JP2006203602A - アンテナ装置及びアンテナ基板の製造方法 - Google Patents

アンテナ装置及びアンテナ基板の製造方法 Download PDF

Info

Publication number
JP2006203602A
JP2006203602A JP2005013605A JP2005013605A JP2006203602A JP 2006203602 A JP2006203602 A JP 2006203602A JP 2005013605 A JP2005013605 A JP 2005013605A JP 2005013605 A JP2005013605 A JP 2005013605A JP 2006203602 A JP2006203602 A JP 2006203602A
Authority
JP
Japan
Prior art keywords
antenna
dielectric film
ceramic substrate
antenna device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005013605A
Other languages
English (en)
Inventor
Hiroyuki Tsuboi
宏之 坪井
Kengo Iwata
賢吾 岩田
Yoichi Murase
陽一 村瀬
Kensuke Murata
健介 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2005013605A priority Critical patent/JP2006203602A/ja
Publication of JP2006203602A publication Critical patent/JP2006203602A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

【課題】 誘電体層と導体膜とを積層した構造を持つアンテナ装置の性能を安定化させ、効率を改善する。
【解決手段】 誘電率一定で表面が極平滑な純度97%以上の高純度セラミック基板10の一方の面上に、1以上のアンテナ電極12、14、…が設けられる。高純度セラミック基板10の他方の面上に接地電極18が設けられる。接地電極18上に第1の誘電体膜19が設けられる。第1の誘電体膜19上に、アンテナ電極を制御するスイッチ回路などの電子回路24、24、…が設けられる。アンテナ電極12、14、…上に、第2の誘電体膜16が設けられる。アンテナ電極12、14、…や接地電極18は厚3μm以下に作成される。誘電体膜16、19は厚10μm以下に作成される
【選択図】図2

Description

本発明は、一般にはアンテナ装置に関し、特に、マイクロストリップアンテナのように誘電体層と導体膜とを積層した構造を持つアンテナ装置、及びそのような構造のアンテナ装置のためのアンテナ基板の製造方法に関する。
この種の構造をもつアンテナ装置は、例えば特許文献1〜5などに開示されている。従来、この種のアンテナ装置の一般的な製造方法では、低温焼成セラミック基板(Low Temperature Co-Fired Ceramics)又は厚膜多膜セラミック基板が用いられ、セラミック基板と導体膜とが同時に焼成される。
特開平5−102721号公報 特開平7−128435号公報 特開平9−214238号公報 特開2003−142919号公報 特開2004−150966号公報
従来の一般的な製造方法では、セラミック基板と導体膜とが同時に焼成されるので、セラミックの焼成温度を導体膜の焼成温度(例えば、800〜900℃程度)まで下げる必要があり、その目的で、セラミックス基板に不純物が添加される。しかし、不純物の混入率の変動により、セラミックス基板の誘電率が製品ごとに異なっている。セラミックス基板の誘電率が製品ごとに異なると、アンテナ装置の性能又は特性において製品間にばらつきが生じるという問題がある。例えば、複数のアンテナ電極のアレイをセラミックス基板上に有するアレイタイプのアンテナ装置の場合、アンテナ電極間の電流位相差や電波干渉の特性が、製品ごとに異なってくるので、一定の電波放射パターンをもつアンテナ装置を安定して製造することが困難である。
また、不純物が添加されたセラミックス基板では、焼成過程で発生するガスの影響で、基板の表面にボイドが発生する。そのため、導体膜の絶縁又は防水などのための誘電体膜を基板表面上に形成する場合、その誘電体膜の膜厚をボイドの凹凸に影響されないよう十分に厚くしなければならない。しかし、誘電体膜の膜厚が厚いと、特に波長の短い10GHz以上の帯域では損失が大きくなったりアンテナに給電する電波の位相がずれたりし、高効率のアンテナを形成することができないという問題がある。
従って、本発明の目的は、誘電体層と導体膜とを積層した構造を持つアンテナ装置の性能又は特性を安定させることにある。
本発明の別の目的は、上記構造のアンテナ装置の効率を改善することにある。
本発明の第1の側面に従うアンテナ装置は、高純度セラミック基板と、高純度セラミック基板の一方の面上に設けられた1以上の導体膜からなる1以上のアンテナ電極と、高純度セラミック基板の他方の面上に設けられた導体膜からなる接地電極と、接地電極上に設けられた第1の誘電体膜と、第1の誘電体膜上に設けられた電子回路とを備える。
このアンテナ装置では、アンテナ電極及びアンテナ電極の電位のグランドレベルを提供する接地基板のベースとなる誘電体基板として、高純度セラミック基板が用いられる。高純度セラミック基板は、不純物の含有量が極めて少ない(例えば、数%以下)ため、製造ロットに関係なく、どの製品も一定の誘電率を有する。そのため、複数のアンテナ電極が並んだアレイタイプのアンテナ装置であっても、アンテナ電極間の位相差や電波干渉の特性において、ロット間でのばらつきがなく、よって、一定の電波放射パターンをもったアンテナ装置を安定した製造することができる。また、高純度セラミック基板の場合、一般に高圧下で成形,焼成されるため、基板表面にボイドの発生が無く、その表面は非常に平らである。そのため、第1の誘電体膜の膜厚を従来よりも薄くできるので、波長の短い10GHz以上の帯域であっても損失やアンテナに給電される電波の位相ずれの問題が低減する。よって、より高効率のアンテナを提供することができる。
高純度セラミック基板の純度は、95%以上であることが望ましく、97%以上であれば特に好ましい。すなわち、セラミック基板の誘電率は、その純度(100%−不純物含有率)に応じて変化するが、純度が95%以上の範囲では、純度に応じてはあまり変化しなくなり、セラミック材料そのものがもつ誘電率とほぼ一致するようになる。特にセラミック基板の純度が97%以上であれば、セラミック材料そのものの誘電率と同一とみなすことができる。よって、このような純度を高純度セラミック基板を用いることが望ましい。
上記アンテナ装置において、アンテナ電極上に第2の誘電体膜を更に備えることができる。そして、第2の誘電体膜の誘電率は、セラミック基板及び第1の誘電体膜の誘電率よりも大きいことが望ましい。このようにアンテナ電極上に高誘電率の誘電体膜を形成すると、アンテナ電極が大気に開放されている場合に比べて、アンテナ電極を伝わる高周波の波長短縮が発生する。その結果、アンテナ装置の面積の小型化が可能になり、或いは、同一面積でアンテナ電極のより高集積化が可能になり、よって、より高出力、狭指向性をもったアンテナ電極が提供可能になる。そして、例えば物体センサの部品としてアンテナ装置を利用する場合、センササイズはアンテナ装置の寸法に依存する為、センサの小型化や省電力化が可能である。また、発振パワーを小さく出来るので、高調波の発生を抑制でき、他装置への干渉のないセンサを提供することが容易になる。
上述した電子回路は、少なくとも1つのアンテナ電極中に接続され、そのアンテナ電極に流れる電流を制御するような機能をもつことができる。このような電子回路でアンテナ電極に流れる電流を制御することで、アンテナ装置から放射される電波の放射パターンの効率や指向性や指向方向などの特性を可変制御することができる。そして、高純度セラミック基板の誘電率が一定していることで、可変制御される電波放射パターンの特性をどの製品も一定にすることが容易である。さらに、電子回路が、セラミック基板のアンテナ電極とは反対側に配置されているので、アンテナ装置の小型化が容易であるとともに、電子回路による電波放射パターンの変形が発生せず、よって、高効率で高品質な電波ビームを放射できるアンテナ装置を提供することが一層容易である。
上述した電子回路とアンテナ電極とは、高純度セラミック基板及び第1の誘電体膜を貫通する導体線を通じて接続することができる。このようなスルーホールタイプの線路を用いることにより、電子回路と電極間の線路長を最短化でき、よって、線路のインピーダンスによる損失や位相変化を最小化でき、このことも、アンテナ装置の性能の安定化や高効率化に寄与する。
本発明のアンテナ装置は、少なくとも一つのアンテナ電極に高周波電力を供給するための発振回路を、第1の誘電体膜、接地電極又は電子回路上に備えることができる。このように、アンテナ励振用の発振回路をセラミック基板のアンテナ電極とは反対側に配置することにより、アンテナ装置の小型化が容易であるとともに、発振回路や電子回路による電波放射パターンの変形が発生せず、よって、高効率で高品質な電波ビームを放射できるアンテナ装置を提供することが一層容易である。
本発明のアンテナ装置では、第1の誘電体膜に凹部又は穴部を形成して、その凹部内又は穴部内に上記の発振回路を配置することができる。これにより、アンテナ装置がより小型化になる。また、発振回路と接地電極との距離を小さくでき、或いは、発振回路を接地電極上に直接配置することができる、また、発振回路とアンテナ電極との距離も小さくなるので、発振回路と接地電極やアンテナ電極との間の線路長が短くなり、線路のインピーダンスの影響が減り、アンテナ装置の性能の安定化や高効率化に寄与する。
発振回路とアンテナ電極との間の線路にも、高純度セラミック基板を貫通する導体線を用いることができる。これにより、発振回路とアンテナ電極との間の線路が最小化され、そのインピーダンスの影響を最小化でき、アンテナ装置の性能の安定化や高効率化に寄与する。
好適な一つの実施形態では、高純度セラミックス基板上に複数のアンテナ電極が配置され、それらアンテナ電極中の少なくとも一つが上記発振回路に接続された給電素子であり、残りのアンテナ電極は無給電素子であり、その無給電素子のうちの少なくとも一つに、上記電子回路が接続されていて、その無給電素子に流れる電流が電子回路により制御されるようになっている。このアンテナ装置では、電子回路により無給電素子の電流を制御することで、給電素子と無給電素子との間の干渉を変化させて、電波の放射方向を可変制御することができる。そして、上述した本発明の原理により、可変制御される電波放射パターンの特性がどの製品でも一定になるように安定化される。
好適な一つの実施形態では、高純度セラミックス基板上に複数のアンテナ電極が配置され、それらアンテナ電極中のそれぞれに上記発振回路から高周波電力が供給され、また、それらのアンテナ電極中の少なくとも一つに電子回路が接続され、そのアンテナ電極の他のアンテナ電極に対する電流の位相差が電子回路により制御される。このアンテナ装置では、一部のアンテナ電極の他のアンテナ伝居に対する位相差を制御することで、電波の放射方向を可変制御することができる。そして、上述した本発明の原理により、可変制御される電波放射パターンの特性がどの製品でも一定になるように安定化される。
本発明の別の側面に従うアンテナ基板の製造方法は、一方の面から他方の面へ貫通する貫通孔をもつ高純度セラミック基板の一方の面に1以上の導体膜からなる1以上のアンテナ電極を形成するステップと、高純度セラミック基板の他方の面に導体膜からなる接地電極を形成するステップと、接地電極上に第1の誘電体膜を形成するステップと、第1の誘電体膜上に導体膜からなるパターン配線を設けるステップと、アンテナ電極とパターン配線とを接続するための導体線を貫通孔内に形成するステップとを備える。この製造方法は、さらに、アンテナ電極上に第2の誘電体膜を形成するステップを備えることもできる。
このアンテナ基板の製造方法によれば、誘電率が一定で且つ表面が非常に平らである高純度セラミック基板上にアンテナ電極及び接地電極を形成するので、一定の特性の電波放射パターンをもったアンテナ装置を安定した製造することができ、また、より高効率のアンテナ装置を提供することができる。また、セラミック基板を貫通する貫通孔を通る導体線により、アンテナ電極と反対側のパターン配線とを接続しているので、線路長を最小化でき、線路のインピーダンスの影響を低減できるので、このことも、アンテナ装置の性能の安定化と高効率化に寄与する。
この製造方法において、アンテナ電極はPVD法(物理的蒸着法)にて形成することができる。PVD法によれば、アンテナ電極を、電波の伝わる最低厚み程度の薄い膜厚(例えば3μm以下)で形成することが可能である。アンテナ電極がこの程度に薄ければ、その上に形成される第2の誘電体膜は、10μm以下の薄い膜厚であっても、絶縁効果が得られる。このように誘電体膜が薄ければ、アンテナ装置から放射される電波の誘電体膜での減衰量が小さくなり、効率が向上する。
また、アンテナ電極だけでなく、接地電極、第1誘電体膜及びパターン配線も、PVD法により形成することができる。それにより、それらの膜の厚みを最小限にすることが可能であるため、第1の誘電体膜による電波の損失や位相変化を最小化でき、また、アンテナ電極とパターン配線間の線路長も最小化できるので、その線路のインピーダンスの影響も最小化され、高精度のアンテナ装置が実現できる。
セラミック基板のアンテナ電極とは反対側に、アンテナ電極を励振するための発振回路や、アンテナ電極の電流の制御やその他の機能のための電子回路を設けることができる。このような発振回路や電子回路は、別途に作成されたICチップ又はチップ素子であってもよいし、或いは、パターン配線上にプリントパターン配線板を重ね合わせて作成されてもよいし、或いは、パターン配線上にPVD法で形成されてもよい。PVD法で電子回路を作製した場合、電子回路を非常に薄く形成できるので、電子回路からアンテナ電極までの線路長が短くでき、線路での損失や位相変化を最小化できるため、アンテナ装置の性能や効率が向上する。
従って、本発明によれば、誘電体層と導体膜とを積層した構造を持つアンテナ装置の性能又は特性を安定させることができる。
また、本発明によれば、上記構造のアンテナ装置の効率を改善することができる。
以下、本発明の実施形態を説明する。
図1は、本発明の一実施形態にかかるアンテナ装置の平面図(図1A)と概略的な断面図(図1B)である。図2は、このアンテナ装置の概略的な分解斜視図である。
図示のように、このアンテナ装置では、高純度のセラミック基板(例えば、高純度のアルミナ(Al2O3))基板)10の一方の表面(図では上面)上に、いずれも矩形の複数の導体膜からそれぞれなる複数のアンテナ電極12、14、…のアレイが配置されている。ここで、高純度セラミック基板10の純度は、95%以上であることが望ましく、97%以上であれば特に好ましい。すなわち、セラミック基板の誘電率は、その純度(100%−不純物含有率)に応じて変化するが、純度が95%以上の範囲では、純度に応じてはあまり変化しなくなり、セラミック材料そのものがもつ誘電率とほぼ一致するようになる。特にセラミック基板の純度が97%以上であれば、セラミック材料そのものの誘電率と同一とみなすことができる。よって、このような高純度のセラミック基板を用いることが望ましい。
また、アンテナ電極12、14、…は、例えば銅、銀、又は銀パラジウムなどの導電率の高い金属の薄膜である。これらアンテナ電極12、14、…のうちの少なくとも一つ、例えば中央の一つのアンテナ電極12は、発振回路(高周波発振回路)20に給電線路22で接続されて、発振回路20から直接的に高周波(例えば、10.525GHz、24.15GHz又は76GHzなどの特定周波数の高周波)電力の給電を受けるようになっている(以下、このアンテナ電極を給電素子という)。他方、給電素子12の周囲に配置された残りのアンテナ電極14、14、…は、発振回路20には接続されておらず、発振回路20から直接的に高周波電力の給電を受けることはない(以下、これらのアンテナ電極を無給電素子という)。給電素子12の励振方向は図中の上下方向であり、無給電素子14、14、…は、給電素子12に対して励振方向における両側、励振方向に直交する方向における両側、及び、励振方向から45度の斜め方向における両側にそれぞれ配置されている。
高純度セラミック基板10の他方の面(図中の下面)のほぼ全領域には、導体膜からなる接地電極18が設けられている。接地電極18の下面のほぼ全領域が、第1の誘電体膜19で被覆されている。ここで、接地電極18は、例えば銅、銀、又は銀パラジウムなどの導電率の高い金属製の薄膜である。また、第1の誘電体膜19は、例えば、アルミナ(Al)やシリカ(SiO)などのセラミック製の薄膜であり、上述した高純度セラミック基板10と同程度に高純度であることが望ましい。
第1の誘電体膜19の給電素子12にほぼ対応する領域に、貫通穴又は凹部が形成されており、その貫通穴内又は凹部内に発振回路(例えば、10.525GHz、24.15GHz又は76GHzなどの特定周波数の高周波電力を発生する高周波発振回路)20が配置されている。発振回路20の接地端子は接地電極18に直接接合されている。そして、給電素子12の所定の給電点(以下、図1Aで、給電素子12内で丸印で示す点)に対応する、高純度セラミック基板10と接地電極18の箇所に、細い貫通孔が形成さられており、この貫通孔内に、導体線である給電線22が通されている。この給電線22は、一端にて給電素子12の給電点に接続され、他端にて発振回路20の高周波出力端子に接続されている。発振回路20から出力される高周波(例えば、10.525GHz、24.15GHz又は76GHzなどの特定周波数のマイクロ波)電力は、上記スルーホールタイプの給電線22を通って、給電素子12の給電点に供給されることになる。
ここで、発振回路20や電子回路24、24、…は、別途に作成されたICチップ又はチップ素子であってもよいし、或いは、接地電極18上にプリントパターン配線板を重ね合わせて作成されてもよいし、或いは、接地電極18上にPVD法で形成されてもよい。そして、発振回路20は、周囲の他の装置に影響を及ぼさないようにするための電磁シールドケースの中に収容されている。
また、第1の誘電体膜19の下面上には、図2に示すようにそれぞれ導体膜からなるパターン配線32、32、…が形成されている。そして、無給電素子14、14、…にそれぞれ対応する第1の誘電体膜19の下面の複数箇所に、複数の電子回路24、24、…が配置されている。これらの電子回路24、24、…は、対応する無給電素子14、14、…に流れる高周波電流を制御するものであり、この実施形態では、例えば、無給電素子14、14、…をそれぞれ接地するかフロート状態にするかを切り替える(つまり、そこに流れる電流の振幅を増減する)ためのスイッチ回路である。これらスイッチ回路24、24、…は、それぞれ、相互間の接続がオンオフされる2つの入出力端子と、そのオンオフを制御するための制御端子とを有する。これらスイッチ回路24、24、…の制御端子がパターン配線32、32、…にそれぞれ接続されている。
また、無給電素子14、14、…の所定の接地点(以下、図1Aで、各無給電素子14内で黒ドットで示す点)にそれぞれ対応する、高純度セラミック基板10と接地電極18と第1の誘電体膜19の箇所に、細い貫通孔が形成されており、それらの貫通孔内に、導体線である接続線26、26、…が通されている。このスルーホールタイプの接続線26、26、…は、対応する無給電素子14、14、…の接地点と対応するスイッチ回路24、24、…の一方の入出力端子とを接続している。さらに、スイッチ回路24、24、…に対応する第1の誘電体膜19の箇所に、スルーホールタイプの別の接続線28、28、…が形成されており、それらの接続線28、28、…は、対応するスイッチ回路24、24、…の他方の入出力端子を接地電極18に接続している。
スイッチ回路24、24、…を個別にオンオフ制御することにより、無給電素子14、14、…を個別に接地状態かフロート状態かが切り替わる。これにより、給電素子12とその周囲の無給電素子14、14、…のそれぞれとの間の電波の干渉の程度が変化し、このアンテナ装置からの電波の放射パターンが変化する。従って、無給電素子14、14、…のうちのどれを接地し、どれをフロートにするかを選択することにより、このアンテナ装置からの電波の放射方向が、複数の方向(例えば、セラミック基板10に垂直な方向、及び、垂直から上下左右斜めのなどの方向へ複数段階の傾き角度でそれぞれ傾いた方向など)へ変化する。
上述した給電素子12および無給電素子14,14、…の表面を含む高純度セラミック基板10の上面ほぼ全領域上には、第2の誘電体膜16が形成されている。第2の誘電体膜16は、例えば、アルミナなどのセラミック製の薄膜であり、上述した高純度セラミック基板10と同程度に高純度であることが望ましい。また、第2の誘電体膜16の誘電率は、高純度セラミック基板10や第1の誘電体膜18の誘電率に比べて、できるだけ高いことが好ましく、例えば比誘電率100〜200強程度の材料が利用できる。このように高誘電率の第2の誘電体膜16が存在すると、セラミック基板10上でのマイクロ波の波長λgが、第2の誘電体膜16がない(アンテナ電極の表面が空気に触れている)場合より短くなる。その結果、アンテナ電極の小型化およびアンテナ電極間スペースの縮小が図れ、アンテナ装置の小型化が図れる。このことは、特に、電波放射方向変化の分解能を向上させるために無給電素子14、14、…の個数を増やしたい時に有利である。また、第2の誘電体膜16の厚さは、上述の利点を奏すると共に放射パワーをできるだけ減衰させないようにするために、できるだけ薄い、例えば0.1〜0.2mm以下、更に好ましくは10μm以下が好ましい。
以上のような構成をもつアンテナ装置では、誘電率が安定して一定である高純度セラミック基板10上にアンテナ電極12、14、…や接地電極18が形成されているため、アンテナ電極12、14、…間の位相差や電波干渉の特性において、製品間のばらつきがなく、よって、一定の電波放射パターン及び電波放射方向の制御能をもったアンテナ装置を安定した製造することができる。
また、高純度セラミック基板10は焼成過程でのボイドの発生がなく、その表面は非常に平らであるから、誘電体膜19、16の膜厚を従来よりも薄くできるので、10GHz以上のマイクロ波帯域であっても損失やアンテナ電極に給電される高周波電力の位相ずれの問題が低減する。よって、より高効率のアンテナ装置を提供することができる。
また、発振回路20や電子回路24、24、…が、セラミック基板10のアンテナ電極12、14、…とは反対側に配置されているので、アンテナ装置の小型化が容易であるとともに、発振回路20や電子回路24、24、…による電波放射パターンの変形が発生せず、よって、高効率で高品質な電波ビームを放射できるアンテナ装置を提供することが一層容易である。
さらに、第1の誘電体膜19に凹部又は穴部が形成され、その凹部内又は穴部内に発振回路20が配置されているので、アンテナ装置がより小型化できる。また、発振回路20と接地電極18との距離が小さくでき(特に、この実施形態では、発振回路20が接地電極18上に直接設置され)、また、発振回路20とアンテナ電極12との距離も小さくなるので、発振回路20と接地電極18やアンテナ電極12との間の線路長が短くなり、線路のインピーダンスの影響が減り、アンテナ装置の性能の安定化や高効率化に寄与する。
また、アンテナ電極12、14、…が第2の誘電体膜16で覆われ、その第2の誘電体膜16の誘電率は、セラミック基板10及び第1の誘電体膜19の誘電率よりも大きい。そのため、アンテナ電極12、14、…が大気に開放されている場合に比べて、アンテナ電極12、14、…を伝わる高周波の波長短縮が発生する。その結果、アンテナ装置の面積の小型化が可能になり、或いは、同一面積でアンテナ電極のより高集積化が可能になり、よって、より高出力、狭指向性をもったアンテナ電極が提供可能になる。そして、例えば物体センサの部品としてアンテナ装置を利用する場合、センサの小型化や省電力化が可能である。また、発振パワーを小さく出来るので、高調波の発生を抑制でき、他装置への干渉のないセンサを提供することが容易になる。
次に、上述した構成のアンテナ装置を製造するための本発明の一実施形態にかかる製造方法について説明する。
図3から図5は、本発明の一実施形態にかかるアンテナ基板の製造方法の手順を示す断面図である。
まず、図3Aに示すように、所定のサイズに加工された高純度セラミック基板100が用意される。この高純度セラミック基板100の純度は、望ましくは95%以上、特に望ましくは97%以上であり、その誘電率は純粋なセラミック材料の誘電率と実質的に同じであり、その表面は表裏共にボイドの凹みがなく非常に平滑である。図3Bに示すように、高純度セラミック基板100の前述したアンテナ電極の給電点や接地点に対応する位置に、一方の面から他方の面へ貫通する貫通孔102、102、…が形成される。図3A又は図3Bの段階で、高純度セラミック基板100の焼成は終わっている。すなわち、高純度セラミック基板100の焼成は、高純度セラミック基板100単体で、純粋なセラミック材料に適した高い焼成温度(例えば1600℃程度)で行われる。
その後、図3Cに示すように、高純度セラミック基板100の表裏両面上に、前述したアンテナ電極及び接地電極になるべき導体膜108、110が形成される。導体膜108、110の形成過程では、まず、セラミック基板100との密着性の良い導体、例えばチタン又はクロムなどの極薄の下地膜104、106が形成され、その下地膜104、106上に導電率の良い導体、例えば銅又は銀などの主膜108、110が形成される。下地膜104、106は、導体膜108、110と高純度セラミック基板100との密着性を高めるために機能する。
導体膜108、110は、望ましくは、アンテナ電極や接地電極に必要最小限の厚さ、例えば、3μm以下の厚さに形成される。導体膜108、110の形成方法としては、PVD法(例えば、スパッタリングやイオンブレーティングなど)又はめっき法などが使用できる。特に、PVD法を用いた場合、導体膜108、110を上述した3μm以下というように非常に薄く形成することが容易である。また、高純度セラミック基板100の表面が非常に平滑であることも、導体膜108、110をそのように非常に薄く形成することを可能にする。
その後、図3Dに示すように、表裏両側の導体膜108、110にエッチングが行われる。エッチングより、表側の導体膜108は、複数のアンテナ電極112、112、…の形状に加工される。また、裏側の導体膜110は、接地電極113と、後に発振回路の高周波出力端子と接続するためのパターン配線114とに加工される。
その後、図4Aに示すように、接地電極113上に、第1の誘電体膜120が形成される。第1の誘電体膜120には、後に発振回路を入れるための凹部又は穴部116、及び後に電子回路(スイッチ回路)と接地電極113との接続線が通される貫通穴118などが形成される。第1の誘電体膜120は、例えば低誘電率のアルミナなどのセラミックの薄膜である。第1の誘電体膜120の形成方法には、PVD法(例えば、スパッタリングやイオンブレーティングなど)、めっき法又はエアロゾルデポジション法(AD法)が使用できる。ここで、AD法とは、ほぼ1μm以下のセラミック微粒子をガス中に分散させたエアロゾルを対象物に向けて噴射して衝突させることで、衝突の衝撃で対象物の表面上にセラミック微粒子からなる薄膜を形成する方法である。PVD法を用いた場合、第1の誘電体膜120の厚みを最小限、例えば10μm以下(数μm〜10μm)にすることが容易である。第1の誘電体膜120の厚みが薄ければ、それによる電波の損失や位相変化を最小化でき、また、アンテナ電極とパターン配線間の線路長も最小化できるので、その線路のインピーダンスの影響も最小化され、高精度のアンテナ装置が実現できる。また、AD法を用いた場合、他の成膜法に比べ、より短時間に緻密な厚膜体を形成できるので、製造能率が良い。また、AD法によれば、内部応力の小さくて耐久性があり剥離しがたい誘電体膜を形成することができるので、アンテナ装置の強度が向上する。
再び図4を参照する。図4Aに示すように第1の誘電体膜120が形成された後、図4Bに示すように、第1の誘電体膜120上に、導体膜124が形成される。この導体膜124も、図3Cに示した導体膜108、110の形成過程と同様に、PVD法又はめっき法などにより、チタン又はクロムなどの極薄の下地膜122を形成し、その上に銅又は銀などの主膜123を重ねることで形成される。このとき、第1の誘電体膜120の表面上だけでなく貫通孔118内にも導体膜124が形成され、貫通孔内の導体膜124は接地電極113に接続する。
その後、図4Cに示すように、第1の誘電体膜120上の導体膜124にエッチングが施され、それにより、導体膜124は、後に電子回路(スイッチ回路)と接続されることになるパターン配線126、126、…に加工される。
その後、図5Aに示すように、セラミック基板100と第1の誘電体膜120を貫通している貫通穴102、102、…内に、PVD法又はめっき法などにより、導体膜128、128、…が形成される。これらの導体膜128、128、…は、対応するアンテナ電極112、112、…と対応するパターン配線114、126、126、…を接続する。
その後、図5Bに示すように、全てのアンテナ電極112、112、…の表面を含む高純度セラミック基板100の表側の表面のほぼ全領域上に、第2の誘電体膜130が形成される。第2の誘電体膜130は、例えば高誘電率(例えば、比誘電率が100〜200以上、具体的にはチタン酸バリウム等のチタニア系の酸化物、等)のセラミックなどの薄膜である。第2の誘電体膜130の形成方法には、PVD法、めっき法又はエアロゾルデポジション法(AD法)が使用できる。PVD法を用いた場合、第2の誘電体膜130の厚みを最小限、例えば10μm以下(数μm〜10μm)にすることが容易である。第2の誘電体膜130の厚みが薄ければ、それによる電波の損失や位相変化を最小化できるので、高効率のアンテナ装置が実現できる。また、AD法を用いた場合、他の成膜法に比べ、より短時間に緻密な厚膜体を形成できるので、製造能率が良い。また、AD法によれば、内部応力の小さくて耐久性があり剥離しがたい誘電体膜を形成することができるので、アンテナ装置の強度が向上する。
その後、図5Cに示すように、発振回路134が、第1の誘電体膜120の凹部又は穴部116内に所定位置に取り付けられて、その端子が対応するパターン配線114、114、…に接合される。また、電子回路(例えばスイッチ回路)132、132、…が、第1の誘電体膜120上の所定位置に取り付けられて、その端子が対応するパターン配線126,126、…に接合される。ここで、発振回路134又は電子回路132、132、…は、ICチップ又はチップ素子でもよいし、或いは、パターン配線114、114、…又は126、126、…上にプリントパターン配線板を重ね合わせて作成されてもよいし、或いは、パターン配線114、114、…又は126、126、…上にPVD法で形成されてもよい。PVD法で発振回路134又は電子回路132、132、…を作製した場合、発振回路134又は電子回路132、132、…を非常に薄く形成できるので、発振回路134又は電子回路132、132、…からアンテナ電極112、112、…までの線路長が短くでき、線路での損失や位相変化を最小化できるため、アンテナ装置の性能や効率が向上する。
以上説明したアンテナ基板の製造方法によれば、誘電率が一定で且つ表面が非常に平らである高純度セラミック基板100上にアンテナ電極112、112、…及び接地電極113を形成するので、一定の特性の電波放射パターンをもったアンテナ装置を安定した製造することができ、また、より高効率のアンテナ装置を提供することができる。また、セラミック基板100を貫通する貫通孔102、102、…を通る導体線128、128、…により、アンテナ電極112、112、…と反対側のパターン配線114、126、126、…とを接続しているので、その接続の線路長を最小化でき、線路のインピーダンスの影響を低減できるので、このことも、アンテナ装置の性能の安定化と高効率化に寄与する。
また、アンテナ電極112、112、…の形成方法にPVD法を採用する場合、アンテナ電極112、112、…を、電波の伝わる最低厚み程度の薄い膜厚(例えば3μm以下)で形成することが容易である。アンテナ電極112、112、…がこの程度に薄ければ、その上に形成される第2の誘電体膜130は、10μm以下の薄い膜厚であっても、絶縁効果が得られる。このように第2の誘電体膜130が薄ければ、アンテナ装置から放射される電波の第2の誘電体膜130での減衰量が小さくなり、効率が向上する。
また、アンテナ電極112、112、…だけでなく、接地電極113、第1誘電体膜130及びパターン配線114、126、126、…にもPVD法を採用する場合、それらの膜の厚みも最小限にすることが容易であるため、第1の誘電体膜120による電波の損失や位相変化を最小化でき、また、アンテナ電極112、112、…とパターン配線114、126、126、…間の線路長も最小化できるので、その線路のインピーダンスの影響も最小化され、高精度のアンテナ装置が実現できる。
また、第1及び第2の誘電体膜120、130にエアロゾルデポジション法(AD法)を採用した場合、製造能率が良く、また、誘電体膜120、130の強度が向上する。
図6は、本発明の第2の実施形態にかかるアンテナ装置の平面図である。
図6に示すように、高純度セラミック基板40の一方の面上に、複数、例えば4つの矩形の導体膜からそれぞれなる4つのアンテナ電極42A〜42Dの2×2のマトリクス状アレイが形成されている。これらのアンテナ電極42A〜42Dの各々は、所定位置に給電点44を有し、この給電点44は、前の実施形態の給電素子の給電点と同様に、スルーホールタイプの接続線(図示せず)を通じて、高純度セラミック基板40の反対側に配置された共通の発振回路(図示せず)の高周波出力端子に接続されている。発振回路から4つのアンテナ電極42A〜42Dに対して、同一位相の高周波電力が供給されるようになっている。
アンテナ電極42A〜42Dの各々は、複数の接地点46、48、50を有し、それらの接地点46、48、50は、それぞれ、前の実施形態の無給電素子の給電点と同様に、スルーホールタイプの接続線(図示せず)を通じて、高純度セラミック基板40の反対側に配置された複数の電子回路、例えばスイッチ回路(図示せず)の一方の入出力端子に接続されている。各スイッチ回路の他方の入出力端子は、前の実施形態と同様に、高純度セラミック基板40の反対側の面上に形成された接地電極(図示せず)に接続されている。そして、それぞれのスイッチ回路のオンオフ制御により、アンテナ電極42A〜42Dの複数の接地点46、48、50のどれが接地されるか否かが選択される。アンテナ電極42A〜42Dのうちのどれかが接地されると、その接地されたアンテナ電極と接地されていない他のアンテナ電極との間に位相差が生じ、その結果、このアンテナ装置からの放射される電波の方向が変化する。どのアンテナ電極を設置するかの選択により、電波放射方向を複数方向に切り替えることができる。
図6に示すアンテナ装置も、図3〜図5に示した製造方法と同様の方法で作成することができる。
前の実施形態で説明したことから容易に理解されるように、図6に示すアンテナ装置においても、本発明に従う構成や製造方法を採用することで、アンテナ装置の性能や特性が安定し、また、アンテナ装置の効率が向上する。
以上、本発明の実施形態を説明したが、この実施形態は本発明の説明のための例示にすぎず、本発明の範囲をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱することなく、その他の様々な態様でも実施することができる。
本発明の一実施形態にかかるアンテナ装置の平面図(図1A)と概略的な断面図(図1B)。 同アンテナ装置の概略的な分解斜視図。 本発明の一実施形態にかかるアンテナ基板の製造方法の手順を示す断面図。 本発明の一実施形態にかかるアンテナ基板の製造方法の手順(図3の手順に後続する手順)を示す断面図。 本発明の一実施形態にかかるアンテナ基板の製造方法の手順(図4の手順に後続する手順)を示す断面図。 本発明の別の実施形態にかかるアンテナ装置の平面図。
符号の説明
10、100、40…高純度セラミック基板、
12、42…アンテナ電極(給電素子)、
14…アンテナ電極(無給電素子)、
112…アンテナ電極、
16、130…第2の誘電体膜、
18、113…接地電極、
19、120…第1の誘電体膜、
32、114、126…パターン配線
20、134…発振回路
22、26、28、128…スルーホールタイプの導体線
24、132…電子回路(スイッチ回路)
116…第1の誘電体膜の凹部又は穴部

Claims (12)

  1. 高純度セラミック基板と、
    前記高純度セラミック基板の一方の面上に設けられた1以上の導体膜からなる1以上のアンテナ電極と、
    前記高純度セラミック基板の他方の面上に設けられた導体膜からなる接地電極と、
    前記接地電極上に設けられた第1の誘電体膜と、
    前記第1の誘電体膜上に設けられた電子回路と
    を備えたアンテナ装置。
  2. 請求項1記載のアンテナ装置において、
    前記高純度セラミック基板の純度が95%以上であることを特徴とするアンテナ装置。
  3. 請求項1記載のアンテナ装置において、
    前記アンテナ電極上に設けられた第2の誘電体膜を更に備え、前記第2の誘電体膜の誘電率が、前記セラミック基板及び前記第1の誘電体膜の誘電率よりも大きいことを特徴とするアンテナ装置。
  4. 請求項1記載のアンテナ装置において、
    前記電子回路は、前記1以上のアンテナ電極中の少なくとも1つに接続され、前記少なくとも1つのアンテナ電極に流れる電流を制御することを特徴とするアンテナ装置。
  5. 請求項4記載のアンテナ装置において、
    前記電子回路と前記少なくとも1つのアンテナ電極とを接続するための、前記高純度セラミック基板及び前記第1の誘電体膜を貫通する導体線を更に備えることを特徴とするアンテナ装置。
  6. 請求項1から5のいずれか1項記載のアンテナ装置において、
    前記第1の誘電体膜、前記接地電極又は前記電子回路上に設けられた発振回路をさらに備え、
    前記発振回路は、前記1以上のアンテナ電極中の少なくとも1つに接続され、前記少なくとも1つのアンテナ電極に高周波電力を供給することを特徴とするアンテナ装置。
  7. 請求項6記載のアンテナ装置において、
    前記第1の誘電体膜に凹部又は穴部が形成されており、前記発振回路が前記凹部内又は前記穴部内に配置されたことを特徴とするアンテナ装置。
  8. 請求項6記載のアンテナ装置において、
    前記発振回路と前記少なくとも1つのアンテナ電極とを接続するための、前記高純度セラミック基板を貫通する導体線を更に備えることを特徴とするアンテナ装置。
  9. 請求項6記載のアンテナ装置において、
    複数の前記アンテナ電極を備え、
    前記発振回路は、複数の前記アンテナ電極中の少なくとも一つの給電素子に接続され、前記給電素子に高周波電力を供給し、
    前記電子回路は、複数の前記アンテナ電極中の前記給電素子以外の少なくとも一つの無給電素子に接続され、前記無給電素子に流れる電流を制御することを特徴とするアンテナ装置。
  10. 請求項6記載のアンテナ装置において、
    複数の前記アンテナ電極を備え、
    前記発振回路は、複数の前記アンテナ電極に接続され、複数の前記アンテナ電極に高周波電力を供給し、
    前記電子回路は、複数の前記アンテナ電極中の少なくとも一つに接続され、前記少なくとも一つのアンテナ電極の他のアンテナ電極に対する電流の位相差を制御することを特徴とするアンテナ装置。
  11. 一方の面から他方の面へ貫通する貫通孔をもつ高純度セラミック基板の一方の面に1以上の導体膜からなる1以上のアンテナ電極を形成するステップと、
    前記高純度セラミック基板の他方の面に導体膜からなる接地電極を形成するステップと、
    前記接地電極上に第1の誘電体膜を形成するステップと、
    前記第1の誘電体膜上に導体膜からなるパターン配線を設けるステップと、
    前記アンテナ電極と前記パターン配線とを接続するための導体線を前記貫通孔内に形成するステップと
    を備えたアンテナ基板の製造方法。
  12. 請求項11記載の製造方法において、
    前記アンテナ電極上に第2の誘電体膜を形成するステップを更に備えたアンテナ基板の製造方法。
JP2005013605A 2005-01-21 2005-01-21 アンテナ装置及びアンテナ基板の製造方法 Pending JP2006203602A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013605A JP2006203602A (ja) 2005-01-21 2005-01-21 アンテナ装置及びアンテナ基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013605A JP2006203602A (ja) 2005-01-21 2005-01-21 アンテナ装置及びアンテナ基板の製造方法

Publications (1)

Publication Number Publication Date
JP2006203602A true JP2006203602A (ja) 2006-08-03

Family

ID=36961198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013605A Pending JP2006203602A (ja) 2005-01-21 2005-01-21 アンテナ装置及びアンテナ基板の製造方法

Country Status (1)

Country Link
JP (1) JP2006203602A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261941A (ja) * 2005-03-16 2006-09-28 Ricoh Co Ltd アンテナ装置、無線モジュールおよび無線システム
CN107548527A (zh) * 2015-02-24 2018-01-05 弗劳恩霍夫应用研究促进协会 具有电子电路的反射器和具有反射器的天线装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107003A (ja) * 1988-10-15 1990-04-19 Matsushita Electric Works Ltd アンテナ装置
JPH05192912A (ja) * 1992-01-23 1993-08-03 Matsushita Electric Ind Co Ltd Gpsアンテナ用アルミナセラミックの製造方法
JPH09237867A (ja) * 1996-02-29 1997-09-09 Kyocera Corp 高周波用パッケージ
JP2002135041A (ja) * 2000-10-26 2002-05-10 Tdk Corp パッチアンテナおよびそれを含むrfユニット
JP2003142919A (ja) * 2001-08-20 2003-05-16 Nippon Telegr & Teleph Corp <Ntt> マルチビームアンテナ
JP2003258548A (ja) * 2002-02-28 2003-09-12 Nippon Telegr & Teleph Corp <Ntt> マルチビームアンテナ
JP2003258533A (ja) * 2002-02-28 2003-09-12 Tsutomu Yoneyama 指向性切り替えアンテナ
JP2003264419A (ja) * 2002-03-08 2003-09-19 Japan Science & Technology Corp アダプティブアンテナとその制御方法
JP2003347834A (ja) * 2002-05-24 2003-12-05 Murata Mfg Co Ltd アンテナ一体型高周波回路モジュール
JP2004274259A (ja) * 2003-03-06 2004-09-30 Tdk Corp アンテナ一体型モジュールおよび通信機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107003A (ja) * 1988-10-15 1990-04-19 Matsushita Electric Works Ltd アンテナ装置
JPH05192912A (ja) * 1992-01-23 1993-08-03 Matsushita Electric Ind Co Ltd Gpsアンテナ用アルミナセラミックの製造方法
JPH09237867A (ja) * 1996-02-29 1997-09-09 Kyocera Corp 高周波用パッケージ
JP2002135041A (ja) * 2000-10-26 2002-05-10 Tdk Corp パッチアンテナおよびそれを含むrfユニット
JP2003142919A (ja) * 2001-08-20 2003-05-16 Nippon Telegr & Teleph Corp <Ntt> マルチビームアンテナ
JP2003258548A (ja) * 2002-02-28 2003-09-12 Nippon Telegr & Teleph Corp <Ntt> マルチビームアンテナ
JP2003258533A (ja) * 2002-02-28 2003-09-12 Tsutomu Yoneyama 指向性切り替えアンテナ
JP2003264419A (ja) * 2002-03-08 2003-09-19 Japan Science & Technology Corp アダプティブアンテナとその制御方法
JP2003347834A (ja) * 2002-05-24 2003-12-05 Murata Mfg Co Ltd アンテナ一体型高周波回路モジュール
JP2004274259A (ja) * 2003-03-06 2004-09-30 Tdk Corp アンテナ一体型モジュールおよび通信機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261941A (ja) * 2005-03-16 2006-09-28 Ricoh Co Ltd アンテナ装置、無線モジュールおよび無線システム
JP4564868B2 (ja) * 2005-03-16 2010-10-20 株式会社リコー アンテナ装置、無線モジュールおよび無線システム
CN107548527A (zh) * 2015-02-24 2018-01-05 弗劳恩霍夫应用研究促进协会 具有电子电路的反射器和具有反射器的天线装置
JP2018510559A (ja) * 2015-02-24 2018-04-12 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 電子回路を有する反射器および反射器を有するアンテナデバイス
JP2019208241A (ja) * 2015-02-24 2019-12-05 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 電子回路を有する反射器および反射器を有するアンテナデバイス
US10978809B2 (en) 2015-02-24 2021-04-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reflector having an electronic circuit and antenna device having a reflector

Similar Documents

Publication Publication Date Title
US10211541B2 (en) Antenna device
CN108701908B (zh) 阵列天线
US6614401B2 (en) Antenna-electrode structure and communication apparatus having the same
EP1146589A1 (en) Chip antenna element, antenna apparatus and communication apparatus comprising the same
JP5429215B2 (ja) 水平方向放射アンテナ
JP2005167966A (ja) アンテナ装置
TW543241B (en) Patch antenna for the microwave range
KR20030028402A (ko) 소형화된 지향성 안테나
TW200409403A (en) Chip antenna, chip antenna unit and wireless communication device using the antenna
JP2002359515A (ja) M型アンテナ装置
WO2019107382A1 (ja) アンテナ装置
US9245866B2 (en) Antenna device and wireless apparatus
JP6579298B1 (ja) マルチバンドアンテナ、無線通信モジュールおよび無線通信装置
JP2011155479A (ja) 広帯域アンテナ
JPH11150371A (ja) 多層回路基板
JP2006203602A (ja) アンテナ装置及びアンテナ基板の製造方法
WO2000039893A1 (fr) Antenne en reseau a elements en phase et procede de fabrication
JPH11274845A (ja) アンテナ装置
JP3878795B2 (ja) 多層配線基板
JP4069638B2 (ja) アンテナ素子
JP2011097392A (ja) アンテナ装置
JP2008294809A (ja) 積層型ヘリカルアンテナ
JP7425554B2 (ja) アンテナ装置
JP2001016027A (ja) 積層型開口面アンテナ
JP2006203010A (ja) アンテナ基板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512