WO2006098451A1 - Automatic heat conditioning color tone conditioning light shielding glass and method for producing the same - Google Patents

Automatic heat conditioning color tone conditioning light shielding glass and method for producing the same Download PDF

Info

Publication number
WO2006098451A1
WO2006098451A1 PCT/JP2006/305457 JP2006305457W WO2006098451A1 WO 2006098451 A1 WO2006098451 A1 WO 2006098451A1 JP 2006305457 W JP2006305457 W JP 2006305457W WO 2006098451 A1 WO2006098451 A1 WO 2006098451A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
color
film
adjusting
automatic heat
Prior art date
Application number
PCT/JP2006/305457
Other languages
French (fr)
Japanese (ja)
Inventor
Ping Jin
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2006098451A1 publication Critical patent/WO2006098451A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10431Specific parts for the modulation of light incorporated into the laminated safety glass or glazing
    • B32B17/10467Variable transmission
    • B32B17/10477Variable transmission thermochromic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • the present invention relates to an automatic heat-control color-harmonic light-shielding glass and a manufacturing method. More specifically, the present invention relates to a visible light transmittance of 70% or less, excellent light-shielding properties, and infrared transmittance according to environmental temperature. Can be adjusted automatically, and the color tone such as transparent color can be adjusted freely according to the preference, the building, and the exterior of the moving body, so it can be used as a window glass for moving bodies such as windows of buildings and automobiles. It is a new environmentally friendly new product that is expected to be applied and spread as an environmentally friendly new product with functions such as energy saving, health and comfort, and privacy protection.
  • the present invention fundamentally solves the problem of diacid-vanadium-based dimming and heat-controlling glass that has been difficult to put into practical use, in particular, the problem that the base glass is colored to a strong inherent yellow color. It is a new product that can harmonize the color tone with an arbitrary color tone, and provides an automatic thermal color tone light-shielding glass having a color tone harmony function.
  • vanadium dioxide (VO) crystal is a thermocouple due to the semiconductor 'metal phase transition at 68 ° C.
  • Non-patent Document 1 A window coating material that can adjust solar light autonomously only by the environmental temperature using the temperature change of its optical characteristics has been studied (Non-patent Document 1).
  • Non-patent Document 1 For diacid-vanadium dimmable glass, the structure is very simple. In addition, since dimming is performed automatically and automatically according to changes in environmental temperature, no extra equipment is required.
  • thermochromic light control glasses with vanadium diacid for example, their production method (Patent Documents 3 and 4), the thermoguchimic body and its production method (Patent Document 5), and Others (Patent Documents 1, 2, 6, 7), etc. disclose the production method and element addition method for controlling the transition temperature.
  • the conventional diacid-vanadium-based thermochromic dimming material (1) originally has a low visible light transmittance due to strong absorption at short wavelengths including visible light. (2) Low thermal insulation with low reflectivity to room temperature radiant heat, (3) The phase diagram of the vanadium oxide system is very complex, and it is very difficult to form a single-phase thin film of vanadium dioxide. In particular, it is extremely difficult to form a single-phase large-area and optically uniform film. (4) Formation method of vanadium dioxide thin film suitable for industrial production, especially industry using high-efficiency DC sputtering. Due to the fact that production has not been established, and (5) there is a problem of strong yellow coloring due to the solid absorption of vanadium dioxide thin films, there have been high obstacles to practical use. .
  • Low-E glass low-emission glass
  • Non-patent Document 2 glasses that selectively control solar heat, such as heat-reflecting glass
  • This glass is spreading widely due to its excellent optical properties and relatively low cost.
  • all of these glasses only reflect heat rays with fixed optical properties.
  • There is no function to adjust the heat radiation that is, the function of automatically dimming the heat according to the environmental temperature.
  • Patent Document 16 a coating glass with a multilayer thin film having remarkable sunlight shielding properties has been proposed!.
  • the luminous transmittance is greater than the solar radiation acquisition rate (or Sorough Actor), and it mainly seeks remarkable solar radiation shielding characteristics. Functions and various color harmony functions cannot be expected.
  • laminated glass for the purpose of safety, strengthening and crime prevention is commercially available.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 50-50294
  • Patent Document 2 Japanese Translation of Special Publication 2002-516813
  • Patent Document 3 Patent No. 2735147 Specification
  • Patent Document 4 Patent No. 2600117 Specification
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2000-137251
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-273619
  • Patent Document 7 JP-A-8-40749
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2004-004795
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 2003-094551
  • Patent Document 10 Japanese Unexamined Patent Application Publication No. 2004-115359
  • Patent Document 11 Japanese Patent Laid-Open No. 2003-342038
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2002-173340
  • Patent Document 13 Japanese Unexamined Patent Application Publication No. 2002-12451
  • Patent Document 14 JP 2001-64035 A
  • Patent Document 15 Japanese Patent Laid-Open No. 2001-322835
  • Patent Document 16 Japanese Unexamined Patent Publication No. 2000-119045
  • Non-Patent Document 2 Niyu Glass Handbook, New Glass Handbook Editorial Committee, pp. 449-452, 1991, Maruzen
  • the present inventor has developed a new technology that solves the problems of the conventional technology and enables practical application of the vanadium dioxide thin film in view of the conventional technology.
  • the results of diligent research and experiments and knowledge about window glass on the diacid-vanadium dimming thin film and the knowledge about window glass have been used to concentrate on the protection and privacy of commercial buildings and automobiles.
  • the weakness of the conventional thermo-chromic dimming glass that is, the feature of low visible light transmittance, is used by reversing the idea as an excellent shading property, and it has not been solved until now.
  • the intended purpose of the strong intrinsic yellow color which is the biggest problem of vanadium dioxide thin films, can be achieved by utilizing coloring substances and coloring base materials based on the complementary color principle. It has been completed.
  • the color tone of glass can be freely harmonized, excessive solar heat can be shielded in summer, solar heat can be introduced in winter, and its function is automatically controlled by the environmental temperature. Can be selected freely according to preferences and the exterior of the environment.
  • the present invention is a new functional glass, that is, a glass having various functions such as automatic heat control, color harmony, UV protection, heat insulation, comfortable illuminance, and privacy protection. The purpose is to provide a completely new glass product that can provide functions such as energy saving, health and comfort, privacy protection, and color harmony to the window glass of buildings, vehicles, and other moving objects that are less than% and its manufacturing method. It is what.
  • the present invention comprises the following technical means.
  • An automatic heat-adjusting color tone characterized in that, in a diacid-vanadium-based automatic heat-adjusting glass, a base material is coated with a diacid-vanadium-based automatic heat-adjusting film and a toning film. Harmonic glass.
  • the diacid-vanadium-based automatic heat control glass is characterized in that the base material is coated with a diacid-vanadium-based automatic heat-control film, a toning film, and a functional film. Automatic heat tone harmonized glass.
  • the inherent color of the automatic heat-adjusting film is controlled to a predetermined color tone by arbitrarily adjusting the toned film or a combination of the toning film and the functional film based on the complementary color principle (1) ) Or (2).
  • the intrinsic color of the self-adjusting film is determined by sticking a colored film to the base glass based on the complementary color principle, sandwiching it between two or more plate glasses, or bonding two or more glasses with a colored resin.
  • a vanadium dioxide-based automatic heat control glass is coated with a vanadium dioxide-based automatic heat control material, a color-adjusting material, and optionally a functional material applied to a plastic or synthetic resin film.
  • a vanadium dioxide-based automatic heat control material a vanadium dioxide-based automatic heat control material, a color-adjusting material, and optionally a functional material applied to a plastic or synthetic resin film.
  • the inherent color of the automatic heat-adjusting material is controlled to a predetermined color tone by the above-mentioned color-adjusting material based on the complementary color principle, or an automatic heat-adjusting color-harmonic film or film thereof Automatic heat-adjusting color harmony glass.
  • the automatic heat-adjusting color-harmonic glass according to any one of (1) to (7), which is a glass for a window glass of a building or a moving body.
  • the self-regulating light according to any one of (1) to (8) above, wherein the visible light transmittance is 70% or less, excellent in light-shielding properties, and at the same time, is an automatic thermal color harmony light-shielding privacy glass in which the color tone is adjusted. Dynamic tone color tone harmony glass.
  • the toning film is a film that also has a complexing power of a transition metal having a coloring function and Z or a compound thereof, a rare earth metal and Z or a compound thereof, or any combination of the above substances.
  • the automatic heat-tone color harmony glass according to any one of the above (1) force and (7).
  • the toning film is a transition metal having a coloring function and Z or a compound thereof, a rare earth metal and
  • the coloring material of the toning film is an inorganic substance having a coloring function, an organic substance, a mixture of an inorganic substance and an organic substance, or a dispersion thereof.
  • the transparent material matrix is composed of a transparent dielectric material such as oxides, nitrides, fluorides, and sulfides other than the rutile crystal structure, or a transparent conductive material alone or in any combination of two or more thereof ( The self-adjusting color tone-shading glass described in 11).
  • the visible light transmittance can be kept low to 70% or less, and appropriate illuminance and The automatic heat-adjusting color-harmonic glass as described in (9) above, which is a passy protective glass.
  • a transition glass having a coloring function and Z or a compound thereof, a rare earth metal and Z or a compound thereof, or a combination of any of the above substances alone or in combination of two or more thereof is used for the color harmony.
  • Co and its compounds CoO standard content of mass percentage display is lppm or more
  • Nd and Co are contained under the conditions of 1) and 2) at the same time, and by coloring blue, diacid
  • An automatic heat-adjusting film, a toning film, and optionally a functional film are installed in any combination on the same side of the glass, or are installed separately on both sides of the glass, or on multiple sheets of glass.
  • the automatic heat-adjusting color-harmonic glass according to any one of (7) and (1)
  • An automatic heat control membrane is one of the following methods: 1) The main component is vanadate oxide V O, or
  • 2 5 is a conductive target obtained by mixing, molding or sintering a vanadium metal into a vanadium oxide having VO (2 ⁇ x ⁇ 2.5) or a mixture thereof, and containing inert gas or oxygen. Sputtering in an inert gas, 2) Compound terse consisting mainly of diacid vanadium VO
  • the get is heated to a temperature above the phase transition temperature, and the conductive target resulting from the phase transition to the metal phase is sputtered in an inert gas or an inert gas containing oxygen.
  • a compound target with vanadium force is RF sputtered and the target temperature is raised above the phase transition temperature.
  • the automatic heat-adjusting color-harmonic glass according to any one of (1) to (7) above, which is formed by a DC (including pulsed DC) magnetron sputtering method by sputtering in an inert gas.
  • At least one of the automatic heat-adjusting film, the color-adjusting film, and the optional functional film uses the thermal environment inside the float bath or annealing furnace on the float glass production line, and the glass surface has a high temperature.
  • the automatic heat-adjusting color-harmonic glass according to any one of (1) to (7), wherein the glass is formed alone or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure.
  • At least one of the automatic heat-adjusting film, the color-adjusting film, and the optional functional film uses the thermal environment of glass strengthening and bending processes, and is at a normal temperature or reduced pressure within a predetermined temperature range.
  • the self-adjusting color-harmonic glass according to any one of (1) to (7), which is formed alone or continuously by a general-purpose thin film forming method.
  • the present invention utilizes a semiconductor's metal phase transition that occurs near 68 ° C in a vanadium diacid-based material, and the property that the phase transition temperature can be set to a suitable temperature near room temperature by adding elements, etc.
  • the ability to transmit solar heat at low temperatures The point of constituting an automatic heat control film for glass that shields excessive solar radiation and radiant heat at high temperatures such as summer, and that can automatically perform these only by changing the environmental temperature. It is a feature.
  • the present invention has a low transmittance, which is a weak point of the conventional vanadium diacid-based thin film.
  • the vanadium dioxide-based automatic heat-adjusting film A, the color-adjusting film B, and the functional film C are coated with a combination of at least two layers of A and B.
  • the inherent color of film A can be arbitrarily adjusted by the combination of toning film B or toning film B and functional film C based on the toning principle, so that the color tone of a given transmitted color can be freely controlled. it can.
  • the vanadium dioxide-based thin film A can be applied to a vanadium dioxide single compound or a known knowledge based on, for example, a metallic element, non-metallic element, or any combination thereof for controlling the transition temperature.
  • SM Babulanam, Tb Eriksson, GA Niklasson and T. uranqvist Solar Energy Matrials, 16 (1987) 347, 2) JP 50-50294, 3) Special Table 2002 516813, etc.
  • the types of additive elements are known. ].
  • the toning film B has transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Hf, Ta, W , Re, Os, Ir, Pr, Au) and Z or their compounds, preferably Co, Mn, Cr, Cu, Ni, Fe, Mo, W, Ag, Au, Ti, which are often used for glass coloring And / or its compound, or rare earth metal (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and Z or its Compound, preferably Nd, Er, Ce, Pr and Z effective for coloring glass or a compound thereof, and further, the above-mentioned additive alone or a composite coloring material
  • the coloring material is a coloring material of glass centered on blue, which is the complementary yellow-brown color of vanadium oxide, for example, cobalt oxide, copper oxide, chromium oxide, oxidation oxide.
  • Kel, manganese oxide, neodymium oxide, erbium oxide, praseodymium oxide, cerium oxide, iron oxide, etc. are suitable for obtaining neutral colors, but as long as various color tones can be obtained by color tone adjustment, It is not limited.
  • the cobalt ion Co 2+ exhibits a blue color by absorption of visible light near 65 Onm, thereby becoming a yellow complementary color of ihivanadium diacid, and is effective in obtaining a neutral color by neutralizing it.
  • the colorant of the toning film B may be an organic or inorganic substance having functions such as a pigment, a phosphor, a dye, and coloring.
  • the colored film B is a single film made of a colored substance.
  • the coloring substance may be applied or dispersed in the transparent substance matrix.
  • a normal transparent or translucent plastic film or a colored film made of resin is affixed to the glass, or two or more plate glasses are bonded with the substance, and the predetermined transparent color. Etc. can be freely controlled.
  • the laminated glass for safety, crime prevention and strengthening purposes can have functions such as automatic heat control, light shielding, and color harmony.
  • a base material such as colored glass by directly adding a coloring substance to a transparent base material such as glass or applying it to a glass base material can also harmonize the color tone of the system. It is one of the simplest and most effective methods, but in order to harmonize the strong inherent yellow color of the diacid-vanadium film, it has a relatively strong tinting strength and sharpness compared to conventional colored glass.
  • a special glass substrate for coloring is required. In order to harmonize the strong intrinsic yellow color of divanadium vanadium-based films near neutral colors by the complementary color principle, a glass substrate that is slightly intensely colored in blue is desired. For example, Nd and its compounds, Co and its compounds, which are used as blue colorants in glass, are suitable.
  • the functional film C can be introduced in a single layer or a plurality of layers into the glass system of the present invention.
  • the functional film C refers to a thin film layer capable of adding functions other than automatic heat adjustment and color harmony to the glass of the present invention.
  • an antireflection film for controlling the transmittance of visible light a structural template film for making the crystal growth of vanadium dioxide thin film advantageous, and a protective film for enhancing the mechanical properties of the system.
  • a protective film for controlling the transmittance of visible light
  • a structural template film for making the crystal growth of vanadium dioxide thin film advantageous
  • a protective film for enhancing the mechanical properties of the system.
  • examples include a protective film, a photocatalytic thin film for providing a self-cleaning effect, a barrier film for preventing the diffusion of impurities of glass power, and a transparent conductive film for enhancing heat reflection characteristics and heat insulation.
  • Substances used to achieve the purpose include oxides, nitrides, oxynitrides, carbides, oxycarbides, carbon (DLC), fluorides, sulfides, and other transparent insulators, dielectrics Body, semiconductor, or any combination thereof.
  • the substrate glass force is also in order, the structural template layer (rutile phase thin film such as TiO, SnO), on the diacid-vanadium layer
  • the glass of the present invention is constituted by vapor-depositing a titanium oxide layer serving as a photocatalyst thereon.
  • colored glass may be used for color tone harmonization, and there is no limitation as long as color tone harmony is possible by mixing a colorant in an arbitrary layer.
  • the vanadium dioxide automatic heat control film is preferably produced by, for example, a sputtering method.
  • DC magnetron sputtering is desirable when manufacturing by sputtering, especially for highly efficient industrial production.
  • a DC magnetron sputtering method in which the composition is more easily controlled and high in efficiency is preferably used.
  • the main components are vanadium oxide (V O) and vanadium metal V (addition source for controlling the transition temperature).
  • a vanadium dioxide self-regulating film By conducting DC magnetron sputtering of a conductive target having a shape or sintered strength in an inert gas or in a mixed gas atmosphere containing a small amount of oxygen, a vanadium dioxide self-regulating film can be produced with high efficiency.
  • the conductivity is weak at room temperature because vanadium dioxide is a semiconductor, but the target is above the phase transition temperature, preferably above 70 ° C.
  • vanadium dioxide is obtained.
  • An automatic heat control film is produced with high efficiency.
  • a compound target whose main component including an additive also has vanadium diacid power is first RF-sputtered, and the surface temperature is increased by ion bombardment caused by plasma generation, so that the target temperature undergoes phase transition.
  • DC magnetron sputtering is performed on the conductive target based on the metal phase in an inert gas or a mixed gas atmosphere containing a small amount of oxygen. Produced.
  • PVD physical vapor deposition methods classified into PVD
  • PVD vacuum vapor deposition
  • One of the general-purpose coating methods such as the thermal decomposition method (Id., Pp. 428-432) and the sol-gel method (Id., Pp. 432-438) classified as spray method and CVD method (including Paiguchi Zoro method)
  • the glass can be coated by a plurality of methods.
  • the problem of difficult substrate heating can be solved by incorporating the film forming process into a heat treatment step indispensable for the formation and processing of conventional plate glass. That is, at least one of the thin film groups of the glass structure of the present invention, such as the automatic heat-adjusting film A, the toning film B, and the functional film C, is a float bath or a slow cooling kiln on the float glass production line.
  • the glass surface temperature is kept at a high temperature of 100 to 700 ° C, and it is formed alone or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure.
  • At least one of the automatic heat-adjusting film A, the color-adjusting film B, and the functional film C which is the same as described above, uses the thermal environment in the heat treatment of the glass strengthening or bending cache process, and the glass surface temperature is 10 In the range of 0 to 750 ° C., it is formed singly or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure.
  • the thermal environment of glass strengthening and bending processes is used. It is formed by heat treatment in the range of 100 to 750 ° C for 5 seconds to 1 hour.
  • the automatic heat-adjusting film A, the color-adjusting film B, and the functional film C are arbitrarily combined and installed on the same side of the glass, or separately on both sides of the glass as necessary, or a plurality of sheets
  • the automatic heat-adjusting color-harmonic light-shielding glass is formed by installing the glass separately, sandwiching it between a plurality of glasses, or adhering a plurality of glasses.
  • the formed glass can be used for the window glass of buildings and moving objects (cars, ships, trains, airplanes, etc.). In particular, they are used as self-adjusting color tone-shading privacy glass, which has a visible light transmittance of 70% or less and excellent light-shielding properties, and at the same time the color tone can be freely adjusted.
  • the formed glass is a window glass of a building or a moving body (car, ship, train, airplane, etc.), in particular, a toning film, a colored film or colored resin, etc.
  • the visible light transmittance is 70% or less and the light shielding property is excellent. It is used as an automatic heat-adjusting color tone-shading laminated glass that can be suitably used for the purpose.
  • (1) comfort is achieved by automatic temperature adjustment, simultaneous reduction of heating and cooling load, color Glass with various functions such as harmony, UV protection, shading, privacy protection, etc., can provide new window glass for buildings, vehicles and other moving objects, and its manufacturing method.
  • a vanadium dioxide type automatic heat control film that allows visible light to always pass through a transparent or translucent substrate such as glass, but mainly allows infrared light to adjust its transmittance automatically in response to changes in ambient temperature.
  • (3) Disadvantage of low visible light transmittance of conventional type divanadium divanadium-based dimmable glass by appropriate combination with toning film, coloring substrate and other functional film Can be turned into effective use as light-shielding glass by the idea of reversal.
  • a general-purpose magnetron sputtering apparatus was used for the production of the thin film.
  • the equipment can be arranged 1) up to 3 force swords, 2) each can be arbitrarily controlled with high frequency power supply or DC power supply, 3)
  • the substrate can be rotated,
  • the plate temperature can be precisely set in the range from room temperature to 800 ° C.
  • TiO and SnO having the same rutile structure as vanadium diacid are structural template thin
  • This structural template film consists of a TiO compound target (diameter 50mm, thickness 5m
  • a vanadium dioxide thin film was continuously formed thereon by the following method.
  • a vanadium dioxide thin film was formed by RF, DC or DC sputtering.
  • the main sputtering conditions are as follows. That is, Bruno Kkugurando vacuum 2 X 10 _6 Pa, argon flow rate 30 sccm, the oxygen flow rate 0 to 3. OOsccm, total pressure 0. of 6 Pa, the substrate temperature 400 to 600. Quartz glass, heat-resistant glass, silicon single crystal, and sapphire single crystal were used as the substrate under the conditions of C, RF power 200 W, or DC voltage 200 to 400 V, current 0.10 to 0.30 A.
  • Vanadium dioxide powder (VO purity 99.5%) and acid-tungsten powder (WO, 99.
  • a vanadium diacid-based thin film was formed, that is, a knock ground vacuum degree of 2 X 10_6 Pa, an argon flow rate of 30 sccm, an oxygen flow rate of 0 to 0.5 sccm, a total pressure of 0.6 Pa, a substrate temperature of 400 to 600 ° C, Sputtered under the condition of RF power 100W, quartz glass, heat-resistant glass, single silicon
  • a vanadium dioxide thin film was formed on single crystal and sapphire single crystal substrates.
  • a stable vanadium dioxide thin film was formed by the reactive sputtering method using a vanadium metal target.
  • RF sputtering there was a drawback that the film formation rate was slow.
  • the diacid vanadium-based compound target does not show much conductivity in the semiconductor phase at room temperature. Therefore, inefficient RF sputtering is necessary.
  • the present inventor succeeded in making the target conductive by the following method so that it can be sputtered even by DC. In other words, RF sputtering is performed only at the beginning, and the temperature force on the target surface rises to above the phase transition temperature of vanadium dioxide, and when it becomes a metal phase, it switches to efficient DC sputtering.
  • a conductive target was formed by the following method, and a vanadium dioxide thin film was formed by DC sputtering. That is, vanadium pentoxide (V O, 99.
  • Vanadium metal (V, 99.9%) is mixed with the powder in a 0.25 molar ratio, and WO is further added.
  • the surface of the structural template and the oxide vanadium thin film formed on the substrate was further coated with a TiO functional film serving as an anti-reflection and photocatalyst with an appropriate thickness.
  • a TiO functional film serving as an anti-reflection and photocatalyst with an appropriate thickness.
  • VO heat control film with a thickness of 50 nm on a quartz glass substrate, visible light transmittance of 58%, chromaticity coordinates
  • Fig. 1 As can be seen from Fig. 1, by using the complementary color principle, the unique strong yellow color of the diacid-vanadium thin film can be arbitrarily changed to a color that matches the exterior of the building or the moving body. I was divided. In particular, it was confirmed that if a near V or complementary color is used for No. 9 (No. 9) blue, a near-neutral color and a transmitted color can be obtained.
  • the strong yellow coloring inherent to the vanadium diacid-based thin film which is the most obstacle to its application, can be changed to any color tone including neutral colors by the complementary color principle. I was able to set it. Although the visible light transmittance is further reduced by the complementary color design, there is no contradiction with the purpose of the present invention, i.e., light-shielding glass or privacy protection glass, etc. It became possible to
  • SI slightly strong blue transmission colored film
  • Figure 2 shows an outline of the structure.
  • the technique of adjusting the color tone with the colored film sandwiched as part of the present invention can be added with safety, crime prevention and the like by combination with laminated glass technology.
  • the film was covered with a blue-transmitted colored film (S2), and the spectral transmittance of the system was measured with a spectrophotometer.
  • the system was set to 20 ° C (VO
  • the optical properties were measured while changing the temperature to 80 ° C (same metal phase) and 2 ° C heat-treating film is a low-temperature semiconductor phase.
  • the system exhibited the following optical color characteristics.
  • Quartz glass (sample 2) coated with a VO-based toning film with a thickness of 70 nm is very strong as described above.
  • the present invention relates to an automatic heat-adjusting color-harmonic light-shielding glass and a method for producing the same.
  • the visible light transmittance is 70% or less, and the light-shielding property is improved.
  • a new ⁇ automatic heat-adjusting color tone-shading glass and manufacturing method that can automatically adjust the infrared transmittance according to the environmental temperature and can freely adjust the color tone of the transmitted color.
  • the present invention uses a vanadium dioxide-based automatic heat control film in which infrared light shows a large change in response to a temperature change on a transparent substrate such as glass.
  • the present invention effectively uses the weakness of the conventional low visible light transmittance of vanadium dioxide by reversing the idea, keeping the visible light transmittance as low as 70% or less, automatic heat control, shading light control, color control Harmony, UV protection, heat insulation, comfortable illumination, privacy protection, etc. It is possible to provide an automatic thermal color-harmonic shading glass having a colorful function and a manufacturing method.
  • the present invention can be expected to be applied to the building industry and other industries as a new energy-saving, healthy, comfortable, and environmentally friendly glass suitable as a glass for moving objects such as buildings and automobiles. .
  • FIG. 1 Shows the results of confirming the effect of color harmonization of diacid-vanadium thin film by complementary color using the complementary color principle.
  • the top row shows the results of color harmony between the RCB12 color seal (S) and the vanadium dioxide membrane with a transmittance of 60%.
  • the lower panel shows the change in the color density of the diacid-vanadium film (No. 9) due to the change in the transmittance of the sheet.
  • FIG. 2 shows an example of the structure of the automatic heat-adjusting color-harmonic shading glass of the present invention.

Abstract

An automatic heat conditioning color tone conditioning light shielding glass, and its production method. Vanadium dioxide based light control glass having a drawback that transmittance of visible light is low is utilized effectively as light shielding glass by reversal in idea, and color tone can be conditioned by employing a unique color tone conditioning method utilizing a principle of complementary color. Window glass of buildings, vehicles and other mobiles, especially, new glass having a plurality of functions such as energy saving, health and comfortableness, privacy protection, and color tone conditioning can be provided, and its production method can also be provided.

Description

自動調熱色調調和遮光ガラス及び製造方法  Automatic thermal color-harmonic shading glass and manufacturing method
技術分野  Technical field
[0001] 本発明は、自動調熱色調調和遮光ガラス及び製造方法に関するものであり、更に 詳しくは、可視光透過率が 70%以下で、遮光性に優れ、環境温度に応じて赤外線 の透過率が自動的に調節でき、更に、透過色など、色調を好みや建築物、移動体の 外装に応じて自由に色調調和できることにより、建築物の窓や自動車など移動体の 窓ガラスとして使用でき、省エネルギー、健康快適、プライバシー保護等の機能を有 し、環境に優しい新規製品としてその応用及び波及が大いに期待される新しい自動 調熱色調調和遮光ガラスを提供するものである。本発明は、これまで実用化に壁が あった二酸ィ匕バナジウム系の調光調熱ガラスを、特に、その基材ガラスが強い固有 の黄色に着色する問題を根本的に解決して、その色調を任意の色調に調和すること が可能な新し!、色調調和機能を有する自動調熱色調調和遮光ガラスを提供するも のである。  TECHNICAL FIELD [0001] The present invention relates to an automatic heat-control color-harmonic light-shielding glass and a manufacturing method. More specifically, the present invention relates to a visible light transmittance of 70% or less, excellent light-shielding properties, and infrared transmittance according to environmental temperature. Can be adjusted automatically, and the color tone such as transparent color can be adjusted freely according to the preference, the building, and the exterior of the moving body, so it can be used as a window glass for moving bodies such as windows of buildings and automobiles. It is a new environmentally friendly new product that is expected to be applied and spread as an environmentally friendly new product with functions such as energy saving, health and comfort, and privacy protection. The present invention fundamentally solves the problem of diacid-vanadium-based dimming and heat-controlling glass that has been difficult to put into practical use, in particular, the problem that the base glass is colored to a strong inherent yellow color. It is a new product that can harmonize the color tone with an arbitrary color tone, and provides an automatic thermal color tone light-shielding glass having a color tone harmony function.
背景技術  Background art
[0002] 従来の調光可能な省エネルギー窓ガラスとして、自動的に調光を行うガラス、例え ば、エレクト口クロミック (EC:電圧の印加により可逆的に着色と消色を繰り返す)ガラ スゃガスクロミック (GC:水素ガスの導入により着色と消色を繰り返す)ガラスが研究さ れている。しかし、それらの窓ガラスは、高い調光能力を持つものの、構造が複雑で あり、また、調光するためには追加の設備 (電圧印加系やガス導入系)が必要である ため、コストが高くなるという欠点があった。  [0002] As an energy-saving window glass that can be dimmed, glass that automatically dims, for example, electochromic (EC: reversibly coloring and decoloring by applying voltage) glass gas Chromic (GC: repeated coloring and decoloring by introduction of hydrogen gas) glass has been studied. However, these windowpanes have high dimming capability, but the structure is complex, and additional equipment (voltage application system and gas introduction system) is required for dimming. There was a drawback of becoming higher.
[0003] 一方、二酸化バナジウム (VO )結晶は、 68°Cで半導体'金属相転移によりサーモ  [0003] On the other hand, vanadium dioxide (VO) crystal is a thermocouple due to the semiconductor 'metal phase transition at 68 ° C.
2  2
クロミック (温度による光特性の可逆的な変ィ匕)特性を示し、また、タングステン (w)な ど金属元素の添加で転移温度を室温好適まで下げることができることが周知となって いる(非特許文献 1、及び特許文献 1、 2)。その光学特性の温度変化を利用して、環 境温度のみで自律的に太陽光を調節できる窓コーティング材料が研究されて 、る ( 非特許文献 1)。二酸ィ匕バナジウム系調光ガラスについては、構造が非常に簡単な 上、環境温度の変化によって自然に且つ自動的に調光を行うため、余分な設備を必 要としない。 It is well known that it exhibits chromic properties (reversible changes in optical properties depending on temperature), and that the transition temperature can be lowered to room temperature by adding metallic elements such as tungsten (w) (non-patented). Reference 1 and Patent References 1 and 2). A window coating material that can adjust solar light autonomously only by the environmental temperature using the temperature change of its optical characteristics has been studied (Non-patent Document 1). For diacid-vanadium dimmable glass, the structure is very simple. In addition, since dimming is performed automatically and automatically according to changes in environmental temperature, no extra equipment is required.
[0004] 二酸ィ匕バナジウムによるサーモク口ミック調光ガラスの研究に関して、例えば、それ らの製造法 (特許文献 3、 4)、サーモク口ミック体及びその製造方法 (特許文献 5)、及 びその他 (特許文献 1, 2, 6、 7)、等により、その製造法や転移温度制御のための元 素添加法などが公開されて 、る。  [0004] Regarding the research on thermochromic light control glasses with vanadium diacid, for example, their production method (Patent Documents 3 and 4), the thermoguchimic body and its production method (Patent Document 5), and Others (Patent Documents 1, 2, 6, 7), etc. disclose the production method and element addition method for controlling the transition temperature.
[0005] しかし、以上のように、従来型の二酸ィ匕バナジウム系サーモク口ミック調光材料では 、(1)もともと、可視光を含め短波長での強い吸収により、可視光透過率が小さいこと 、(2)常温輻射熱に対する反射率が小さぐ断熱性に乏しいこと、(3)バナジウム酸 素系の相図が非常に複雑であり、二酸ィヒバナジウム単一相薄膜の形成が非常に難 しぐ特に、単一相大面積且つ光学的均一被膜の形成が極めて困難であること、(4) 工業生産に適切な二酸ィ匕バナジウム薄膜の形成法、特に、効率の高い DCスパッタ 法による工業生産が確立されていないこと、(5)更に、二酸ィ匕バナジウム系薄膜の固 有吸収による強い黄色に着色する問題があること、などの理由により、実用化には高 い障害があった。  [0005] However, as described above, the conventional diacid-vanadium-based thermochromic dimming material (1) originally has a low visible light transmittance due to strong absorption at short wavelengths including visible light. (2) Low thermal insulation with low reflectivity to room temperature radiant heat, (3) The phase diagram of the vanadium oxide system is very complex, and it is very difficult to form a single-phase thin film of vanadium dioxide. In particular, it is extremely difficult to form a single-phase large-area and optically uniform film. (4) Formation method of vanadium dioxide thin film suitable for industrial production, especially industry using high-efficiency DC sputtering. Due to the fact that production has not been established, and (5) there is a problem of strong yellow coloring due to the solid absorption of vanadium dioxide thin films, there have been high obstacles to practical use. .
[0006] 本発明者は、長年にわたって、二酸ィ匕バナジウム系薄膜による自動調光ガラスの 研究を絶えずに励行してきた結果、以上の問題点のいくつかを解決することができた 。例えば、新しい複層構造を創出することにより、可視光透過率を大きく向上させると 同時に、紫外線完全カット、熱線反射機能の強化、光触媒効果等の複数の機能の追 加による付加価値の高いガラスを開発している(特許文献 8、 9)。また、二酸化バナ ジゥム系薄膜の形成困難性については、構造テンプレート設計により断熱効果を飛 躍的に向上させるとともに、二酸ィ匕バナジウム系調光膜を今までになく低い基板温度 で大面積、且つ光学的均一的に形成する有効な製造方法等を開発している (特許 文献 9)。  [0006] As a result of continual researches on automatic light control glass using a diacid-vanadium thin film for many years, the present inventor has been able to solve some of the above problems. For example, by creating a new multi-layer structure, the visible light transmittance can be greatly improved, and at the same time, high value-added glass can be obtained by adding multiple functions such as full UV cut, enhanced heat ray reflection function, and photocatalytic effect. It has been developed (Patent Documents 8 and 9). In addition, regarding the difficulty of forming vanadium dioxide thin films, the thermal insulation effect is dramatically improved by the structural template design, and the diacid-vanadium dimming films have a large area at a lower substrate temperature than ever before. In addition, an effective manufacturing method for optically uniform formation has been developed (Patent Document 9).
[0007] しかし、これまでの本発明者の発明を含む研究や発明による大きな進歩にもかかわ らず、(1)可視光透過率が低い、(2)二酸ィ匕バナジウム系調光膜の強い黄色、その 消去や色調調和、(3)工業生産にも適切な製造方法、及び (4)最も適切な使い道、 すなわち、製品、などの課題は、依然として解決しておらず、当材料の実用化に大き な障害があった。 [0007] However, in spite of research and inventions including the invention of the present inventors so far, (1) low visible light transmittance, (2) diacid-vanadium dimming film Issues such as strong yellow, its elimination and color harmony, (3) manufacturing method suitable for industrial production, and (4) most appropriate use, ie product, have not been solved yet, and the practical use of this material Large There was a serious obstacle.
[0008] また、自動的ではないが、常に可視光が透過するが赤外線(日射の一部や輻射熱 )を反射する低放射ガラス (Low— Eガラス)、或 ヽは主に日射熱を遮断する熱線反 射ガラスなど、太陽光熱を選択的に制御するガラスがある (非特許文献 2)。このガラ スは、優れた光学特性と比較的に低コストで普及が広がっているが、いずれも、固定 した光学特性で熱線を反射するのみで、冬夏など季節や環境の変化に応じて日射 や熱輻射を調節する機能、すなわち、環境温度に応じて自動的に調光遮熱する機 能はない。  [0008] Although not automatic, low-emission glass (Low-E glass) that always transmits visible light but reflects infrared rays (part of solar radiation and radiant heat), or mainly shields solar heat. There are glasses that selectively control solar heat, such as heat-reflecting glass (Non-patent Document 2). This glass is spreading widely due to its excellent optical properties and relatively low cost. However, all of these glasses only reflect heat rays with fixed optical properties. There is no function to adjust the heat radiation, that is, the function of automatically dimming the heat according to the environmental temperature.
[0009] 近年、冷房負荷を減らすととともに、室内物品の劣化や肌焼け防止、遮光、プライ パシー保護など、省エネで快適さを追求する紫外線カット、赤外線カットガラスが急 増している。例えば、自動車の後部座席など、プライバシー保護を目的とする濃色着 色ガラス、又はプライバシー保護と同時に紫外線や赤外線カット機能を持つガラス、 などが開発されている(特許文献 10〜15)。こういった強い着色のガラスは、紫外線 や赤外線の防止、プライバシー保護などを目的として開発されているが、これまで、 環境温度によって自動的に調熱機能を持つ濃色着色ガラスは見つ力つていない。  [0009] In recent years, there has been a rapid increase in UV-cutting and infrared-cutting glass that pursues energy saving and comfort, such as reducing the cooling load, preventing deterioration of indoor items and preventing skin burn, shading, and protecting privacy. For example, dark-colored glass for the purpose of privacy protection, such as the rear seats of automobiles, or glass having an ultraviolet ray or infrared ray cut function simultaneously with privacy protection has been developed (Patent Documents 10 to 15). These strongly colored glasses have been developed for the purpose of preventing ultraviolet rays and infrared rays, protecting privacy, etc., but until now, dark colored glasses that have a function of automatically adjusting the temperature depending on the environmental temperature have been very attractive. Not.
[0010] また、顕著な太陽光遮蔽特性を有する多層薄膜による被覆ガラスが提案されて!、 る(特許文献 16)。しかし、それは、選択性について、視感透過率が日射取得率 (或 いは、ソーラフアクター)より大きいとして定義し、主に顕著な日射遮蔽特性を求めるも のであり、環境温度による自動調熱機能や多彩な色調調和機能は期待できない。更 に、安全、強化、防犯などを目的とする合わせガラスが市販されている。しかし、そう いった商品にも、環境温度による自動調熱機能を持つものやその発想は全く見当た らない。  [0010] In addition, a coating glass with a multilayer thin film having remarkable sunlight shielding properties has been proposed! (Patent Document 16). However, in terms of selectivity, it is defined that the luminous transmittance is greater than the solar radiation acquisition rate (or Sorough Actor), and it mainly seeks remarkable solar radiation shielding characteristics. Functions and various color harmony functions cannot be expected. In addition, laminated glass for the purpose of safety, strengthening and crime prevention is commercially available. However, there is no such product that has an automatic temperature control function based on the ambient temperature or its idea.
[0011] 特許文献 1 :特開昭 50— 50294号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 50-50294
特許文献 2:特表 2002— 516813号公報  Patent Document 2: Japanese Translation of Special Publication 2002-516813
特許文献 3:特許第 2735147号明細書  Patent Document 3: Patent No. 2735147 Specification
特許文献 4:特許第 2600117号明細書  Patent Document 4: Patent No. 2600117 Specification
特許文献 5 :特開 2000— 137251号公報  Patent Document 5: Japanese Unexamined Patent Publication No. 2000-137251
特許文献 6:特開 2000— 273619号公報 特許文献 7:特開平 8—40749号公報 Patent Document 6: Japanese Unexamined Patent Publication No. 2000-273619 Patent Document 7: JP-A-8-40749
特許文献 8:特開 2004— 004795号公報  Patent Document 8: Japanese Patent Application Laid-Open No. 2004-004795
特許文献 9 :特開 2003— 094551号公報  Patent Document 9: Japanese Unexamined Patent Application Publication No. 2003-094551
特許文献 10 :特開 2004— 115359号公報  Patent Document 10: Japanese Unexamined Patent Application Publication No. 2004-115359
特許文献 11:特開 2003 - 342038号公報  Patent Document 11: Japanese Patent Laid-Open No. 2003-342038
特許文献 12 :特開 2002— 173340号公報  Patent Document 12: Japanese Unexamined Patent Application Publication No. 2002-173340
特許文献 13 :特開 2002— 12451号公報  Patent Document 13: Japanese Unexamined Patent Application Publication No. 2002-12451
特許文献 14 :特開 2001— 64035号公報  Patent Document 14: JP 2001-64035 A
特許文献 15:特開 2001— 322835号公報  Patent Document 15: Japanese Patent Laid-Open No. 2001-322835
特許文献 16:特開 2000 - 119045号公報  Patent Document 16: Japanese Unexamined Patent Publication No. 2000-119045
特干文献 1 : S.M. Babulanam, T.S. Eriksson, G.A. Niklasson and C.G. Granqvist: Solar Energy Matrials, 16(1987)347  Special Reference 1: S.M.Babulanam, T.S.Eriksson, G.A.Niklasson and C.G.Granqvist: Solar Energy Matrials, 16 (1987) 347
非特許文献 2 :二ユーガラスハンドブック、ニューガラスハンドブック編集委員会編、第 449〜452頁、 1991年、丸善  Non-Patent Document 2: Niyu Glass Handbook, New Glass Handbook Editorial Committee, pp. 449-452, 1991, Maruzen
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] このような状況の中で、本発明者は、上記従来技術に鑑みて、上記従来技術の諸 問題を解決して二酸ィ匕バナジウム薄膜の実用化を可能とする新技術を開発すること を目標として、長年にわたって、二酸ィ匕バナジウム調光薄膜に関し、鋭意研究や実 験を行った結果及び窓ガラスに関する知識から、市販建築物や自動車等の遮光や プライバシー保護するための濃色遮光ガラスに鑑み、従来のサーモク口ミック調光ガ ラスの弱点、すなわち、可視光透過率が低いという特徴を優れた遮光特性として発想 を逆転させて利用し、更に、今まで解決されなカゝつた、二酸化バナジウム薄膜の最大 の問題である強い固有の黄色を、補色原理に基づいて着色物質や着色基材を活用 することによって所期の目的を達成できることを見出し、本発明を完成するに至った。  Under such circumstances, the present inventor has developed a new technology that solves the problems of the conventional technology and enables practical application of the vanadium dioxide thin film in view of the conventional technology. For many years, the results of diligent research and experiments and knowledge about window glass on the diacid-vanadium dimming thin film and the knowledge about window glass have been used to concentrate on the protection and privacy of commercial buildings and automobiles. In view of the color shading glass, the weakness of the conventional thermo-chromic dimming glass, that is, the feature of low visible light transmittance, is used by reversing the idea as an excellent shading property, and it has not been solved until now. On the other hand, it was found that the intended purpose of the strong intrinsic yellow color, which is the biggest problem of vanadium dioxide thin films, can be achieved by utilizing coloring substances and coloring base materials based on the complementary color principle. It has been completed.
[0013] すなわち、本発明は、ガラスの色調を自由に調和できるようにしたこと、夏には過剰 の日射熱の遮蔽、冬には日射熱の導入ができること、その機能を環境温度により自 動的に行うことができること、また、好みや環境の外装によって色調が自由に選べるこ と、更に、多数の機能を追加できることを実現する自動調熱色調調和遮光ガラス及び その製造方法を提供することを目的とするものである。また、本発明は、新しい機能 性ガラス、すなわち、自動調熱、色調調和、紫外線カット、断熱、快適照度、プライバ シー保護等の多彩な機能を持ち合わせたガラス、特に、その可視光透過率が 70% 以下と低ぐ建築物、車両その他移動体の窓ガラスに、省エネルギー、健康快適、プ ライパシー保護、色調調和等の機能を付与できる全く新規なガラス製品及びその製 造法を提供することを目的とするものである。 That is, according to the present invention, the color tone of glass can be freely harmonized, excessive solar heat can be shielded in summer, solar heat can be introduced in winter, and its function is automatically controlled by the environmental temperature. Can be selected freely according to preferences and the exterior of the environment. Furthermore, it is an object of the present invention to provide an automatic heat-adjusting color-tone harmonized light-shielding glass and a method for manufacturing the same. In addition, the present invention is a new functional glass, that is, a glass having various functions such as automatic heat control, color harmony, UV protection, heat insulation, comfortable illuminance, and privacy protection. The purpose is to provide a completely new glass product that can provide functions such as energy saving, health and comfort, privacy protection, and color harmony to the window glass of buildings, vehicles, and other moving objects that are less than% and its manufacturing method. It is what.
課題を解決するための手段 Means for solving the problem
上記課題を達成するための本発明は、以下の技術的手段から構成される。  In order to achieve the above object, the present invention comprises the following technical means.
(1)二酸ィ匕バナジウム系自動調熱ガラスにおいて、基材に、二酸ィ匕バナジウム系自 動調熱膜と、調色膜が、被覆されていることを特徴とする自動調熱色調調和ガラス。 (1) An automatic heat-adjusting color tone characterized in that, in a diacid-vanadium-based automatic heat-adjusting glass, a base material is coated with a diacid-vanadium-based automatic heat-adjusting film and a toning film. Harmonic glass.
(2)二酸ィ匕バナジウム系自動調熱ガラスにおいて、基材に、二酸ィ匕バナジウム系自 動調熱膜と、調色膜、及び機能膜が、被覆されていることを特徴とする自動調熱色調 調和ガラス。 (2) The diacid-vanadium-based automatic heat control glass is characterized in that the base material is coated with a diacid-vanadium-based automatic heat-control film, a toning film, and a functional film. Automatic heat tone harmonized glass.
(3)自動調熱膜の固有色が、補色原理に基づき調色膜又は調色膜と機能膜との組 み合わせで任意に調節することにより、所定の色調に制御されている前記(1)又は( 2)に記載の自動調熱色調調和ガラス。  (3) The inherent color of the automatic heat-adjusting film is controlled to a predetermined color tone by arbitrarily adjusting the toned film or a combination of the toning film and the functional film based on the complementary color principle (1) ) Or (2).
(4)自動調熱膜の固有色が、補色原理に基づき基材ガラスを着色することにより、所 定の色調に制御されて 、る前記(1)又は(2)に記載の自動調熱色調調和ガラス。 (4) The automatic heat-adjusting color tone described in (1) or (2) above is controlled to a predetermined color tone by coloring the base glass based on the complementary color principle. Harmonic glass.
(5)自動調熱膜の固有色が、補色原理に基づき着色フィルムを基材ガラスに貼る又 は 2枚以上の板ガラスで挟む、又は着色樹脂で 2枚以上のガラスを接着することによ り、所定の色調に制御されている前記(1)又は(2)に記載の自動調熱色調調和ガラ ス。 (5) The intrinsic color of the self-adjusting film is determined by sticking a colored film to the base glass based on the complementary color principle, sandwiching it between two or more plate glasses, or bonding two or more glasses with a colored resin. The automatic thermal color tone harmony glass according to the above (1) or (2), which is controlled to a predetermined color tone.
(6)自動調熱膜の固有色が、補色原理に基づき着色材を基材ガラスに塗布すること により、所定の色調に制御されている前記(1)又は(2)に記載の自動調熱色調調和 ガラス。  (6) The automatic heat control film according to (1) or (2), wherein the intrinsic color of the automatic heat control film is controlled to a predetermined color tone by applying a coloring material to the base glass based on the complementary color principle. Color harmony glass.
(7)二酸化バナジウム系自動調熱ガラスにぉ 、て、二酸化バナジウム系自動調熱材 料と、調色材料、及び任意に機能材料が、プラスチックや合成樹脂フィルムに塗布又 は分散されて、自動調熱材料の固有色が、補色原理に基づき上記調色材料によつ て、所定の色調に制御されていることを特徴とする自動調熱色調調和フィルム又はそ のフィルムを使用した自動調熱色調調和ガラス。 (7) A vanadium dioxide-based automatic heat control glass is coated with a vanadium dioxide-based automatic heat control material, a color-adjusting material, and optionally a functional material applied to a plastic or synthetic resin film. Are distributed, and the inherent color of the automatic heat-adjusting material is controlled to a predetermined color tone by the above-mentioned color-adjusting material based on the complementary color principle, or an automatic heat-adjusting color-harmonic film or film thereof Automatic heat-adjusting color harmony glass.
(8)建築物、又は移動体の窓ガラス用のガラスである前記(1)から(7)のいずれかに 記載の自動調熱色調調和ガラス。  (8) The automatic heat-adjusting color-harmonic glass according to any one of (1) to (7), which is a glass for a window glass of a building or a moving body.
(9)可視光透過率が 70%以下で、遮光性に優れ、同時に色調が調節された自動調 熱色調調和遮光プライバシーガラスである前記(1)から(8)の 、ずれかに記載の自 動調熱色調調和ガラス。  (9) The self-regulating light according to any one of (1) to (8) above, wherein the visible light transmittance is 70% or less, excellent in light-shielding properties, and at the same time, is an automatic thermal color harmony light-shielding privacy glass in which the color tone is adjusted. Dynamic tone color tone harmony glass.
(10)調色膜が、着色機能を持つ遷移金属及び Z又はその化合物、希土金属及び Z又はその化合物、又は上記物質の単独或いは 2種以上を任意に組み合わせた複 合体力もなる膜である前記(1)力も (7)の 、ずれかに記載の自動調熱色調調和ガラ ス。  (10) The toning film is a film that also has a complexing power of a transition metal having a coloring function and Z or a compound thereof, a rare earth metal and Z or a compound thereof, or any combination of the above substances. The automatic heat-tone color harmony glass according to any one of the above (1) force and (7).
(11)調色膜が、着色機能を持つ遷移金属及び Z又はその化合物、希土金属及び (11) The toning film is a transition metal having a coloring function and Z or a compound thereof, a rare earth metal and
Z又はその化合物、又は上記物質の単独或いは 2種以上を任意に組み合わせた複 合体を、透明物質マトリックスに塗布又は分散させて形成された前記(1)力も (7)の V、ずれかに記載の自動調熱色調調和ガラス。 The above (1) force formed by applying or dispersing Z or a compound thereof, or a combination of the above substances alone or in any combination of two or more kinds on a transparent substance matrix is also described in V of (7). Automatic heat tone color harmony glass.
(12)調色膜の着色材が、着色機能を持つ無機物質、又は有機物質、又は無機物質 と有機物質の混合物、又はそれらの分散系である前記(1)力も (7)の 、ずれかに記 載の自動調熱色調調和ガラス。  (12) The coloring material of the toning film is an inorganic substance having a coloring function, an organic substance, a mixture of an inorganic substance and an organic substance, or a dispersion thereof. Automatic thermal color-harmonic glass described in 1.
(13)透明物質マトリックスが、ルチル結晶構造を有する結晶物質の単独又は 2種以 上の任意的組み合わせ力 なる前記(11)に記載の自動調熱色調調和ガラス。 (13) The self-adjusting color-tone glass according to (11), wherein the transparent material matrix is a crystalline material having a rutile crystal structure, or a combination of two or more kinds.
(14)透明物質マトリックスが、ルチル結晶構造以外の酸化物、窒化物、フッ化物、硫 化物等透明誘電体物質又は透明導電体物質の単独又は 2種以上の任意的組み合 わせからなる前記(11)に記載の自動調熱色調調和遮光ガラス。 (14) The transparent material matrix is composed of a transparent dielectric material such as oxides, nitrides, fluorides, and sulfides other than the rutile crystal structure, or a transparent conductive material alone or in any combination of two or more thereof ( The self-adjusting color tone-shading glass described in 11).
(15)透明物質マトリックスが、透明ないし透光性プラスチックフィルム、合成樹脂又は そのフィルムである前記(11)に記載の自動調熱色調調和ガラス。  (15) The self-adjusting color-tone glass according to (11), wherein the transparent material matrix is a transparent or translucent plastic film, a synthetic resin, or a film thereof.
(16)着色フィルムや着色榭脂を、 2枚以上の板ガラスで挟む、又は 2枚以上のガラス を接着することにより、可視光透過率を 70%以下に低く抑えて、適切な照度とプライ パシー保護ガラスとした前記(9)に記載の自動調熱色調調和ガラス。 (16) By sandwiching a colored film or colored resin between two or more sheet glasses or bonding two or more sheets of glass, the visible light transmittance can be kept low to 70% or less, and appropriate illuminance and The automatic heat-adjusting color-harmonic glass as described in (9) above, which is a passy protective glass.
(17)色調調和のために、 自動調熱膜に、遷移金属及び Z又はその化合物、希土金 属及び Z又はその化合物、又は上記物質の単独或いは 2種以上を任意に組み合わ せた複合体が添加された前記(1)から(7)の 、ずれかに記載の自動調熱色調調和 ガラス。  (17) In order to harmonize the color tone, a self-adjusting film and a transition metal and Z or a compound thereof, a rare earth metal and Z or a compound thereof, or a composite of any of the above substances, or any combination thereof The automatic heat-adjusting color-harmonic glass according to any one of the above (1) to (7), to which is added.
(18)色調調和のために、基材ガラスに、着色機能を持つ遷移金属及び Z又はその 化合物、希土金属及び Z又はその化合物、又は上記物質の単独或いは 2種以上を 任意に組み合わせた複合体を混入して、二酸ィ匕バナジウム系膜の強い固有色を色 調調和できるように着色された前記( 1)から(7)の 、ずれかに記載の自動調熱色調 調和ガラス。  (18) In order to harmonize the color tone, a transition glass having a coloring function and Z or a compound thereof, a rare earth metal and Z or a compound thereof, or a combination of any of the above substances alone or in combination of two or more thereof is used for the color harmony. The self-adjusting and color-adjusting glass according to any one of (1) to (7), wherein the body is mixed so that the strong intrinsic color of the diacid-vanadium-based film can be adjusted in color.
(19)色調調和のために、基材ガラスに、着色機能を持つ次の着色物質:l) Nd及び その化合物、その質量百分率表示の Nd O基準含有量が 0. 1%以上であること、 2  (19) In order to harmonize the color tone, the following colored substances having a coloring function are added to the base glass: l) Nd and its compounds, and the NdO reference content in mass percentage display is 0.1% or more, 2
2 3  twenty three
) Co及びその化合物、その質量百分率表示の CoO基準含有量が lppm以上である こと、 3) Nd及び Coを 1)と 2)の条件で同時に含有すること、により青色着色すること により、二酸ィ匕バナジウム系膜の強い固有の黄色が中性色の近くに調和された前記 (1)から(7)の 、ずれかに記載の自動調熱色調調和ガラス。  ) Co and its compounds, CoO standard content of mass percentage display is lppm or more, 3) Nd and Co are contained under the conditions of 1) and 2) at the same time, and by coloring blue, diacid The self-adjusting color-tone glass according to any one of (1) to (7), wherein the strong intrinsic yellow color of the vanadium film is harmonized near a neutral color.
(20)自動調熱膜、調色膜、及び任意に機能膜が、任意に組み合わせてガラスの同 一側に設置された、又はガラスの両側に分けて設置された、又は複数枚のガラスに 分離して設置された前記(1)力も (7)の 、ずれかに記載の自動調熱色調調和ガラス  (20) An automatic heat-adjusting film, a toning film, and optionally a functional film are installed in any combination on the same side of the glass, or are installed separately on both sides of the glass, or on multiple sheets of glass. The automatic heat-adjusting color-harmonic glass according to any one of (7) and (1)
(21)自動調熱膜が、次のいずれかの方法、 1)主成分がバナジウム酸ィ匕物 V O、又 (21) An automatic heat control membrane is one of the following methods: 1) The main component is vanadate oxide V O, or
2 5 は糸且成が VO (2<x< 2.5)を有するバナジウム酸ィ匕物、又はその混合物に、バナジ ゥム金属を混合、成形又は焼結した導電性ターゲットを不活性ガス又は酸素含有不 活性ガス中でスパッタする、 2)主成分が二酸ィ匕バナジウム VOカゝらなる化合物ター  2 5 is a conductive target obtained by mixing, molding or sintering a vanadium metal into a vanadium oxide having VO (2 <x <2.5) or a mixture thereof, and containing inert gas or oxygen. Sputtering in an inert gas, 2) Compound terse consisting mainly of diacid vanadium VO
2  2
ゲットを相転移温度以上に加熱し、金属相への相転移による導電性ターゲットを不活 性ガス又は酸素含有不活性ガス中でスパッタする、 3)自動調熱膜は、主成分が二酸 化バナジウム力 なる化合物ターゲットを RFスパッタさせ、ターゲットの温度が相転移 温度以上に上昇させてから、金属相による導電性ターゲットを不活性ガス又は酸素 含有不活性ガス中でスパッタする、による DC (パルス DCを含む)マグネトロンスパッ タ法により形成されて 、る前記(1)から(7)の 、ずれかに記載の自動調熱色調調和 ガラス。 The get is heated to a temperature above the phase transition temperature, and the conductive target resulting from the phase transition to the metal phase is sputtered in an inert gas or an inert gas containing oxygen. A compound target with vanadium force is RF sputtered and the target temperature is raised above the phase transition temperature. The automatic heat-adjusting color-harmonic glass according to any one of (1) to (7) above, which is formed by a DC (including pulsed DC) magnetron sputtering method by sputtering in an inert gas.
(22)ターゲットが、転移温度降下のための微量元素の添加を含む前記(21)に記載 の自動調熱色調調和ガラス。  (22) The self-adjusting color-tone glass according to (21), wherein the target includes addition of a trace element for lowering the transition temperature.
(23)自動調熱膜、調色膜、及び任意の機能膜の少なくとも一つ以上が、フロートガ ラス製造ライン上におけるフロートバス又は徐冷窯の内部の熱環境を利用し、ガラス 表面が高温のまま、常圧又は減圧で汎用薄膜形成法により、単独又は連続に形成さ れて 、る前記(1)から(7)の 、ずれかに記載の自動調熱色調調和ガラス。  (23) At least one of the automatic heat-adjusting film, the color-adjusting film, and the optional functional film uses the thermal environment inside the float bath or annealing furnace on the float glass production line, and the glass surface has a high temperature. The automatic heat-adjusting color-harmonic glass according to any one of (1) to (7), wherein the glass is formed alone or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure.
(24)自動調熱膜、調色膜、及び任意の機能膜の少なくとも一つ以上が、ガラスの強 化や曲げ加工プロセスの熱環境を利用し、所定の温度範囲で、常圧又は減圧で汎 用薄膜形成法により単独又は連続に形成されて ヽる前記(1)から(7)の ヽずれかに 記載の自動調熱色調調和ガラス。  (24) At least one of the automatic heat-adjusting film, the color-adjusting film, and the optional functional film uses the thermal environment of glass strengthening and bending processes, and is at a normal temperature or reduced pressure within a predetermined temperature range. The self-adjusting color-harmonic glass according to any one of (1) to (7), which is formed alone or continuously by a general-purpose thin film forming method.
(25)自動調熱膜、調色膜、及び任意の機能膜の少なくとも一つ以上が、汎用薄膜 形成法により室温を含む低温で形成した後、ガラスの強化や曲げ加工プロセスの熱 環境を利用し、所定の温度範囲で、熱処理によって形成されている前記(1)から(7) の!、ずれかに記載の自動調熱色調調和ガラス。  (25) After at least one of the automatic heat-adjusting film, toning film, and optional functional film is formed at a low temperature including room temperature by a general-purpose thin film formation method, use the thermal environment of glass strengthening and bending processes And (1) to (7) formed by heat treatment in a predetermined temperature range! The self-adjusting color tone harmony glass described in any of the above.
次に、本発明について更に詳細に説明する。  Next, the present invention will be described in more detail.
本発明は、二酸ィ匕バナジウム系物質の 68°C付近に発生する半導体'金属相転移、 及びその相転移温度が元素添加等によって室温付近好適温度に設定できる特性を 利用し、冬などの低温時に日射熱を透過させる力 夏などの高温時に過剰の日射や 輻射熱を遮蔽する、また、これらを環境温度の変化だけで自動的に行うことのできる ガラスの自動調熱膜を構成した点を特徴とするものである。また、本発明は、従来の 二酸ィ匕バナジウム系薄膜の弱点である透過率が低 、ことを、逆転の発想により可視 光透過率が 70%以下で、遮光を目的とする多機能ガラスに転じたこと、また、積極的 に着色材料を利用し、補色原理を使って、中性又は目的に応じて色調を自由に調和 できること、それによつて、遮光性を更に向上すると同時に、従来の二酸化バナジゥ ムが強い固有の黄色を呈するという大きな問題点を解決したこと、に特徴を有するも のである。 The present invention utilizes a semiconductor's metal phase transition that occurs near 68 ° C in a vanadium diacid-based material, and the property that the phase transition temperature can be set to a suitable temperature near room temperature by adding elements, etc. The ability to transmit solar heat at low temperatures The point of constituting an automatic heat control film for glass that shields excessive solar radiation and radiant heat at high temperatures such as summer, and that can automatically perform these only by changing the environmental temperature. It is a feature. In addition, the present invention has a low transmittance, which is a weak point of the conventional vanadium diacid-based thin film. In addition, it is possible to freely adjust the color tone according to the neutrality or purpose by using the coloring material positively and using the complementary color principle. It has the feature of solving the big problem of vanadium exhibiting a strong inherent yellow color. It is.
[0016] 本発明では、二酸化バナジウム系自動調熱膜 Aと、調色膜 B、機能膜 Cを、少なくと も Aと Bの 2層以上組み合わせで被覆し、系の色調は、自動調熱膜 Aの固有色を、調 色原理に基づき調色膜 B又は調色膜 Bと機能膜 Cとの組み合わせで任意に調節し、 所定の透過色等色調を自由に制御できるようにすることができる。二酸化バナジウム 系薄膜 Aには、二酸化バナジウム単一化合物、又は周知の知識により、例えば、転 移温度制御のための金属元素、非金属元素、又はその任意の組み合わせによるも の力 3 れ 0 [1) S.M. Babulanam, T.b. Eriksson, G.A. Niklasson andし. t^. uranqvis t: Solar Energy Matrials, 16(1987)347、 2)特開昭 50— 50294号公報、 3)特表 2002 516813号公報、等により添加元素の種類など知られている。 ]。  [0016] In the present invention, the vanadium dioxide-based automatic heat-adjusting film A, the color-adjusting film B, and the functional film C are coated with a combination of at least two layers of A and B. The inherent color of film A can be arbitrarily adjusted by the combination of toning film B or toning film B and functional film C based on the toning principle, so that the color tone of a given transmitted color can be freely controlled. it can. The vanadium dioxide-based thin film A can be applied to a vanadium dioxide single compound or a known knowledge based on, for example, a metallic element, non-metallic element, or any combination thereof for controlling the transition temperature. ) SM Babulanam, Tb Eriksson, GA Niklasson and T. uranqvist: Solar Energy Matrials, 16 (1987) 347, 2) JP 50-50294, 3) Special Table 2002 516813, etc. The types of additive elements are known. ].
[0017] 本発明で最も重要なポイントの一つは、二酸ィ匕バナジウム系薄膜の系に、色調調 和のための調色材料又は調色膜を導入することである。すなわち、調色膜 Bには、遷 移金属(Ti、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Zr、 Nb、 Mo、 Tc、 Ru、 Rh、 Pd、 Ag、 Hf、 Ta、 W、 Re、 Os、 Ir、 Pr、 Au)及び Z又はその化合物、好適には、ガラスの着 色によく使われる Co、 Mn、 Cr、 Cu、 Ni、 Fe、 Mo、 W、 Ag、 Au、 Ti及び/又はその ィ匕合物、又は希土金属(Sc、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er 、 Tm、 Yb、 Lu)及び Z又はその化合物、好適には、ガラスの着色に有効な Nd、 Er 、 Ce、 Pr及び Z又はその化合物、更に、上述の添加物の単独、或いは 2種以上を任 意に組み合わせた複合着色物質を含むことができる。  One of the most important points in the present invention is to introduce a color-adjusting material or color-adjusting film for color-tone adjustment into a diacid-vanadium-based thin film system. That is, the toning film B has transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Hf, Ta, W , Re, Os, Ir, Pr, Au) and Z or their compounds, preferably Co, Mn, Cr, Cu, Ni, Fe, Mo, W, Ag, Au, Ti, which are often used for glass coloring And / or its compound, or rare earth metal (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and Z or its Compound, preferably Nd, Er, Ce, Pr and Z effective for coloring glass or a compound thereof, and further, the above-mentioned additive alone or a composite coloring material arbitrarily combining two or more kinds. Can do.
[0018] 調色膜 Bには、着色物質が、酸化バナジウムの本来の黄褐色の補色である青系を 中心とするガラスの着色物質、例えば、酸化コバルト、酸化銅、酸化クロム、酸化-ッ ケル、酸化マンガン、酸化ネオジゥム、酸化エルビウム、酸化プラセォジゥム、酸化セ リウム、酸ィ匕鉄などが、中性色を得るのに好適であるが、色調調節により多彩の色調 が得られる限り、それらに制限されるものではない。特に、コバルトイオン Co2+が、 65 Onm付近の可視光吸収により青色を呈することで、二酸ィヒバナジウムの黄色の補色 となり、それを中和することにより中性色を得るのに有効である。 [0018] In the toning film B, the coloring material is a coloring material of glass centered on blue, which is the complementary yellow-brown color of vanadium oxide, for example, cobalt oxide, copper oxide, chromium oxide, oxidation oxide. Kel, manganese oxide, neodymium oxide, erbium oxide, praseodymium oxide, cerium oxide, iron oxide, etc. are suitable for obtaining neutral colors, but as long as various color tones can be obtained by color tone adjustment, It is not limited. In particular, the cobalt ion Co 2+ exhibits a blue color by absorption of visible light near 65 Onm, thereby becoming a yellow complementary color of ihivanadium diacid, and is effective in obtaining a neutral color by neutralizing it.
[0019] また、本発明では、調色膜 Bの着色材は、色素、蛍光体、染料、着色等の機能を持 つ有機又は無機物質であってもよい。また、着色膜 Bには、着色物質による単独の膜 以外に、着色物質を透明物質マトリックスに塗布又は分散させてもよい。例えば、色 調調節のために、通常の透明や透光性プラスチックフィルムゃ榭脂からなる着色フィ ルムをガラスに貼る、又はその物質で 2枚以上の板ガラスを接着するなど、所定の透 過色等の色調を自由に制御することが可能である。その場合、合わせガラスの製造 プロセスと一致させるために、安全、防犯や強化など目的とする合せガラスに、自動 調熱、遮光、色調調和等の機能を持ち合わせるようにすることができる。 [0019] In the present invention, the colorant of the toning film B may be an organic or inorganic substance having functions such as a pigment, a phosphor, a dye, and coloring. In addition, the colored film B is a single film made of a colored substance. In addition, the coloring substance may be applied or dispersed in the transparent substance matrix. For example, in order to adjust the color tone, a normal transparent or translucent plastic film or a colored film made of resin is affixed to the glass, or two or more plate glasses are bonded with the substance, and the predetermined transparent color. Etc. can be freely controlled. In that case, in order to match the laminated glass manufacturing process, the laminated glass for safety, crime prevention and strengthening purposes can have functions such as automatic heat control, light shielding, and color harmony.
[0020] 着色物質を直接にガラス等透明基材に添加すること、或いはガラス基材に塗布す ることによる着色ガラス等の基材の使用も、系の色調を調和できる。それは、最も簡単 で有効な方法の一つであるが、二酸ィ匕バナジウム系膜の強い固有の黄色を調和す るために、従来の着色ガラスと比べ、比較的に強く着色力と鮮明な着色の特殊なガラ ス基材が要求される。二酸ィ匕バナジウム系膜の強い固有の黄色を補色原理により中 性色近くに色調調和するためには、やや強く青色に着色したガラス基材が望ま 、。 例えば、ガラスに青色着色剤として使われている Nd及びその化合物、 Co及びその 化合物が好適である。 [0020] The use of a base material such as colored glass by directly adding a coloring substance to a transparent base material such as glass or applying it to a glass base material can also harmonize the color tone of the system. It is one of the simplest and most effective methods, but in order to harmonize the strong inherent yellow color of the diacid-vanadium film, it has a relatively strong tinting strength and sharpness compared to conventional colored glass. A special glass substrate for coloring is required. In order to harmonize the strong intrinsic yellow color of divanadium vanadium-based films near neutral colors by the complementary color principle, a glass substrate that is slightly intensely colored in blue is desired. For example, Nd and its compounds, Co and its compounds, which are used as blue colorants in glass, are suitable.
[0021] 従来、 Nd及びその化合物、 Co及びその化合物による淡青色板ガラス (特開 2004  [0021] Conventionally, light blue plate glass made of Nd and its compound, Co and its compound
115359号公報 (Nd)、特開 2000— 143283号公報 (Co) )があるが、淡青色を得 るために、その添加量が少量 (質量百分率: Nd O、 0. 1%以下、 CoO、 lppm以下  No. 115359 (Nd) and JP 2000-143283 (Co)), but in order to obtain a light blue color, the amount added is small (mass percentage: NdO, 0.1% or less, CoO, lppm or less
2 3  twenty three
)に限定されている。従って、二酸ィ匕バナジウム系膜の強い固有の黄色を補色原理 により中性色近くに色調調和するためには、やや強い青色着色ガラス基材が望ましく 、その添加元素及び量を、質量百分率で Nd O、 0. 1%以上、 CoO、 lppm以上、  ). Therefore, in order to harmonize the strong intrinsic yellow color of the diacid-vanadium-based film close to the neutral color by the complementary color principle, a slightly strong blue-colored glass substrate is desirable, and its additive elements and amounts are expressed in mass percentages. Nd O, 0.1% or more, CoO, lppm or more,
2 3  twenty three
と限定することが好ましい。  It is preferable to limit.
[0022] 以上の色調調和の方法を!、くつか例示したが、二酸化バナジウム自動調熱膜の固 有の色を、調色原理に基づき調色材料の使用によって、所定の透過色など色調が制 御できる限り、それらの例に限られるものではない。また、本発明のガラスの系には、 更に、機能膜 Cを単層又は複数層で導入することができる。機能性膜 Cとは、本発明 のガラスに、自動調熱や色調調和以外の機能の追加ができる薄膜層を指す。例えば 、可視光透過率反射率制御のための反射防止膜、二酸ィ匕バナジウム薄膜の結晶成 長を有利にするための構造テンプレート膜、系の機械的特性等を強化するための保 護膜、セルフクリーニング効果などを持たせるための光触媒薄膜、ガラス力 の不純 物の拡散を防ぐためのバリア膜、及び熱反射特性や断熱性を強化するための透明 導電性膜などが挙げられる。 [0022] Although the above-mentioned methods of color tone harmony have been exemplified, some of the unique colors of the vanadium dioxide automatic heat-adjusting film have a color tone such as a predetermined transmission color by using a toning material based on the toning principle. It is not limited to these examples as long as it can be controlled. Further, the functional film C can be introduced in a single layer or a plurality of layers into the glass system of the present invention. The functional film C refers to a thin film layer capable of adding functions other than automatic heat adjustment and color harmony to the glass of the present invention. For example, an antireflection film for controlling the transmittance of visible light, a structural template film for making the crystal growth of vanadium dioxide thin film advantageous, and a protective film for enhancing the mechanical properties of the system. Examples include a protective film, a photocatalytic thin film for providing a self-cleaning effect, a barrier film for preventing the diffusion of impurities of glass power, and a transparent conductive film for enhancing heat reflection characteristics and heat insulation.
[0023] その目的を達成するために使う物質群が、酸化物、窒化物、酸窒化物、炭化物、酸 炭化物、炭素 (DLC)、フッ化物、硫ィ匕物等力 なる透明絶縁体、誘電体、半導体、 或いはその任意的組み合わせたものがよい。例えば、基材ガラス力も順番に、構造 テンプレート層(TiO、 SnO等のルチル相の薄膜)、その上に二酸ィ匕バナジウム層  [0023] Substances used to achieve the purpose include oxides, nitrides, oxynitrides, carbides, oxycarbides, carbon (DLC), fluorides, sulfides, and other transparent insulators, dielectrics Body, semiconductor, or any combination thereof. For example, the substrate glass force is also in order, the structural template layer (rutile phase thin film such as TiO, SnO), on the diacid-vanadium layer
2 2  twenty two
、更に、その上に光触媒となる酸ィ匕チタン層を蒸着することにより本発明のガラスを構 成する例が挙げられる。本発明では、色調調和のために着色ガラスを使ってもよぐ また、着色剤を任意の層に混入してもよぐ色調調和である限り制限されるものでは ない。  Furthermore, there is an example in which the glass of the present invention is constituted by vapor-depositing a titanium oxide layer serving as a photocatalyst thereon. In the present invention, colored glass may be used for color tone harmonization, and there is no limitation as long as color tone harmony is possible by mixing a colorant in an arbitrary layer.
[0024] 二酸化バナジウム自動調熱膜は、好適には、例えば、スパッタ法によって作製され る。スパッタ法により作製する場合、特に、効率の高い工業生産の場合、 DCマグネト ロンスパッタ法が望ましい。従来、バナジウム金属を酸素含む雰囲気に DCマグネトロ ン反応性スパッタすることが知られている力 化学量論的に VO結晶質膜を得るため  [0024] The vanadium dioxide automatic heat control film is preferably produced by, for example, a sputtering method. DC magnetron sputtering is desirable when manufacturing by sputtering, especially for highly efficient industrial production. Conventionally known to perform DC magnetron reactive sputtering in an atmosphere containing vanadium metal in oxygen. To obtain a VO crystalline film stoichiometrically.
2  2
、プロセスの制御が非常に難しい。化学量論的に VOに近い組成を得るためには、  The process control is very difficult. To obtain a stoichiometric composition close to VO,
2  2
VO化合物ターゲットをスパッタすればよいが、従来、酸化物のスパッタは効率が悪 Sputtering of VO compound target is necessary, but conventionally, sputtering of oxide is inefficient.
2 2
ぐ更に、 VO化合物は常温では導電性が弱く RFスパッタし力使えないため、成膜  Furthermore, since VO compounds are weakly conductive at room temperature and cannot be used by RF sputtering,
2  2
速度が更に小さくなる。従って、本発明では、より組成が制御しやすぐなおかつ効率 の高い DCマグネトロンスパッタする方法が好適に使用される。  The speed is further reduced. Therefore, in the present invention, a DC magnetron sputtering method in which the composition is more easily controlled and high in efficiency is preferably used.
[0025] すなわち、従来の導電性の悪い二酸ィ匕バナジウム化合物ターゲットに替えて、主成 分がバナジウム酸ィ匕物 (V O )とバナジウム金属 V (転移温度制御のための添加元 That is, instead of the conventional diacid-vanadium compound target with poor conductivity, the main components are vanadium oxide (V O) and vanadium metal V (addition source for controlling the transition temperature).
2 5  twenty five
素を含む)となる化学量論的に VOに近い導電性粉末の混合物、又はそのプレス成  A mixture of conductive powders that are stoichiometrically close to VO
2  2
形体又は焼結体力 なる導電性ターゲットを、不活性ガス中、或いは少量の酸素を 含む混合ガス雰囲気中で DCマグネトロンスパッタすることによって、二酸化バナジゥ ム自動調熱膜が高効率で作製される。また、添加物を含む主成分が二酸化バナジゥ ムカ なる化合物ターゲットを使用する場合、常温では二酸化バナジウムが半導体で あるため導電性が弱いが、そのターゲットを相転移温度以上、好適には 70°C以上に 加熱することで、金属相へ相転移することにより形成される導電性ターゲットを、不活 性ガス中、或いは少量の酸素を含む混合ガス雰囲気中で DCマグネトロンスパッタす ること〖こよって、二酸化バナジウム自動調熱膜が高効率で作製される。 By conducting DC magnetron sputtering of a conductive target having a shape or sintered strength in an inert gas or in a mixed gas atmosphere containing a small amount of oxygen, a vanadium dioxide self-regulating film can be produced with high efficiency. In addition, when using a compound target whose main component including the additive is vanadium dioxide, the conductivity is weak at room temperature because vanadium dioxide is a semiconductor, but the target is above the phase transition temperature, preferably above 70 ° C. In By conducting DC magnetron sputtering of a conductive target formed by phase transition to a metal phase by heating in an inert gas or a mixed gas atmosphere containing a small amount of oxygen, vanadium dioxide is obtained. An automatic heat control film is produced with high efficiency.
[0026] また、添加物を含む主成分が二酸ィ匕バナジウム力もなる化合物ターゲットを、まず、 RFスパッタさせ、プラズマ発生によるイオン衝撃により、表面温度を上昇させ、ターゲ ットの温度を相転移温度以上に上昇させてから、金属相による導電性ターゲットを不 活性ガス中、或いは少量の酸素を含む混合ガス雰囲気中で DCマグネトロンスパッタ すること〖こよって、二酸化バナジウム自動調熱膜が高効率で作製される。  [0026] In addition, a compound target whose main component including an additive also has vanadium diacid power is first RF-sputtered, and the surface temperature is increased by ion bombardment caused by plasma generation, so that the target temperature undergoes phase transition. After raising the temperature above the temperature, DC magnetron sputtering is performed on the conductive target based on the metal phase in an inert gas or a mixed gas atmosphere containing a small amount of oxygen. Produced.
[0027] 以上、スパッタ法について説明した力 スパッタ法以外にも、例えば、真空蒸着など PVDに分類される物理蒸着法 (例えば、朝倉書店発行、「ガラス工学ノヽンドブック」第 423— 428頁)、スプレー法や CVD法 (パイ口ゾロ法含む)に分類される熱分解法( 同上、第 428— 432頁)、及びゾルゲル法(同上、第 432— 438頁)など、汎用被膜 法の一つ又は複数の手法で当該ガラスを被膜できることはいうまでもない。本発明の ガラスへの薄膜形成、特に、二酸ィ匕バナジウム調熱膜の形成には、通常、基板を 10 0〜700°Cに加熱することが不可欠である。工業生産には、わざわざ基板を加熱して 被膜することは設備やコストの問題点から、通常、望ましくない。  [0027] In addition to the force sputtering method described above, for example, physical vapor deposition methods classified into PVD such as vacuum vapor deposition (for example, published by Asakura Shoten, "Glass Engineering Nord Book" pages 423-428), One of the general-purpose coating methods such as the thermal decomposition method (Id., Pp. 428-432) and the sol-gel method (Id., Pp. 432-438) classified as spray method and CVD method (including Paiguchi Zoro method) Needless to say, the glass can be coated by a plurality of methods. In order to form a thin film on the glass of the present invention, in particular, to form a vanadium dioxide heat-regulating film, it is usually essential to heat the substrate to 100 to 700 ° C. For industrial production, it is usually not desirable to coat the substrate by heating it because of equipment and cost issues.
[0028] しかし、フロートガラス製造ライン上における熱処理プロセスの熱環境をそのまま利 用する、いわゆるオンラインスプレー法やオンライン CVD法 (朝倉書店発行、「ガラス 工学ノヽンドブック」第 428— 432頁)などが開発されている。従来、これらの手法は、 元素をドープした酸化スズなどの透明導電体膜、 TiO膜、 SiO膜などの生産にオン  [0028] However, the so-called on-line spray method and on-line CVD method (published by Asakura Shoten, “Glass Engineering Nord Book”, pages 428-432), which use the thermal environment of the heat treatment process on the float glass production line as is, have been developed. Has been. Conventionally, these methods have been used to produce transparent conductor films such as tin oxide doped with elements, TiO films, and SiO films.
2 2  twenty two
ラインコーティングの手法として使われている力 近年、 VO薄膜の形成法としても報  Power used as a method of line coating In recent years, it has also been reported as a method for forming VO thin films.
2  2
告されている〔例えば、 l) Troy D. Manning, Ivan P. Parkin: Polyhedron, 23 (2004) 3 087—3095、 2) D. Vernardou, M.E.Pemble, D.W.Sheel: Surface & Coatings Technolo gy, 188-189(2004)250-254〕。  (E.g. l) Troy D. Manning, Ivan P. Parkin: Polyhedron, 23 (2004) 3 087—3095, 2) D. Vernardou, MEPemble, DWSheel: Surface & Coatings Technology, 188- 189 (2004) 250-254].
[0029] 従って、本発明では、成膜プロセスを従来の板ガラスの形成や加工に不可欠な熱 処理段階に組み込むことで、基板加熱が難しい問題を解決することができる。すなわ ち、自動調熱膜 A、調色膜 B、機能膜 Cなど、本発明のガラスの構造の薄膜群の少な くとも一つ以上は、フロートガラス製造ライン上におけるフロートバス又は徐冷窯の内 部の熱環境を利用し、ガラス表面温度が 100〜700°Cの高温のまま、常圧又は減圧 で汎用薄膜形成法により、単独又は連続に形成される。 Accordingly, in the present invention, the problem of difficult substrate heating can be solved by incorporating the film forming process into a heat treatment step indispensable for the formation and processing of conventional plate glass. That is, at least one of the thin film groups of the glass structure of the present invention, such as the automatic heat-adjusting film A, the toning film B, and the functional film C, is a float bath or a slow cooling kiln on the float glass production line. Of Using the thermal environment of the part, the glass surface temperature is kept at a high temperature of 100 to 700 ° C, and it is formed alone or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure.
[0030] 以上の方法で、オンラインコーティングによって二酸ィ匕バナジウム薄膜を単独に形 成することが可能であるが、構造テンプレートや機能膜など、本発明のガラスの構造 の薄膜群の適切な薄膜と連続してオンラインコーティングすることが最も好適である。 たとえば、構造テンプレートや熱線反射機能のある酸化スズ系薄膜のあと、 VO調熱 [0030] In the above method, it is possible to independently form a vanadium dioxide thin film by online coating, but an appropriate thin film of the structural thin film group of the present invention, such as a structural template or a functional film. It is most preferable to perform on-line coating continuously. For example, after structural oxides and tin oxide thin films with heat ray reflection function, VO heat control
2 薄膜を連続でオンラインコーティング形成することは最も望ましい。  2 It is most desirable to continuously form a thin film online.
[0031] 上述と同じぐ自動調熱膜 A、調色膜 B、機能膜 Cの少なくとも一つ以上が、ガラス の強化や曲げカ卩ェプロセスの熱処理における熱環境を利用し、ガラス表面温度が 10 0〜750°Cの範囲で、常圧又は減圧で汎用薄膜形成法により単独又は連続に形成 される。また、自動調熱膜 A、調色膜 B、機能膜 Cの少なくとも一つ以上が、汎用薄膜 形成法により室温を含む低温で形成した後、ガラスの強化や曲げ加工プロセスの熱 環境を利用し、 100〜750°Cの範囲で 5秒〜 1時間熱処理によって形成される。 [0031] At least one of the automatic heat-adjusting film A, the color-adjusting film B, and the functional film C, which is the same as described above, uses the thermal environment in the heat treatment of the glass strengthening or bending cache process, and the glass surface temperature is 10 In the range of 0 to 750 ° C., it is formed singly or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure. In addition, after at least one of the automatic heat-adjusting film A, toning film B, and functional film C is formed at a low temperature including room temperature by a general-purpose thin film forming method, the thermal environment of glass strengthening and bending processes is used. It is formed by heat treatment in the range of 100 to 750 ° C for 5 seconds to 1 hour.
[0032] 自動調熱膜 A、調色膜 B、機能膜 Cを、任意的組み合わせてガラスの同一側に設 置する、又は必要に応じてガラスの両側に分けて設置する、又は複数枚のガラスに 分離して設置する、又は複数のガラスで挟む、又は複数のガラスを接着する、などに より、自動調熱色調調和遮光ガラスが形成される。形成されたガラスは、建築物、移 動体 (車、船舶、列車、飛行機等)の窓ガラスを目的として使用することができる。これ らは、特に、可視光透過率が 70%以下で遮光性に優れ、同時に色調が自由に調節 できることを特徴とする自動調熱色調調和遮光プライバシーガラスとして使用される。 [0032] The automatic heat-adjusting film A, the color-adjusting film B, and the functional film C are arbitrarily combined and installed on the same side of the glass, or separately on both sides of the glass as necessary, or a plurality of sheets The automatic heat-adjusting color-harmonic light-shielding glass is formed by installing the glass separately, sandwiching it between a plurality of glasses, or adhering a plurality of glasses. The formed glass can be used for the window glass of buildings and moving objects (cars, ships, trains, airplanes, etc.). In particular, they are used as self-adjusting color tone-shading privacy glass, which has a visible light transmittance of 70% or less and excellent light-shielding properties, and at the same time the color tone can be freely adjusted.
[0033] また、形成されたガラスは、建築物、移動体 (車、船舶、列車、飛行機等)の窓ガラス 、特に、調色膜や、着色フィルム又は着色榭脂等を 2枚以上の板ガラスで挟む、又は 2枚以上のガラスを接着することにより、従来の安全、強化、防犯機能に加え、可視 光透過率が 70%以下で、遮光性に優れるため、適切の照度とプライバシー保護ガラ スを目的として好適に使用することができる自動調熱色調調和遮光合わせガラスとし て使用される。 [0033] Further, the formed glass is a window glass of a building or a moving body (car, ship, train, airplane, etc.), in particular, a toning film, a colored film or colored resin, etc. In addition to the conventional safety, strengthening, and crime prevention functions, the visible light transmittance is 70% or less and the light shielding property is excellent. It is used as an automatic heat-adjusting color tone-shading laminated glass that can be suitably used for the purpose.
発明の効果  The invention's effect
[0034] 本発明により、 (1)自動調熱で快適さが達成とともに、冷暖房負荷の同時低減、色 調調和、紫外線カット、遮光、プライバシー保護等の多彩な機能を持ち合わせたガラ スで、建築物、車両その他の移動体用の新規窓ガラス、及びその製造方法を提供す ることができる、(2)ガラス等の透明又は透光性基材に、可視光が常に透過するが、 主に赤外線が環境温度の変化に応じて自動的に透過率を調節できる、二酸化バナ ジゥム系自動調熱膜を提供できる、(3)調色膜や着色基材、及び他の機能性膜との 適切な組み合わせで、従来型の二酸ィ匕バナジウム系調光ガラスを、その可視光透過 率が低いという欠点を、逆転の発想により、遮光ガラスとして有効利用に転じることが できる、(4)更に、補色原理を活用した独自の色調調和法を提供できる、(5)建築や 移動体の外装に合うように自由に色調調和ができる自動調熱色調調和遮光ガラス及 び製造方法を提供できる、という効果が奏される。 [0034] According to the present invention, (1) comfort is achieved by automatic temperature adjustment, simultaneous reduction of heating and cooling load, color Glass with various functions such as harmony, UV protection, shading, privacy protection, etc., can provide new window glass for buildings, vehicles and other moving objects, and its manufacturing method. (2 ) A vanadium dioxide type automatic heat control film that allows visible light to always pass through a transparent or translucent substrate such as glass, but mainly allows infrared light to adjust its transmittance automatically in response to changes in ambient temperature. (3) Disadvantage of low visible light transmittance of conventional type divanadium divanadium-based dimmable glass by appropriate combination with toning film, coloring substrate and other functional film Can be turned into effective use as light-shielding glass by the idea of reversal. (4) Furthermore, it is possible to provide a unique color harmony method using the complementary color principle. Automatic thermal color tone harmony that can freely harmonize color tone There is an effect that a light shielding glass and a manufacturing method can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 次に、実施例を示して本発明を具体的に説明するが、本発明は、これらに限定され るものではない。 Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
実施例  Example
[0036] (1)自動調熱多層構造の形成  [0036] (1) Formation of automatic heat control multilayer structure
1.構造テンプレート膜の形成  1. Formation of structural template film
本実施例では、薄膜の作製に汎用型マグネトロンスパッタ装置を用いた。当該装置 は、 1)力ソード 3基まで配置することができる、 2)それぞれに高周波電源又は直流電 源で任意に電力制御することができる、 3)この装置では、基板が回転可能であり、基 板温度を室温から 800°Cまでの範囲で精密に設定することができる、という機能を有 する。  In this example, a general-purpose magnetron sputtering apparatus was used for the production of the thin film. The equipment can be arranged 1) up to 3 force swords, 2) each can be arbitrarily controlled with high frequency power supply or DC power supply, 3) In this equipment, the substrate can be rotated, The plate temperature can be precisely set in the range from room temperature to 800 ° C.
[0037] 二酸ィ匕バナジウムと同じルチル構造を有する TiO及び SnOを構造テンプレート薄  [0037] TiO and SnO having the same rutile structure as vanadium diacid are structural template thin
2 2  twenty two
膜とした。この構造テンプレート膜は、 TiO化合物ターゲット(直径 50mm、厚さ 5m  A membrane was obtained. This structural template film consists of a TiO compound target (diameter 50mm, thickness 5m
2  2
m、純度 99. 9%)、又は SnO (Sbドッブ)ィ匕合物ターゲット(直径 50mm、厚さ 5mm  m, purity 99.9%), or SnO (Sb Dob) composite compound target (diameter 50mm, thickness 5mm)
2  2
、純度 99. 9%)を RFスノッタすることにより形成した。すなわち、ノ ックグランド真空 度 2 X 10_6Pa、アルゴン流量 30sccm、全圧 0. 6Pa、基板温度 200— 600。C、 RF 電力 120Wの条件で、石英ガラス、耐熱ガラス、シリコン単結晶及びサファイア単結 晶基板上に 5— 200nmの厚さで構造テンプレート膜を形成した。 [0038] 2.二酸ィ匕バナジウム系薄膜の形成 , Purity 99.9%). That is, knock ground vacuum 2 X 10 _ 6 Pa, argon flow rate 30 sccm, total pressure 0.6 Pa, substrate temperature 200-600. A structural template film with a thickness of 5 to 200 nm was formed on quartz glass, heat-resistant glass, silicon single crystal and sapphire single crystal substrate under the conditions of C and RF power of 120W. [0038] 2. Formation of diacid-vanadium thin films
上述の構造テンプレートを形成した後、その上に、継続的に、二酸化バナジウム系 薄膜を次の方法によって形成した。  After the above structural template was formed, a vanadium dioxide thin film was continuously formed thereon by the following method.
1)市販のバナジウムターゲットによるスパッタ  1) Sputtering with a commercially available vanadium target
市販のバナジウムターゲット(V、直径 50mm、厚さ 5mm、純度 99. 9%)、又は巿 販のバナジウム ·タングステン合金ターゲット(V:W= 1. 6at%)を、酸素とアルゴン の混合ガスの中、 RF、或いは DCスパッタすることによって、二酸化バナジウム系薄 膜の形成を行った。主なスパッタ条件は、次の通りである。すなわち、ノ ックグランド 真空度 2 X 10_6Pa、アルゴン流量 30sccm、酸素流量 0〜3. OOsccm、全圧 0. 6Pa 、基板温度 400〜600。C、 RF電力 200W、又は DC電圧 200〜400V、電流 0. 10 〜0. 30Aの条件で、基板としては、石英ガラス、耐熱ガラス、シリコン単結晶及びサ ファイア単結晶を用いた。 A commercially available vanadium target (V, diameter 50 mm, thickness 5 mm, purity 99.9%) or a commercially available vanadium-tungsten alloy target (V: W = 1.6 at%) is mixed in a mixed gas of oxygen and argon. A vanadium dioxide thin film was formed by RF, DC or DC sputtering. The main sputtering conditions are as follows. That is, Bruno Kkugurando vacuum 2 X 10 _6 Pa, argon flow rate 30 sccm, the oxygen flow rate 0 to 3. OOsccm, total pressure 0. of 6 Pa, the substrate temperature 400 to 600. Quartz glass, heat-resistant glass, silicon single crystal, and sapphire single crystal were used as the substrate under the conditions of C, RF power 200 W, or DC voltage 200 to 400 V, current 0.10 to 0.30 A.
[0039] 以上の条件で、反応性スパッタによって、二酸ィ匕バナジウム単一相薄膜を形成する 際に、特に、酸素流量を精密に所定に制御することが最も重要であり、非常に狭い 酸素流量の範囲でしか二酸ィヒバナジウム単一相薄膜が形成されないとの結果が得 られた。一方、 TiOや SnOのような構造テンプレートを予め基板上に形成したあと、  [0039] Under the above conditions, when forming a single-phase vanadium dioxide thin film by reactive sputtering, it is most important to precisely control the oxygen flow rate to a predetermined level. The result shows that a single-phase thin film of hibihidium dioxide is formed only in the flow rate range. On the other hand, after a structural template such as TiO or SnO is formed on the substrate in advance,
2 2  twenty two
続けて二酸化バナジウム薄膜を形成すると、二酸ィ匕バナジウム単一相薄膜の形成が ほぼ確実であることを突き止めた。しかし、以上のような反応性スパッタ法による二酸 化バナジウム単一相薄膜の形成には、酸素流量などプロセスの精密な制御が厳しく 要求され、また、ー且見つ力つた条件も、ターゲットの消耗などにより変動しやすいた め、大量生産には困難であった。従って、以下の諸方法を考え、開発した。  It was found that if a vanadium dioxide thin film was formed subsequently, the formation of a single-phase thin film of vanadium dioxide was almost certain. However, in order to form a vanadium dioxide single-phase thin film by reactive sputtering as described above, precise control of the process, such as the oxygen flow rate, is strictly required. It was difficult for mass production because it easily fluctuated due to wear. Therefore, the following methods were considered and developed.
[0040] 2)二酸ィ匕バナジウム化合物ターゲットによるスパッタ [0040] 2) Sputtering with a diacid-vanadium compound target
二酸化バナジウム粉末 (VO純度 99. 5%)に、酸ィ匕タングステン粉末 (WO 、 99.  Vanadium dioxide powder (VO purity 99.5%) and acid-tungsten powder (WO, 99.
2 3 twenty three
99%)を 1. 0%モル比で混合し、自動乳鉢で 1〜3時間混合'粉砕して力もプレス成 形及び熱処理により、直径 50mm、厚さ約 5mmの円盤にしたものをターゲットとして 、二酸ィ匕バナジウム系薄膜の形成を行った、すなわち、ノ ックグランド真空度 2 X 10_ 6Pa、アルゴン流量 30sccm、酸素流量 0〜0. 5sccm、全圧 0. 6Pa、基板温度 400 〜600°C、 RF電力 100Wの条件でスパッタし、石英ガラス、耐熱ガラス、シリコン単結 晶及びサファイア単結晶基板上に二酸ィ匕バナジウム薄膜を形成した。 99%) is mixed at a 1.0% molar ratio, mixed for 1-3 hours in an automatic mortar and crushed and pressed into a disk with a diameter of 50 mm and a thickness of about 5 mm by press forming and heat treatment. A vanadium diacid-based thin film was formed, that is, a knock ground vacuum degree of 2 X 10_6 Pa, an argon flow rate of 30 sccm, an oxygen flow rate of 0 to 0.5 sccm, a total pressure of 0.6 Pa, a substrate temperature of 400 to 600 ° C, Sputtered under the condition of RF power 100W, quartz glass, heat-resistant glass, single silicon A vanadium dioxide thin film was formed on single crystal and sapphire single crystal substrates.
[0041] バナジウム金属ターゲットを使った反応性スパッタ法より、安定した二酸化バナジゥ ム薄膜が形成されたが、 RFスパッタの場合、成膜速度が遅い欠点があった。二酸ィ匕 バナジウム系化合物ターゲットでは、常温では半導体相で導電性があまり示されな ヽ 。従って、効率の悪い RFスパッタが必要である。しかし、本発明者は、次の手法によ つてターゲットに導電性を持たせ、 DCでもスパッタできるようにすることに成功した。 すなわち、最初のみ RFスパッタをし、ターゲット表面の温度力 二酸化バナジウムの 相転移温度以上まで上昇し、金属相となるところで、効率のよい DCスパッタに切り替  [0041] A stable vanadium dioxide thin film was formed by the reactive sputtering method using a vanadium metal target. However, in the case of RF sputtering, there was a drawback that the film formation rate was slow. The diacid vanadium-based compound target does not show much conductivity in the semiconductor phase at room temperature. Therefore, inefficient RF sputtering is necessary. However, the present inventor succeeded in making the target conductive by the following method so that it can be sputtered even by DC. In other words, RF sputtering is performed only at the beginning, and the temperature force on the target surface rises to above the phase transition temperature of vanadium dioxide, and when it becomes a metal phase, it switches to efficient DC sputtering.
[0042] 3)導電性ターゲットによるスパッタ [0042] 3) Sputtering with conductive target
更に進化した方法として、次の手法で導電性ターゲットを形成して DCスパッタによ つて、二酸化バナジウム薄膜を形成した。すなわち、五酸化バナジウム (V O、 99.  As a more advanced method, a conductive target was formed by the following method, and a vanadium dioxide thin film was formed by DC sputtering. That is, vanadium pentoxide (V O, 99.
2 5 twenty five
9%)粉末に、バナジウム金属(V、 99. 9%)を 0. 25モル比で混入し、更に、 WOを 9%) Vanadium metal (V, 99.9%) is mixed with the powder in a 0.25 molar ratio, and WO is further added.
3 Three
1%モル比でカ卩え、総組成を (V+W) : 0= 1 : 2とした。それを混合'粉砕してカもプ レス成形又は熱処理により、直径 50mm、厚さ約 5mmの円盤にしたものをターゲット とした。混合物力もなるターゲットが、金属バナジウムにより導電性を持っため、 DCス ノ ッタにより二酸ィ匕バナジウム薄膜を形成した。 The total composition was (V + W): 0 = 1: 2 with a 1% molar ratio. This was mixed and pulverized and pressed into a disk with a diameter of 50 mm and a thickness of about 5 mm by press molding or heat treatment, and the target was used. Since the target that also has a mixture force has conductivity due to the metal vanadium, a thin film of vanadium diacidate was formed by a DC-sutter.
[0043] 以上の 1)〜3)の方法により、基板を加熱せずに二酸化バナジウム組成となるァモ ルファス薄膜を形成した後、 400°CZ30分、空気中でァニールすることで、結晶性の よい二酸ィ匕バナジウム薄膜を得た。本発明では、上述の基板上に形成した構造テン プレート及び酸化バナジウム薄膜の表面に、更に、任意の機能性膜を形成すること ができる。  [0043] By the above methods 1) to 3), after forming an amorphous thin film having a vanadium dioxide composition without heating the substrate, annealing is performed in air at 400 ° CZ for 30 minutes. A good diacid-vanadium thin film was obtained. In the present invention, an arbitrary functional film can be further formed on the surface of the structural template and the vanadium oxide thin film formed on the substrate.
[0044] 3.機能性膜の形成  [0044] 3. Formation of functional film
基板上に形成した構造テンプレート及び酸ィ匕バナジウム薄膜の表面に、更に、反 射防止や光触媒となる TiO機能膜を適切の厚さで被覆した。形成した構造テンプレ  The surface of the structural template and the oxide vanadium thin film formed on the substrate was further coated with a TiO functional film serving as an anti-reflection and photocatalyst with an appropriate thickness. Formed structural template
2  2
ート薄膜、酸化バナジウム薄膜、及び酸ィヒチタン薄膜を含む自動調熱多層構造につ いて、分光光度計等により典型的透過特性及び色調特性を調べた。その例は、次の 通りである: (サンプル 1) The typical transmission characteristics and color characteristics of a self-adjusting multilayer structure including a thin film, vanadium oxide thin film, and titanium oxide thin film were examined using a spectrophotometer or the like. An example is as follows: (Sample 1)
石英ガラス基板上に、厚さ 50nmの VO系調熱膜、可視光透過率 58%、色度座標  VO heat control film with a thickness of 50 nm on a quartz glass substrate, visible light transmittance of 58%, chromaticity coordinates
2  2
:x=0. 376、 y=0. 398、主波長力 71nm、朿 lj激純度力 5. 3%で、強い黄色透 過を呈した。  : x = 0.376, y = 0.398, dominant wavelength power 71nm, 朿 lj high purity power 5.3%, and strong yellow transmission.
(サンプノレ 2)  (Sampnore 2)
石英ガラス基板上に、厚さ 70nmの VO系調熱膜、可視光透過率 40%、色度座標  On a quartz glass substrate, 70nm thick VO heat control film, visible light transmittance 40%, chromaticity coordinates
2  2
:x=0. 400、 y=0. 410、主波長が 575nm、刺激純度が 50%で、強い黄色透過を 主した。  : x = 0.400, y = 0.410, dominant wavelength is 575nm, excitation purity is 50%, mainly yellow strong transmission.
[0045] (2)着色膜等による二酸ィ匕バナジウム系薄膜の色調調和  [0045] (2) Color harmony of diacid-vanadium thin films with colored films
1.二酸化バナジウム色調調和の概略  1.Outline of vanadium dioxide color harmony
補色原理により、補色による二酸ィ匕バナジウム系薄膜色調の変化を調べた。すな わち、 RGB3原色をもとに、加法混色で 12色相を持つカラーシートを作成した。透過 率を適切に調節して、サンプル 1又はサンプル 2と重ね合わせ、ノ ックライトに白色光 源を透過して、透過色の変化を写真に取り、色調調和の効果を確認した。その結果 を図 1にまとめて示す。図 1から分かるように、二酸ィ匕バナジウム系薄膜の固有の強い 黄色を、補色原理を活用することによって、好み又は建築や移動体の外装に調和し た色調に任意に変えることができることが分力つた。特に、 9番 (No. 9)の青色に近 V、補色を使えば、中性色に近 、透過色が得られることが確認された。  Based on the complementary color principle, changes in the color tone of diacid-vanadium thin films due to complementary colors were investigated. In other words, based on the three RGB primary colors, a color sheet with 12 hues was created by additive color mixing. The transmittance was adjusted appropriately and superimposed with Sample 1 or Sample 2, the white light source was transmitted through the knocklight, the change in transmitted color was photographed, and the effect of color harmony was confirmed. The results are summarized in Fig. 1. As can be seen from Fig. 1, by using the complementary color principle, the unique strong yellow color of the diacid-vanadium thin film can be arbitrarily changed to a color that matches the exterior of the building or the moving body. I was divided. In particular, it was confirmed that if a near V or complementary color is used for No. 9 (No. 9) blue, a near-neutral color and a transmitted color can be obtained.
[0046] すなわち、二酸ィ匕バナジウム調熱薄膜にとって、その応用へ最も障害となる二酸ィ匕 バナジウム系薄膜の固有の強い黄色着色を、補色原理により中性色を含む、任意の 色調に設定することができた。補色設計により可視光透過率が更に低くなるが、本発 明の目的、すなわち、遮光ガラスやプライバシー保護ガラスなどとは全く矛盾がなぐ 本発明により、むしろ逆転の発想で、不利因子を有利因子にすることが可能となった  [0046] That is, for the diacid-vanadium heat control thin film, the strong yellow coloring inherent to the vanadium diacid-based thin film, which is the most obstacle to its application, can be changed to any color tone including neutral colors by the complementary color principle. I was able to set it. Although the visible light transmittance is further reduced by the complementary color design, there is no contradiction with the purpose of the present invention, i.e., light-shielding glass or privacy protection glass, etc. It became possible to
[0047] 2.調色膜による二酸ィ匕バナジウム色調調和 [0047] 2. Harmonic diacid-vanadium color harmony with toning film
(色調調和例 1)  (Example of color harmony 1)
可視光透過率が 42%、 XYZ表色系における色度座標値: x=0. 258、 y=0. 253 、主波長 479nm、刺激純度が 24%で、やや強い青色透過の着色フィルム(S1)を作 製した。 SIを、石英ガラス基板上に厚さ 50nmの VO系調熱膜 (サンプル 1)及びもう 42% visible light transmittance, chromaticity coordinates in the XYZ color system: x = 0.258, y = 0.253, dominant wavelength 479nm, stimulus purity 24%, slightly strong blue transmission colored film (S1 ) Made. SI is applied to a VO-based thermal conditioning film (sample 1) with a thickness of 50 nm on a quartz glass substrate.
2  2
一枚の石英ガラス板に挟み、加熱加圧することによって固定した。その構造の概略を 図 2に示す。  It was sandwiched between one quartz glass plate and fixed by heating and pressing. Figure 2 shows an outline of the structure.
[0048] 図 2の構造の分光透過率を分光光度計により測定した。測定した分光透過率により CIE表色系における視感透過率や色度座標値などを算出した。その結果は、次の通 りである。すなわち、視感透過率 22%、色度座標値: x=0. 300、 y=0. 356、主波 長 530nm、刺激純度が 11%で、わずかの緑を呈した。本発明の一部となる、着色フ イルムを挟む形で色調調節を行う手法は、合わせガラス技術との組み合わせによつ て、更に、安全性、防犯性等を附加することが可能である。  [0048] The spectral transmittance of the structure of FIG. 2 was measured with a spectrophotometer. Luminous transmittance and chromaticity coordinate values in the CIE color system were calculated from the measured spectral transmittance. The result is as follows. That is, the luminous transmittance was 22%, the chromaticity coordinate values: x = 0.300, y = 0.356, the main wavelength was 530 nm, the stimulation purity was 11%, and a slight green color was exhibited. The technique of adjusting the color tone with the colored film sandwiched as part of the present invention can be added with safety, crime prevention and the like by combination with laminated glass technology.
[0049] (色調調和例 2)  [0049] (Color tone harmonization example 2)
可視光透過率が 16%、 XYZ表色系における色度座標値: x=0. 198、 y=0. 167 、主波長 468nm、刺激純度が 57%で、非常に強い青色透過の着色フィルム(S2)を 作製した。すなわち、厚さ 70nmの VO系調色膜で被覆した石英ガラス (サンプル 2)  Color film with visible light transmittance of 16%, chromaticity coordinates in XYZ color system: x = 0.198, y = 0.167, dominant wavelength 468nm, stimulus purity 57% S2) was produced. In other words, quartz glass coated with a VO toning film with a thickness of 70 nm (Sample 2)
2  2
を上述の非常に強!ヽ青色透過の着色フィルム(S2)で被覆し、系の分光透過率を分 光光度計により測定した。また、調熱特性を調べるために、系を 20°C (VO  The above-mentioned very strong! The film was covered with a blue-transmitted colored film (S2), and the spectral transmittance of the system was measured with a spectrophotometer. In order to investigate the heat control characteristics, the system was set to 20 ° C (VO
2系調熱膜 が低温半導体相である)及び 80°C (同金属相)に温度を変えながら光学特性を測定 した。系は、次の光学色学特性を示した。低温相:透過率 6%、色度座標値: x=0. 2 61、 y=0. 286、主波長 486nm、刺激純度が 20%で、暗青色を呈した。高温相:透 過率 5%、色度座標値: x=0. 298、 y=0. 335、主波長 520nm、刺激純度が 8% で、暗青色を呈した。  The optical properties were measured while changing the temperature to 80 ° C (same metal phase) and 2 ° C heat-treating film is a low-temperature semiconductor phase. The system exhibited the following optical color characteristics. Low-temperature phase: transmittance 6%, chromaticity coordinate values: x = 0.226, y = 0.286, dominant wavelength 486 nm, stimulation purity 20%, dark blue. High-temperature phase: Permeability 5%, chromaticity coordinate values: x = 0.298, y = 0.335, dominant wavelength 520nm, stimulation purity 8%, and dark blue color.
[0050] 3. 自動調熱の効果 [0050] 3. Effect of automatic temperature control
厚さ 70nmの VO系調色膜で被覆した石英ガラス (サンプル 2)を上述の非常に強  Quartz glass (sample 2) coated with a VO-based toning film with a thickness of 70 nm is very strong as described above.
2  2
Vヽ青色透過の着色フィルム(S2)で被覆し、系を 20°C (半導体相)及び 80°C (金属相 )状態において、温度を変化して分光透過特性率の変化、すなわち、自動調熱の効 果を測定した。その結果を図 3に示す。低温及び高温時において、透過率、特に、 7 80nmより波長の長 、赤外線の透過率に大きな差が確認され、非常によ!/、調熱効果 を示した。  Covered with a colored film (S2) that transmits blue to blue, and changes the spectral transmission characteristic ratio, that is, automatically adjusts the temperature by changing the temperature at 20 ° C (semiconductor phase) and 80 ° C (metal phase). The effect of heat was measured. The results are shown in Fig. 3. At low and high temperatures, a large difference was observed in the transmittance, particularly the wavelength longer than 780 nm and the infrared transmittance, indicating a very good heat treatment effect.
[0051] 以上のように、本発明の、可視光が適切に透過し、赤外光が温度変化に応じて大き な変化を示す自動調熱色調調和遮光ガラスの実施例を示したが、本発明によって、 二酸ィ匕バナジウム系自動調熱膜、及び着色膜又は着色機能を持つ他の機能性膜や 基材を組み合わせることで、例えば、可視光透過率を 70%以下に押さえ、建築や移 動体の外装に合うように着色を自由に調節できる、自動調熱、自動調光、色調調和、 紫外線カット、断熱、快適照度、プライバシー保護等の多彩な機能を持ち合わせた 自動調熱色調調和遮光ガラス及び製造方法を提供することが可能である。 [0051] As described above, according to the present invention, visible light is appropriately transmitted, and infrared light is increased in response to a temperature change. Examples of automatic heat-adjusting color-tone harmonized light-shielding glass showing various changes were shown, but according to the present invention, a diacid-vanadium-based automatic heat-adjusting film, and a colored film or other functional film or substrate having a coloring function For example, the visible light transmittance can be suppressed to 70% or less, and the coloring can be freely adjusted to match the exterior of the building or moving body.Automatic heat adjustment, automatic light adjustment, color harmony, UV protection, heat insulation In addition, it is possible to provide an automatic thermal color tone harmony light shielding glass having a variety of functions such as comfortable illumination and privacy protection, and a manufacturing method.
[0052] 比較例 [0052] Comparative Example
石英ガラス基板上に、構造テンプレート薄膜、酸ィ匕バナジウム薄膜 (70nm)、及び 酸化チタン薄膜を含む自動調熱多層構造を作製し、分光光度計等により 20°C及び 80°Cにおける透過特性及び色調特性を調べた。その結果は、次の通りである。すな わち、低温及び高温時において、透過率、特に、 780nmより波長の長い赤外線の透 過率に大きな差が確認され、非常によい調熱効果を示すが、色調特性に関しては、 可視光透過率 40%、色度座標値: x=0. 400、 y=0. 410、主波長が 575nm、刺 激純度が 50%であり、色調調節をしない限り、二酸化バナジウム固有の強い黄色透 過のみを呈した。  A self-adjusting multilayer structure including a structural template thin film, an oxide vanadium thin film (70 nm), and a titanium oxide thin film is fabricated on a quartz glass substrate, and transmission characteristics at 20 ° C and 80 ° C are measured with a spectrophotometer. The color characteristics were examined. The results are as follows. In other words, a large difference was observed in the transmittance, particularly the transmittance of infrared rays having a wavelength longer than 780 nm, at low and high temperatures, showing a very good heat-control effect. Transmittance 40%, chromaticity coordinate values: x = 0.400, y = 0.410, dominant wavelength 575nm, stimulation purity 50%, strong yellow transmission inherent in vanadium dioxide unless color tone is adjusted. Presented only.
産業上の利用可能性  Industrial applicability
[0053] 以上詳述したように、本発明は、自動調熱色調調和遮光ガラス及びその製造方法 に係るものであり、本発明により、例えば、可視光透過率が 70%以下で、遮光性に優 れ、環境温度に応じて赤外線の透過率が自動的に調節でき、更に、透過色の色調を 自由に色調調和することが可能な新し ゝ自動調熱色調調和遮光ガラス及び製造方 法を提供することができる。本発明は、ガラスなどの透明基材に、可視光が透過する 力 赤外光が温度変化に応じて大きな変化を示す二酸化バナジウム系自動調熱膜 を使用することは従来通りであるが、系の構造に新たに濃色着色膜を加え、二酸ィ匕 バナジウム薄膜の固有の黄色と補色原理に基づく設計で、中性色化又は好みや建 築物、移動体の外装に色調調和された自動調熱色調調和遮光ガラスを開発し、提 供するものである。本発明は、従来の二酸ィ匕バナジウム可視光透過率が低いという 弱点を発想を逆転して有効利用し、可視光透過率を 70%以下と低く押さえ、自動調 熱、遮光調光、色調調和、紫外線カット、断熱、快適照度、プライバシー保護等の多 彩な機能を持ち合わせた自動調熱色調調和遮光ガラス及び製造方法を提供するこ とを可能とするものである。本発明は、例えば、建築物や自動車など移動体のガラス として好適な、省エネルギー、健康快適、環境に優しい新しいガラスを提供するもの として、建築産業その他産業界への応用が大いに期待できるものである。 [0053] As described above in detail, the present invention relates to an automatic heat-adjusting color-harmonic light-shielding glass and a method for producing the same. According to the present invention, for example, the visible light transmittance is 70% or less, and the light-shielding property is improved. A new ゝ automatic heat-adjusting color tone-shading glass and manufacturing method that can automatically adjust the infrared transmittance according to the environmental temperature and can freely adjust the color tone of the transmitted color. Can be provided. The present invention uses a vanadium dioxide-based automatic heat control film in which infrared light shows a large change in response to a temperature change on a transparent substrate such as glass. In addition, a dark-colored film was added to the structure, and the design based on the inherent yellow color and complementary color principle of the diacid vanadium thin film was neutralized or harmonized with the taste, preference, building, and exterior of moving objects. It develops and provides automatic heat-adjusting color-harmonic shading glass. The present invention effectively uses the weakness of the conventional low visible light transmittance of vanadium dioxide by reversing the idea, keeping the visible light transmittance as low as 70% or less, automatic heat control, shading light control, color control Harmony, UV protection, heat insulation, comfortable illumination, privacy protection, etc. It is possible to provide an automatic thermal color-harmonic shading glass having a colorful function and a manufacturing method. The present invention can be expected to be applied to the building industry and other industries as a new energy-saving, healthy, comfortable, and environmentally friendly glass suitable as a glass for moving objects such as buildings and automobiles. .
図面の簡単な説明 Brief Description of Drawings
[図 1]補色原理により、補色による二酸ィ匕バナジウム系薄膜色調調和の効果を確認し た結果を示す。上段は、透過率 60%で RCB12色シール (S)と二酸ィ匕バナジウム膜 との色調調和の結果を示す。下段は、シートの透過率の変化による二酸ィ匕バナジゥ ム膜調和色濃さの変化 (No. 9)を示す。 [Fig. 1] Shows the results of confirming the effect of color harmonization of diacid-vanadium thin film by complementary color using the complementary color principle. The top row shows the results of color harmony between the RCB12 color seal (S) and the vanadium dioxide membrane with a transmittance of 60%. The lower panel shows the change in the color density of the diacid-vanadium film (No. 9) due to the change in the transmittance of the sheet.
[図 2]本発明の自動調熱色調調和遮光ガラスの一例の構造を示す。  FIG. 2 shows an example of the structure of the automatic heat-adjusting color-harmonic shading glass of the present invention.
[図 3]自動調熱の効果を測定した結果を示す。 [Figure 3] Shows the results of measuring the effect of automatic heat control.

Claims

請求の範囲 The scope of the claims
[1] 二酸ィ匕バナジウム系自動調熱ガラスにおいて、基材に、二酸ィ匕バナジウム系自動 調熱膜と、調色膜が、被覆されていることを特徴とする自動調熱色調調和ガラス。  [1] Automatic heat-adjusting color tone harmony, characterized in that the substrate is coated with a diacid-vanadium-based automatic heat-adjusting film and a color-adjusting film on the substrate. Glass.
[2] 二酸ィ匕バナジウム系自動調熱ガラスにおいて、基材に、二酸ィ匕バナジウム系自動 調熱膜と、調色膜、及び機能膜が、被覆されていることを特徴とする自動調熱色調調 和ガラス。  [2] In an automatic heat-control glass based on diacid-vanadium-based heat control, the substrate is coated with a diacid-vanadium-based automatic heat-control film, a toning film, and a functional film. Heat-control color tone Japanese glass.
[3] 自動調熱膜の固有色が、補色原理に基づき調色膜又は調色膜と機能膜との組み 合わせで任意に調節することにより、所定の色調に制御されている請求項 1又は 2に 記載の自動調熱色調調和ガラス。  [3] The specific color of the automatic heat-adjusting film is controlled to a predetermined color tone by arbitrarily adjusting the toned film or a combination of the toning film and the functional film based on the complementary color principle. 2. The self-adjusting color-harmonic glass described in 2.
[4] 自動調熱膜の固有色が、補色原理に基づき基材ガラスを着色することにより、所定 の色調に制御されて 、る請求項 1又は 2に記載の自動調熱色調調和ガラス。 [4] The automatic heat-adjusting color-harmonic glass according to claim 1 or 2, wherein the intrinsic color of the automatic heat-adjusting film is controlled to a predetermined color by coloring the base glass based on the complementary color principle.
[5] 自動調熱膜の固有色が、補色原理に基づき着色フィルムを基材ガラスに貼る又は[5] The intrinsic color of the self-adjusting film is applied to the base glass based on the complementary color principle, or
2枚以上の板ガラスで挟む、又は着色樹脂で 2枚以上のガラスを接着することにより、 所定の色調に制御されて 、る請求項 1又は 2に記載の自動調熱色調調和ガラス。 3. The automatic heat-adjusting color-harmonic glass according to claim 1 or 2, wherein the glass is controlled to a predetermined color tone by being sandwiched between two or more plate glasses or by adhering two or more glasses with a colored resin.
[6] 自動調熱膜の固有色が、補色原理に基づき着色材を基材ガラスに塗布すること〖こ より、所定の色調に制御されている請求項 1又は 2に記載の自動調熱色調調和ガラ ス。 [6] The automatic heat-adjusting color tone according to claim 1 or 2, wherein the intrinsic color of the automatic heat-adjusting film is controlled to a predetermined color tone by applying a coloring material to the base glass based on the complementary color principle. Harmonious glass.
[7] 二酸化バナジウム系自動調熱ガラスにぉ 、て、二酸化バナジウム系自動調熱材料 と、調色材料、及び任意に機能材料が、プラスチックや合成樹脂フィルムに塗布又は 分散されて、自動調熱材料の固有色が、補色原理に基づき上記調色材料によって、 所定の色調に制御されて 、ることを特徴とする自動調熱色調調和フィルム又はその フィルムを使用した自動調熱色調調和ガラス。  [7] Vanadium dioxide-based self-adjusting glass, vanadium dioxide-based self-adjusting material, and color-adjusting material, and optionally functional materials, are applied or dispersed in plastics and synthetic resin films for automatic heat-regulating. An automatic heat-adjusting color-harmonic film or an automatic heat-adjusting color-adjusting glass using the film, wherein the intrinsic color of the material is controlled to a predetermined color by the color-adjusting material based on the complementary color principle.
[8] 建築物、又は移動体の窓ガラス用のガラスである請求項 1から 7のいずれかに記載 の自動調熱色調調和ガラス。  [8] The automatic heat-adjusting color-harmonic glass according to any one of claims 1 to 7, which is a glass for a window glass of a building or a moving body.
[9] 可視光透過率が 70%以下で、遮光性に優れ、同時に色調が調節された自動調熱 色調調和遮光プライバシーガラスである請求項 1から 8の 、ずれかに記載の自動調 熱色調調和ガラス。  [9] The automatic heat-adjusting color tone according to any one of claims 1 to 8, which is a self-adjusting color-shading light-shielding privacy glass having a visible light transmittance of 70% or less, excellent light-shielding properties, and simultaneously adjusted color tone Harmonic glass.
[10] 調色膜が、着色機能を持つ遷移金属及び Z又はその化合物、希土金属及び Z又 はその化合物、又は上記物質の単独或!、は 2種以上を任意に組み合わせた複合体 力 なる膜である請求項 1から 7の 、ずれかに記載の自動調熱色調調和ガラス。 [10] The toning film is a transition metal having a coloring function and Z or a compound thereof, a rare earth metal and Z or The self-adjusting color-tone glass according to any one of claims 1 to 7, wherein is a compound, or a single film of the above-mentioned substance, or a composite film in which two or more kinds are arbitrarily combined.
[11] 調色膜が、着色機能を持つ遷移金属及び Z又はその化合物、希土金属及び Z又 はその化合物、又は上記物質の単独或!、は 2種以上を任意に組み合わせた複合体 を、透明物質マトリックスに塗布又は分散させて形成された請求項 1から 7のいずれか に記載の自動調熱色調調和ガラス。  [11] The toning film comprises a transition metal having a coloring function and Z or a compound thereof, a rare earth metal and Z or a compound thereof, or a single substance of the above substances, or a complex in which two or more kinds are arbitrarily combined. The self-adjusting color-tone glass according to any one of claims 1 to 7, which is formed by coating or dispersing in a transparent substance matrix.
[12] 調色膜の着色材が、着色機能を持つ無機物質、又は有機物質、又は無機物質と 有機物質の混合物、又はそれらの分散系である請求項 1から 7のいずれかに記載の 自動調熱色調調和ガラス。  [12] The automatic according to any one of claims 1 to 7, wherein the colorant of the toning film is an inorganic substance having a coloring function, an organic substance, a mixture of an inorganic substance and an organic substance, or a dispersion thereof. Heat-control color tone harmony glass.
[13] 透明物質マトリックス力 ルチル結晶構造を有する結晶物質の単独又は 2種以上の 任意的組み合わせ力 なる請求項 11に記載の自動調熱色調調和ガラス。  [13] The transparent material matrix power [12] The automatic heat-adjusting color-harmonic glass according to [11], wherein the crystalline material having a rutile crystal structure is used alone or in combination of two or more kinds.
[14] 透明物質マトリックスが、ルチル結晶構造以外の酸化物、窒化物、フッ化物、硫ィ匕 物等透明誘電体物質又は透明導電体物質の単独又は 2種以上の任意的組み合わ せ力 なる請求項 11に記載の自動調熱色調調和遮光ガラス。  [14] The transparent material matrix is a single or a combination of two or more of transparent dielectric materials such as oxides, nitrides, fluorides, and sulfides other than the rutile crystal structure or a transparent conductive material. Item 12. The self-adjusting color tone-shading glass according to Item 11.
[15] 透明物質マトリックス力 透明な 、し透光性プラスチックフィルム、合成樹脂又はそ のフィルムである請求項 11に記載の自動調熱色調調和ガラス。  [15] The self-adjusting color-tone harmonized glass according to [11], which is a transparent material-matrix power, a transparent, translucent plastic film, a synthetic resin, or a film thereof.
[16] 着色フィルムや着色榭脂を、 2枚以上の板ガラスで挟む、又は 2枚以上のガラスを 接着することにより、可視光透過率を 70%以下に低く抑えて、適切な照度とプライバ シー保護ガラスとした請求項 9に記載の自動調熱色調調和ガラス。  [16] Appropriate illuminance and privacy can be achieved by holding the colored film or colored resin between two or more glass sheets or by bonding two or more glass sheets to keep the visible light transmittance below 70%. The automatic heat-adjusting color-harmonic glass according to claim 9, wherein the glass is protective glass.
[17] 色調調和のために、自動調熱膜に、遷移金属及び Z又はその化合物、希土金属 及び Z又はその化合物、又は上記物質の単独或いは 2種以上を任意に組み合わせ た複合体が添加された請求項 1から 7の 、ずれかに記載の自動調熱色調調和ガラス  [17] To adjust the color tone, transition metal and Z or a compound thereof, rare earth metal and Z or a compound thereof, or a composite of any one or more of the above substances is added to an automatic heat control film. The automatic heat-adjusting color-harmonic glass according to any one of claims 1 to 7
[18] 色調調和のために、基材ガラスに、着色機能を持つ遷移金属及び Z又はその化合 物、希土金属及び Z又はその化合物、又は上記物質の単独或いは 2種以上を任意 に組み合わせた複合体を混入して、二酸ィ匕バナジウム系膜の強い固有色を色調調 和できるように着色された請求項 1から 7の 、ずれかに記載の自動調熱色調調和ガラ ス。 [18] In order to harmonize the color tone, the transition glass and Z or a compound thereof having a coloring function, a rare earth metal and Z or a compound thereof, or one or more of the above substances are arbitrarily combined with the base glass. The automatic heat-adjusting color tone glass according to any one of claims 1 to 7, wherein the glass is colored so that a strong intrinsic color of the vanadium diacid-based film can be color-adjusted by mixing the complex.
[19] 色調調和のために、基材ガラスに、着色機能を持つ次の着色物質:(l) Nd及びそ の化合物、その質量百分率表示の Nd O基準含有量が 0. 1%以上であること、 (2) [19] In order to harmonize the color tone, the following coloring substances having a coloring function are added to the base glass: (l) Nd and its compounds, and the Nd O reference content in mass percentage display is 0.1% or more. (2)
2 3  twenty three
Co及びその化合物、その質量百分率表示の CoO基準含有量が lppm以上であるこ と、(3) Nd及び Coを(1)と(2)の条件で同時に含有すること、により青色着色すること により、二酸ィ匕バナジウム系膜の強い固有の黄色が中性色の近くに調和された請求 項 1から 7の 、ずれかに記載の自動調熱色調調和ガラス。  Co and its compounds, CoO standard content of mass percentage display is lppm or more, and (3) By containing Nd and Co simultaneously under the conditions of (1) and (2), by coloring blue, The self-adjusting color-tone glass according to any one of claims 1 to 7, wherein the strong intrinsic yellow color of the vanadium diacid-based film is harmonized near a neutral color.
[20] 自動調熱膜、調色膜、及び任意に機能膜が、任意に組み合わせてガラスの同一側 に設置された、又はガラスの両側に分けて設置された、又は複数枚のガラスに分離し て設置された請求項 1から 7の 、ずれかに記載の自動調熱色調調和ガラス。  [20] Automatic heat-conditioning film, toning film, and optionally functional film, installed in any combination on the same side of the glass, installed separately on both sides of the glass, or separated into multiple sheets of glass The self-adjusting color-tone glass according to any one of claims 1 to 7, which is installed as described above.
[21] 自動調熱膜が、次のいずれかの方法、(1)主成分がバナジウム酸ィ匕物 V O、又は  [21] The automatic heat control film is any one of the following methods: (1) The main component is vanadate oxide V 2 O, or
2 5 組成が VO (2<x< 2.5)を有するバナジウム酸ィ匕物、又はその混合物に、バナジゥ ム金属を混合、成形又は焼結した導電性ターゲットを不活性ガス又は酸素含有不活 性ガス中でスパッタする、(2)主成分が二酸ィ匕バナジウム VOカゝらなる化合物ターゲ  25 5 Vanadium oxide having a composition of VO (2 <x <2.5), or a mixture thereof, mixed with a vanadium metal, formed or sintered into a conductive target as an inert gas or an oxygen-containing inert gas (2) Compound target whose main component is diacid vanadium VO
2  2
ットを相転移温度以上に加熱し、金属相への相転移による導電性ターゲットを不活性 ガス又は酸素含有不活性ガス中でスパッタする、 (3)自動調熱膜は、主成分が二酸 化バナジウム力 なる化合物ターゲットを RFスパッタさせ、ターゲットの温度が相転移 温度以上に上昇させてから、金属相による導電性ターゲットを不活性ガス又は酸素 含有不活性ガス中でスパッタする、による DC (パルス DCを含む)マグネトロンスパッ タ法により形成されて 、る請求項 1から 7の 、ずれかに記載の自動調熱色調調和ガラ ス。  The thermal control film is heated to a temperature higher than the phase transition temperature, and the conductive target resulting from the phase transition to the metal phase is sputtered in an inert gas or an oxygen-containing inert gas. DC (pulsed) is obtained by RF sputtering of a compound target with vanadium phosphide force, and the target temperature is raised above the phase transition temperature, and then the metal phase conductive target is sputtered in an inert gas or an oxygen-containing inert gas. The automatic thermal color tone harmony glass according to any one of claims 1 to 7, which is formed by a magnetron sputtering method (including DC).
[22] ターゲットが、転移温度降下のための微量元素の添加を含む請求項 21に記載の 自動調熱色調調和ガラス。  [22] The self-adjusting color-tone glass according to claim 21, wherein the target includes addition of a trace element for lowering the transition temperature.
[23] 自動調熱膜、調色膜、及び任意の機能膜の少なくとも一つ以上が、フロートガラス 製造ライン上におけるフロートバス又は徐冷窯の内部の熱環境を利用し、ガラス表面 が高温のまま、常圧又は減圧で汎用薄膜形成法により、単独又は連続に形成されて V、る請求項 1から 7の 、ずれかに記載の自動調熱色調調和ガラス。  [23] At least one of the automatic heat-adjusting film, the color-adjusting film, and the optional functional film uses the thermal environment inside the float bath or annealing furnace on the float glass production line, and the glass surface has a high temperature. The self-adjusting color-tone glass according to any one of claims 1 to 7, wherein the glass is formed independently or continuously by a general-purpose thin film forming method at normal pressure or reduced pressure.
[24] 自動調熱膜、調色膜、及び任意の機能膜の少なくとも一つ以上が、ガラスの強ィ匕 や曲げ加工プロセスの熱環境を利用し、所定の温度範囲で、常圧又は減圧で汎用 薄膜形成法により単独又は連続に形成されている請求項 1から 7のいずれかに記載 の自動調熱色調調和ガラス。 [24] At least one of the automatic heat-adjusting film, the toning film, and the optional functional film uses normal strength or reduced pressure within a predetermined temperature range using the strength of glass and the thermal environment of the bending process. General purpose The self-adjusting and heat-adjusting glass according to any one of claims 1 to 7, which is formed alone or continuously by a thin film forming method.
自動調熱膜、調色膜、及び任意の機能膜の少なくとも一つ以上が、汎用薄膜形成 法により室温を含む低温で形成した後、ガラスの強化や曲げ加ェプロセスの熱環境 を利用し、所定の温度範囲で、熱処理によって形成されている請求項 1から 7のいず れかに記載の自動調熱色調調和ガラス。  At least one or more of the automatic heat-adjusting film, color-adjusting film, and optional functional film is formed at a low temperature including room temperature by a general-purpose thin film forming method, and then the predetermined temperature is selected using the thermal environment of glass strengthening and bending processes The self-adjusting color-tone glass according to any one of claims 1 to 7, which is formed by heat treatment in a temperature range of.
PCT/JP2006/305457 2005-03-17 2006-03-17 Automatic heat conditioning color tone conditioning light shielding glass and method for producing the same WO2006098451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-076377 2005-03-17
JP2005076377A JP5147034B2 (en) 2005-03-17 2005-03-17 Automatic thermal color-harmonic shading glass and manufacturing method

Publications (1)

Publication Number Publication Date
WO2006098451A1 true WO2006098451A1 (en) 2006-09-21

Family

ID=36991795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305457 WO2006098451A1 (en) 2005-03-17 2006-03-17 Automatic heat conditioning color tone conditioning light shielding glass and method for producing the same

Country Status (2)

Country Link
JP (1) JP5147034B2 (en)
WO (1) WO2006098451A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102424534A (en) * 2011-09-23 2012-04-25 赵彤 Production method of color light-storing self-luminescent glass
EP2604585A1 (en) * 2011-12-12 2013-06-19 Samsung Corning Precision Materials Co., Ltd. Method of manufacturing thermochromic substrate
JP2013203852A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Polymer sheet, solar cell back surface protection sheet and solar cell module
EP2514724A3 (en) * 2011-04-18 2013-11-20 Samsung Corning Precision Materials Co., Ltd. Thermochromic substrate and pair-glass with thermochromic thin film
WO2020254196A1 (en) 2019-06-19 2020-12-24 Arburg Gmbh + Co Kg Method for providing an operating system of a machine controller
CN117270265A (en) * 2023-09-27 2023-12-22 佛山纳诺特科技有限公司 Automatic dimming film and preparation method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899228B2 (en) * 2006-10-06 2012-03-21 独立行政法人産業技術総合研究所 Manufacturing method and product of vanadium dioxide thin film
JP2010192520A (en) 2009-02-16 2010-09-02 Elpida Memory Inc Method for manufacturing semiconductor device
US8270060B2 (en) 2009-09-25 2012-09-18 Samsung Sdi Co., Ltd. Infrared ray transmittance controlling panel including color modifying layer
JP5427721B2 (en) * 2010-07-23 2014-02-26 積水化学工業株式会社 Vanadium dioxide particle dispersion, interlayer film for laminated glass and laminated glass
KR101260480B1 (en) 2011-04-18 2013-05-02 삼성코닝정밀소재 주식회사 Thermochromic coating substrate having improved sight cognizace efficiency
MX358614B (en) * 2012-03-05 2018-08-29 Saint Gobain Sheet with coating which reflects thermal radiation.
JP6147247B2 (en) * 2012-03-19 2017-06-14 シチズン時計株式会社 Hard decorative member having white hard coating layer and method for producing the same
KR101367828B1 (en) 2012-07-16 2014-02-27 삼성코닝정밀소재 주식회사 Method for manufacturing thermochromic window
JP6522910B2 (en) * 2013-08-30 2019-05-29 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass
WO2017029252A1 (en) 2015-08-18 2017-02-23 Saint-Gobain Glass France Glass-bending device and glass-bending method using a fan
TR201907844T4 (en) 2015-09-08 2019-06-21 Saint Gobain Positive pressure supported gravity twisting method and the appropriate mechanism for it.
PT3380440T (en) 2015-11-25 2019-08-02 Saint Gobain Positive pressure assisted gravity bending method and device suited for carrying out this method
KR102066562B1 (en) 2016-01-28 2020-01-15 쌩-고벵 글래스 프랑스 Positive pressure-supported glass bending method, and apparatus suitable for this purpose
FR3065722B1 (en) * 2017-04-28 2021-09-24 Saint Gobain COLORED GLAZING AND ITS OBTAINING PROCESS
KR102559753B1 (en) * 2018-11-01 2023-07-27 삼성전자주식회사 Cooking apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285037A (en) * 1991-03-14 1992-10-09 Tokai Rika Co Ltd Electrochromic mirror with water-repellent film
JPH09235141A (en) * 1995-12-26 1997-09-09 Nippon Sheet Glass Co Ltd Uv rays absorbing colored film-coated glass article
JP2001064035A (en) * 1999-08-26 2001-03-13 Nippon Sheet Glass Co Ltd Low transmission glass for absorbing ultraviolet and infrared rays
JP2001346260A (en) * 2000-06-02 2001-12-14 Nec Corp Automatic power supply off system for portable telephone set
JP2002173340A (en) * 2000-12-07 2002-06-21 Central Glass Co Ltd Glass for bending and/or tempering
JP2002527326A (en) * 1998-10-15 2002-08-27 プレオティント エル エル シー Thermal alternator
JP2002367428A (en) * 2001-06-04 2002-12-20 Asahi Glass Co Ltd Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP2003342038A (en) * 2002-05-24 2003-12-03 Central Glass Co Ltd Deep bronze glass
JP2004004795A (en) * 2002-04-22 2004-01-08 National Institute Of Advanced Industrial & Technology Multifunctional automatic light control and heat insulating glass, and air conditioning method
JP2004115359A (en) * 2002-09-04 2004-04-15 Asahi Glass Co Ltd Light blue plate glass

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346260A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic film and thermochromic glass

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285037A (en) * 1991-03-14 1992-10-09 Tokai Rika Co Ltd Electrochromic mirror with water-repellent film
JPH09235141A (en) * 1995-12-26 1997-09-09 Nippon Sheet Glass Co Ltd Uv rays absorbing colored film-coated glass article
JP2002527326A (en) * 1998-10-15 2002-08-27 プレオティント エル エル シー Thermal alternator
JP2001064035A (en) * 1999-08-26 2001-03-13 Nippon Sheet Glass Co Ltd Low transmission glass for absorbing ultraviolet and infrared rays
JP2001346260A (en) * 2000-06-02 2001-12-14 Nec Corp Automatic power supply off system for portable telephone set
JP2002173340A (en) * 2000-12-07 2002-06-21 Central Glass Co Ltd Glass for bending and/or tempering
JP2002367428A (en) * 2001-06-04 2002-12-20 Asahi Glass Co Ltd Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP2004004795A (en) * 2002-04-22 2004-01-08 National Institute Of Advanced Industrial & Technology Multifunctional automatic light control and heat insulating glass, and air conditioning method
JP2003342038A (en) * 2002-05-24 2003-12-03 Central Glass Co Ltd Deep bronze glass
JP2004115359A (en) * 2002-09-04 2004-04-15 Asahi Glass Co Ltd Light blue plate glass

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514724A3 (en) * 2011-04-18 2013-11-20 Samsung Corning Precision Materials Co., Ltd. Thermochromic substrate and pair-glass with thermochromic thin film
CN102424534A (en) * 2011-09-23 2012-04-25 赵彤 Production method of color light-storing self-luminescent glass
EP2604585A1 (en) * 2011-12-12 2013-06-19 Samsung Corning Precision Materials Co., Ltd. Method of manufacturing thermochromic substrate
US9657385B2 (en) 2011-12-12 2017-05-23 Corning Precision Materials Co., Ltd. Method of manufacturing thermochromic substrate
JP2013203852A (en) * 2012-03-28 2013-10-07 Fujifilm Corp Polymer sheet, solar cell back surface protection sheet and solar cell module
WO2020254196A1 (en) 2019-06-19 2020-12-24 Arburg Gmbh + Co Kg Method for providing an operating system of a machine controller
CN117270265A (en) * 2023-09-27 2023-12-22 佛山纳诺特科技有限公司 Automatic dimming film and preparation method thereof

Also Published As

Publication number Publication date
JP5147034B2 (en) 2013-02-20
JP2006256902A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP5147034B2 (en) Automatic thermal color-harmonic shading glass and manufacturing method
Kang et al. Thermochromic properties and low emissivity of ZnO: Al/VO2 double-layered films with a lowered phase transition temperature
Saeli et al. Nano-composite thermochromic thin films and their application in energy-efficient glazing
JP4533996B2 (en) Highly heat insulating automatic light control glass and manufacturing method thereof
CN104995151B (en) Solar control glassing
CN104126135B (en) Solar control glassing
JP4370396B2 (en) Multifunctional automatic light control insulation glass and air conditioning method
JP4899228B2 (en) Manufacturing method and product of vanadium dioxide thin film
Arbab et al. Glass in architecture
CN110418710A (en) Low emissivity coatings for glass baseplate
US11254603B2 (en) Gradient tinted articles and methods of making the same
CN102030485A (en) Intelligent control composite film glass and preparation method thereof
CN105084778A (en) Green low-radiation reflective glass and preparation method therefor
Warwick et al. Thermochromic vanadium dioxide thin films prepared by electric field assisted atmospheric pressure chemical vapour deposition for intelligent glazing application and their energy demand reduction properties
JP2022515344A (en) Sun-controlled glazing with two layers of titanium nitride base
CN110596981B (en) Electrochromic glass with more neutral color matching and preparation method and application thereof
CN107663029B (en) European gray low-emissivity coated glass
CN111268904A (en) Preparation method of energy-saving glass
CN104310801A (en) Tri-silver LOW-E glass with neutral color and preparation method thereof
JP6813509B2 (en) Coating base material for solar control
JP4836071B2 (en) High-performance vanadium dioxide-based automatic light control material and method for improving performance of light control material
Jin et al. Remarkable improved solar transmission of VO2 smart windows by partial controlled oxygen plasma bombarding
CN203284327U (en) Low-reflectivity gold remote toughened off-line LOW-E coated glass
CN205838842U (en) Off-line Europe ash low radiation coated glass
CN209940851U (en) Phosphorus-doped self-cleaning three-silver LOW-E glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729446

Country of ref document: EP

Kind code of ref document: A1