is the same as or close to the vanadium dioxide crystal structure is introduced as a structural template into the automatic light control glass structure, and vanadium dioxide Introducing a tilted structure and / or a multilayer structure to minimize crystal lattice mismatch. Suitable structural templates include, for example, tin oxide of transparent conductor (SnO 2 , lattice constant: a = 4.74 =, c = 3.19 の) and titanium oxide known as a photocatalyst (TiO 2 : a = 4.59Å). , C = 2.96Å) is the same tetragonal system as the high temperature phase of vanadium dioxide (a = 4.530Å, c = 2.87Å), and its lattice constant difference is only a few percent, which is preferable. It is illustrated as a thing. They can also minimize lattice irregularities at the interface by forming a solid solution with vanadium dioxide. Other similar transparent conductors include, for example, zinc oxide (ZnO), ITO, aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), iron oxide (Fe 2 O 3 ), titanium oxide ( Examples thereof include Ti 2 O 3 ), cerium oxide (CeO 2 ), or a substance made of a solid solution thereof. Although these are not directly the same crystal system, they are common in that they grow epitaxially on the same substrate (for example, sapphire substrate). By applying advanced structural control such as multilayering, it can be used for low-temperature formation of vanadium dioxide thin films.

本発明は、前記のように、透明基材に、透明導電体や他の酸化物で二酸化バナジウム調光薄膜と結晶構造が同じ、又はそれに近い結晶構造の薄膜を構造テンプレートとし、その上に、酸化バナジウム系調光を、更にその上に、可視光反射防止や多機能化のために被膜を形成することで、高断熱自動調光ガラスを形成することができる。それにより、例えば、夏季等の気温が高い時には、調光膜が金属状態となって、過剰の日射を遮蔽して冷房負荷を低減し、冬季等の気温の低いときには、調光膜が半導体状態となって、太陽光熱を室内に透過させて、快適さを増すとともに暖房負荷を節約すると同時に、熱線反射性透明導電膜の導入によってガラスの断熱性を飛躍的に向上する。   As described above, the present invention uses a transparent substrate, a thin film having a crystal structure that is the same as or close to that of a vanadium dioxide light-adjusting thin film made of a transparent conductor or other oxide, as a structural template. Highly heat-insulating automatic light control glass can be formed by forming a coating film for vanadium oxide-based light control and further preventing visible light reflection and making it multifunctional. Thus, for example, when the temperature is high such as in summer, the dimming film is in a metal state, shielding excessive solar radiation to reduce the cooling load, and when the temperature is low such as in winter, the dimming film is in a semiconductor state. As a result, solar heat is transmitted through the room to increase the comfort and save the heating load, and at the same time, the heat insulation property of the glass is greatly improved by introducing the heat ray reflective transparent conductive film.

このように、本発明の最も重要な構成は、二酸化バナジウム結晶構造と同じ、又はそれに近い結晶構造の透明導電体薄膜や高度な構造制御による構造テンプレートの使用によって、ガラスの断熱性を飛躍的に向上すると同時に、二酸化バナジウム系薄膜を、低温下に、大面積で、光学的に均一性を持って形成できることである。構造テンプレートは、成膜プロセス、例えば、スパッタ法等によって予め基材上に形成するか、あるいは、既に透明導電膜等で被膜した市販のガラス基材等を使用することができるが、構造テンプレートと成り得る限り、その下地薄膜の作製方法や形態等を制限するべきではない。本発明の高断熱自動調光ガラスを構成する、調光層、テンプレート層、機能性層等の各層の膜厚は、2〜600nmの範囲内にするのが好適である。   Thus, the most important configuration of the present invention is to dramatically improve the thermal insulation of glass by using a transparent conductive thin film having a crystal structure the same as or close to that of the vanadium dioxide crystal structure and a structural template by advanced structural control. At the same time, it is possible to form a vanadium dioxide thin film with a large area and optical uniformity at a low temperature. The structural template can be formed on a base material in advance by a film formation process, for example, a sputtering method, or a commercially available glass base material already coated with a transparent conductive film or the like can be used. As long as it is possible, the method and form of the underlying thin film should not be limited. The film thickness of each layer such as a light control layer, a template layer, and a functional layer constituting the highly heat insulating automatic light control glass of the present invention is preferably in the range of 2 to 600 nm.

次に、図面に基づいて、本発明の高断熱自動調光ガラスについて更に具体的に説明する。まず、図1により、高断熱自動調光ガラスの機構を詳しく説明する。例えば、夏に環境温度が調光膜の相転移温度を上回ると、調光膜が自動的に金属特性となり、過剰の日射や外部の輻射熱を遮断する。冬には環境温度が相転移温度より低いため調光膜が半導体特性となり、日射をよく透過させると同時に、熱線反射による高断熱性によって暖房熱を室内に閉じ込めて、快適さの向上と暖房エネルギーの節約を果たす。こうした全ての調光が、環境温度によって自動的に行なわれるため、余分の設備を必要としない。調光温度を、例えば、28℃に設定すると、夏に環境温度が28℃を超えると、ガラスの調光物質が金属特性となり、過剰の日射を反射して冷房効果をあげる。冬に環境温度が28℃を下回ると調光層が半導体特性となり、太陽光熱を室内に透過させるが、暖房の輻射熱を室内に高反射して断熱する。このようにして、冷暖房負荷を低減して省エネになると同時に快適な環境作りにつながる。   Next, based on the drawings, the highly heat-insulating automatic light control glass of the present invention will be described more specifically. First, the mechanism of the highly heat-insulating automatic light control glass will be described in detail with reference to FIG. For example, when the ambient temperature exceeds the phase transition temperature of the light control film in summer, the light control film automatically becomes a metallic property, and blocks excessive solar radiation and external radiant heat. In winter, because the ambient temperature is lower than the phase transition temperature, the light control film becomes a semiconductor property, and it transmits solar radiation well, and at the same time, heat insulation is confined in the room by high heat insulation by heat ray reflection, improving comfort and heating energy Of savings. All such dimming is done automatically depending on the ambient temperature, so no extra equipment is required. If the light control temperature is set to 28 ° C., for example, if the environmental temperature exceeds 28 ° C. in summer, the light control substance of the glass becomes a metallic property and reflects excessive solar radiation to increase the cooling effect. When the ambient temperature falls below 28 ° C. in winter, the light control layer becomes a semiconductor property and transmits sunlight heat into the room, but heat radiation is highly reflected in the room to insulate it. In this way, the cooling / heating load is reduced, resulting in energy saving and at the same time creating a comfortable environment.

図2に、本発明の調光ガラスの構造例を示す。上段(a)は典型な三層構造、(b)は反射防止層等が取り除かれた二層構造、(c)は更に特性をよくするための多層構造(n>3、複層の調光層を含む)を示す。構造テンプレートは、通常、二酸化バナジウムの真下に位置するが、二酸化バナジウム薄膜の上に、あるいは二酸化バナジウム薄膜を挟む形でもよく、二酸化バナジウムと接触する限りその位置を制限すべきではない。下段はガラスの設置例を示す。上段:単板ガラスの場合、下段:複層ガラスの場合。なお、窓ガラスの他の面に、Low−Eや光触媒、及びその他機能性コーティングとの組み合わせによる高性能化が可能である。単板ガラスの場合では、ガラスの外側と内側、ペアガラスの場合では、図示の位置に設置し、必要に応じて、薄膜系を更に設置することができる。更に、機能層を調光層と分離して、ガラスの別側にコーティングすることもできる。この場合、機能層には、主に光触媒効果を持つコーティング層及び/又は低放射(Low−E)コーティング層が含まれる。   In FIG. 2, the structural example of the light control glass of this invention is shown. Upper (a) is a typical three-layer structure, (b) is a two-layer structure from which the antireflection layer and the like are removed, and (c) is a multilayer structure (n> 3, multi-layer dimming to further improve the characteristics) Including layers). The structural template is usually located directly below the vanadium dioxide, but may be formed on the vanadium dioxide thin film or sandwich the vanadium dioxide thin film, and the position thereof should not be limited as long as it is in contact with the vanadium dioxide. The lower row shows an example of glass installation. Upper row: in the case of single plate glass, lower row: in the case of multi-layer glass. It should be noted that high performance can be achieved by combining Low-E, photocatalyst, and other functional coatings on the other surface of the window glass. In the case of a single plate glass, in the case of a glass outside and inside, and in the case of a pair glass, it is installed at the position shown in the figure, and a thin film system can be further installed as required. Furthermore, the functional layer can be separated from the light control layer and coated on the other side of the glass. In this case, the functional layer mainly includes a coating layer having a photocatalytic effect and / or a low emission (Low-E) coating layer.

図3に、調光層とテンプレート層の界面の例を示す。(a)は調光層とテンプレート層の界面を多層構造とした場合、(b)は組成や構造を傾斜構造にした場合の概略図である。界面に関しては、組成の選択や界面層の厚さや分布を、多層構造の場合は層の数を自由に変えることができ、例えば、二酸化バナジウムとの格子不整が最小限になるように、また、二酸化バナジウム単一相の均一薄膜を形成する際の、エネルギー障壁が最小限(基板温度が最低)になるように調節を行う。なお、本発明において、傾斜構造又は多層構造とは、調光層とテンプレート層の界面付近の成分又は結晶構造を次第に変化させて、両端部で各々が接する層に近似した結晶構造又は元素格子配列となるようにすることであり、傾斜構造はその変化が連続的であり、多層構造はその変化が不連続であることを意味する。こうした構造は、例えば、二元同時スパッタ、二元交替スパッタ、基材を二元ソースの上に一定のスピードで通す方法、順番に複数のCVD装置を通す方法等により、形成することが可能である。   FIG. 3 shows an example of the interface between the light control layer and the template layer. (A) is a schematic view when the interface between the light control layer and the template layer is a multilayer structure, and (b) is a schematic view when the composition and structure are inclined. With regard to the interface, the composition selection and the thickness and distribution of the interface layer can be freely changed in the case of a multilayer structure, for example, so as to minimize lattice mismatch with vanadium dioxide, Adjustments are made to minimize the energy barrier (lowest substrate temperature) when forming a uniform thin film of vanadium dioxide single phase. In the present invention, an inclined structure or a multilayer structure means a crystal structure or element lattice arrangement that approximates the layers in contact with each other at both ends by gradually changing the component or crystal structure near the interface between the light control layer and the template layer. The inclined structure means that the change is continuous, and the multi-layer structure means that the change is discontinuous. Such a structure can be formed by, for example, binary simultaneous sputtering, binary alternating sputtering, a method in which a base material is passed over a binary source at a constant speed, and a method in which a plurality of CVD apparatuses are sequentially passed. is there.

酸化バナジウム系を含む高断熱自動調光ガラスの各層薄膜の作製には、好適には、大面積の生産に好適なスパッタ法が使われる。スパッタ法による作製には、例えば、化合物ターゲットによるスパッタ、金属ターゲットによる反応性スパッタ、混合物や合金ターゲットによるスパッタ、あるいはマルチターゲット系による同時もしくは順番にスパッタする等の様々なスパッタ法が使用される。本発明の実施例では、化合物を使ったスパッタ法を使用したが、他の方法、例えば、真空蒸着法、CVD法、スプレー法やディップコーティング法、ゾルゲル法、等の物理的作製法と化学的作製法が使用できる。すなわち、本発明に関わる薄膜材料については、所定の諸特性を得られる限り、作製法に関する制限がないことは言うまでもない。本発明では、透明導電膜等による構造テンプレートの使用による高性能化及び製造プロセスの低温化又は合理化が最も重要である。   For the production of each layer thin film of highly heat-insulating automatic light control glass containing vanadium oxide, a sputtering method suitable for large-area production is preferably used. For the production by the sputtering method, for example, various sputtering methods such as sputtering by a compound target, reactive sputtering by a metal target, sputtering by a mixture or alloy target, or simultaneous or sequential sputtering by a multi-target system are used. In the examples of the present invention, the sputtering method using a compound was used. However, other methods such as a vacuum deposition method, a CVD method, a spray method, a dip coating method, a sol-gel method, etc. Manufacturing methods can be used. That is, it goes without saying that the thin film material according to the present invention is not limited with respect to the manufacturing method as long as predetermined characteristics can be obtained. In the present invention, it is most important to improve the performance by using a structural template such as a transparent conductive film, and to lower or rationalize the manufacturing process.

本発明では、例えば、スパッタ法により、ガラス基材上に、界面層を含む二酸化バナジウム調光薄膜が100℃から350℃までの基板温度で形成される。テンプレートや調光薄膜を含む構造の多層薄膜系は、スパッタ法により、基材上に無加熱で形成した後、大気中、あるいは不活性ガスや酸素、空気、又はそれらと他の混合気体等の雰囲気中、あるいは真空中で、300〜600℃の温度範囲で、1秒〜5時間熱処理によって高断熱自動調光ガラスが形成される。工業生産においては、被膜のために窓ガラスの基材を加熱、特に、300℃以上加熱する必要がある場合、設備的には困難である。従って、本発明の薄膜構造を作るには次のことを考慮する。即ち、本発明の構造を形成するプロセスとして、成膜時に板ガラスを加熱する必要がある場合、特に、結晶性のよい二酸化バナジウム系調光膜を高温で形成する必要がある場合、フロートガラス製造ライン上、フロートバス又は徐冷窯の内部で、CVD、PVD等のいずれかの方法により、ガラス表面が100〜700℃で高温のまま、二酸化バナジウム系調光層やその他必要な膜を作製することが好適である。   In the present invention, for example, a vanadium dioxide light control thin film including an interface layer is formed on a glass substrate at a substrate temperature of 100 ° C. to 350 ° C. by sputtering. A multilayer thin film system having a structure including a template and a light control thin film is formed by sputtering on a substrate without heating, and then in the atmosphere, inert gas, oxygen, air, or a mixed gas thereof. A highly heat-insulating automatic light control glass is formed by heat treatment in an atmosphere or in a vacuum at a temperature range of 300 to 600 ° C. for 1 second to 5 hours. In industrial production, when it is necessary to heat the base material of a window glass for a film, especially 300 degreeC or more, it is difficult in equipment. Therefore, to make the thin film structure of the present invention, consider the following. That is, as a process for forming the structure of the present invention, when it is necessary to heat a plate glass at the time of film formation, particularly when it is necessary to form a vanadium dioxide based light control film having good crystallinity at a high temperature, a float glass production line Above, inside the float bath or the slow cooling kiln, by using any method such as CVD, PVD, etc., the vanadium dioxide light control layer and other necessary films are produced while the glass surface remains at a high temperature of 100 to 700 ° C. Is preferred.

構造テンプレートとしては、好適な市販品、例えば、透明導電膜(SnO:Sb、SnO:F、ITO、ZnO:Al等)、あるいは酸化チタン(TiO等)等がコーティングされたガラス基材を使用することが可能である。市販の既製品の使用によりプロセスの簡単化及び場合によってコストの低減が期待される。二酸化バナジウム成長の構造テンプレートとしては、赤外反射率の強化と調光膜成長プロセスの低温化が重要である。調光層又は構造テンプレートには、元素(W、Mo、Nb、Ta、S、N、Sb、F、Cl、Br、Al、Ga、In、B、Si、Ge、Ti、Zr、Hf、Ag、Cu等)を添加することにより、赤外反射特性等の向上や制御が達成される。 As a structural template, a suitable commercially available product, for example, a glass substrate coated with a transparent conductive film (SnO 2 : Sb, SnO 2 : F, ITO, ZnO: Al, etc.) or titanium oxide (TiO 2 etc.), etc. Can be used. The use of commercially available off-the-shelf products is expected to simplify the process and possibly reduce costs. As a structural template for the growth of vanadium dioxide, it is important to enhance the infrared reflectivity and lower the temperature of the light control film growth process. The light control layer or the structural template includes elements (W, Mo, Nb, Ta, S, N, Sb, F, Cl, Br, Al, Ga, In, B, Si, Ge, Ti, Zr, Hf, Ag , Cu, etc.) can be added to improve and control infrared reflection characteristics.

従来型の二酸化バナジウム系サーモクロミック調光材料には、前述のように、1)可視光透過率が小さい、2)常温輻射熱に対する反射率が小さく、断熱性に乏しい、3)二酸化バナジウム単一相薄膜の形成が非常に難しく、通常、400℃以上の基板温度が必要とされる、4)大面積、且つ光学的に均一な被膜形成が困難である、等の問題があり、これらが、二酸化バナジウム調光ガラスの実用化を困難にしていた。これに対して、本発明では、1)構造テンプレートとして、透明導電体物質等の熱線反射物質を使用することにより、断熱効果を飛躍的に向上させること、2)二酸化バナジウム結晶構造と極めて類似した透明導電体薄膜や酸化物薄膜を構造テンプレートとして導入すること、及び調光層とテンプレートの界面を傾斜及び/又は多層構造とすることにより、二酸化バナジウムとの結晶格子不整を最小限にすること、3)二酸化バナジウムとテンプレートの界面で固溶体を形成することにより、界面での格子不整を最小限にすること、等により、上述の従来型の調光ガラスでは得ることができない、1)可視光の反射を防止して可視光透過率を向上させる、2)断熱効果を飛躍的に向上させる、3)100℃程度の低い基板温度で、大面積、且つ光学的に均一な成膜が可能となる、4)それらにより、断熱性が高く、可視光及び太陽光領域とともに調光特性の極めて優れた高断熱性自動調光ガラスを提供できる、という格別の作用効果を得ることができる。本発明は、単に、反射防止膜等を被膜するものではなく、二酸化バナジウムとの結晶格子不整を低下させることが可能な特定のテンプレート構造を導入することで、二酸化バナジウム系調光膜を、従来法では不可能であった、100〜350℃の低い基板温度で、大面積で、且つ光学的に均一に成膜することを可能とした点に最大の特徴を有する。   As described above, the conventional vanadium dioxide-based thermochromic light-modulating material includes 1) low visible light transmittance, 2) low reflectivity to room temperature radiant heat, poor heat insulation, and 3) vanadium dioxide single phase. It is very difficult to form a thin film, and usually a substrate temperature of 400 ° C. or higher is required. 4) It is difficult to form an optically uniform film with a large area. Vanadium light control glass was difficult to put into practical use. On the other hand, in the present invention, 1) a heat ray reflecting material such as a transparent conductor material is used as a structural template to dramatically improve the heat insulation effect, and 2) very similar to the vanadium dioxide crystal structure. Introducing a transparent conductor thin film or oxide thin film as a structural template, and minimizing the crystal lattice irregularity with vanadium dioxide by making the interface between the light control layer and the template inclined and / or multi-layered structure, 3) By forming a solid solution at the interface between vanadium dioxide and the template, minimizing lattice irregularities at the interface, etc. cannot be obtained with the above-mentioned conventional light control glass, etc. 1) Visible light Improve visible light transmittance by preventing reflection 2) Dramatically improve heat insulation effect 3) Large area at low substrate temperature of about 100 ° C. and Optically uniform film formation is possible. 4) With them, it is possible to provide a highly heat-insulating self-adjusting glass having high heat insulating properties and extremely excellent light adjusting characteristics together with visible light and sunlight regions. An effect can be obtained. The present invention does not simply coat an antireflection film or the like, but introduces a specific template structure capable of reducing the crystal lattice irregularity with vanadium dioxide, so that a vanadium dioxide-based light control film is conventionally produced. This method has the greatest feature in that it is possible to form an optically uniform film with a large area at a low substrate temperature of 100 to 350 ° C., which is impossible by the method.

本発明により、(1)二酸化バナジウム結晶構造と極めて類似した透明導電体薄膜や高度な構造制御による構造テンプレートの使用によって、ガラスの断熱性を飛躍的に向上させることができる、(2)構造テンプテートを使用することで、二酸化バナジウム結晶相の形成エネルギー障壁を低下させること、及び二酸化バナジウム単一層の均一薄膜の形成エネルギーを低下させること、ができる、(3)住宅や建築物及び移動体の窓に適した、環境温度の変化だけに応答して自動的に日射を調節し、なお且つ高い熱線反射機能を持つ高断熱自動調光ガラスを提供することができる、(4)二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有する透明導電物質等が二酸化バナジウム薄膜形成時のテンプレートとして用いることにより、本来、単一相の形成が非常に困難であった二酸化バナジウム薄膜を、例えば、150℃付近の非常に低い基板温度において、大面積で、光学的に均一に形成することができる、(5)調光ガラスの層構造に、透明導電物質等を導入することによって熱線反射効果が飛躍的に強化される、(6)実用化可能な二酸化バナジウム系高断熱自動調光ガラスの構造と形成法を提供できる、(7)紫外線遮断機能、自動調光遮熱機能、高断熱機能、可視光透過機能、更に、セルフクリーニング等の機能を加えて、建築物や自動車等移動体に、省エネルギー、健康快適にもっとも適切な高断熱自動調光ガラスとして、建築産業その他産業界への応用が大いに期待される、という格別の効果が奏される。   According to the present invention, (1) the use of a transparent conductor thin film very similar to the vanadium dioxide crystal structure and a structural template by advanced structural control can dramatically improve the heat insulation of glass. (2) structural template Can reduce the formation energy barrier of the vanadium dioxide crystal phase and reduce the formation energy of the uniform thin film of vanadium dioxide single layer, (3) windows of houses, buildings and mobile objects (4) Crystal structure of vanadium dioxide that can adjust solar radiation automatically in response to changes in environmental temperature and can provide a highly heat-insulating self-adjusting glass having a high heat ray reflection function. A transparent conductive material having a crystal structure the same as or close to that used as a template when forming a vanadium dioxide thin film In other words, a vanadium dioxide thin film that was originally very difficult to form a single phase can be formed optically and uniformly over a large area, for example, at a very low substrate temperature around 150 ° C. ( 5) The heat ray reflection effect is dramatically enhanced by introducing a transparent conductive material into the layer structure of the light control glass. (6) Structure and formation of a vanadium dioxide high heat insulation automatic light control glass that can be put into practical use. (7) Ultraviolet light blocking function, automatic light control and heat blocking function, high heat insulation function, visible light transmission function, self-cleaning function, etc. As a highly heat-insulating automatic light control glass that is most suitable for health and comfort, it is expected to be applied to the construction industry and other industries.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)実験方法
エリプソメトリを用いて二酸化バナジウム薄膜の複素屈折率の決定を行った。更に、低温半導体相と高温金属相の複素屈折率を求めるために、試料温度の制御を行い、低温半導体相の測定は20℃で、高温金属相の測定は90℃で行った。他の透明導電体や酸化チタン等の関連物質の光学定数をエリプソメトリで決定した。薄膜の光学定数を使って光学計算を行った。そして、光学計算の方法としては、特性マトリックス(Transfer−Matrix)法を使用した。薄膜及びガラスの光学定数を使って透過及び反射スペクトルを形成した。自作プログラムにより最適化し、性能の最も高い多層薄膜の構造及び厚さを求めた。性能を求めるとき、可視光透過率は、透過スペクトルを明所視標準比視感度曲線上で積分した値を、同じく太陽光透過率は、透過スペクトルを太陽光スペクトルAM1.5上で積分した値をそれぞれ使用した。
(1) Experimental method The complex refractive index of the vanadium dioxide thin film was determined using ellipsometry. Further, in order to obtain the complex refractive index of the low temperature semiconductor phase and the high temperature metal phase, the sample temperature was controlled, the measurement of the low temperature semiconductor phase was performed at 20 ° C., and the measurement of the high temperature metal phase was performed at 90 ° C. The optical constants of other transparent conductors and related substances such as titanium oxide were determined by ellipsometry. Optical calculations were performed using the optical constants of the thin film. As a method of optical calculation, a characteristic matrix (Transfer-Matrix) method was used. Transmission and reflection spectra were formed using the optical constants of the thin film and glass. The structure and thickness of the multilayer thin film with the highest performance were obtained by optimization using a self-made program. When determining the performance, the visible light transmittance is a value obtained by integrating the transmission spectrum on the photopic standard ratio luminous efficiency curve, and the solar light transmittance is a value obtained by integrating the transmission spectrum on the sunlight spectrum AM1.5. Were used respectively.

薄膜作製には、汎用型マグネトロンスパッタ装置を用いた。当該装置は、カソードを3基まで配置でき、それぞれが、高周波電源又は直流電源で任意に電力制御ができ、基板は回転でき、基板温度は、室温から800℃まで精密に設定される。この装置を用いて、真空系を2.5×10−6Pa以下に排気した後、アルゴン及び酸素ガスを導入して成膜を行った。基板温度を室温から600℃までの範囲に設定し、基板として、石英ガラス、シリコン単結晶、サファイア、耐熱ガラス等を使用した。ターゲットとしては、直径5センチのものを使い、約15センチ離れた基板に薄膜を堆積した。基板の大きさは、1センチ角のものと2.5センチ角のものを使った。 A general-purpose magnetron sputtering apparatus was used for thin film production. The apparatus can arrange up to three cathodes, each of which can be arbitrarily controlled with a high frequency power source or a DC power source, can rotate the substrate, and the substrate temperature is precisely set from room temperature to 800 ° C. Using this apparatus, the vacuum system was evacuated to 2.5 × 10 −6 Pa or less, and then film formation was performed by introducing argon and oxygen gas. The substrate temperature was set in the range from room temperature to 600 ° C., and quartz glass, silicon single crystal, sapphire, heat-resistant glass or the like was used as the substrate. A target having a diameter of 5 cm was used, and a thin film was deposited on a substrate about 15 cm away. The substrate size was 1 cm square and 2.5 cm square.

光学計算から求めた最適構造の幾つかを、上述のスパッタ法によりガラス基板上に形成した。石英ガラス基板上に形成した薄膜を、温度制御が可能な分光光度計を用いて、20℃(二酸化バナジウム系半導体相)及び90℃(同金属相)での分光透過率、同反射率を測定した。更に、波長2000nmの透過率の温度変化を取り、透過率・温度曲線から材料の調光温度を決定した。   Some of the optimum structures obtained from optical calculations were formed on a glass substrate by the above-described sputtering method. Using a spectrophotometer that can control the temperature of a thin film formed on a quartz glass substrate, the spectral transmittance and reflectance at 20 ° C. (vanadium dioxide semiconductor phase) and 90 ° C. (same metal phase) are measured. did. Further, the temperature change of the transmittance at a wavelength of 2000 nm was taken, and the light control temperature of the material was determined from the transmittance / temperature curve.

構造テンプレートを使って、二酸化バナジウム薄膜を、低温下に、大面積で、均一に形成した。まず、同じ結晶構造を持つテンプレート、例えば、TiO系及びSnO系薄膜を所定温度でガラス等の基板上に形成し、引き続き、基板温度を、室温〜600℃の範囲で変化させて二酸化バナジウムの薄膜を形成した。このとき、最も重要なのは、下地テンプレートと二酸化バナジウムとの界面の構造を精密に制御することであり、その界面を、二元同時スパッタ法でターゲットへの電力を調節することにより、数ナノメートルから数十ナノメートルの範囲で組成と構造の傾斜化を形成し、二酸化バナジウム薄膜との格子不整を最小化して、形成エネルギー障壁を最小限にすることで、今まで成功していない二酸化バナジウムの極低温(100〜150℃程度)での形成が可能となった。更に、下地薄膜が、例えば、ITO系、ZnO系等の、二酸化バナジウムと直接同じ結晶構造を有していない透明導電体の場合、その透明導電体薄膜と二酸化バナジウム薄膜の界面に、上述のTiOやSnO系薄膜を適切な厚さと組成、例えば、TiOあるいはSnOを、2〜50ナノメートル、で導入することにより多層構造を形成し、二酸化バナジウム薄膜の低温成長に成功した。 Using the structural template, a vanadium dioxide thin film was uniformly formed in a large area at a low temperature. First, a template having the same crystal structure, for example, a TiO 2 -based and SnO 2 -based thin film is formed on a substrate such as glass at a predetermined temperature, and then the substrate temperature is changed in the range of room temperature to 600 ° C. A thin film was formed. At this time, the most important thing is to precisely control the structure of the interface between the base template and vanadium dioxide. By adjusting the power to the target by the dual simultaneous sputtering method, the interface can be controlled from several nanometers. Forming compositional and structural gradients in the range of tens of nanometers, minimizing lattice imperfections with vanadium dioxide thin films, and minimizing the formation energy barriers Formation at low temperature (about 100 to 150 ° C.) became possible. Furthermore, in the case where the underlying thin film is a transparent conductor that does not have the same crystal structure as vanadium dioxide, such as ITO-based or ZnO-based, for example, the above-mentioned TiO is present at the interface between the transparent conductive film and the vanadium dioxide thin film. 2 and SnO 2 -based thin films were introduced at an appropriate thickness and composition, for example, TiO 2 or SnO 2 at 2 to 50 nanometers to form a multilayer structure and succeeded in low-temperature growth of vanadium dioxide thin films.

上述の構造テンプレート薄膜を形成し、その上に傾斜構造又は多層構造を経て二酸化バナジウム薄膜を、基板温度非加熱でガラス構造を形成した後、大気雰囲気あるいは真空中で、200〜700℃の温度範囲で、1秒〜5時間熱処理を行うことにより、同じく所定の調光特性が達成された。上述の高断熱自動調光ガラスの構造が、フロートガラス製造ライン上、フロートバス、又は徐冷窯の段階で、CVD、PVD等の方法により、ガラス表面が100〜700℃の高温度の下に、二酸化バナジウム系調光層を作製することにより可能となった。   After forming the above-described structural template thin film, forming a vanadium dioxide thin film thereon through a gradient structure or a multilayer structure, and forming a glass structure without heating the substrate temperature, a temperature range of 200 to 700 ° C. in an air atmosphere or vacuum Then, the predetermined dimming characteristics were achieved by performing the heat treatment for 1 second to 5 hours. The structure of the above-mentioned high heat insulation automatic light control glass is a high temperature of 100-700 ° C. by a method such as CVD, PVD, etc. at the float glass production line, float bath, or slow cooling kiln stage. This is made possible by producing a vanadium dioxide-based light control layer.

(2)試験結果
本実施例により作製されたガラスの特性の例を挙げる。構造テンプレートを使った高断熱自動調光ガラスの透過スペクトルを図4に示す。2.5センチ角のガラス基板に薄膜を形成した。光学特性については、図中に示すように、基板の幾つかの位置で、低温時(L)及び高温時(H)の透過率を測定した。高い調光性能と大面積の光学的な均一性が達成された。なお、Left、Center、Rightは基板位置を示し、L、Hは低温、高温を意味する。最適な光学設計及び成膜プロセス制御により高い調光能力が示された。夏等の高温時では低い透過率を示し、日射の大半をカットして冷房効果を上げることで快適と省エネになり、その夏での透過曲線は、市販の高性能熱線反射ガラスと類似していた。一方、冬等の低温時では、上のカーブで日射をより多く室内に取り入れ、特段の暖房効果と快適さが得られた。
(2) Test results Examples of the characteristics of the glass produced according to this example are given. FIG. 4 shows the transmission spectrum of a highly heat-insulating automatic light control glass using a structural template. A thin film was formed on a 2.5 cm square glass substrate. As for the optical characteristics, as shown in the figure, the transmittance at low temperature (L) and high temperature (H) was measured at several positions on the substrate. High dimming performance and large area optical uniformity were achieved. Here, Left, Center, and Right indicate substrate positions, and L and H mean low and high temperatures. High light control capability was shown by optimal optical design and deposition process control. It shows low transmittance at high temperatures such as in summer and cuts most of the solar radiation to improve the cooling effect, making it comfortable and energy saving. The transmission curve in summer is similar to that of commercially available high-performance heat-reflective glass. It was. On the other hand, at low temperatures such as in winter, the upper curve brought more sunlight into the room, which provided a special heating effect and comfort.

式(1)及び(2)で調光率の計算を行ったところ、可視光調光率(ΔTv)及び太陽光調光率(ΔTs)は、それぞれ、22%、38%であり、二酸化バナジウム系調光ガラスに類比のない非常に優れた調光能力が得られた。更に、図4には示していないが、10μ付近での熱線反射率が80%を超えているので、暖房熱を反射して高断熱効果をもたらし、本発明の二酸化バナジウム系調光ガラスは、類比のない非常に優れた調光能力が得られた。   When the dimming rate was calculated by the formulas (1) and (2), the visible light dimming rate (ΔTv) and the solar light dimming rate (ΔTs) were 22% and 38%, respectively, and vanadium dioxide. A very good dimming ability that is unmatched by the system dimming glass was obtained. Furthermore, although not shown in FIG. 4, since the heat ray reflectance in the vicinity of 10 μm exceeds 80%, the heating heat is reflected to provide a high heat insulating effect, and the vanadium dioxide light control glass of the present invention is A very excellent dimming ability that is unparalleled was obtained.

次に、大面積にわたる光学均一性について述べる。ターゲットのサイズ(直径5センチ)、ターゲット・基板距離(15センチ)を考えると、基板のサイズ(2.5センチ)は、相対的に大きい面積であると考えられる。基板の位置ごとに光学特性を測定し、各位置とそこで測定した透過スペクトルを比較すると、いずれの高温・低温曲線も優れた調光性能を示すと同時に、位置による光学特性の差がほとんどなかった(図4)。各曲線のわずかの差は、スパッタ条件の変動により膜厚にわずかの差ができたため、それが透過スペクトルに反映されたと考えられる。本発明の構造テンプレート法により極めて光学的に均一なガラスの大面積の形成が可能となった。   Next, optical uniformity over a large area will be described. Considering the target size (diameter 5 cm) and target-substrate distance (15 cm), the substrate size (2.5 cm) is considered to be a relatively large area. When the optical characteristics were measured at each position of the substrate and the transmission spectra measured at each position were compared, both high and low temperature curves showed excellent light control performance, and there was almost no difference in optical characteristics depending on the position. (Figure 4). A slight difference in each curve is considered to have been reflected in the transmission spectrum because a slight difference was made in the film thickness due to variations in sputtering conditions. The structural template method of the present invention enables the formation of a large area of extremely optically uniform glass.

次に、調光層の低温形成について、実施例で説明する。図5に、ルチル構造を持つ酸化チタンを、テンプレートとして使用した場合の二酸化バナジウム調光膜の透過スペクトルと基板温度との関係を示す。250℃の場合と400℃の場合とでは、ほとんど変わらない透過特性と調光機能を示した。更に、基板温度を下げた150℃の場合でも、透過スペクトルには二酸化バナジウムの相転移による調光性が見られた。このように、本発明では、150℃付近という、従来法と比較して極端に低い基板温度で、二酸化バナジウム結晶相の形成が認められた。   Next, the low temperature formation of the light control layer will be described in Examples. FIG. 5 shows the relationship between the transmission spectrum of the vanadium dioxide light control film and the substrate temperature when titanium oxide having a rutile structure is used as a template. In the case of 250 ° C. and the case of 400 ° C., the transmission characteristics and the dimming function almost unchanged were shown. Furthermore, even in the case of 150 ° C. where the substrate temperature was lowered, dimming property due to the phase transition of vanadium dioxide was observed in the transmission spectrum. Thus, in the present invention, the formation of a vanadium dioxide crystal phase was observed at a substrate temperature of about 150 ° C., which is extremely low compared to the conventional method.

図6に、膜厚約350μmの、フッ素をドープした酸化錫透明導電膜を有する市販の透明導電ガラス(ネサガラス)を基板とし、この透明導電膜を、構造テンプレートとして調光層を形成した二酸化バナジウム薄膜の光学特性の基板温度に対する依存性を示す。両曲線の差が調光能力を示す。150℃での非常に低い基板温度の場合でもかなりの調光性が認められた。成膜プロセスの改良、例えば、スパッタプロセスでのイオン化率の増大、雰囲気等各パラメーターの精密調節することにより、室温近くでの酸化バナジウム調光膜の形成が期待される。   In FIG. 6, a commercially available transparent conductive glass (nesa glass) having a thickness of about 350 μm and having a fluorine-doped tin oxide transparent conductive film is used as a substrate, and vanadium dioxide having a light control layer formed using the transparent conductive film as a structural template. The dependence of the optical properties of the thin film on the substrate temperature is shown. The difference between the two curves indicates the dimming ability. Considerable dimming was observed even at a very low substrate temperature at 150 ° C. The formation of a vanadium oxide light control film near room temperature is expected by improving the film forming process, for example, increasing the ionization rate in the sputtering process, and precisely adjusting each parameter such as the atmosphere.

上述の実施例のように、TiOやSnO等のルチル結晶の物質を構造テンプレートとすることで、二酸化バナジウムの低温成長に貢献すると同時に、例えば、TiOでは、光触媒によるセルフクリーニング効果、SnOでは、透明導電体による赤外線放射効果が奏されるため、本発明では、複数の機能を有する高断熱自動調光ガラスを提供することが可能となった。 By using a rutile crystal material such as TiO 2 or SnO 2 as a structural template as in the above-described embodiment, it contributes to low-temperature growth of vanadium dioxide, and at the same time, for example, TiO 2 has a self-cleaning effect by a photocatalyst, SnO 2 In 2 , since the infrared radiation effect by a transparent conductor is show | played, in this invention, it became possible to provide the high heat insulation automatic light control glass which has a some function.

比較例
構造テンプレートを使わない以外は、実施例1と同じスパッタ条件の下で、ガラス基板(1センチ角)上に、直接二酸化バナジウム薄膜を形成して光学特性を評価した。図7に、その結果を示す。目視ではサンプルは不均一で、茶色(Brown)の部分と灰色(Gray)の部分が共存した。茶色の部分からは、二酸化バナジウム薄膜の生成により、温度変化によってシャープな透過率の変化が見られた。しかし、対角線の灰色の部分では、ほとんど温度変化に対する透過率の変化がなく、大面積で光学均一な薄膜が形成されなかった。また、400℃以下の基板温度、例えば、300℃のガラス基板上には、直接二酸化バナジウム結晶薄膜が形成されず、400℃以下では、実施例と同じ条件下での二酸化バナジウムの形成がほとんど認められなかった。
Comparative Example A vanadium dioxide thin film was directly formed on a glass substrate (1 cm square) under the same sputtering conditions as in Example 1 except that the structural template was not used, and the optical characteristics were evaluated. FIG. 7 shows the result. The sample was visually inhomogeneous, and a brown portion and a gray portion coexisted. From the brown part, a sharp change in transmittance was observed with the change in temperature due to the formation of the vanadium dioxide thin film. However, in the gray portion of the diagonal line, there was almost no change in transmittance with respect to temperature change, and an optically uniform thin film with a large area was not formed. In addition, a vanadium dioxide crystal thin film is not directly formed on a glass substrate at a temperature of 400 ° C. or lower, for example, 300 ° C., and almost no vanadium dioxide is formed under the same conditions as in the examples at 400 ° C. or lower. I couldn't.

以上、本発明を実施例に基づいて説明したが、本発明は、前記した実施例に限定されるものではなく、特許請求の範囲に記載した構成を変更しない限り任意に設計変更して実施することができる。   The present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and the design is arbitrarily changed unless the configuration described in the claims is changed. be able to.

以上詳述したように、本発明は、高断熱性自動調光ガラス及びその製造方法に係るものであり、本発明により、二酸化バナジウムと同じ結晶構造、又はそれに近い結晶構造を持つ物質を下地薄膜、即ち構造テンプレートとして予め基板上に形成し、二酸化バナジウム結晶相の形成エネルギー障壁を低下させることで、従来にない、例えば、100℃の非常に低い基板温度で、且つ、大面積で光学的に均一に形成された高断熱自動調光透明ガラスを製造し、提供することができる。また、構造テンプレートを、透明導電体物質等の熱線反射物質で形成することにより、熱線反射効果による断熱効果を飛躍的に向上させることができ、更に、調光層と構造テンプレートの界面を、傾斜構造及び/又は多層構造をすることによって、二酸化バナジウム単一相の均一薄膜の形成エネルギー障壁(基板加熱温度)を最小限にすることが可能となる。本発明により、高断熱自動調光ガラスの実用化に向けての障害がほとんど解決されることとなり、新しい省エネ快適窓ガラスとして直ちに応用することが可能となる。   As described above in detail, the present invention relates to a highly heat-insulating automatic light control glass and a method for producing the same, and according to the present invention, a material having the same crystal structure as that of vanadium dioxide or a crystal structure close thereto is used as a base thin film. In other words, it is formed on a substrate in advance as a structural template, and lowers the energy barrier for forming a vanadium dioxide crystal phase, so that it is optically large at a very low substrate temperature of, for example, 100 ° C. It is possible to manufacture and provide a uniformly formed highly heat-insulating automatic light control transparent glass. Moreover, by forming the structural template with a heat ray reflective material such as a transparent conductor material, the heat insulation effect due to the heat ray reflection effect can be dramatically improved, and the interface between the light control layer and the structural template is inclined. By having a structure and / or a multilayer structure, it is possible to minimize the energy barrier (substrate heating temperature) for forming a uniform thin film of a vanadium dioxide single phase. According to the present invention, almost all obstacles to the practical application of highly heat-insulating automatic light control glass are solved, and it becomes possible to immediately apply as a new energy-saving comfortable window glass.

また、本発明の二酸化バナジウム系高断熱自動調光ガラスは、紫外線遮断機能、自動調光遮熱機能、高断熱機能、可視光透過機能、更に、セルフクリーニング等の機能を加えて、建築物や自動車等移動体に、省エネルギー、健康快適に最も適切なガラスとして利用することが可能である。   In addition, the vanadium dioxide-based highly heat-insulating automatic light control glass of the present invention has an ultraviolet blocking function, an automatic light control and heat blocking function, a high heat insulating function, a visible light transmission function, a self-cleaning function, etc. It can be used as the most suitable glass for moving objects such as automobiles for energy saving and health and comfort.

高断熱自動調光ガラスの自動調光機構を模式的に示す。The automatic light control mechanism of highly heat insulation automatic light control glass is shown typically. 上段は、高断熱自動調光ガラスの構造の例を示し、下段は、このガラスの設置例を示す。The upper part shows an example of the structure of the highly heat-insulating automatic light control glass, and the lower part shows an installation example of this glass. 高断熱自動調光ガラスの、調光層と構造テンプレート膜の界面構造の例を示す。The example of the interface structure of a light control layer and a structural template film | membrane of highly heat insulation automatic light control glass is shown. 本発明の高断熱自動調光ガラスの光学透過スペクトルを示す。The optical transmission spectrum of the highly heat insulation automatic light control glass of this invention is shown. 酸化チタンを構造テンプレートとした場合の、二酸化バナジウム調光膜の透過特性と基板温度への依存性を示す。The dependence on the transmission characteristic and substrate temperature of a vanadium dioxide light control film | membrane when a titanium oxide is used as a structural template is shown. 市販の透明導電ガラスを基板とし、本発明の構造テンプレート法により形成した二酸化バナジウム薄膜の光学特性の基板温度への依存性を示す。The dependence on the substrate temperature of the optical characteristic of the vanadium dioxide thin film formed by using the commercially available transparent conductive glass as the substrate and the structural template method of the present invention is shown. 基板温度400℃で、ガラス基板(1センチ角)に上に、構造テンプレートなしで直接成膜した二酸化バナジウム薄膜の光学透過特性を示す。The optical transmission characteristics of a vanadium dioxide thin film formed directly on a glass substrate (1 cm square) without a structural template at a substrate temperature of 400 ° C. are shown. 工業生産における、高断熱自動調光ガラスの製造例を示す。The example of manufacture of the high heat insulation automatic light control glass in industrial production is shown.

Claims (18)

透明基材に、二酸化バナジウム系調光層を被膜した高断熱自動調光ガラスにおいて、二酸化バナジウム系調光層を、構造テンプレート層の表面に形成したことを特徴とする高断熱自動調光ガラス。   A highly heat-insulating automatic light control glass in which a vanadium dioxide light control layer is coated on a transparent substrate, wherein the vanadium dioxide light control layer is formed on the surface of the structural template layer. 調光層を、二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有し、透明導電体物質からなる構造テンプレート層の表面に形成した請求項1に記載の高断熱自動調光ガラス。   The highly heat-insulating automatic light control glass according to claim 1, wherein the light control layer is formed on a surface of a structural template layer having a crystal structure that is the same as or close to the crystal structure of vanadium dioxide and made of a transparent conductive material. 調光層を、透明導電体物質からなる構造テンプレート層の表面に形成した請求項1に記載の高断熱自動調光ガラス。   The highly heat-insulating automatic light control glass according to claim 1, wherein the light control layer is formed on the surface of the structural template layer made of a transparent conductor material. テンプレート層と上記調光層の界面を、傾斜構造及び/又は多層構造にした請求項1に記載の高断熱自動調光ガラス。   The highly heat-insulating automatic light control glass according to claim 1, wherein an interface between the template layer and the light control layer has an inclined structure and / or a multilayer structure. 二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有するテンプレートが、ルチル構造を有する物質、又は二酸化バナジウムの結晶と類似した元素格子配列を有する請求項2に記載の高断熱自動調光ガラス。   The highly adiabatic automatic light control glass according to claim 2, wherein the template having a crystal structure that is the same as or close to the crystal structure of vanadium dioxide has an element lattice arrangement similar to a substance having a rutile structure or a vanadium dioxide crystal. ルチル構造を有する物質が、二酸化錫(SnO)、二酸化チタン(TiO)、又はその固溶体からなる物質であり、二酸化バナジウム結晶と類似した元素格子配列を有する物質が、酸化亜鉛(ZnO)、ITO、酸化アルミニウム(Al)、酸化ガリウム(Ga)、酸化鉄(Fe)、酸化チタン(Ti)、酸化セリウム(CeO)、又はその固溶体からなる物質である請求項5に記載の高断熱自動調光ガラス。 A substance having a rutile structure is a substance made of tin dioxide (SnO 2 ), titanium dioxide (TiO 2 ), or a solid solution thereof, and a substance having an element lattice arrangement similar to a vanadium dioxide crystal is zinc oxide (ZnO), It consists of ITO, aluminum oxide (Al 2 O 3 ), gallium oxide (Ga 2 O 3 ), iron oxide (Fe 2 O 3 ), titanium oxide (Ti 2 O 3 ), cerium oxide (CeO 2 ), or a solid solution thereof. The highly heat-insulating automatic light control glass according to claim 5, which is a substance. 二酸化バナジウム系調光層が、MOx(Mはバナジウムを主成分とする元素、Oは酸素、xは1.96〜2.10の範囲にある値を示す。)の化合物からなる請求項1に記載の高断熱自動調光ガラス。   The vanadium dioxide based light control layer is made of a compound of MOx (M is an element containing vanadium as a main component, O is oxygen, and x is a value in the range of 1.96 to 2.10). Highly insulated automatic light control glass as described. 調光層及び/又はテンプレート層が、W、Mo、Nb、Ta、F、S、N、B、Cl、Br、Sb、Al、Ga、In、Si、Ge、Ti、Zr、Hf、Ag、Cuの中から選ばれた少なくとも1種類の元素及び/又はその化合物を、0.01〜15at%含有する請求項1に記載の高断熱自動調光ガラス。   The light control layer and / or the template layer are W, Mo, Nb, Ta, F, S, N, B, Cl, Br, Sb, Al, Ga, In, Si, Ge, Ti, Zr, Hf, Ag, The high heat insulation automatic light control glass of Claim 1 which contains 0.01-15at% of the at least 1 sort (s) of element chosen from Cu and / or its compound. 高断熱自動調光ガラスが、熱線反射層、調光層、反射防止層、機能性層から選ばれた1又は2以上の層を有する請求項1に記載の高断熱自動調光ガラス。   The high heat insulation automatic light control glass of Claim 1 which has 1 or 2 or more layers chosen from the heat ray reflective layer, the light control layer, the antireflection layer, and the functional layer. 各層の膜厚が、2〜600nmの範囲にある請求項1に記載の高断熱自動調光ガラス。   The highly heat-insulating automatic light control glass according to claim 1, wherein the thickness of each layer is in the range of 2 to 600 nm. 高断熱自動調光ガラスを構成する各層が、スパッタ法により順次成長させて形成した複数の層からなる請求項1に記載の高断熱自動調光ガラス。   The high heat insulation automatic light control glass according to claim 1, wherein each layer constituting the high heat insulation automatic light control glass comprises a plurality of layers formed by sequentially growing by a sputtering method. 二酸化バナジウム系調光層が、バナジウム金属を主成分とする金属ターゲット、二酸化バナジウムを主成分とする化合物ターゲット、又はバナジウム酸化物の混合物若しくはバナジウム酸化物とバナジウム金属との混合物ターゲットを、スパッタ又は反応性スパッタすることにより作製された請求項1に記載の高断熱自動遮光ガラス。   Vanadium dioxide-based light control layer sputters or reacts a metal target composed mainly of vanadium metal, a compound target composed mainly of vanadium dioxide, a mixture of vanadium oxide or a mixture target of vanadium oxide and vanadium metal The highly heat-insulating automatic light-shielding glass according to claim 1, which is produced by reactive sputtering. 赤外反射率(波長10μ付近)が少なくとも70%以上、可視光領域での調光率(ΔTv)が少なくとも10%以上、太陽光領域での調光率(ΔTs)が少なくとも20%以上、但し、各調光率は、次の式で定義する:
可視光調光率 ΔTv=(Tlv−Thv)/Thv (1)
太陽光調光率 ΔTs=(Tls−Ths)/Ths (2)
(式中、ΔTは調光率、hは高温時、lは低温時を表し、vは可視光、sは太陽光を表す。)である請求項1に記載の高断熱自動調光ガラス。
Infrared reflectivity (near wavelength 10μ) is at least 70%, dimming rate (ΔTv) in visible light region is at least 10%, dimming rate (ΔTs) in sunlight region is at least 20% Each dimming rate is defined by the following formula:
Visible light dimming rate ΔTv = (Tlv−Thv) / Thv (1)
Solar light control rate ΔTs = (Tls−Ths) / Ths (2)
The highly heat-insulating automatic light control glass according to claim 1, wherein ΔT is a light control rate, h is a high temperature, 1 is a low temperature, v is visible light, and s is sunlight.
透明基材に、二酸化バナジウムの結晶構造と同じ、又はそれに近い結晶構造を有する物質からなるテンプレート層を形成し、該テンプレート層の表面に二酸化バナジウム系調光層を形成することを特徴とする高断熱自動調光ガラスの製造方法。   A template layer made of a material having a crystal structure that is the same as or close to the crystal structure of vanadium dioxide is formed on a transparent substrate, and a vanadium dioxide light control layer is formed on the surface of the template layer. Manufacturing method of heat insulation automatic light control glass. 二酸化バナジウム系調光層を、350℃以下の基板温度で、スパッタ法により低温作製する請求項14に記載の高断熱自動調光ガラスの製造方法。   The manufacturing method of the highly heat-insulating automatic light control glass according to claim 14, wherein the vanadium dioxide light control layer is manufactured at a low temperature by a sputtering method at a substrate temperature of 350 ° C or lower. 二酸化バナジウム系調光層を、スパッタ法により基板を非加熱により堆積し、次いで、200〜700℃の温度範囲内で熱処理する請求項15に記載の高断熱自動調光ガラスの製造方法。   The manufacturing method of the high heat insulation automatic light control glass of Claim 15 which deposits a board | substrate by non-heating a vanadium dioxide type light control layer by a sputtering method and then heat-processes within the temperature range of 200-700 degreeC. フロートガラス製造ライン上、フロートバス又は徐冷窯の段階で、ガラス表面が100〜700℃の温度の下に、二酸化バナジウム系調光層を作製する請求項14に記載の高断熱自動調光ガラスの製造方法。   The high heat insulation automatic light control glass of Claim 14 which produces a vanadium dioxide type light control layer on the surface of a float glass production line in the stage of a float bath or a slow cooling kiln under the temperature of 100-700 degreeC. Manufacturing method. テンプレート層と上記調光層の界面を、傾斜構造及び/又は多層構造にする請求項14に記載の高断熱自動調光ガラスの製造方法。   The manufacturing method of the high heat insulation automatic light control glass of Claim 14 which makes the interface of a template layer and the said light control layer into a gradient structure and / or a multilayer structure.
JP2005022328A 2005-01-28 2005-01-28 Highly heat insulating automatic light control glass and manufacturing method thereof Expired - Fee Related JP4533996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005022328A JP4533996B2 (en) 2005-01-28 2005-01-28 Highly heat insulating automatic light control glass and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005022328A JP4533996B2 (en) 2005-01-28 2005-01-28 Highly heat insulating automatic light control glass and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006206398A true JP2006206398A (en) 2006-08-10
JP4533996B2 JP4533996B2 (en) 2010-09-01

Family

ID=36963643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005022328A Expired - Fee Related JP4533996B2 (en) 2005-01-28 2005-01-28 Highly heat insulating automatic light control glass and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4533996B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149201A (en) * 2011-01-21 2012-08-09 Sumitomo Metal Mining Co Ltd Thermochromic body and method of producing the same
JP2013028473A (en) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research Electric control dimmer element
WO2013025000A3 (en) * 2011-08-12 2013-05-30 (주)엘지하우시스 Production method for thermochromatic glass in which use is made of a low-temperature metal-vapour-deposition process, and thermochromatic glass obtained thereby
KR101278059B1 (en) 2011-12-12 2013-06-24 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass
KR101278058B1 (en) 2011-12-08 2013-06-24 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass
KR101281467B1 (en) 2011-12-15 2013-07-03 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass and thermochromic glass using the same method
JP2014001621A (en) * 2012-06-15 2014-01-09 Samsung Corning Precision Materials Co Ltd Thermochromic window
CN103507389A (en) * 2012-06-27 2014-01-15 三星康宁精密素材株式会社 Method of manufacturing thermochromic window
KR101367828B1 (en) 2012-07-16 2014-02-27 삼성코닝정밀소재 주식회사 Method for manufacturing thermochromic window
CN103896497A (en) * 2012-12-31 2014-07-02 中国南玻集团股份有限公司 Single silver thermochromism glass and preparation method thereof
US8988758B2 (en) 2012-06-27 2015-03-24 Samsung Corning Precision Materials Co., Ltd. Thermochromic window doped with dopant and method of manufacturing the same
JP2015216241A (en) * 2014-05-12 2015-12-03 株式会社アルバック Functional device, and method for manufacturing vanadium dioxide thin film
CN108231910A (en) * 2018-02-09 2018-06-29 沈阳工程学院 A kind of heterojunction structure film of flexible substrate substrate and preparation method thereof
JP2019162747A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 Method for producing heat-radiation structure
CN112830680A (en) * 2019-11-22 2021-05-25 华北理工大学 Heat-insulating glass glaze and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256743A (en) * 1982-02-01 1987-11-09 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド Manufacture of thermochromic window glass
JP2002516813A (en) * 1998-06-03 2002-06-11 ブルーノ カー. マイヤー Thermochromic coating
JP2004004795A (en) * 2002-04-22 2004-01-08 National Institute Of Advanced Industrial & Technology Multifunctional automatic light control and heat insulating glass, and air conditioning method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256743A (en) * 1982-02-01 1987-11-09 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド Manufacture of thermochromic window glass
JPS62256742A (en) * 1982-02-01 1987-11-09 ピ−ピ−ジ−・インダストリ−ズ・インコ−ポレ−テツド Chemical vapor deposition for vanadium oxide film
JP2002516813A (en) * 1998-06-03 2002-06-11 ブルーノ カー. マイヤー Thermochromic coating
JP2004004795A (en) * 2002-04-22 2004-01-08 National Institute Of Advanced Industrial & Technology Multifunctional automatic light control and heat insulating glass, and air conditioning method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149201A (en) * 2011-01-21 2012-08-09 Sumitomo Metal Mining Co Ltd Thermochromic body and method of producing the same
JP2013028473A (en) * 2011-07-27 2013-02-07 Institute Of Physical & Chemical Research Electric control dimmer element
KR101380509B1 (en) * 2011-08-12 2014-04-01 (주)엘지하우시스 Manufacturing method of thermochromic glass using metal deposition and the thermochromic glass using thereof
WO2013025000A3 (en) * 2011-08-12 2013-05-30 (주)엘지하우시스 Production method for thermochromatic glass in which use is made of a low-temperature metal-vapour-deposition process, and thermochromatic glass obtained thereby
US9193624B2 (en) 2011-08-12 2015-11-24 Lg Hausys, Ltd. Production method for thermochromatic glass in which use is made of a low-temperature metal-vapour-deposition process, and thermochromatic glass obtained thereby
JP2014525889A (en) * 2011-08-12 2014-10-02 エルジー・ハウシス・リミテッド Method for producing thermochromic glass using low-temperature metal vapor deposition process and thermochromic glass using the same
CN103732553A (en) * 2011-08-12 2014-04-16 乐金华奥斯有限公司 Production method for thermochromatic glass, and thermochromatic glass
KR101278058B1 (en) 2011-12-08 2013-06-24 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass
KR101278059B1 (en) 2011-12-12 2013-06-24 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass
KR101281467B1 (en) 2011-12-15 2013-07-03 삼성코닝정밀소재 주식회사 Manufacturing method of thermochromic glass and thermochromic glass using the same method
JP2014001621A (en) * 2012-06-15 2014-01-09 Samsung Corning Precision Materials Co Ltd Thermochromic window
KR101399899B1 (en) * 2012-06-15 2014-05-29 코닝정밀소재 주식회사 Thermochromic window
CN103507321A (en) * 2012-06-15 2014-01-15 三星康宁精密素材株式会社 Thermochromic window
US9146408B2 (en) 2012-06-15 2015-09-29 Corning Precision Materials Co., Ltd. Thermochromic window
CN103507389A (en) * 2012-06-27 2014-01-15 三星康宁精密素材株式会社 Method of manufacturing thermochromic window
US8988758B2 (en) 2012-06-27 2015-03-24 Samsung Corning Precision Materials Co., Ltd. Thermochromic window doped with dopant and method of manufacturing the same
KR101367828B1 (en) 2012-07-16 2014-02-27 삼성코닝정밀소재 주식회사 Method for manufacturing thermochromic window
CN103896497A (en) * 2012-12-31 2014-07-02 中国南玻集团股份有限公司 Single silver thermochromism glass and preparation method thereof
JP2015216241A (en) * 2014-05-12 2015-12-03 株式会社アルバック Functional device, and method for manufacturing vanadium dioxide thin film
CN108231910A (en) * 2018-02-09 2018-06-29 沈阳工程学院 A kind of heterojunction structure film of flexible substrate substrate and preparation method thereof
JP2019162747A (en) * 2018-03-19 2019-09-26 トヨタ自動車株式会社 Method for producing heat-radiation structure
JP7084172B2 (en) 2018-03-19 2022-06-14 トヨタ自動車株式会社 Manufacturing method of heat radiation structure
CN112830680A (en) * 2019-11-22 2021-05-25 华北理工大学 Heat-insulating glass glaze and preparation method thereof

Also Published As

Publication number Publication date
JP4533996B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4533996B2 (en) Highly heat insulating automatic light control glass and manufacturing method thereof
JP3849008B2 (en) High performance automatic light control window coating material
JP4370396B2 (en) Multifunctional automatic light control insulation glass and air conditioning method
Ding et al. Silver-based low-emissivity coating technology for energy-saving window applications
Gagaoudakis et al. Low-temperature rf sputtered VO2 thin films as thermochromic coatings for smart glazing systems
JP4899228B2 (en) Manufacturing method and product of vanadium dioxide thin film
JP2013517206A (en) High quality radiation control coating, radiation control glass and manufacturing method
WO2006098451A1 (en) Automatic heat conditioning color tone conditioning light shielding glass and method for producing the same
CN100406917C (en) Optical coatings and associated methods
KR20140006216A (en) Thermochromic window doped by dofant and method for manufacturing of the same
RU2759408C2 (en) Product with low-emission coating having ir-radiation reflecting layer or layers and dielectric layer or layers of alloyed titanium oxide
JP2008297177A (en) Thermochromic glass and thermochromic double glazing glass
EP2679556A1 (en) Method of manufacturing thermochromic window
RU2447032C2 (en) Glass article having zinc oxide coating and method of making said article
EP2803647A1 (en) Thermochromic window and method of fabricating the same
Tsai et al. Thermal stability and optical properties of low emissivity multilayer coatings for energy-saving applications
KR20130074156A (en) Reflected glass and manufacturing method thereof
Ahmad et al. Bi-layered energy efficient coatings as transparent heat mirrors based on vanadium oxide thin films
Zong et al. Realization of high luminous transmittance and solar modulation ability of VO2 films by multistep deposition and in-situ annealing method
Nawade et al. Copper based transparent solar heat rejecting film on glass through in-situ nanocrystal engineering of sputtered TiO2
JP4665153B2 (en) Method for determining the film thickness of the light control layer
JP4836071B2 (en) High-performance vanadium dioxide-based automatic light control material and method for improving performance of light control material
JP2007322849A (en) High-performance thermochromic element
WO2016183691A1 (en) Transparent metallo-dielectric coatings, structures, and devices, and methods of fabrication thereof
CN110128027B (en) Multi-stage gradual-change type spontaneous temperature-adjusting composite coating and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4533996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees