JP2006205201A - Rolling method - Google Patents

Rolling method Download PDF

Info

Publication number
JP2006205201A
JP2006205201A JP2005019825A JP2005019825A JP2006205201A JP 2006205201 A JP2006205201 A JP 2006205201A JP 2005019825 A JP2005019825 A JP 2005019825A JP 2005019825 A JP2005019825 A JP 2005019825A JP 2006205201 A JP2006205201 A JP 2006205201A
Authority
JP
Japan
Prior art keywords
rolling
welding
passing
weld
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005019825A
Other languages
Japanese (ja)
Inventor
Hisafumi Tsuchida
尚史 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005019825A priority Critical patent/JP2006205201A/en
Publication of JP2006205201A publication Critical patent/JP2006205201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling method capable of reducing the quantity of impairment of the production efficiency as much as possible when passing through a weld part including productivity impairment caused by occurrence of breakage of a plate by adequately controlling the rolling rate when passing the weld part in a rolling mill. <P>SOLUTION: The rolling rate when passing through a weld part in a continuous rolling mill is controlled based on the experienced data during the welding of the weld part and the steel kind data. The rolling rate v when passing through the weld part is preferably controlled so that the quantity F of impairment of the production expressed by the formula (1) is minimized where the probability of breakage of the weld part calculated based on the experienced data during the welding and the steel kind data is denoted as p(v). The formula (1): Quantity F of impairment of production = quantity j(v) of production caused by breakage of plate × probability p(v) of breakage + quantity k(v) of impairment of production caused by deceleration. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、連続式圧延機による溶接部通過時の圧延方法に関する。   The present invention relates to a rolling method when passing a welded portion by a continuous rolling mill.

従来、連続式冷間圧延では、鋼板溶接部の圧延機通過時は、低速で圧延を行うことで、溶接部での板厚の違いに起因する段差による急激な張力変動や溶接部での強度不足に起因する板破断発生による被害を低く抑えるようにしていた。ここで、鋼板溶接部が圧延機を通過する際の速度は、鋼板の溶接条件、例えば、先行板と後行板の板厚命令値や鋼種等により、経験的に決定されていた。   Conventionally, in continuous cold rolling, when the steel plate weldment passes through a rolling mill, the rolling is performed at a low speed, so that rapid tension fluctuations due to the difference in thickness at the welded portion and the strength at the welded portion. The damage caused by the plate breakage due to the shortage was kept low. Here, the speed at which the steel plate welded portion passes through the rolling mill has been determined empirically depending on the welding conditions of the steel plate, for example, the thickness command values of the preceding and succeeding plates, the steel type, and the like.

さらに、溶接部についての鋼板ストリップ面高さの変動や、幅方向位置の段差を計測して、溶接部診断を行い、この診断結果にもとづいて溶接部の圧延速度や張力を制御する技術も提案されている(特許文献1参照)。
特開2003−136106号公報
Furthermore, we also propose a technology to measure the fluctuation of the steel strip surface and the step in the width direction position of the welded part, perform the welded part diagnosis, and control the rolling speed and tension of the welded part based on the diagnosis result. (See Patent Document 1).
JP 2003-136106 A

従来の鋼板の板厚命令値や鋼種の情報による溶接部通過速度の決定方法では、例えば、鋼板の先尾端部分にオフゲージ領域などがあることを考慮して、安全性確保の為必要以上に低速で圧延するよう決定せざるを得ず生産能率を著しく阻害していた。   In the conventional method of determining the weld passage speed based on the steel sheet thickness command value and steel type information, for example, considering the fact that there is an off-gauge area at the leading end of the steel sheet, it is more than necessary to ensure safety. It had to be decided to roll at a low speed, which significantly hindered production efficiency.

上記特許文献1には、溶接部のストリップ面高さや幅方向位置の段差を計測し、その計測データを溶接部情報として圧延速度や張力の制御に反映させる点が記載されている。しかし、ストリップ面高さ、幅方向位置の段差だけを溶接部診断結果として圧延速度に反映させた場合には、圧延速度を十分に遅くすれば破断を防止できるものの、減速代を小さくして生産能率を向上させようとすると、ストリップ面高さ、幅方向位置の段差だけを溶接部診断結果としていたのでは不十分であり、やはり生産能率の向上には限度があった。   Patent Document 1 describes that the height of the strip surface of the welded portion and the step in the width direction are measured, and the measurement data is reflected in the control of the rolling speed and tension as welded portion information. However, if only the strip surface height and the step in the width direction are reflected in the rolling speed as the welded part diagnosis result, it is possible to prevent fracture if the rolling speed is sufficiently slowed, but the reduction allowance is reduced. In order to improve the efficiency, it was not sufficient to use only the height difference in the strip surface and the step in the width direction as the result of the weld diagnosis, and there was a limit to improving the production efficiency.

また、上記特許文献1には、溶接部の圧延速度の決定法について具体的に開示があるわけではなく、溶接部の速度を溶接部が破断しない範囲で十分に速めて圧延するには、詳細検討の余地が残されていた。   Further, the above-mentioned Patent Document 1 does not specifically disclose a method for determining the rolling speed of the welded portion, and details are necessary for rolling the welded portion at a sufficiently high speed within a range where the welded portion does not break. There was room for consideration.

さらに、圧延速度を十分遅くした場合には溶接部の破断は回避できるものの、圧延速度低下による生産能率低下が大きくなりすぎ、極端な場合にはある程度の確率での破断は容認しても圧延速度を速めたほうが、破断起因の生産性低下と圧延速度減速による生産性低下とを合計して勘案すると、かえって生産能率が向上する場合もあり得る。   Furthermore, if the rolling speed is sufficiently slow, fracture of the weld can be avoided, but the production efficiency decline due to the reduction of the rolling speed becomes too great. If the speed is increased, the productivity efficiency may be improved in consideration of the total decrease in productivity due to fracture and the decrease in productivity due to reduction in rolling speed.

そこで、本発明は、圧延機における溶接部通過時の圧延速度を適切に制御することで、板破断の発生による生産性阻害を含んだ溶接部通過時の生産能率阻害量を極力少なくすることが可能な圧延方法を提供することを目的とする。   Therefore, the present invention can minimize the amount of production efficiency hindrance when passing the weld including the productivity hindrance due to the occurrence of plate breakage by appropriately controlling the rolling speed when passing the weld in the rolling mill. An object is to provide a possible rolling method.

上記目的を達成するために、本発明は以下のような特徴を有する。
[1]鋼板の連続圧延機における溶接部通過時の圧延方法であって、
前記溶接部における溶接時の実績データと鋼種データとに基づいて連続圧延機における溶接部通過時の圧延速度を制御することを特徴とする圧延方法。
[2]上記[1]において、圧延速度の制御が、溶接時の実績データと鋼種データとに基づき算出された溶接部の破断確率をp(v)としたときに、次式(1)で表される生産阻害量Fが最小となるように溶接部通過時の圧延速度vを制御することを特徴とする圧延方法。
In order to achieve the above object, the present invention has the following features.
[1] A rolling method at the time of passing a welded portion in a continuous rolling machine for steel plates,
A rolling method characterized by controlling a rolling speed when passing through a welded portion in a continuous rolling mill based on actual data and steel type data at the time of welding in the welded portion.
[2] In the above [1], when the rolling speed control is p (v) where the fracture probability of the weld calculated based on the actual data and the steel type data at the time of welding is expressed by the following equation (1): The rolling method characterized by controlling the rolling speed v at the time of passing a weld so that the production inhibition amount F expressed is minimized.

生産阻害量F=板破断による生産阻害量j(v)×破断確率p(v)+減速による生産阻害量k(v) ・・・(1)
[3]上記[2]において、破断確率p(v)が、次式(2)により算出されることを特徴とする圧延方法。
Production inhibition amount F = Production inhibition amount j (v) due to plate breakage × Fracture probability p (v) + Production inhibition amount k (v) due to deceleration (1)
[3] The rolling method according to [2], wherein the fracture probability p (v) is calculated by the following equation (2).

p(v)=(1+α1)×(1+α2)×p0(v) ・・・(2)
ここで、α1は鋼板の板厚及び突合せレベル差から決定される確率補正係数、α2は溶接部のビード高さ、溶接部のビードの位置及び溶接電流から決定される確率補正係数、p0(v)は鋼種データから決定される破断確率基準値をあらわす。
p (v) = (1 + α1) × (1 + α2) × p0 (v) (2)
Here, α1 is a probability correction coefficient determined from the plate thickness and butt level difference of the steel sheet, α2 is a probability correction coefficient determined from the bead height of the weld, the position of the bead of the weld and the welding current, p0 (v ) Represents the fracture probability reference value determined from the steel type data.

本発明によれば、圧延機における溶接部通過時の圧延速度を適切に制御することで、板破断の発生による生産性阻害を含んだ溶接部通過時の生産能率阻害量を極力少なくすることが可能な圧延方法が提供される。   According to the present invention, by appropriately controlling the rolling speed at the time of passing a welded portion in a rolling mill, the production efficiency inhibition amount at the time of passing the welded portion including the productivity hindrance due to the occurrence of plate breakage can be reduced as much as possible. A possible rolling method is provided.

以下、本発明を実施するための最良の形態の一例を説明する。   Hereinafter, an example of the best mode for carrying out the present invention will be described.

図1は、本発明の圧延方法が適用される連続圧延ラインの構成の一例を示す図である。図1において、圧延機1の入側には、上流側から供給側のコイル2、溶接機3、ルーパー4が順次配置され、圧延機1の下流側では圧延後の鋼板が出側コイル5として巻き取られる。   FIG. 1 is a diagram showing an example of a configuration of a continuous rolling line to which the rolling method of the present invention is applied. In FIG. 1, a coil 2 from the upstream side, a welding machine 3, and a looper 4 are sequentially arranged on the inlet side of the rolling mill 1, and the rolled steel plate is used as the outgoing coil 5 on the downstream side of the rolling mill 1. It is wound up.

前記溶接機3では、材質や板厚等の異なる鋼板どうしを溶接して、鋼板を連続的に圧延機1に送り込むようにしている。この際、前記ルーパー4には鋼板が蓄えられており、常に所定のスピードで圧延機1に鋼板が送り込まれるように構成されている。   In the welding machine 3, steel plates having different materials and plate thicknesses are welded to each other, and the steel plates are continuously fed into the rolling mill 1. At this time, a steel plate is stored in the looper 4, and the steel plate is always fed into the rolling mill 1 at a predetermined speed.

図1においては、前記圧延機1として、第1から第5までの5台の圧延スタンドを順次配置したタンデム圧延機を用いた場合を示しているが、本発明に係る圧延方法が適用される圧延機はこの場合に限られず、他の形式の圧延機であっても同様に適用できる。   FIG. 1 shows a case where a tandem rolling mill in which five rolling stands from 1 to 5 are sequentially used is used as the rolling mill 1, but the rolling method according to the present invention is applied. The rolling mill is not limited to this case, and other types of rolling mills can be similarly applied.

前記溶接機3の近傍には溶接時の実績データを収集するための実績データ収集手段6が設置されている。ここで、前記実績データ収集手段6では、前記溶接機3において先行板尾端部と後行板先端部とを突合せ溶接する際の、それぞれの鋼板の板厚、突合せレベル差、すなわち、先行板板厚中心と後行板板厚中心との板厚方向の位置ずれ量、溶接部のビード高さ、溶接部のビードの位置(先行板と後行板の中間位置からのビード位置のずれ量)、溶接電流などの実績データを収集する。なお、前記鋼板の板厚は、例えば溶接機3の近傍に設けられた板厚計7で測定でき、前記溶接電流は、例えば溶接機3に設けられた溶接電流計等で測定できる。また、前記突合せレベル差、溶接時のビード高さ、溶接時のビードの位置は、例えば図2にその測定方法の一例を示すように、レーザー光照射装置8によりスリット状のレーザー光を溶接箇所に照射し、CCDカメラ9で反射光を撮影した画像から、画像解析装置10での画像解析により測定する方法、つまり、光切断法による形状測定技術などを用いることで測定可能である。前記画像解析装置10での画像解析により求めた突合せレベル差、溶接時のビード高さ、溶接時のビードの位置の情報は、前記実績データ収集手段6により収集され、保存される。   In the vicinity of the welding machine 3, a performance data collecting means 6 for collecting performance data at the time of welding is installed. Here, in the performance data collecting means 6, when the butt welding of the leading plate tail end portion and the trailing plate tip portion is performed in the welding machine 3, the difference in the plate thickness and butt level of each steel plate, that is, the preceding plate plate Amount of positional deviation in the thickness direction between the center of thickness and the thickness of the succeeding plate, the bead height of the welded portion, and the position of the bead of the welded portion (deviation amount of the bead position from the intermediate position between the preceding plate and the succeeding plate) Collect actual data such as welding current. The plate thickness of the steel plate can be measured by, for example, a plate thickness meter 7 provided in the vicinity of the welding machine 3, and the welding current can be measured by, for example, a welding ammeter provided in the welding machine 3. The butt level difference, the bead height at the time of welding, and the position of the bead at the time of welding, for example, as shown in FIG. It is possible to measure by using a method of measuring by image analysis with the image analysis device 10 from an image obtained by photographing the reflected light with the CCD camera 9, that is, a shape measuring technique by a light cutting method. Information on the butt level difference, the bead height at the time of welding, and the position of the bead at the time of welding obtained by image analysis by the image analysis device 10 is collected and stored by the result data collecting means 6.

このような装置構成において、本発明に係る圧延方法は、溶接部における溶接時の実績データと鋼種データとに基づいて連続圧延機における溶接部通過時の圧延速度を制御するものである。   In such an apparatus configuration, the rolling method according to the present invention controls the rolling speed when passing through the welded part in the continuous rolling mill based on the actual data and steel type data at the time of welding in the welded part.

図3に、本発明に係る圧延方法における圧延速度を決定するための処理フローの一例を示す。図2に示すように、まず、破断確率算出ステップ20において、前記実績データ収集手段6により収集した溶接時の実績データと鋼種データとに基づき溶接部における破断確率p(v)を算出する。前記鋼種データとは、先行板及び後行板のそれぞれの板幅、それぞれの鋼種などの材料に関するデータをいい、例えば、圧延ラインを制御する主幹制御装置11等からの命令情報として与えられるデータを用いることができる。   FIG. 3 shows an example of a processing flow for determining the rolling speed in the rolling method according to the present invention. As shown in FIG. 2, first, in the fracture probability calculation step 20, the fracture probability p (v) at the weld is calculated based on the actual performance data and steel type data collected by the actual performance data collecting means 6. The steel grade data refers to data relating to the material of each of the preceding plate and the following plate, such as the plate width and the steel grade, for example, data given as command information from the master controller 11 or the like that controls the rolling line. Can be used.

ここで、前記破断確率p(v)は、上述した次式(2)により算出される値を用いることができる。   Here, as the fracture probability p (v), a value calculated by the following equation (2) can be used.

p(v)=(1+α1)×(1+α2)×p0(v) ・・・(2)
ここで、α1は鋼板の板厚及び突合せレベル差から決定される確率補正係数、α2は溶接部のビード高さ、溶接部のビードの位置及び溶接電流から決定される確率補正係数、p0(v)は鋼種データから決定される破断確率基準値をあらわし、圧延速度vの関数として設定しておく。
p (v) = (1 + α1) × (1 + α2) × p0 (v) (2)
Here, α1 is a probability correction coefficient determined from the plate thickness and butt level difference of the steel sheet, α2 is a probability correction coefficient determined from the bead height of the weld, the bead position of the weld and the welding current, p0 (v ) Represents the fracture probability reference value determined from the steel type data, and is set as a function of the rolling speed v.

前記確率補正係数α1,α2は、前記破断確率基準値p0(v)を決定した基準の溶接状態の場合を0(ゼロ)として、この基準の溶接状態と実際の溶接状態とを前記溶接時の実績データ及び鋼種データをそれぞれ比較することで判断して、プラスマイナスでその値が決定される。なお、前記確率補正係数のα1及びα2は、設備構成、操業条件等によっても適宜変更され得る値であり、また、操業実績等によっても適宜更新するようにすることが好ましい。   The probability correction coefficients α1 and α2 are set to 0 (zero) in the case of the reference welding state in which the fracture probability reference value p0 (v) is determined, and the reference welding state and the actual welding state are determined during the welding. Judgment is made by comparing actual data and steel type data, and the value is determined by plus or minus. Note that the probability correction coefficients α1 and α2 are values that can be appropriately changed depending on the equipment configuration, operation conditions, and the like, and are preferably updated as appropriate depending on the operation results.

次に、溶接部圧延速度決定ステップ30において、前記破断確率算出ステップで算出した破断確率p(v)を用いて、上述した次式(1)で表される生産阻害量Fが最小となるように溶接部通過時の圧延速度vを決定する。   Next, in the welded part rolling speed determination step 30, the production inhibition amount F expressed by the following equation (1) is minimized by using the fracture probability p (v) calculated in the fracture probability calculation step. Next, the rolling speed v when passing through the weld is determined.

生産阻害量F=板破断による生産阻害量j(v)×破断確率p(v)+減速による生産阻害量k(v) ・・・(1)
ここで、前記板破断による生産阻害量j(v)及び減速による生産阻害量k(v)は圧延速度vによって変化する関数であり、板破断による生産阻害量j(v)は圧延速度vが高速になるほど大きくなる値であり、前記減速による生産阻害量k(v)は、圧延速度vが低速になるほど大きくなる値である。つまり、上式(1)の右辺第1項は圧延速度vが大きくなると大きくなり、第2項は圧延速度vが小さくなるほど大きくなる。
Production inhibition amount F = Production inhibition amount j (v) due to plate breakage × Fracture probability p (v) + Production inhibition amount k (v) due to deceleration (1)
Here, the production inhibition amount j (v) due to plate breakage and the production inhibition amount k (v) due to deceleration are functions that vary depending on the rolling speed v, and the production inhibition amount j (v) due to plate breakage is determined by the rolling speed v. The value increases as the speed increases, and the production inhibition amount k (v) due to the deceleration is a value that increases as the rolling speed v decreases. That is, the first term on the right side of the above equation (1) increases as the rolling speed v increases, and the second term increases as the rolling speed v decreases.

このように、この溶接部圧延速度決定ステップにおいては、破断確率p(v)が与えられれば、上式(1)より、板破断の発生を防止しつつ溶接部通過時の生産能率阻害量を極力少なくするような、圧延機での溶接部通過速度を決定することが可能となる。   Thus, in this weld zone rolling speed determination step, if the fracture probability p (v) is given, the production efficiency hindrance when passing through the weld zone can be determined from the above equation (1) while preventing the occurrence of plate fracture. It becomes possible to determine the passing speed of the welded part in the rolling mill so as to reduce it as much as possible.

なお、上述の方法においては、前記破断確率p(v)及び溶接部通過時の圧延速度vを、上式(2)及び(1)により算出することで決定したが、操業実績等により、予め溶接時の実績データ及び鋼種データとの関連を求めておき、それぞれをテーブルルックアップ方式で求めるようにしてもよい。   In the above-described method, the fracture probability p (v) and the rolling speed v when passing through the weld are determined by calculating the above formulas (2) and (1). The relationship between the actual data and the steel type data at the time of welding may be obtained, and each may be obtained by a table lookup method.

前記溶接部圧延速度決定ステップにより、溶接部の圧延速度が決定されると、その値は圧延ラインを制御する主幹制御装置に伝送され、溶接部が圧延機に到達する直前にその圧延速度となるように溶接部の圧延速度が制御される。ここで、鋼板の溶接部の圧延ライン内における位置は、溶接点のトラッキングにより把握可能である。また、主幹制御装置11では、前記溶接部の圧延速度決定値に基づいて、前記圧延機1の各圧延スタンドにおける速度パターンを作成し、各圧延スタンドの駆動モータの回転数等を制御することで所定の圧延速度となるように制御が行われる。   When the rolling speed of the welded part is determined by the welding part rolling speed determining step, the value is transmitted to a master control device that controls the rolling line, and the rolling speed is reached immediately before the welded part reaches the rolling mill. Thus, the rolling speed of the weld is controlled. Here, the position in the rolling line of the welding part of a steel plate can be grasped | ascertained by tracking of a welding point. Further, the master controller 11 creates a speed pattern in each rolling stand of the rolling mill 1 on the basis of the rolling speed determined value of the welded portion, and controls the number of rotations of the driving motor of each rolling stand, etc. Control is performed so as to achieve a predetermined rolling speed.

このように、本発明は、鋼種データ等の命令情報によるだけではなく、実際に、溶接時の実績データ及び鋼種データに基づいて溶接部通過時の圧延速度を決定するので、溶接品質が良好であるとき、つまり破断リスクが小さいときには高速で圧延することができ、能率を阻害することなく操業が可能となる。また、溶接品質が悪い場合は、溶接部通過時の圧延速度をより低速とすることで破断の発生も削減でき、さらに能率及び歩留を向上させることが可能となる。   Thus, the present invention is not only based on the command information such as the steel type data, but actually determines the rolling speed when passing the weld based on the actual data and the steel type data at the time of welding, so the welding quality is good. In some cases, that is, when the risk of breakage is small, rolling can be performed at high speed, and operation can be performed without impeding efficiency. Moreover, when welding quality is bad, generation | occurrence | production of a fracture | rupture can be reduced by making the rolling speed at the time of a welding part passage slower, and also it becomes possible to improve efficiency and a yield.

本発明の圧延方法が適用される連続圧延ラインの構成の一例を示す図である。It is a figure which shows an example of a structure of the continuous rolling line to which the rolling method of this invention is applied. 本発明に係る、溶接部における突合せレベル差、溶接時のビード高さ、溶接時のビードの位置の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of the butt level difference in a welding part, the bead height at the time of welding, and the position of the bead at the time of welding based on this invention. 本発明に係る圧延方法における圧延速度を決定するための処理フローの一例を示す図である。It is a figure which shows an example of the processing flow for determining the rolling speed in the rolling method which concerns on this invention.

符号の説明Explanation of symbols

1 圧延機
2 供給側コイル
3 溶接機
4 ルーパー
5 出側コイル
6 実績データ収集手段
7 板厚計
8 レーザー光照射装置
9 CCDカメラ
10 画像解析装置
11 主幹制御装置
DESCRIPTION OF SYMBOLS 1 Rolling machine 2 Supply side coil 3 Welding machine 4 Looper 5 Outlet coil 6 Result data collection means 7 Plate thickness meter 8 Laser beam irradiation apparatus 9 CCD camera 10 Image analysis apparatus 11 Master controller

Claims (3)

鋼板の連続圧延機における溶接部通過時の圧延方法であって、
前記溶接部における溶接時の実績データと鋼種データとに基づいて連続圧延機における溶接部通過時の圧延速度を制御することを特徴とする圧延方法。
It is a rolling method at the time of passing a weld in a continuous rolling machine of a steel plate,
A rolling method characterized by controlling a rolling speed when passing through a welded portion in a continuous rolling mill based on actual data and steel type data at the time of welding in the welded portion.
圧延速度の制御が、溶接時の実績データと鋼種データとに基づき算出された溶接部の破断確率をp(v)としたときに、次式(1)で表される生産阻害量Fが最小となるように溶接部通過時の圧延速度vを制御することを特徴とする請求項1に記載の圧延方法。
生産阻害量F=板破断による生産阻害量j(v)×破断確率p(v)+減速による生産阻害量k(v) ・・・(1)
When the rolling speed control is p (v), where the fracture probability of the weld is calculated based on the actual data and steel type data at the time of welding, the production inhibition amount F expressed by the following equation (1) is minimum. The rolling method according to claim 1, wherein the rolling speed v at the time of passing through the welded portion is controlled so that
Production inhibition amount F = Production inhibition amount j (v) due to plate breakage × Fracture probability p (v) + Production inhibition amount k (v) due to deceleration (1)
破断確率p(v)が、次式(2)により算出されることを特徴とする圧延方法。
p(v)=(1+α1)×(1+α2)×p0(v) ・・・(2)
ここで、α1は鋼板の板厚及び突合せレベル差から決定される確率補正係数、α2は溶接部のビード高さ、溶接部のビードの位置及び溶接電流から決定される確率補正係数、p0(v)は鋼種データから決定される破断確率基準値をあらわす。
A rolling method, wherein the fracture probability p (v) is calculated by the following equation (2).
p (v) = (1 + α1) × (1 + α2) × p0 (v) (2)
Here, α1 is a probability correction coefficient determined from the plate thickness and butt level difference of the steel sheet, α2 is a probability correction coefficient determined from the bead height of the weld, the position of the bead of the weld and the welding current, p0 (v ) Represents the fracture probability reference value determined from the steel type data.
JP2005019825A 2005-01-27 2005-01-27 Rolling method Pending JP2006205201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019825A JP2006205201A (en) 2005-01-27 2005-01-27 Rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019825A JP2006205201A (en) 2005-01-27 2005-01-27 Rolling method

Publications (1)

Publication Number Publication Date
JP2006205201A true JP2006205201A (en) 2006-08-10

Family

ID=36962574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019825A Pending JP2006205201A (en) 2005-01-27 2005-01-27 Rolling method

Country Status (1)

Country Link
JP (1) JP2006205201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220135A (en) * 2008-03-14 2009-10-01 Nisshin Steel Co Ltd Method of rolling weld zone
CN114798753A (en) * 2022-04-21 2022-07-29 宝钢湛江钢铁有限公司 Automatic rolling method for weak-strength welding seam of continuous mill

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220135A (en) * 2008-03-14 2009-10-01 Nisshin Steel Co Ltd Method of rolling weld zone
CN114798753A (en) * 2022-04-21 2022-07-29 宝钢湛江钢铁有限公司 Automatic rolling method for weak-strength welding seam of continuous mill

Similar Documents

Publication Publication Date Title
CN101905246B (en) Automatic control method for dynamic variable specification welding seam of rolling mill
JP5092966B2 (en) Continuous pickling cold rolling equipment and manufacturing method of cold rolled material
JP4878485B2 (en) Cold continuous rolling equipment
JP2006205201A (en) Rolling method
JP2009045650A (en) Anti-meandering rolling method of metal plate material
CA2653360C (en) Method and device for producing a metal strip by continuous casting
JP2006320933A (en) Camber controlling method, manufacturing method for rolling stock, and rolling apparatus
JP5126847B2 (en) Steel strip continuous processing equipment and continuous processing method
JP3341658B2 (en) Control method of rolling mill
JP5332577B2 (en) Steel strip continuous processing equipment and continuous processing method
KR100920574B1 (en) Continuous cold rolling method of sheet steel
JP5213487B2 (en) Steel strip continuous rolling method
JP2000033421A (en) Method for detecting joined point of traveling strip
JP2605557B2 (en) Control method of cold rolling mill
JP2004090079A (en) Edge drop controller for rolling mill
JP3924083B2 (en) Side trimming method for metal strip and continuous annealing equipment
JP5376330B2 (en) Hot rolled sheet shape control method, manufacturing method, and manufacturing apparatus
CN113909297B (en) Rolling forming method for ultrathin corrosion-resistant hot rolled strip steel
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP2005334949A (en) Method for preventing meandering of steel sheet and looper equipment
JP2012183578A (en) Method of controlling plate thickness and plate thickness controller in cold rolling mill
JP5201624B2 (en) Welding rolling method
JPH05161915A (en) Manufacture of spirally welded pipe
JPH11281345A (en) Method of measuring shape of moving metal strip in continuous surface treating apparatus for metal strips
JP2023016726A (en) Method and apparatus for manufacturing metal band material

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921