JP2006203192A - 強度積分を計算する方法 - Google Patents

強度積分を計算する方法 Download PDF

Info

Publication number
JP2006203192A
JP2006203192A JP2005377303A JP2005377303A JP2006203192A JP 2006203192 A JP2006203192 A JP 2006203192A JP 2005377303 A JP2005377303 A JP 2005377303A JP 2005377303 A JP2005377303 A JP 2005377303A JP 2006203192 A JP2006203192 A JP 2006203192A
Authority
JP
Japan
Prior art keywords
pupil
grid
uniformity
value
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005377303A
Other languages
English (en)
Inventor
Roberto B Wiener
ビー ウィーナー ロベルト
Alexander Kremer
アレクサンダー クレマー
Elizabeth Stone
ストーン エリザベス
Richard Zimmerman
ズィマーマン リチャード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Holding NV
Original Assignee
ASML Holding NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Holding NV filed Critical ASML Holding NV
Publication of JP2006203192A publication Critical patent/JP2006203192A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • G02B7/346Systems for automatic generation of focusing signals using different areas in a pupil plane using horizontal and vertical areas in the pupil plane, i.e. wide area autofocusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like

Abstract

【課題】強度積分を離散化することの可能な均一性補正方法を提供すること。
【解決手段】本発明のシステムは照明光学系、光機械式補正システム、コントラスト装置、投影光学系およびこの投影光学系に接続された補正モジュールを有する。補正システムはフィンガのような調整可能部材を含む。補正モジュールは、部材への調整を決定して均一性を補正するように構成されている。連続の強度積分を離散化する方法も提供される。照明スロットは複数のグリッド点を有するグリッドに分割される。つぎに「ひとみ」はグリッドに重ね合わされる。複数の第2グリッドも定められる。各「ひとみ」は第2グリッドにマッピングされ、第2グリッド中心と「ひとみ」中心とが一致する。つぎに連続の強度積分が、第1のグリッド、複数の第2グリッドおよび「ひとみ」マッピングの使用により、離散化される。
【選択図】図1

Description

本発明は、一般的にはリソグラフィシステムにおける均一性補正に関する。
発明の背景
慣用のリソグラフィシステムには、受光したレーザビームの均一な強度分布を形成する照明システムも含まれている。ここでは結果的に得られる照明ができる限り均一であり、かつ均一性についての任意のエラーができる限り最小に維持されることが望ましい。照明の均一性は、露光フィールド全体にわたって照明システムが均一な線幅を形成する能力に影響を与える。照明の均一性エラーは、そのリソグラフィシステムによって作製されるデバイスの品質に重大な影響を与えてしまうのである。
広く使用される慣用のリソグラフィシステムの1例は、「ステップアンドスキャン」システムである。「ステップアンドスキャン」システムでは、1露光フィールドよりも幅の狭い照明スロットがウェハに形成される。つぎにこのシステムにより、このフィールドが露光フィールド全体に沿ってスキャンされ、つぎに別のフィールドに進むのである。この処理が繰り返される。このシステムの動作の性質上、スキャン方向における放射エネルギーは積分され、その結果、非均一になり得るのである。しかしながらこのフィールドは、クロススキャン方向(cross scan direction)において均一でなければならない。言い換えると、各スキャンラインに沿って積分されるエネルギーは、同じに保たれるべきなのである。
均一性エラーを補正するためには、均一性を計算しなければならず、しかもリアルタイムに計算しなければならないことが多い。均一性は、クロススキャン(例えばx)方向における強度の積分の最大値と最小値との差を、強度の積分の最大値と最小値との和で除算した比として計算される。各クロススキャン座標における強度の積分は、伝達率(transmissibility)と「ひとみ」形状の積を含む連続的な3重積分の式によって与えられる。
この伝達率と「ひとみ」形状との積を均一性補正メカニズムの関数として表す包括的な方法を探し出そうとする場合、複雑さが増してしまう。さらに上記の照明スロットにおいて関心対象の各座標について3重積分をリアルタイムで計算するために必要なアルゴリズムはいずれも実用的でない。
したがって強度積分を離散化することの可能な均一性補正システムが必要である。
さらに補正システムの調整を決定してこれを行い、定められた均一性についての仕様を満たすと共に、選択される一連の制約を最小化することのできるシステムも必要である。
発明の要約
本発明は、補正システムを調整することによって均一性補正を行い、定められた均一性ついての仕様を満たすと共に、選択される一連の制約を最小化する均一性補正のためのシステムおよび方法に関する。また本発明は、連続的な強度積分を離散化する方法に関する。
本発明の1様相によれば、デフォーカス均一性補正のためのシステムには、補正モジュールに接続される均一性補正システムが含まれる。この均一性補正システムには1つ以上の調整可能な変数または自由度が含まれており、これらにより、照明スロットのゾーンにわたって強度を操作することができる。上記の補正モジュールは、上記の補正システムの調整可能な変数または自由度を調整するための値を決定して、均一性を補正するように構成されている。
本発明の1様相によれば、各調整可能部材が強度に与える影響を表すマップが形成される。つぎ未補正均一性プロフィール(uncorrected uniformity profile)が測定される。
本発明の別の様相によれば、強度積分が計算される。1実施形態では、均一性補正システムの1つ以上の調整可能部材を調整して、標準未補正均一性プロフィールを補正するためのオプションの初期値が計算される。つぎに補正均一性プロフィール(corrected uniformity profile)が測定される。1つ以上の調整可能部材を調整するための値がつぎに計算されて、上記の測定された未補正均一性プロフィールが補正される。つぎに上記の調整値が均一性補正システムに伝送される。
本発明の別の様相によれば、上記の均一性補正システムにより、これらの受信した値に基づいて調整可能部材が調整される。つぎに補正均一性プロフィールがオプションで測定される。均一性に対する仕様が満たされている場合、均一性補正は終了する。均一性に対する仕様が満たされない場合、上記の未補正均一性プロフィールはオプションで変更され、また1つ以上の調整可能部材に対する値が再計算される。択一的な実施形態では、均一性に対する仕様が満たされない場合、上記の形成されたマップがオプションで変更され、1つ以上の調整可能部材に対する値が再計算される。
本発明の別の様相によれば、強度積分が計算される。照明スロットは、複数のグリッド点を有する第1グリッドに分割される。各照明スロットグリッド点は、第1および第2方向(例えばxおよびy方向)の座標によって定められる。つぎに複数のひとみがこの照明グリッドに重ね合わされる。各「ひとみ」の中心は、グリッド点で表される。またここでは複数の第2グリッドも定められる。各第2グリッドは、第3および第4方向の座標によって定められる複数のグリッド点を有する。複数のひとみの各々は、第2グリッドにマッピングされる。第2グリッドの中心は、第2グリッドにマッピングされる「ひとみ」の中心と一致する。つぎに連続的な強度積分が、第1グリッド、複数の第2グリッド、および「ひとみ」マッピングを使用して離散化されるのである。
上記および他の利点および機能は、以下に示す本発明の詳細な説明をみれば直ちに明らかになろう。
ここに組み込まれまた明細書の一部をなす添付の図面は、説明と共にさらに本発明の原理を示すものであり、また当業者が本発明を構成してこれを使用できるようにするためのものである。
以下、本発明を添付の図面に基づいて説明する。これらの図面において同様の参照番号は同じ要素または機能的に類似の要素を示すことがある。また参照番号の最も左からの1つまたは複数の桁は、この参照符号が最初に現れた図面を識別することがある。
1. 均一性補正システム
図1には本発明の1実施形態によるリソグラフィシステム100の例が説明されている。1実施形態においてリソグラフィシステム100は、レチクルまたはマスクを使用するシステムである。択一的な実施形態ではシステム100はマスクレスリソグラフィシステムである。
リソグラフィシステム100には、照明光学系110と、均一性補正システム120と、コントラスト装置130と、投影光学系150と、基板ステージ160と、補正モジュール170とが含まれている。均一性補正システム120は、システム100に関連づけられている照明フィールドの特定の区画内で照明レベルを制御する装置である。
均一性補正システム120は、照明光学系110とコントラスト装置段130との間で補正面において位置決めされている。1実施形態において均一性補正システム120は、焦点はずれ(デフォーカス)の位置に配置される。これにより、この均一性補正システムは、焦点位置における均一性に影響を及ぼすのである。1実施形態において上記の補正面は、コントラスト装置(例えばレチクル)の近くに配置される。択一的な実施形態において補正面は、照明光学系110とコントラスト装置130との間の任意の位置に配置することができる。補正システム120は必ずしも焦点面に配置される必要はないため、テレセントリック性(telecentricity)、楕円性(ellipticity)などの不所望の影響および線量の量子化の影響(dose quantization effect)などを犠牲にすれば、柔軟性が拡大されるという利点が得られる。また、所望の均一性補正を達成しかつ不所望の影響を最小化するため、比較的大きな光損失が必要になることがある。
均一性補正システム120は、1つ以上の変数および/または自由度(調整可能部材とも称される)を有する装置であり、これらに調整を行って伝播に影響を及ぼすことが可能である。
1実施形態において均一性補正システム120には、所定の構成を有する複数の補正要素が含まれる。これらの補正要素は、移動、傾けおよび/または回転可能である。図2A〜2Dおよび3には、補正システム120に使用される本発明の実施形態による可動補正要素の構成例が示されている。
当業者にはわかるように本発明には別の構成を使用することができる。
図2A〜Dには、補正要素が両側に構成された補正システムが示されている。この両側構成は、照明スロットに挿入される一連の補正要素から構成されており、これにより、これらの補正要素によって覆われるエリアのビームの強度が変更される。両側構成にはいくつかの変形実施例が考えられる。例えば、補正要素は互い違いにしたり、回転することができる。また補正要素はパターンを有することができる。1実施形態において補正要素は、100%〜0%の範囲の透過率を有することができる。補正要素は関数にしたがって変化する透過率を有することも可能である。1実施形態において補正要素は、ガラスまたは類似の透過性の材料からなるプレート状の「フィンガ」である。択一的な実施形態において補正要素は、金属(例えば金属ブラシ)からなる。
図2Aには互い違い形両側構成の例が示されている。この互い違い形両側構成は、照明スロットのA側に複数の補正要素226a〜dと、この照明スロットのB側に複数の補正要素226e〜hとを含んでいる。隣り合う補正要素は照明スロットの同じ側に配置されている。例えば補正要素226a〜dが隣り合っており、また補正要素226e〜hが隣り合っているのである。照明スロットのそれぞれの側の各補正要素は、2つ以上の対向する補正要素を有する。対向する補正要素は、x座標が重なっており、またy方向には反対側から照明スロットに挿入される。
図2Bには互い違い形でない両側構成の例が示されている。この互い違い形でない構成も照明スロットのA側に複数の補正要素226a〜fと、この照明スロットのB側に複数の補正要素226g〜226lとを含んでいる。このような互い違い形でない構成では、照明スロットのそれぞれの側の補正要素はまさに互いに対向している。この構成において、対向する補正要素はx座標の同じ集合をなし、またy方向には反対側から照明スロットに挿入される。
図2Cには補正要素の傾斜形構成の例が示されている。この構成において複数の補正要素226a〜nは、スキャン方向(またはY軸)に対して角度αで照明スロットのA側から挿入される。複数の補正要素226m〜zは、スキャン方向(またはY軸)に対して角度−αで照明スロットの反対側(B側)から挿入される。1実施形態において補正要素226a〜nおよび226m〜zが最大限に挿入されるのは中立点まである。すなわち各補正要素は、補正要素226a〜nの先端部が、補正要素226m〜zの先端部にすぐ近くになる点まで任意の量で挿入できるのである。この実施形態において補正要素226a〜nと、補正要素226m〜zとは重ならない。
図2Dには補正要素の山形構成の例が示されている。この構成において複数の補正要素226a〜nは、スキャン方向(またはY軸)に対して角度αで照明スロットのA側から挿入される。複数の補正要素226m〜zは、スキャン方向(またはY軸)に対して同じ角度αで照明スロットの反対側(B側)から挿入される。この構成において補正要素226a〜nおよび226m〜zは、これらの補正要素が重なる深さまで挿入可能である。この実施形態において各補正要素は、最大の挿入点まで任意の量で挿入できる。
図3にはセグメント形構成の例が示されている。このセグメント形構成には複数の補正要素326a〜gが含まれている。セグメント形構成の1実施形態において補正要素は、重なる複数のプレートを含む(例えば1つのプレートが別のプレートの上をスライドする)。これらのプレートの相対的位置により、補正要素の伝達率が決定され、したがってフィンガに覆われたすべての点にわたって均一な減衰が得られる。1実施形態においてこれらのプレートは、ガラスまたは類似の材料とすることかできる。択一的な実施形態において、補正要素326を回転式またはルーバー式にすることができる。
1実施形態においてプレートは、一方の端部における第1透過率から反対側の端部における第2透過率に変化する透過率を有することができる。例えば、プレートは一方の端部において100%の透過率から出発して、プロフィールにしたがい、反対側の端部において0%の透過率に到達することができるのである。1次または2次の曲線を含む任意のプロフィールを使用可能である。複数のプレートが重なる補正要素の正味の透過率は、基本的にこれらのプレートのプロフィールの平均である。プレートをより深くスロットにスライドする、またはスロットからスライドして取り出すことによって補正要素に対する透過率が変更される。
図2A〜Dおよび3には、複数の離散的な補正要素を有する補正システムが示されていたが、本発明はこれらの実施形態には制限されない。当業者にはわかるように、1つ以上の調整可能な変数または自由度を有する任意の均一性補正装置を本発明に使用可能である。
図1に戻ると、コントラスト装置130は、基板ステージ160に支持されている基板165(例えば基板またはガラスプレート)の一部分にパターンをイメージングするために使用される。第1の実施形態においてコントラスト装置135はレチクルのようなスタティックマスクであり、基板165はウェーハである。第2のマスクレスの実施形態においてコントラスト装置135はプログラム可能なアレイである。このプログラム可能アレイは、空間光変調器(SLM Spatial Light Modulator)または別の有利なマイクロミラーアレイを含むことができる。択一的にこのSLMは反射式または透過式の液晶ディスプレイ(LCD)またはGLV(grading light value)を含むことができる。第2の実施形態において基板165は、ガラスの小片、フラットパネルディスプレイまたは類似のものとすることが可能である。
投影光学系150は(上記のコントラスト装置によって定められた)パターンの画像を基板に投影するように構成されている。投影光学系150の詳細は、リソグラフィシステムのタイプに依存する。投影光学系固有の機能的な詳細は当業者にはよく知られており、ここでさらに説明する必要はない。
基板ステージ160は画像面180に配置されている。基板165は基板ステージ160によって支持される。基板がない場合、検出システムが画像面180に配置される。この検出システムにより、この画像面における均一性プロフィールが検出(または測定)され、測定された1つまたは複数のプロフィールが補正モジュール170に伝送される。
補正モジュール170は補正システム120の変数および/または自由度の調整を決定するように構成されており、これによって均一性に対する所望の仕様が満たされるのである。補正モジュール170により、決定された調整に基づいて1つ以上の補正パラメタ175が決定され、これらのパラメタが補正システム120に伝送される。これらの補正パラメタにより、調整可能な変数および/または自由度が補正システム120内で制御される。
補正パラメタにしたがって補正システム120の調整可能な変数および/または自由度を操作することによって、照明ビームの特性が変更される。さらに詳しくいうと、補正システム120の変数および/または自由度をどのように調整して、所望の均一性プロフィール(例えばリソグラフィプロセスに対して有利な形状または最大限に平らな均一性)を達成するかについての詳細が、上記の補正パラメタによって得られるのである。
補正モジュール170には1つ以上のプロセッサ172および記憶装置174が含まれている。1つ以上のプロセッサ172は、以下の2項で説明する処理を実現するソフトウェアを実行する。記憶装置174にはメインメモリ(例えば、ランダムアクセスメモリ(RAM))が含まれている。1実施形態において記憶装置174には2次記憶装置も含まれる。2次記憶装置には、例えば、ハードディスクドライブおよび/またはリムーバブル記憶ドライブを含むことができる。
コンピュータプログラムは記憶装置174に記憶される。このようなコンピュータプログラムが実行されると、補正モジュール170のプロセッサ172は以下に説明する本発明の機能を実施することができる。
本発明がソフトウェアを使用して実現される1実施形態において、このソフトウェアは、コンピュータプログラム製品に記憶することができ、リムーバブル記憶ドライブ、ハードドライブ、または通信インタフェースを使用して補正モジュール170にロードされる。択一的には上記のコンピュータプログラム製品は、通信パスを介して補正モジュール170にダウンロードすることができる。
さらに1実施形態において補正モジュール170は1つ以上のリモートプロセッサに接続される。この場合、補正モジュール170は命令および/または動作パラメタをリモートで受信することができる。
2.均一性補正の手順
図4には本発明の1実施形態にしたがい、補正システム120の1つ以上の変数または自由度の調整を決定して、均一性に対する仕様が満たされるようにする手順400のフローチャートが示されている。手順400は、それぞれの調整可能な変数および/または自由度が強度に与える影響を表すマップが形成されると、ステップ410において開始される。例えば、補正システムが照明スロット内で移動可能な複数の補正要素を含む場合、クロススキャン座標の範囲にわたる減衰または強度に対して、補正要素の挿入をマッピングすることができる。ステップ410は、未補正均一性プロフィールに依存しないため、これはオフラインで実行することができ、しかもリソグラフィツールの初期化の前であっても実行可能である。
ステップ420では補正システムの1つ以上の調整可能な変数または自由度の値が計算されて「標準未補正均一性プロフィール」が補正される。このステップはオプションである。これが存在する場合、このステップにより、リアルタイム動作に対するロバストな初期条件が得られる。つぎにこの標準未補正均一性プロフィールがベースとして使用されて、後のステップにおける調整が計算される。例えば、同じタイプのツールのグループに対して未補正のオープンスロット均一性プロフィールが測定されて平均のプロフィールが決定される。つぎにこの平均プロフィールを使用して、フィンガ位置をリアルタイムに計算することができる。平均プロフィールを使用することによってシステムは補正を一層高速に行うことができる。
ステップ425では未補正均一性プロフィールが測定される。1実施形態においてこの未補正均一性プロフィールは、画像面180に検出器を配置することによって測定される。
ステップ430では均一性補正システムの1つ以上の調整可能な変数の値および/または自由度が計算される。調整値を決定するため、このシステムにより、1つ以上の制約と、測定された未補正均一性プロフィールと、所望のプロフィールとが使用される。ステップ430は、2.1.2項で一層詳しく説明する。
1つ以上の制約は、「ひとみ」の影響を補償するために指定される。「ひとみ」の影響とは、「ひとみ」における画像分布を歪ませてイメージング性能に影響を与える任意の影響のことである。典型的な「ひとみ」の影響に含まれるのは、テレセントリック性および楕円性である。テレセントリック性が画像の動きに関係しているのに対して、楕円性はH−Vバイアスに関係している。当業者にはわかるように、本発明の補正システムは、別の「ひとみ」の影響を扱うことができる。
ステップ435において、ステップ430で決定された所望の調整が、均一性補正システムに適用される。1実施形態において補正モジュール170は、これらの調整を1つ以上の補正パラメタとして補正システムに伝送する。つぎにこの均一性補正システムにより、受信した補正パラメタに基づいて変数および/または自由度が調整される。
ステップ440では、補正均一性プロフィールが測定される。このステップはオプションである。1実施形態において上記の補正均一性プロフィールは、画像面180に検出器を配置することによって測定される。
ステップ450では、測定した補正均一性プロフィールが、定められた仕様を満たすか否かについて決定が行われる。このステップはオプションである。この測定した補正均一性プロフィールが、定められた仕様を満たす場合、処理はステップ490に進む。測定した補正均一性プロフィールが、定められた仕様を満たさない場合、オプション1が指示されていれば処理はステップ460に進み、オプション2が指示されていればステップ465に進む。
ステップ460において未補正均一性プロフィールが変更される。このステップはオプションである。これが存在する場合、処理はつぎにステップ430に戻る。未補正均一性を変更する例の一層詳細な説明は、2.7項に記載されている。
ステップ465ではそれぞれの調整可能部材が強度に与える影響を表すマップが変更される。このステップはオプションである。これが存在する場合、処理はつぎにステップ430に戻る。
ステップ490においてこの処理が終了する。
2.1 マップ形成
図21には本発明の実施形態にしたがい、各調整可能部材が強度に与える影響(ステップ410)を表すマップを形成する手順2100のフローチャートが示されている。手順2100は、マップ形成のためのプロシージャが選択された場合にステップ2110で開始される。プロシージャ1が選択される場合、処理はステップ2120に進む。プロシージャ2が選択される場合、処理は2130に進む。1実施形態では補正モジュール170によって両方のプロシージャがサポートされ、上記の選択を設定することができる。択一的な実施形態では補正モジュール170により、ただ1つのプロシージャしかサポートされない。
ステップ2120では、通常の調整要素が強度に与える影響を計算または測定する。
ステップ2125では、すべての調整可能な要素が強度に与える影響のマップを、ステップ2120の結果と目下の要素の位置とに基づいて形成する。1実施形態において、形成されるこのマップは、多項式の係数の集合、テーブルまたは類似のものとすることが可能である。処理はつぎにステップ2140に進む。
ステップ2130では、すべての調整可能な要素が強度に与える影響を計算または測定する。つぎにマップがこのステップに基づいて形成される。1実施形態において、形成されるこのマップは、多項式の係数の集合、テーブルまたは類似のものとすることが可能である。処理はつぎにステップ2140に進む。
ステップ2140では1つ以上の制約が計算される。これらの制約について2.4項にさらに詳しく説明する。
2.1.1 構成/マップ形成の例
以下の項では、照明スロット内で移動可能な補正要素を使用した、補正システムに対するステップ410を一層詳しく説明する。これらの例においてステップ410では、未補正均一性プロフィールとは無関係に、各補正要素がどの程度均一性に影響を与えるかを補正モジュールによって計算する。補正要素の較正を行うため、このシステムにより、「ひとみ」から、「ひとみ」ビットマップと称される「ひとみ」グリッドへのマッピングと、照明スロットグリッドの座標と、スロットにおけるフィンガ位置が使用される。ここで使用される「ひとみ」とは補正面におけるビームの束の底面のことである。このビームの束は、画像面において1点に集束する。この集束点と上記の補正面との間には光学系を存在しない。
例えば図2Aおよび2Bに示した傾斜のない両側構成に対する補正要素の較正についての一層詳しい説明は、2.1.1.1に記載されている。図3に示したセグメント形構成に対する補正要素の較正の一層詳しい説明は2.1.1.2項に記載されている。
2.1.1.1 両側構成
図5A,5Bおよび5Cには、本発明の1実施形態にしたがい、傾斜のない両側構成を有する補正システム120においてフィンガを較正する手順500のフローチャートが示されている。説明を容易にするため、引き続き図2Aおよび2Bに示した実施形態に基づいて図5を説明する。
両側構成に対して手順500によって要求されるのは、いくつかのΔF値(フィンガ変位)に対し、フィンガによって影響を受ける、すべてのクロススキャン座標における強度の積分を計算することと、計算され正規化されたデータに曲線を当てはめることである。手順500は、カウンタおよび変数が初期化されると、ステップ505において開始される。1実施形態ではこのシステムにより、フィンガカウンタおよびオプションのフィンガサイドカウンタ(finger side counter)が使用される。フィンガカウンタは、較正に関係するフィンガ226を識別する。フィンガサイドカウンタは、フィンガが配置されている側(例えばA側またはB側)が識別される。他の変数および/またはカウンタまたは変数および/またはカウンタの組み合わせを使用できることに注意されたい。
ステップ510ではフィンガ226のうちの1つが識別される。1実施形態においてこのフィンガは、フィンガカウンタ値に関連づけられる。例えば図2Aのフィンガ226aは、フィンガ1に相当し得るのである。フィンガカウンタ値が1に等しいかまたはこれと同等である場合、ステップ510においてフィンガ226aが識別される。
ステップ515では、識別したフィンガによってクロススキャン方向に覆われるひとみでエネルギーを含むものがあるか否かについて決定が行われる。図8Aには照明グリッドのクロススキャン方向(例えばx方向)が示されている。クロススキャン方向においてエネルギーを含むひとみがあれば、処理はステップ520に進む。識別されるフィンガによってクロススキャン方向に覆われるエリアにおいてひとみが空である(すなわちエネルギーを含まない)場合、処理はステップ560に進む。
ステップ520では、フィンガによってクロススキャン方向に覆われ得るエリアにおいてエネルギーを含むひとみがあるか否かについて決定が行われる。図5Aには照明グリッドのスキャン方向(例えばy方向)が示されている。フィンガによってスキャン方向に覆われ得るひとみでエネルギーを含むものがある場合、処理はステップ525に進む。フィンガによってスキャン方向に覆われ得るひとみが空の場合、処理はステップ560に進む。
ステップ525では、フィンガによって覆われ得るエリアに対し、フィンガがない場合の強度の積分を計算する。これはフィンガによって変更されなかった強度の積分を計算することと同等である。フィンガの集合によって変更されなかった強度積分を計算する手順は2.2項にさらに詳しく説明されている。
ステップ530においてフィンガの変位はゼロに設定される。
ステップ535では、フィンガによって覆われる各クロススキャン座標において、フィンガが所望の変位にある場合に強度の積分が計算される。例えば図8Cに示したようにフィンガ「i」の変位はXである。変位Xにおいてフィンガ「i」826は、座標A2,19〜A4,19,A2,18〜A4,18,A2,17〜A4,17およびA2,16〜A4,16を覆っている。強度の積分を計算する方法は2.2項にさらに詳細に記載されている。
ステップ540においてこのフィンガ変位が増大される。1実施形態においてこの増大に対する値は、ユーザによって設定可能である。
ステップ545ではこのフィンガがその最大限の位置にあるか否かが決定される。フィンガがその最大限の位置にある場合、処理はステップ550に進む。フィンガがその最大限の位置にない場合、処理はステップ535に進む。ステップ535〜545は、変位の増大によってフィンガがその最大限の位置に到達するまで繰り返される。1実施形態において反対の曲線が使用される。
ステップ550では、フィンガによって覆われるエリアにエネルギーを含むひとみがない場合、強度の積分が1に正規化される。
ステップ555では、フィンガ変位データに対して、正規化された強度のマッピングが形成される。1実施形態においてこのマッピングは、「M」次の多項式に対するマッピングである。択一的な実施形態において上記のマッピングは、テーブルに対するマッピングである。当業者にわかるように本発明には別のマッピングを使用可能である。
ステップ560では上記のカウンタおよび/または変数はインクリメント(またはデクリメント)される。1実施形態においてフィンガカウンタ値は、あらかじめ定めた値だけインクリメントされて、別のフィンガが識別される。(例えば、フィンガカウンタ値は1だけインクリメントされる)。択一的にはフィンガカウンタ値は最大値(例えば100)に初期化されていることがある。このステップでは、このフィンガカウンタ値は、あらかじめ定めた値だけデクリメントされて別のフィンガを識別することができる。
ステップ565では、上記の構成のすべてのフィンガについて検討したか否かについての決定が行われる。すべてのフィンガが検討されていない場合、処理はステップ510に戻る。すべてのフィンガが検討されている場合、処理はステップ570に進む。ステップ810〜850の1つ以上のステップは、分析中の両側構成に設けられているフィンガ毎に繰り返されることに注意されたい。
ステップ570では、隣り合うフィンガの変位(伝達率)における差分についての制約が計算される。隣り合うフィンガの伝達率についての制約の計算は、2.4.1.1.2項にさらに詳細に記載されている。1実施形態においてこの制約は行列で表される。択一的にはこの制約は多項式で表される。当業者にはわかるように、本発明には別の形態の制約を使用可能である。
ステップ575では、対向するフィンガの移動量における差分についての制約が計算される。1実施形態においてこの制約は行列である。対向するフィンガの移動量についての差分についての制約の計算は、2.4.1.1.4項にさらに詳細に記載されている。
2.1.1.2 セグメント形構成
図6には本発明の1実施形態にしたがって、補正要素がセグメント化されて構成された補正システム120において、フィンガを較正する手順800のフローチャートが示されている。説明を容易にするため、引き続き図3に示した実施形態に基づいて図6を説明する。しかしながら図6はこれらの実施形態には制限されない。
セグメント形構成に対して、手順600では、ひとみの集合を覆うフィンガ毎に最大のフィンガ伝達率を仮定して強度の積分を計算しなければならない。手順600は、カウンタおよび変数が初期化されると、ステップ605において開始される。1実施形態ではこのシステムにより、フィンガカウンタが使用される。このフィンガカウンタは、較正に関係するフィンガ326を識別する。他の変数および/またはカウンタまたは変数および/またはカウンタの組み合わせを使用できることに注意されたい。
ステップ610では、フィンガ326のうちの1つが識別されて定められる。1実施形態においてこのフィンガは、フィンガカウンタ値に関連づけられる。例えば図3のフィンガ326aは、フィンガ1に相当し得るのである。フィンガカウンタ値が1に等しいかまたはこれと同等である場合、ステップ610においてフィンガ326aが識別される。
ステップ615では、識別したフィンガによってクロススキャン方向に覆われるひとみでエネルギーを含むものがあるか否かについて決定が行われる。クロススキャン方向にフィンガによって覆われてエネルギーを含むひとみがあれば、処理はステップ620に進む。クロススキャン方向にフィンガによって覆われるひとみのいずれもが空である場合、処理はステップ640に進む。
ステップ625では、フィンガによってクロススキャン方向に覆われ得るひとみで、エネルギーを含むものがあるか否かについて決定が行われる。フィンガによってクロススキャン方向に覆われ得るひとみでエネルギーを含むものがある場合、処理は630に進む。フィンガによってクロススキャン方向に覆われ得るいずれのひとみもエネルギーを含まない場合、処理は640に進む。
ステップ630では、フィンガによって覆われ得るエリアに対し、フィンガがない場合の強度の積分を計算する。強度の積分の計算を計算する手順は、2.2項にさらに詳しく記載されている。
ステップ640では、上記のカウンタおよび/または変数がインクリメント(またはデクリメント)される。1実施形態においてフィンガカウンタ値は、あらかじめ定めた値だけインクリメントされて、別のフィンガが識別される。(例えば、フィンガカウンタ値は1だけインクリメントされる)。択一的にはフィンガカウンタ値は最大値(例えば100)に初期化されていることがる。このステップでは、このフィンガカウンタ値は、あらかじめ定めた値だけデクリメントされて別のフィンガを識別することができる。
ステップ650では、上記の構成のすべてのフィンガについて検討したか否かについての決定が行われる。すべてのフィンガが検討されていない場合、処理はステップ610に戻る。すべてのフィンガが検討されている場合、処理はステップ660に進む。ステップ610〜650の1つ以上のステップは、分析中のセグメント形構成に設けられているフィンガ毎に繰り返されることに注意されたい。
ステップ660では、隣り合うフィンガの変位(伝達率)における差分についての制約が計算される。隣り合うフィンガの伝達率についての制約の計算は、2.4.1.1.2項にさらに詳細に記載されている。1実施形態においてこの制約は行列である。択一的にはこの制約は多項式とすることが可能である。当業者にはわかるように、本発明には別の形態の制約を使用可能である。
2.2 強度の積分の計算
図7には本発明の1実施形態にしたがい、クロススキャン軸において強度の積分を計算する手順700のフローチャートが示されている。
ステップ710では、複数のグリッド点を有するグリッドに照明スロットが分割される。各グリッド点は、クロススキャン(例えばx)方向およびスキャン(例えばy)方向座標によって定められる。
図8Aには補正面における照明スロットの分析的な表現が示されている。図8Aに示されているように、照明スロットは、複数のグリッド点822を有する矩形のグリッド820として表される。
ステップ720では、複数のひとみ828が照明スロットグリッドに重ね合わされる。各「ひとみ」828の中心は、1照明スロットグリッド点822によって表される。1実施形態において、スロットのスキャン方向(y方向)にわたる台形の照明プロフィールを補償するため、ひとみの一部が切り捨てられる。またひとみはスロットのエッジにおいても一部が切り捨てられる。
ステップ725では調整可能部材が照明スロットグリッドに重ね合わされる。このステップはオプションである。ステップ725は、調整可能部材によって変更される強度の積分値を計算する場合にのみ存在する。図8Dには調整可能部材820と、これらの調整可能部材の影響を受けるゾーン825の例が示されている。
ステップ730では複数の「ひとみ」グリッドが定められる。各「ひとみ」グリッドは、照明スロットに重ね合わされる複数のひとみのうちの1つにマッピングされる。各「ひとみ」グリッドの中心と、このグリッドにマッピングされる「ひとみ」の中心とは一致する。各「ひとみ」グリッドは、複数の「ひとみ」グリッド点を有する。各「ひとみ」グリッド点は、第1座標(例えばu)と第2座標(例えばv)によって定められる。
図8Bには本発明による「ひとみ」グリッド880の例が示されている。「ひとみ」828は、「ひとみ」中心グリッド点888を有する。「ひとみ」が照明グリッドに重ね合わされる場合、この「ひとみ」中心グリッド点888は、照明グリッドの照明スロットグリッド点822cにマッピングされる。各「ひとみ」グリッドにマッピングされる「ひとみ」の形状は、選択した照明モード(例えば、慣用モード、クエーザ(Quazar)モード、環状モード、NAモード、シグマセッティング(sigma setting)モード等)によって決定される。図8Bでは「ひとみ」が環状の形状を有するように示されているが、当業者には任意の「ひとみ」形状が使用できることがわかるはずである。
ステップ740では、ステップ710,720および730の結果を使用して強度積分値が離散化される。強度積分の離散化は、2.1.1.4にさらに詳細に記載されている。
ステップ750ではクロススキャン座標(例えばx座標)に対して強度積分の値が計算される。このステップは、関心対象のクロススキャン座標毎に繰り返される。
2.2.1 強度積分の離散化
説明を容易にするため、図8Aに示した照明グリッドに基づいて強度積分を述べる。図8Aに示した照明スロットグリッド820に対して、xおよびyにより、クロススキャン方向およびスキャン方向にグリッド820をそれぞれ定めるとする。さらにuおよびvを「ひとみ」グリッドの座標とする。グリッド820の各(x,y)座標における強度はつぎの式(1)、すなわち、
Figure 2006203192
によって得られる。
各クロススキャン座標における強度積分はつぎの式(2)、すなわち、
Figure 2006203192
によって得られる。
上記の積T(u,v)*P(u,v)をフィンガ位置の関数として表す包括的な手順を見つけることは、式(1)および(2)の複雑さを増大させることになる。さらに照明スロットにおける関心対象の各座標にわたって3重積分をリアルタイムに計算しなければならないアルゴリズムはいずれも実用的ではない。したがって式(2)を離散化することが望ましいのである。
ステップ710において説明しまた図8Aに示したように照明スロットの各グリッド点(座標)は、ペア(a,b)によって表され、ここでa(k=1,2,3,…,K)はグリッド点のクロススキャン(例えばx)座標であり、b(j=1,2,3,…,J)はグリッド点のクロス方向(例えばy)座標である。aにおける未補正の強度の離散化された積分は、(a,b)を中心とする「ひとみ」の正規化された強度Ik,jの総和を使用してつぎの式(3)のように定められる。すなわち、
Figure 2006203192
である。
(a,b)を中心とする「ひとみ」の正規化された強度の積分を決定するため、「ひとみ」に対して光関数(light function)を計算しなければならない。この光関数を計算する手順は図9に示されている。ステップ910では、「ひとみ」にマッピングされる「ひとみ」グリッドに対して複数のピクセルが定められる。各ピクセルの中心は、1「ひとみ」グリッド点にマッピングされる。図8Bに示したように「ひとみ」グリッドには複数のピクセル892が含まれる。
ステップ920では「ひとみ」グリッドのピクセル毎に、この「ひとみ」の一部分がこのピクセルに含まれるか否かが決定される。これは、各ピクセルにおける光の有無の決定とも称される。この決定は、目下の「ひとみ」のうちのいくつがこのピクセルにあるかに基づいて行うことができる。例えば、1実施形態において、ピクセルが光を有するとみなされるためには、このピクセルの所定のパーセントが「ひとみ」によって覆われていなければならないようにすることができる。択一的には別の1実施形態において、このピクセルに含まれる「ひとみ」がある場合、このピクセルが光を有するとみなされる。当業者にはわかるようにピクセルにおける光の有無を決定するために種々異なる手法を使用することができる。
ステップ920において、「ひとみ」の一部がピクセル内に含まれる(すなわち、ピクセルに光がある)ことが決定される場合、処理はステップ930に進む。ステップ920において、「ひとみ」の一部がピクセル内に含まれない(すなわち、ピクセルに光がない)ことが決定される場合、処理はステップ940に進む。
ステップ930においてこのピクセルに対する光関数が第1の値(例えば1)に設定される。図8Bからわかるように1実施形態において、「ひとみ」の一部が1ピクセルに位置する場合、このピクセル全体に値1が与えられる。このようにピクセルを「点灯」することによって、「ひとみ」グリッド880において「ひとみ」のビットマップが形成される。
ステップ940では、このピクセルに対する光関数が第2の値(例えば0)に設定される。
ステップ920〜940は、「ひとみ」グリッドのピクセル毎に繰り返されることに注意されたい。
ステップ920〜940は以下の式(4)にまとめることができる。照明グリッド点(a,b)を中心とする「ひとみ」(すなわちこの「ひとみ」は「ひとみ」グリッドにマッピングされる)に対して、各ピクセルの中心に対する座標は、「ひとみ」グリッド座標のペア(cj,k ,dj,k )(o=1,2,3,…,Oおよびp=1,2,3,…,P)によって定められる。各ピクセルにおける光の有無はつぎのように定められる。すなわち、
Figure 2006203192
であり、ここでγo,p j,kの値は、「ひとみ」の形状にも、照明プロフィールおよびスロットにわたる「ひとみ」の位置にも共に依存する。
この場合、正規化された強度の積分値Ik,jはつぎの式、すなわち、
Figure 2006203192
のように計算され、ここでδは、目下の照明プロフィールに適合するように設計されたスケーリングファクタであり、Γはx座標aを中心とするすべての「ひとみ」に対して、光を有するピクセル(γo,p j,k=1)の総数である。
式(3)〜(5)から、
Figure 2006203192
である。
未補正の強度積分値ξ0への部分的な寄与は、「ひとみ」の中心の部分的な集合にわたって単純に総和をとることによって、すなわち式(6a)に示すように計算することができる。
Figure 2006203192
ここでξ0 は、(a,b),(a,b),…,(a,bJl)を中心とする「ひとみ」の、a,ξ0における積分に対する寄与分である。一般的にξ0 は、(a,b)を中心とする「ひとみ」の、ξ0に対する寄与分である。ただしh=f,f+1,…,g−1,g(ここでf,gは1≦f≦g≦J)である。
上述のように上記の強度積分は、補正システムの調整可能部材によって変更された強度成分として計算することも可能である。1つ以上の調整可能部材によって変更されたクロススキャン座標における強度の積分は、式(7)によって得られる。調整可能部材によって変更されたaにおける強度積分は、
Figure 2006203192
であり、ここで
Jikは、i番目の調整可能部材の影響を受けた、aにおけるすべての「ひとみ」のインデックスである(すなわち調整可能部材「i」は、j∈Jikなる(a,bji)を中心とする「ひとみ」の少なくとも1つのピクセルを覆う)。表記を簡単にするため、「ひとみ」からなるこの集合は、(a,bJik)を中心とする複数の「ひとみ」と記される。また
J*ikは、i番目の調整可能部材の影響を受けていない、aにおけるすべての「ひとみ」のインデックスである(すなわち調整可能部材「i」は、j∈J*ikなる(a,bji)を中心とする「ひとみ」はいずれのピクセルも覆っていない)。表記を簡単にするため、「ひとみ」からなるこの集合は、(a,bJ*ik)を中心とする複数の「ひとみ」と記される。
集合JikおよびJ*ikの和集合は、(a,b)(j=1,2,3,…,J)を中心とする「ひとみ」の考えられ得るすべてのインデックスに等しいことに注意されたい。さらにJikおよびJ*ikに含まれるインデックスは必ずしも連続している必要はない。
Oik,Pikは、フィンガ「i」によって覆われる(cJik,k ,dJik,k )を中心とする「ひとみ」のすべてのピクセルに対するインデックスである。また、
O*ik,P*ikは、調整可能部材「i」によって覆われない(cJ*ik,k ,dJ*ik,k )を中心とする「ひとみ」のすべてのピクセルに対するインデックスである。
簡単にするため、式(7)の総和における表記は単純化されている。
上記の調整可能部材が、フィンガからなる集合の場合、A=T(F)である。この例では、T(ここで「N」個のフィンガに対してn=1,2,…,Nである)は、n番目のフィンガの伝達率である。両側の対向形フィンガの場合、傾斜がフィンガの伝達率に含まれるのであれば、Tはフィンガ位置Fの関数となり得る。この例において、フィンガサイズ、フィンガの傾き、「ひとみ」サイズ(σ)およびグリッドサイズが設定されると、単一のフィンガは、いくつかのクロススキャングリッド座標において強度積分を変更し得るのである。
2.2.2 例
図10は、調整可能部材として複数のフィンガを使用する補正システムに対して、以下の式(7a)の構成要素を示す図である。図10には、両側にフィンガが構成された均一性補正システムの区画1000が示されている。斜線をつけたエリアにより、以下の式(7a)で使用されるインデックスの集合が決定される。エリア1010は、フィンガ「i」によって覆われる特定の「ひとみ」ビットマップのピクセルからなる集合に相応する。エリア1020は、フィンガ「i+1」によって覆われる「ひとみ」ビットマップのピクセルからなる集合に相応する。エリア1030は、フィンガ「i+1」によって覆われ得る「ひとみ」ビットマップのピクセルからなる集合に相応する。
Figure 2006203192
さらに式(7)はつぎように書き直すことができる。すなわち、
Figure 2006203192
である。
式(7b)は、フィンガを回転すれば、異なる次数の多項式に当てはめることができることが予想される。
2.2.2.1 傾斜していないセグメント形構成
式(7)は、傾斜していないセグメント形構成の例に対して単純化することができる。この構成において、挿入されるフィンガにより、照明スロット全体が覆われ、またこのフィンガは移動できない。したがって、すべての集合J*ik,O*ikおよびP*ikは空であり、Jik = J∀i, kである。この構成ではフィンガは移動しないため、T(F) ≡ Tである。この場合に式(7)はつぎのように書き表すことができる。すなわち
Figure 2006203192
である。
さらに各クロス軸座標における強度の積分はつぎのように計算可能である。すなわち、
Ξ = Y*M*T (8b)
であり、
ここで
Ξは、式(8b)で定められる補正均一性プロフィール
Yは、式(8b)で定められるスケーリング行列
Mは、各要素が、各フィンガによって覆われ得る各「ひとみ」のピクセルの総和に等しい行列
Tは、フィンガ伝達率のベクトル
である。
このセグメント形構成において、伝達率「T」は線形的な手法によって計算することができる。式(8b)においてY*M = Ξ0、すなわち未補正均一性プロフィールであることに注意されたい。
また、
Figure 2006203192
に注意されたい。
2.2.2.2 両側、非回転、対向形フィンガ構成
手順500のステップ555において、フィンガ変位データに対する、正規化された強度のマッピングが形成される。フィンガが回転されていない両側対向フィンガの1実施例において、式(7b)における括弧のすべての表現が「ホーム」からのフィンガ変位の関数としての7次の多項式を使用して当てはめるられることが実験的に決定されている。ホームポジションからのフィンガ「i」の変位をδFとする。この時、式(7b)は、すべてのクロススキャンサンプル座標に対してつぎのように書き直すことができる。すなわち、
ξ =υ*[Ψk1(δF)+Ψk2(δF)+…+ΨkN(δF)] (9a)
Ξ = Y*Ψ(ΔF)
であり、ここで
Figure 2006203192
である。
式(9a)および(9b)において特定のX座標において特定のフィンガが強度の積分に対して与える寄与は、変化することに注意されたい。図10に示したようにフィンガエッジに対する「ひとみ」中心に依存して、フィンガは具体的な「ひとみ」のより大きなまたはより小さいエリアを覆い得る。例えば図10には具体的な照明スロットグリッド点(q,r)およびこのグリッド点を中心とする具体的な「ひとみ」が示されている。図10からわかるようにフィンガ「i」が「ひとみ」のエリアの1/3を覆い、フィンガ「i+1」が残りを覆うことが可能である。したがって図示の具体的な照明スロットグリッド点においてフィンガ「i+1」は、強度の積分に対してフィンガ「i」よりも大きく影響するのである。
同じ次数の多項式がすべての多項式Ψki(δF)に当てはめられたとすると、ロバストネスのために推奨されるのは、すべての多項式を正規化してΨki(0) = 1とすることである。この場合、式(7a)はつぎのように書き直される。すなわち、
Figure 2006203192
である。
図18A〜H、19A〜Iおよび20A〜Hには、互い違い両側フィンガの場合について、相異なる3つの「ひとみ」形状および照明プロフィールが示されている。図18A〜Hには0.26シグマの慣用の照明「ひとみ」に対するプロフィールが示されている。図19A〜Iには0.68/0.85シグマのクエーザ照明「ひとみ」に対するプロフィールが示されている。図20A〜Hには0.80/0.97シグマのクエーザ照明「ひとみ」に対するプロフィールが示されている。
これらの図面のそれぞれにおいて、未補正均一性プロフィールは、行列Kに格納される情報に相応する。各図の中央のプロットが示しているのは、「ひとみ」形状およびフィンガ位置の関数としてどの程度行列KおよびΨがゼロであるかである。図2.6に示したケースに対して、フィンガに対するクエーザの相対的なサイズに起因して、各フィンガの中央において、強度積分には影響しないX座標の集合がどの程度あるかに注意されたい。これらの図の最も下のプロットは、いくつかの代表的なフィンガに対して、正規化された強度積分の変化をホームポジションからのフィンガ変位の関数として示している。
式(8)および(9)において行列Yおよび積Y*Kには、未補正均一性プロフィールΞ0のすべての情報が含まれている。さらに行列MおよびΨ(またそれを正規化したもの)は、Ξ0とは無関係に「ひとみ」形状およびフィンガ位置の関数として計算可能である。「ひとみ」における極の不均衡または未補正照明プロフィールにおける変化は、Y(Y*K) またはM(Ψ)のいずれかを変更することによって補正可能である。
2.3 調整の計算
図22には本発明の1実施形態にしたがって、1つ以上の変数または自由度の調整値を最適化する手順2200のフローチャートが示されている。手順2200は、所望の補正均一性が初期化されると、ステップ2205で開始される。ステップ2205では調整可能部材が強度に与える影響のマップが変更されて、目下の未補正強度プロフィールが得られる。
本発明の1実施形態において1つ以上の制約は、第1層(または主)の制約である。ステップ2210では、1つ以上のこれらのマスタ制約を使用して調整値が決定される。1実施形態においてこの調整値は、2.4項で説明する最小2乗アルゴリズムを使用して決定される。
ステップ2215では1つ以上のパラメタが記憶される。例えば1実施形態において、得られた補正および光損失パラメタが記憶される。当業者にわかるようにこのステップでは、補正モジュールに必要なだけ別のパラメタを記憶することができる。
ステップ2220では、上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しいか否かの決定が行われる。未補正均一性プロフィールの最小値は、プロフィールに対する最大値を表す。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しくない場合、処理はステップ2230に進む。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しい場合、処理はステップ2240に進む。
ステップ2230では上記の制約に対する重みが低減される。
ステップ2235ではこの制約に対する重みが最小値よりも大きいか否かの決定が行われる。この重みが最小値より大きい場合、処理はステップ2210に戻る。この重みが最小値より小さい場合、処理はステップ2270に進む。
ステップ2210〜2235はオプションである。1実施形態においてステップ2205の後、処理はステップ2240に進む。
ステップ2240では、上記の第1層の制約を含めた、制約からなる1つ以上の全集合を使用して調整値が決定される。1実施形態では、2.4項で説明する最小2乗アルゴリズムを使用して調整値が決定される。
ステップ2245では1つ以上のパラメタが記憶される。例えば1実施形態では、得られた補正および光損失が記憶される。当業者にわかるようにこのステップでは、補正モジュールに必要なだけ別のパラメタを記憶することができる。
ステップ2250では上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しいか否かの決定が行われる。未補正均一性プロフィールの最小値は、プロフィールに対する最大値を表す。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しくない場合、処理はステップ2255に進む。上記の所望の補正均一性と、未補正の均一性プロフィールの最小値とが等しい場合、処理はステップ2290に進む。
ステップ2255では上記の制約に対する重みが低減される。
ステップ2260ではこの制約に対する重みが最小値よりも大きいか否かの決定が行われる。この重みが最小値より大きい場合、処理はステップ2240に戻る。この重みが最小値より小さい場合、処理はステップ2270に進む。
ステップ2270では、最善の結果を生む第1層の制約だけを使用して1つのケースが選択される。処理はステップ2290に進む。
2.3.1 実施例
以下の項では、補正要素として複数のフィンガを使用する補正システムに対する調整値を決定する手順の例を説明する。2.3.1.1項では両側構成に使用されるフィンガ位置計算の手順を説明する。2.3.1.2項ではセグメント形構成に使用されるフィンガ伝達率計算の手順を説明する。
2.3.1.1 両側構成
図11Aおよび11Bには本発明の1実施形態により、両側構成の補正システム120においてフィンガ位置を計算する手順1100のフローチャートが示されている。説明を容易にするため、引き続き図2Aおよび2Bに示した実施形態に基づいて図11を説明する。しかしながら図11はこれらの実施形態には制限されない。
手順1100は、所望の補正均一性が初期化されるとステップ1105で開始される。1実施形態ではこのステップにおいて、上記の所望の補正均一性と、フィンガにより完全に減衰された未補正均一性プロフィールの最大値とが等しく設定される。この値はプロフィールに対する最小値を表す。
ステップ1110では、スキャン(y軸)楕円性およびテレセントリック性の制約を使用してフィンガ位置が決定される。制約の例については2.4.1.1項にさらに詳しく説明する。ステップ1110については2.4.2.1にさらに詳しく説明する。
ステップ1115では1つ以上のパラメタを記憶する。例えば1実施形態では、フィンガ位置で乗算された制約のノルム、得られた補正および光損失が記憶される。当業者にはわかるようにこのステップでは補正モジュールに必要なだけ別のパラメタを記憶することができる。
ステップ1120では、上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しいか否かの決定が行われる。未補正均一性プロフィールの最小値は、プロフィールに対する最大値を表す。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しくない場合、処理はステップ1125に進む。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しい場合、処理はステップ1130に進む。
ステップ1125では、所望の補正均一性の値が増大される。例えばこの値は、所望の補正均一性のステップの分だけ増大される。1実施形態において上記の所望の補正均一性のステップは設定可能である。つぎに処理はステップ1110に戻る。
ステップ1110,1120および1125の繰り返しのステップにより、ステップ1110および1120が実行される毎に1つずつ、1つ以上のケースが形成される。形成されたケースは、引き続き手順1100によって使用される。
ステップ1105〜1125では未補正均一性プロフィールの最小値からはじめて、最大になるまで値を増大させると説明されているが、これらのステップは、未補正均一性プロフィールの最大値からはじめて、最小になるまで値を減少させることによって実行することが可能である。
ステップ1130では、いずれかの制約を適用するか否か、またはいずれかのケースが均一性の仕様を満足するか否かが決定される。制約を適用しないこと、または均一性の仕様を満足するケースがないことが決定される場合、処理はステップ1135に進む。制約を適用するか、または1つ以上のケースが均一性の仕様を満たす場合、処理はステップ1140に進む。
ステップ1135では最良の均一性の補正を有するケースが選択される。処理はつぎにステップ1180に進む。
ステップ1140では、いずれかのケースが均一性の仕様および上記のマスタ制約の要求を満たすか否かが決定される。このシステムには1つのマスタ制約の要求と、1つ以上のスレーブ制約要求とが含まれている。このマスタ制約の要求は、スレーブ制約の要求のいずれかが検討される前に満たされなければならない。1実施形態において上記のマスタ制約の要求は設定可能であり、また考えられ得る複数の制約のうちの1つに設定することができる。択一的な実施形態において上記のマスタ制約の要求とは光損失である。この実施形態において判定条件となるのは、1つ以上のケースが、光損失の要求および均一性の仕様の両方を満たすか否かである。1つ以上のケースが均一性の仕様およびマスタ制約の要求の両方を満たす場合、処理はステップ1150に進む。均一性の仕様およびマスタ制約の両方を満たすケースがない場合、処理はステップ1145に進む。
ステップ1145では、均一性の仕様を満たすすべてのケースが選択されて、処理はステップ1155に進む。
ステップ1150では、均一性の仕様およびマスタ制約の両方の要求を満たすすべてのケースが選択される。
ステップ1155では、選択されたケースの集合から、楕円性およびテレセントリック性に対して最も低いノルムを有するケースが選択される。
ステップ1160では、スレーブ制約のうちのいずれかを適用するか否かが決定される。1実施形態においてこれらのスレーブ制約は設定可能である。上記のマスタ制約が光損失である1実施形態では上記のスレーブ制約には1つ以上のクロススキャンについての制約が含まれる。クロススキャン制約のうちの1つがマスタ制約である択一的な実施形態では、光損失が上記のスレーブ制約のうちの1つとして含まれている。1つ以上のスレーブ制約が適用される場合、処理はステップ1165に進む。スレーブ制約を適用しない場合、処理はステップ1175に進む。
ステップ1165では、すべての制約が使用されてフィンガ位置が決定される。ステップ1165については2.4.2.1項にさらに詳しく説明する。
ステップ1170では、すべての制約を適用した場合に均一性の仕様を満たすことができるか否かが決定される。均一性の仕様を満たすことができる場合、処理はステップ1180に進む。均一性の仕様を満たすことができない場合、処理はステップ1175に進む。
ステップ1175では上記のスレーブ制約が適用される前に選択されたケース(すなわちステップ1155で選択されたケース)が使用される。
ステップ1180では光損失が低減される。ステップ1180については2.6項でさらに詳しく説明する。
1実施形態において、システムがオフラインの場合にステップ1105〜1155が実行される。この実施形態ではステップ1160〜1180だけがリアルタイム動作中に実行される。当業者にわかるようにこのシステムの要求および/または能力に基づいてリアルタイム動作中に付加的なステップまたはより少ないステップを実行することが可能である。
2.3.1.2 セグメント形構成
図12Aおよび12Bには本発明の1実施形態により、セグメント形構成を有する補正システム120においてフィンガ位置を計算する手順1200のフローチャートが示されている。説明を容易にするため、引き続き図3に示した実施形態に基づいて説明する。しかしながら図12はこれらの実施形態には制限されない。図12のフローチャートの一部は、セグメント形構成および両側構成の両方に対して同じである。説明を容易にするため、セグメント形構成に対する手順を別個に説明する。当業者にはわかるように手順1200は手順1100と組み合わせることができる。
手順1200は、所望の補正均一性が初期化されると、ステップ1205で開始される。1実施形態ではこのステップにおいて上記の所望の補正均一性と、フィンガにより完全に減衰された未補正均一性プロフィールの最大値とが等しく設定される。この値はプロフィールに対する最小値を表す。
ステップ1210では、制約を使用しないでフィンガ位置が決定される。ステップ121210については2.4.2.2項でさらに詳しく説明する。
ステップ1215では1つ以上のパラメタを記憶する。例えば1実施形態では、フィンガ位置で乗算された制約のノルム、得られた補正および光損失が記憶される。当業者にはわかるようにこのステップでは補正モジュールに必要なだけ別のパラメタを記憶することができる。
ステップ1220では、上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しいか否かの決定が行われる。未補正均一性プロフィールの最小値は、プロフィールに対する最大値を表す。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しくない場合、処理はステップ1225に進む。上記の所望の補正均一性と、未補正均一性プロフィールの最小値とが等しい場合、処理はステップ1230に進む。
ステップ1225では、所望の補正均一性の値が増大される。例えばこの値は、所望の補正均一性のステップの分だけ増大される。1実施形態において上記の所望の補正均一性のステップは設定可能である。つぎに処理はステップ1210に戻る。
ステップ1210,1220および1225の繰り返しにより、ステップ1210および1220が実行される毎に1つずつ、1つ以上のケースが形成される。形成されたケースは、引き続き手順1200によって使用される。
ステップ1205〜1225は、未補正均一性プロフィールの最小値からはじめて、最大になるまで値を増大させると説明されているが、これらのステップは、未補正均一性プロフィールの最大値からはじめて、最小になるまで値を減少させることによって実行することが可能である。
ステップ1230では、いずれかの制約を適用する否か、またはいずれかのケースが均一性の仕様を満足する否かが決定される。制約を適用しないこと、または均一性の仕様を満足するケースがないことが決定される場合、処理はステップ1235に進む。制約を適用するか、または1つ以上のケースが均一性の仕様を満たす場合、処理はステップ1240に進む。
ステップ1235では最良の均一性補正を有するケースが選択される。処理はつぎにステップ1280に進む。
ステップ1240では、いずれかのケースが均一性の仕様および上記のマスタ制約の要求を満たすか否かが決定される。このシステムには1つのマスタ制約の要求と、1つ以上のスレーブ制約要求とが含まれている。このマスタ制約の要求は、スレーブ制約の要求のいずれかが検討される前に満たされなければならない。1実施形態においてマスタ制約の要求は設定可能であり、また考えられ得る複数の制約のうちの1つに設定することができる。択一的な実施形態において上記のマスタ制約の要求とは光損失である。この実施形態において判定条件となるのは、1つ以上のケースが、光損失の要求および均一性の仕様の両方を満たすか否かである。1つ以上のケースが均一性の仕様および主要な制約の要求の両方を満たす場合、処理はステップ1250に進む。均一性の仕様およびマスタ制約の両方を満たすケースがない場合、処理はステップ1245に進む。
ステップ1245では、均一性の仕様を満たすすべてのケースが選択されて、処理はステップ1255に進む。
ステップ1250では、均一性の仕様およびマスタ制約の両方の要求を満たすすべてのケースが選択される。
ステップ1255では、選択されたケースの集合から、楕円性およびテレセントリック性に対して最も低いノルムを有するケースが選択される。
ステップ1260では、スレーブ制約のうちのいずれかを適用するか否かが決定される。1実施形態においてこれらのスレーブ制約は設定可能である。上記のマスタ制約が光損失である1実施形態では上記のスレーブ制約に1つ以上のクロススキャン制約が含まれる。クロススキャン制約のうちの1つがマスタ制約である択一的な実施形態では、光損失が上記のスレーブ制約のうちの1つとして含まれる。1つ以上の従属的な制約が適用される場合、処理はステップ1265に進む。スレーブ制約を適用しない場合、処理はステップ1275に進む。
ステップ1265では、すべての制約が使用されてフィンガ位置が決定される。ステップ1265については2.1.2.3.2項にさらに詳しく説明する。
ステップ1270では、すべての制約を適用した場合に均一性の仕様を満たすことができるか否かが決定される。均一性の仕様を満たすことができる場合、処理はステップ1280に進む。均一性の仕様を満たすことができない場合、処理はステップ1275に進む。
ステップ1275では、上記のスレーブ制約が適用される前に選択されたケース(すなわちステップ1255で選択されたケース)が使用される。
ステップ1280では光損失が低減される。ステップ1280については2.1.2.4項でさらに詳しく説明する。
1実施形態において、システムがオフラインの場合にステップ1205〜1255が実行される。この実施形態ではステップ1260〜1280だけがリアルタイム動作中に実行される。当業者にわかるようにこのシステムの要求および/または能力に基づいてリアルタイム動作中に付加的なステップまたはより少ないステップを実行することが可能である。
2.4 最小2乗アルゴリズム
上記の補正システムの自由度および/または調整可能な変数に対する値は、最小2乗適合化アルゴリズムを使用して決定される。この手順は、すべてのタイプの均一性補正システムに使用される。
一般的にこの手順により、制約重み付け最小2乗解(the constraint weighted least square solution)が計算される。結果的に得られる調整可能な変数および/または自由度により、所望の仕様を満たさない、補正均一性プロフィールが得られる場合、上記の制約重みは、補正均一性プロフィールと所望の均一性プロフィールとの間の誤差に比例する量だけ低減される。
例えば、隣り合う複数の補正要素を使用する補正システムにおいて、行列の形態をした隣り合うフィンガの移動(伝達率)の制約が使用され、また上記の制約重み付けの値が閾値以下の場合、検討される隣り合うフィンガの数が低減される。この制約重み付けは再計算され、上記の処理が繰り返される。
上記の処理は、補正均一性プロフィールが仕様を満たすか、または制約の重みが小さすぎて、これらの制約によって仕様が満たされ得ず、すべての制約の重みがゼロに設定されて解が計算されるまで繰り返される。
2.4.1 制約重み付け最小2乗法
1実施形態ではCWLS(制約重み付け最小2乗 Constraint weighted Least Square)アルゴリズムが使用されて上記の調整値が計算される。式10,10aおよび10bは、本発明の1実施形態において使用可能なCWLS式の例である。1実施形態では必要なだけの任意の個数の制約と、任意の個数の重み付けを使用可能である。
Figure 2006203192
2.4.1.1 制約の例
以下の項では本発明に使用可能な制約の例を説明する。当業者にはわかるように別の制約を使用することができる。
1実施形態において、関数f(X)は、上記の補正均一性プロフィールから所望の均一性プロフィールを減算したものである。この関数は、式(8)および(9)によって定められる。
複数のフィンガを有する均一性補正システムの例に対してDを、すべてのクロスセクション座標a,ただしk = 1,2,…,Kに対して定められた所望の補正均一性プロフィールとする。この時、式(8)および(9)により、
Figure 2006203192
である。
セグメント形構成に対し、f(X)はフィンガ伝達率Tのベクトルについて線形であることに注意されたい。これとは異なり、両側構成に対して式(9)は、式(7)によって表されるようにフィンガ変位ベクトルΔFについて非線形である。
2.4.1.1.1 光損失ての制約
1実施形態において関数f(X)は光損失の制約である。調整可能部材としてフィンガが使用される場合、セグメント形のケースにおいてフィンガの伝達率を最大化することにより、または両側構成のケースにおいて移動量を最小化することによって光損失は最小化される。この場合、
Figure 2006203192
であり、ここでMax(T)は、フィンガの最大許容伝達率である。この場合にMax(T)は、すべての要素が同じ値を有するベクトルであることに注意されたい。
2.4.1.1.2 変位(または伝達率)の差分
上記の調整可能部材が複数のフィンガである場合、関数f(X)は、隣り合うフィンガの変位(または伝達率)における差分にペナルティを課す制約である。
隣り合うフィンガ間の移動量または伝達率の差分は、補正システムによってクロススキャン方向に引き起こされるテレセントリック性および楕円性に直接影響を及ぼす。隣り合うフィンガの変位の差分は、隣り合う2つのフィンガの先端部間の差分である。図5のステップ570および図6のステップ660において、隣り合うフィンガの移動量は最小化される。
1実施形態において移動量(伝達率)の差分はまず、単一のクロススキャン位置の強度積分に寄与する平均フィンガ数を決定することよって計算される。このことは、クロススキャン方向においていくつのフィンガが(平均で)「ひとみ」の各集合に影響を及ぼすかを計算するのと同じである。つぎに各行が、kk個の連続するフィンガ間の伝達率または移動量の差分である行列が構成される。
例えば、各側に4つのフィンガ(全部で8つ)を有する両側構成に対し、単一のクロススキャン位置に寄与する平均フィンガ数が3に等しい場合、上記の行列は、
| 側1 | 側2 |
1 -1 0 0 0 0 0 0
0 1 -1 0 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 0 0 1 -1 0 0
0 0 0 0 0 1 -1 0
0 0 0 0 0 0 1 -1
1 0 -1 0 0 0 0 0
0 1 0 -1 0 0 0 0
0 0 0 0 1 0 -1 0
0 0 0 0 0 1 0 -1
である。
つぎに行列と、フィンガ変位(またはセグメント形構成に対しては伝達率)とを乗算することによって上記の制約が計算される。これにより、クロススキャン方向における「ひとみ」に影響を与えるフィンガの変化に制約が課され、これによってX軸のテレセントリック性および楕円性が低減される。したがってこの実施形態において上記の制約は
Figure 2006203192
によって定められ、ここでLは、構成された行列である。
状況によっては第1の実施形態において定められる制約により、フィンガ位置(または伝達率)における妥協に起因して、許容されないフィンガ変化がさらに発生し得る。ここでこの妥協は、1つのフィンガが複数の「ひとみ」(またはクロススキャン座標)に与える影響に適応するために必要なものである。さらに行列Lのサイズは、所望の均一性の仕様を満たすフィンガ位置の集合を得るために変更される。したがって第2実施形態では、上記の隣り合うフィンガの移動量について制約は、フィンガの伝達率またはフィンガ変位に適合した1つ以上の多項式を使用して計算される。
第2の実施形態ではフィンガの伝達率またはフィンガ変位に1つ以上の多項式が適合される。セグメント形構成に対し、P(T)をフィンガ伝達率に適合された滑らかな多項式とする。両側構成に対してP(ΔF)およびP(ΔF)はそれぞれ、第1の側および第2の側のフィンガ変位に適合された多項式である。多項式Pが、テレセントリック性および楕円性の影響を最小化する多項式のクラスに対する制約である場合(例えば偶数次の項しか有しない4次の多項式)、
Figure 2006203192
例えば
P(X) → X = p*φ + p*φ +p (13e)
n = 1,2,3,…,N
であり、ここで
は、n番目のフィンガの伝達率または変位であり、
φは、クロススキャン方向におけるn番目のフィンガの中間位置であり、
は、クロススキャン方向においてフィンガ位置に対するフィンガ変位(または伝達率)に適合された多項式の係数である。
第2の実施形態にはいくつかの変形実施形態が可能である。1変形実施形態では、適合化P(X)は、新しいベクトルXが形成されるたびに計算される。第2の変形実施形態では、例えば未補正均一性プロフィールに基づいて理想的な適合化が計算され、すべてのフィンガ変化の平均値の関数として式(13e)のpが変更される。
2.4.1.1.3 フィンガ変位ペナルティ
1実施形態において関数f(X)はフィンガ変位にペナルティを課す制約であり、これによってクロススキャン方向における楕円性の影響が最小化される。この制約は、両側構成に対してのみ適用可能である。1実施形態ではこの制約は、この制約に対して記憶された値にアクセスすることによって決定される。例えば、これらの値は補正モジュールの記憶装置に記憶することができる。択一的な実施形態ではこの制約は、照明モードおよびフィンガ位置に依存して関数に基づいて決定される。
2.4.1.1.4 対向するフィンガの移動量の差分についての制約
1実施形態において関数f(X)は、対向するフィンガの移動量の差分にペナルティを課す制約である。この制約は、両側構成に対してのみ適用可能である。
対向するフィンガの移動量の差分は、スキャン方向における楕円性およびテレセントリック性の作用に直接影響を及ぼす。この制約は、両側構成に対してのみ適用される。例えば、この制約の目標は、照明スロットの一方の側のフィンガが挿入される距離と、1つまたは複数の対向するフィンガが挿入される距離とがほぼ等しくなるようにすることである(例えば、挿入距離をほぼ対称にする)。これらの影響を最小化するため、対向するフィンガの移動量の差分は、互い違いでない構成において最小化しなければならない。互い違い形構成では、各フィンガに対向するフィンガの集合の平均移動量の差分を最小化しなければならない。
1実施形態では互い違い形構成に対して行列を構成して、第1および第2の側の対向するフィンガの移動量の間の差分が各行によって計算されるようにする。例えば、各側に4つのフィンガ(全部で8つ)がある場合、この行列は、
| 側1 | 側2 |
1 0 0 0 -1 0 0 0
0 1 0 0 0 -1 0 0
0 0 1 0 0 0 -1 0
0 0 0 1 0 0 0 -1
である。
互い違い形でない構成に対する実施形態においては同様に行列を構成して、第1の側のフィンガが移動する距離と、第2の側の対応する2つのフィンガが平均で移動する距離との差分が、各列によって計算されるようにする。例えば、各側に4つのフィンガ(全部で8つ)がある場合、この行列は、
| 側1 | 側2 |
0.5 0.5 0 0 -0.5 -0.5 0 0
0 0.5 0.5 0 0 -0.5 -0.5 0
0 0 0.5 0.5 0 0 -0.5 -0.5
である。
構成されたこの行列はつぎにフィンガ変位によって乗算される。上記の制約はつぎの式
Δ(ΔF) = G*ΔF (14)
によって得られる。
2.4.1.2 重み計算
利得の選択を誤って式(10),(10a)および(10b)に制約最小2乗アルゴリズムを適用すると、均一性プロフィールも、すべての制約も共に等しく最小化される傾向がある。補正均一性プロフィールが仕様を満たすと共に不所望の影響が最小化される重みW,W,W,…,Wに対する「正しい」値は一意ではなく、アプリオリに決定することはできない。2.4項に示したアルゴリズムでは、初期値が使用され、また達成され補正均一性と所望のプロフィールとの偏差の関数として重みの値が、繰り返し低減される。
2.4.1.2.1 重みの例
以下の項では本発明に使用可能な重みの例が示されている。当業者にはわかるように別の重みを使用可能である。
例えば、上記の補正システムが、隣り合うフィンガを有しており、かつf、すなわち隣り合うフィンガの移動量(伝達率)についての制約が、フィンガ移動量または伝達率によって乗算された行列として定められる場合、Wは補正均一性の誤差の関数としてだけでなく、隣り合うフィンガの制約の数を低減することによって再度定めることも可能である。
制約および均一性関数による制約重み付けに対する初期値はつぎのようになる。ここで‖Z‖は行列またはベクトルZの2ノルムを表すことに注意されたい。式(10a)によって定められる行列によるアプローチを考えている場合、
Figure 2006203192
である。行列Lに行を加えるまたは取り除くことによって、上記の重み付け値がどのように変化するかに注意されたい。
Figure 2006203192
である。
式(10),(11),(13)および(14)を適用することによって、セグメント形ユニコム(unicom)構成に対する式(12)はつぎように書き直される。すなわち、
Figure 2006203192
である。ここでIおよび0はそれぞれ、適当な次元の単位およびゼロベクトルである。fの形の行列を選択したことに注意されたい。これとは異なり、式(10d)に示した多項式を選択した場合、
Figure 2006203192
である。
両側構成に対して、fの形態の行列の使用をすると
Figure 2006203192
である。同様にfに対して多項式を選択した場合、
Figure 2006203192
である。
における多項式の適合化に起因して、式15cおよび15dが線形であろうとなかろうと式15aおよび15bは線形である。
2.4.2 例
2.4.2.1 両側構成
図13Aおよび13Bには本発明の1実施形態にしたがい、両側構成を有する補正システム120においてCWLS(constraint weighted least square)アルゴリズムを使用してフィンガ位置を計算する手順1300のフローチャートが示されている。説明を容易にするため、引き続き図2Aおよび2Bに示した実施形態に基づいて図13を説明する。しかしながら図13はこれらの実施形態には制限されない。
両側構成に対して、複数の制約がCWLSアルゴリズムにおいて使用される。例えば、上記の制約は、光損失についての制約、隣り合うフィンガの変位(伝達率)の差分についての制約、対向するフィンガの移動量の差分についての制約、およびクロススキャン楕円性についての制約を含むことができる。CWLSアルゴリズムに使用される各制約は、関連する重みを有する。
手順1300は、フィンガ位置に対する強度の曲線当てはめおよび正規化が変更されて、未補正均一性プロフィールが反映されると、ステップ1310で開始される。
ステップ1315では上記の制約に対する重み値が計算される。制約重みの計算については2.4.1.2項でさらに詳細に説明する。
ステップ1320では、初期条件が利用可能であるか否かの決定が行われる。初期条件が利用可能な場合、処理はステップ1340に進む。利用可能な初期条件がない場合、処理はステップ1325に進む。
ステップ1325では、CWLSアルゴリズムを使用し、フィンガの最小の移動量を初期条件としまた制約なしにフィンガ位置が計算される。CWLSアルゴリズムを使用したフィンガ位置の計算については2.4.1項に詳しく説明されている。
ステップ1330では、CWLSアルゴリズムを使用し、フィンガの最大の移動量を初期条件としまた制約なしにフィンガ位置が計算される。CWLSアルゴリズムを使用したフィンガ位置の計算については2.4.1項に詳しく説明されている。
ステップ1335では初期条件が選択される。1実施形態では、ステップ1325および1330で計算された複数の変位から、最良の均一性補正をもたらすフィンガ変位が、CWLSアルゴリズムに対する初期条件として選択される。
ステップ1340ではCWLSアルゴリズムを使用してフィンガ位置が計算される。CWLSアルゴリズムを使用したフィンガ位置の計算は2.4.1項にさらに詳細に示されている。
ステップ1345では、均一性の仕様が満たされたか否かの決定が行われる。1実施形態においてこのステップに使用される均一性の仕様は、測定した均一性である。択一的な実施形態において使用した均一性の仕様は、計算した均一性である。均一性の仕様が満たされる場合、手順1300は終了する。均一性の仕様が満たされない場合、処理はステップ1350に進む。
ステップ1350では、制約の重みが、仕様からの補正均一性の誤差の大きさに比例して低減される。
ステップ1355では、いずれかの制約が最小値より小さいか否かの決定が行われる。制約が最小値よりも小さくない場合、処理はステップ1340に戻る。制約が最小値よりも小さい場合、処理はステップ1360に進む。
ステップ1360では、移動量の差分にペナルティが課される、クロススキャン方向の連続的なフィンガの個数が低減される。
ステップ1365では、上記の制約が完全に取り除かれたか否かの決定が行われる。制約が完全に取り除かれている場合、処理はステップ1370に進む。上記の制約が完全に取り除かれていない場合、処理はステップ1340に戻る。
ステップ1370では上記の制約の重みがゼロに設定される。処理はステップ1340に戻る。
2.4.2.2 セグメント形構成
図14には本発明の1実施形態にしたがい、セグメント形構成を有する補正システム120において、CWLS(constraint weighted least square)アルゴリズムを使用して、フィンガ位置を計算する手順1400のフローチャートが示されている。説明を容易にするため、引き続き図3に示した実施形態に基づいて図14を説明する。しかしながら図14はこれらの実施形態には制限されない。
セグメント形構成に対して、1つ以上の制約がCWLSアルゴリズムにおいて使用される。例えば、上記の制約は、光損失についての制約、隣り合うフィンガの変位(伝達率)の差分についての制約、およびクロススキャン楕円性についての制約を含むことができる。CWLSアルゴリズムに使用される各制約は、関連する重みを有する。
手順1400は、各フィンガによって覆われ得るエリアの、フィンガのない場合の強度が変更されて未補正均一性プロフィールが反映されると、ステップ1410で開始される。
ステップ1420では上記の制約に対する重み値が計算される。制約重みの計算については2.4.1でさらに詳細に説明する。
ステップ1430では、CWLSアルゴリズムを使用してフィンガ位置が計算される。CWLSアルゴリズムを使用したフィンガ位置の計算については、2.4.1項にさらに詳しく説明されている。
ステップ1440では、均一性の仕様が満たされたか否かの決定が行われる。1実施形態においてこのステップに使用される均一性の仕様は、測定した均一性である。択一的な実施形態において使用した均一性の仕様は、計算した均一性である。均一性の仕様が満たされる場合、手順1400は終了する。均一性の仕様が満たされない場合、処理はステップ1450に進む。
ステップ1450では、補正均一性の仕様からの誤差の大きさに比例して制約の重みが低減される。
ステップ1460では、いずれかの制約が最小値よりも小さいか否かの決定が行われる。制約が最小値よりも小さくない場合、処理はステップ1430に戻る。制約が最小値よりも小さい場合、処理はステップ1470に進む。
ステップ1470では、移動量の差分にペナルティが課されるクロススキャン方向の連続的なフィンガの個数が低減される。
ステップ1480では、上記の制約が完全に取り除かれたか否かの決定が行われる。制約が完全に取り除かれている場合、処理はステップ1490に進む。上記の制約が完全に取り除かれていない場合、処理はステップ1430に戻る。
ステップ1490では上記の制約の重みがゼロに設定される。処理はステップ1430に戻る。
2.5 フィンガ位置または伝達率の変動(Oscillation)
状況によっては所望の補正均一性プロフィールの平均値により、フィンガ位置または伝達率において、大きなテレセントリック性および楕円性を含む不所望の変動が発生することがある。説明を容易にするため、これらの変動の理由を例を通して説明する。
各クロススキャン座標における強度積分が、隣り合う2つのフィンガの伝達率の関数である4重の「ひとみ」のケースに対して、所望の補正均一性プロフィールが平坦であり、未補正均一性プロフィールの最小値に等しいとする。この場合、所望の値の座標における上記の補正プロフィールに影響を与えるフィンガは、100%の透過度を有しなければならない。しかしながらこれらのフィンガのうちの少なくとも1つにより、近くのクロススキャン座標において強度の積分に影響が及ぼされることにもなり、これは減衰しなければならない。したがって少なくとも1つの別のフィンガの伝達率を低減して、100%の伝達率を有するフィンガに対して補償を行わなければならない。さらに別のフィンガ(またフィンガの集合)は、100%の透過度を有するフィンガの近くにあるフィンガの比較的大きな減衰に対して補償を行うため、比較的大きな透過度を有しなければならない。この場合、上記の変動は継続する。択一的には上記の所望される均一性プロフィールが、100%の透過度を有することを強制されるフィンガまたはフィンガの集合はないようなプロフィールである場合、上記の影響は取り除かれる。
図17AおよびBにはこの例が示されている。図17Aには、フィンガ伝達率の変動がどのように形成されるかを示している。図17Bには比較的大きな光損失の犠牲の下で、不所望なこの影響が回避されるケースが示されている。図17において1710a〜dは、4つのフィンガから見た強度の積分である。ここでは3つの「ひとみ」1720a〜cが示されている。第1の「ひとみ」1720aは、1710aおよび1710bに寄与する極(pole)を有する。第2の「ひとみ」1720bは、1710bおよび1710cに寄与する極を有する。第3の「ひとみ」は1720cは1710cおよび1710dに寄与する極を有する。補正プロフィールの値は、これらの「ひとみ」の中心で計算される。
同様の影響がさまざまな「ひとみ」形状に対して発生する。一般的にフィンガ位置決めまたは透過度変動が存在するのは、1つ以上のフィンガが、各クロススキャン座標において強度の積分に大きく寄与し、かつ所望の均一性プロフィールにより、フィンガの集合が100%の伝達率を有することが強制される場合である。フィンガの両側構成の場合、このことが意味するのは、フィンガがそれらのホームポジションになければならないことである。
2.6 光損失
2.4項に記載した最小2乗適合化は、1実施形態において制約への重みを低減することにより、光損失にペナルティを課すが、最終的な調整値が計算された後、付加的な光を得ることができる。図15および16に示した例示的な手順は、均一性の仕様をなお満たしながらもモジュールの平均伝達率を増大することによって、光損失の量を低減するために使用される。
図15には本発明の1実施形態にしたがい、両側構成に対して光損失を低減する例示的な手順1500のフローチャートが示されている。
ステップ1510では、フィンガ位置に対する強度の曲線当てはめおよび正規化が変更されて未補正均一性プロフィールが反映される。
ステップ1520では、デルタフィンガ変位が初期化される。1実施形態においてこのデルタフィンガ変位は、最小フィンガ変位に設定される。
ステップ1530では、各フィンガの変位が、デルタフィンガ変位分だけ低減される。
ステップ1540では、上記の補正均一性が計算される。
ステップ1550では、上記の補正均一性が均一性の仕様を満たすか否かが決定される。補正均一性が、均一性の仕様を満たす場合、手順1500は終了する。補正均一性が、均一性の仕様を満たされない場合、処理はステップ1560に進む。
ステップ1560では、デルタ変位の値が低減される。処理はステップ1530に戻る。
ステップ1530,1540,1550および1560は、均一性の仕様が満たされるまで繰り返される。
図16には本発明の1実施形態にしたがい、セグメント形構成に対して光損失を低減する例示的な手順1600のフローチャートが示されている。
ステップ1610では、各フィンガによって覆われ得るエリアの、フィンガのない場合の強度が変更されて未補正均一性プロフィールが反映される。
ステップ1620では、デルタフィンガ伝達率が初期化される。1実施形態においてこのデルタフィンガ伝達率は、最大フィンガ伝達率から最大許容伝達率を減算したものに設定される。
ステップ1630では、各フィンガの伝達率が、デルタフィンガ伝達率だけ増大される。
ステップ1640では、上記の補正均一性が計算される。
ステップ1650では、上記の補正均一性が均一性の仕様を満たすか否かが決定される。補正均一性が、均一性の仕様を満たす場合、手順1600は終了する。補正均一性が、均一性の仕様を満たされない場合、処理はステップ1560に進む。
ステップ1660では、デルタ伝達率が増大される。処理はステップ1630に戻る。
ステップ1630,1640,1650および1660は、均一性の仕様が満たされるまで繰り返される。
2.7 未補正均一性プロフィールに対する変更
つぎの式は、測定(図4のステップ460)に基づいて未補正均一性プロフィールを変更する手順を示している。この手順は、上記の所望の均一性補正が達成されなかったことが、測定によって示された場合に起動される。
式(7)からk番目の座標において測定される強度積分ξ は、
Figure 2006203192
である。
また同じ座標における未補正強度積分は、
Figure 2006203192
であり、ここで
Jikは、i番目のフィンガの影響を受けた、aにおけるすべての「ひとみ」のインデックスである(すなわちフィンガ「i」は、j∈Jikなる(a,bji)を中心とする「ひとみ」の少なくとも1つのピクセルを覆っている)。表記を簡単にするため、このような「ひとみ」からなる集合は、(a,bJik)を中心とする複数の「ひとみ」と記される。また
J*ikは、i番目のフィンガの影響を受けていない、aにおけるすべての「ひとみ」のインデックスである(すなわちフィンガ「i」は、j∈J*ikなる(a,bji)を中心とする「ひとみ」のいずれのピクセルを覆っていない)。表記を簡単にするため、この「ひとみ」からなる集合は、(a,bJ*ik)を中心とする複数の「ひとみ」と記される。
集合JikおよびJ*ikの和集合は、(a,b)(j=1,2,3,…,J)を中心とする「ひとみ」の考えられ得るすべてのインデックスに等しいことに注意されたい。さらにJikおよびJ*ikに含まれるインデックスは必ずしも連続している必要はない。
Oik,Pikは、フィンガ「i」によって覆われる(cJik,k ,dJik,k )を中心とする「ひとみ」のすべてのピクセルに対するインデックスである。
O*ik,P*ikは、フィンガ「i」によって覆われない(cJ*ik,k ,dJ*ik,k )を中心とする「ひとみ」のすべてのピクセルに対するインデックスである。
この場合、上記の未補正均一性プロフィールは、各k座標においてつぎのように計算される。すなわち、
Figure 2006203192
である。
(上記の式の)分子および分母の両方は、式(6)および(7)において利用可能であり、また定められている。セグメント形構成では、上記の分母はベクトルM*Tに等しく、また分子は、測定した補正均一性ベクトルおよびM*max(T)の行同士の積に等しい。ここでmax(T)は各フィンガの伝達率である。
両側構成に対して、分子は、測定した補正均一性ベクトルおよびK*Ωの行同士の積に等しい。分母はΨ(ΔF)に等しい。
または
Figure 2006203192
である。この場合、つぎのように定められる新たな重み付け行列Yを使用して、新たなフィンガ位置(伝達率)の集合を計算することができる。すなわち、
Figure 2006203192
である。
当業者にはわかるように、測定に基づいて未補正均一性プロフィールを変更する別の手順を本発明に使用することができる。
3.結論
上では本発明のさまざまな実施形態を説明したが、これらの実施形態は例として示したのであり、制限のためではないことを理解されたい。当業者にわかるようにここでは、本発明の精神および範囲を逸脱することなく、形態および詳細をさまざまに変更することができる。したがって本発明の範囲は、上記のどの例示的な実施形態によっても制限されるべきではなく、添付の請求項またはこれと同等のものにしたがってのみ定められるべきである。
本発明の1実施形態による、デフォーカス均一性補正を有する例示的なリソグラフィシステムである。 本発明の1実施形態による、補正システムの例示的な両側構成を示す図である。 本発明の1実施形態による、補正システムの例示的な両側構成を示す図である。 本発明の1実施形態による、補正システムの例示的な両側構成を示す図である。 本発明の1実施形態による、補正システムの例示的な両側構成を示す図である。 本発明の1実施形態による、補正システムの例示的なセグメント形構成を示す図である。 本発明の1実施形態にしたがい、均一性補正システムにおける1つ以上の調整部材に対する値を決定する手順のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいて1つ以上のフィンガに対する調整値を決定する手順例のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいて1つ以上のフィンガに対する調整値を決定する手順例のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいて1つ以上のフィンガに対する調整値を決定する手順例のフローチャートである。 本発明の1実施形態にしたがい、セグメント形構成を有する補正システムにおいて1つ以上のフィンガに対する調整値を決定する手順例のフローチャートである。 本発明の1実施形態にしたがい、クロスキャン座標において強度の積分を計算する手順のフローチャートである。 本発明の1実施形態による補正システム面の照明スロットを分析した図である。 本発明の1実施形態による補正システム面の照明スロットを分析した図である。 本発明の1実施形態による補正システム面の照明スロットを分析した図である。 本発明の1実施形態による補正システム面の照明スロットを分析した図である。 本発明の1実施形態にしたがい、「ひとみ」に対する光関数を計算する手順を示すフローチャートである。 本発明の1実施形態による強度の積分に対する式のコンポーネントを示す図である。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、セグメント形構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、セグメント形構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、セグメント形構成を有する補正システムにおいてフィンガ位置を計算する手順例のフローチャートである。 本発明の1実施形態にしたがい、両側構成を有する補正システムに対して光損失を低減する手順例のフローチャートである。 本発明の1実施形態にしたがい、セグメント形構成を有する補正システムに対して光損失を低減する手順のフローチャートである。 フィンガ位置または伝達率変動の例を示す図である。 フィンガ位置または伝達率変動の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.26シグマの慣用の照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.68/0.85シグマのクエーザ照明ひとみに対する照明プロフィおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 0.80/0.97シグマのクエーザ照明ひとみに対する照明プロフィールおよびひとみ形状の例を示す図である。 本発明の有利な実施形態にしたがい、均一性補正システムの1つ以上の調整可能部材を調整する手順例のフローチャートである。 本発明の有利な実施形態にしたがい、均一性補正システムの1つ以上の調整可能部材を最適化する手順例のフローチャートである。

Claims (20)

  1. リソグラフィツールに関連して使用する強度積分の計算方法において、
    該方法では、
    (a) 複数の第1グリッド点を有する第1グリッドに照明スロットを分割し、ここで各第1グリッド点は第1および第2方向の座標によって定められ、
    (b) 複数のひとみを前記第1グリッドに重ね合わせ、ここで各ひとみは、第1グリッド点の対応する点によって表される中心を有しており、
    (c) 複数の第2グリッド点を有する複数の第2グリッドを定め、ここで各第2グリッド点は第3および第4方向の座標によって定められ、
    第2グリッド毎に1ひとみとなるように前記の複数のひとみを複数の第2グリッドにマッピングし、また各第2グリッドの中心と、当該第2グリッドにマッピングされたひとみの中心とは一致しており、
    (d) 前記のステップ(a),(b)および(c)の結果を使用して前記強度積分を離散化することを特徴とする、
    強度積分の計算方法。
  2. さらに
    (e) 前記ステップ(d)の結果を使用し、前記の第1方向の座標の第1座標に対して、強度積分の値を決定するステップを含む、
    請求項1に記載の方法。
  3. 前記ステップ(e)は、
    (1) 中心グリッド点座標の1つとして第1方向の座標の第1座標を有するひとみ毎に、正規化された強度に対する離散値を計算するステップと、
    (2) 当該のステップ(e)(1)にてひとみ毎に計算した、正規化された強度に対する離散値の総和をとるステップと、
    (3) ステップ(2)の結果を整数で除算するステップとを含む、
    請求項2に記載の方法。
  4. 前記整数は、前記の第1グリッドで表される第2方向の座標の総数である、
    請求項3に記載の方法。
  5. 前記ステップ(e)(1)は、
    (i)第1方向の座標の第1座標および第2方向の座標の第1座標を中心とする第1ひとみに対して、
    (1) 第1ひとみにマッピングされる第2グリッドにて複数のピクセルを定め、ここで各ピクセルの中心は第2グリッド点にマッピングされており、
    (2) 第2グリッドのピクセル毎に、第1ひとみの一部が当該ピクセル内に含まれているか否かを決定し、
    (3) ステップ(2)で含まれていることが決定された場合、光関数を第1の値に設定し、
    (4) ステップ(2)で含まれていないことが決定された場合、光関数を第2の値に設定し、
    (5) 第1の値を有するピクセルの数を数えて第1のピクセルカウントを形成するステップと、
    (ii) 中心グリッド点座標の1つとして第1方向の座標の第1座標を有する複数のひとみ毎に、
    (1) 複数のひとみのうちの1つにマッピングされる第2グリッドにて複数のピクセルを定め、ここで各ピクセルの中心は第2グリッド点にマッピングされており、
    (2) 各第2グリッドのピクセル毎に、第2グリッドにマッピングされるひとみの一部が当該ピクセル内に含まれるか否かを決定し、
    (3) ステップ(2)で含まれていることが決定された場合、光関数を第1の値に設定し、
    (4) ステップ(2)で含まれていないことが決定された合、光関数を第2の値に設定し、
    (5) 第2グリッドにマッピングされるひとみに対して第1の値を有するピクセルの数を数えて第2のピクセルカウントを形成するステップと、
    (iii) 中心グリッド点座標の1つとして第1方向の座標の第1座標を有する複数のピクセルに対して第2のピクセルカウントの総和をとって、第3のピクセルカウントを形成するステップと、
    (iv) 第1のピクセルカウントを第3のピクセルカウントによって除算するステップとを有する、
    請求項3に記載の方法。
  6. さらに
    (f) 第1グリッドで表される第1方向の座標毎に前記ステップ(e)を繰り返す
    請求項2に記載の方法。
  7. 均一性補正システムの複数の調整可能部材によって変更された強度積分を計算する方法において、
    該方法は
    (a) 複数の第1グリッド点を有する第1グリッドに照明スロットを分割し、ここで各第1グリッド点は第1および第2方向の座標によって定められ、
    (b) 複数のひとみを第1グリッドに重ね合わせ、ここで各ひとみは第1グリッド点の1つによって表される中心を有しており、
    (c) 複数の調整可能部材を第1グリッドに重ね合わせ、
    (d) 複数の第2グリッドを定め、ここで各第2グリッドは複数の第2グリッド点を有しており、各第2グリッド点は、第3および第4方向の座標によって定められ、第2グリッド毎に1ひとみとなるように複数のひとみを複数の第2グリッドにマッピングし、また各第2グリッドの中心と、当該第2グリッドにマッピングされたひとみの中心とは一致しており、
    (e) ステップ(a)〜(d)の結果を使用して、複数の調整可能部材によって変更された強度積分を離散化することを特徴とする、
    均一性補正システムの複数の調整可能部材によって変更された強度積分を計算する方法。
  8. さらに
    (f) ステップ(d)の結果を使用し、前記の第1方向の座標の第1座標に対して、複数の調整可能部材によって変更された強度積分の値を決定するステップを含む、
    請求項7に記載の方法。
  9. 前記ステップ(f)は、
    (1) 中心グリッド点座標の1つとして第1方向の座標の第1座標を有する各ひとみにマッピングされる各第2グリッドにて複数のピクセルを定め、ここで各ピクセルの中心は第2グリッド点にマッピングされ、
    (2) 第1調整可能部材によって覆われる、ステップ(f)(1)で定められたすべてのピクセルに対する寄与を決定し、
    (3) 第2調整可能部材によって覆われる複数のピクセルに対する寄与を決定するステップを含む、
    請求項8に記載の方法。
  10. 前記ステップ(f)はさらに
    (4) 第2調整可能部材によって覆われ得る複数のピクセルに対する寄与を決定するステップを含む、
    請求項9に記載の方法。
  11. 前記ステップ(f)はさらに
    (4) ステップ(2)および(3)の結果を加えるステップを含む、
    請求項9に記載の方法。
  12. 前記ステップ(f)はさらに
    (5) ステップ(2)〜(4)の結果を加えるステップを含む、
    請求項10に記載の方法。
  13. 前記ステップ(f)(2)は、
    (i) 第1調整可能部材によって覆われる複数のひとみの各々に対して、
    (1) ひとみに関連づけられている第2グリッドのピクセル内に含まれているひとみの部分がエネルギーを有するか否かを決定し、
    (2) ステップ(1)で有すること決定された場合、光関数を第1の値に設定し、
    (3) ステップ(1)が有しないことが決定された場合、光関数を第2の値に設定し、
    (4) 複数のひとみの各々に対して第1の値を有するピクセルの数をカウントしてひとみ毎に第1ピクセルカウントを形成し、
    (ii) 第1調整可能部材によって覆われる複数のひとみに介して第1ピクセルカウントの総和をとって、第2ピクセルカウントを形成するステップを含む、
    請求項9に記載の方法。
  14. 前記ステップ(f)(3)は、
    (i) 第2調整可能部材によって覆われる複数のひとみの各々に対して、
    (1) ひとみに関連づけられている第2グリッドのピクセル内に含まれているひとみの部分がエネルギーを有するか否かを決定し、
    (2) ステップ(1)で有することが決定された場合、光関数を第1の値に設定し、
    (3) ステップ(1)で有しないことが決定された場合、光関数を第2の値に設定し、
    (4) 複数のひとみの各々に対して第1の値を有するピクセルの数をカウントしてひとみ毎に第1ピクセルカウントを形成し、
    (ii) 第2調整可能部材によって覆われるひとみ毎に第1ピクセルカウントの総和をとるステップを含む、
    請求項9に記載の方法。
  15. 前記ステップ(f)(4)は、
    (i) 第2調整可能部材によって覆われ得る複数のひとみの各々に対して、
    (1) ひとみに関連づけられている第2グリッドのピクセル内に含まれているひとみの部分がエネルギーを有するか否かを決定し、
    (2) ステップ(1)で有することが決定された場合、光関数を第1の値に設定し、
    (3) ステップ(1)で有しないことが決定された場合、光関数を第2の値に設定し、
    (4) 複数のひとみの各々に対して第1の値を有するピクセルの数をカウントしてひとみ毎に第1ピクセルカウントを形成し、
    (ii) 第1ピクセルカウントの総和をとるステップを含む、
    請求項10に記載の方法。
  16. 調整可能部材を備える均一性補正システムおよび補正モジュールを有するシステムに使用するデフォーカス均一性補正方法において、
    (a) 調整可能部材が強度に与える影響を表すマップを形成し、
    (b) 未補正均一性プロフィールを測定し、
    (c) 該未補正均一性プロフィールを使用して前記調整可能部材に対する値を計算し、
    (d) 当該の調整可能部材に対する値を前記均一性補正システムに伝達するステップを含むことを特徴とする
    デフォーカス均一性補正方法。
  17. さらに
    (e) 前記の受信した値を使用して調整可能部材を調整するステップを含む、
    請求項16に記載の方法。
  18. さらに
    (e) 補正均一性プロフィールを測定し、
    (f) 当該の測定した補正均一性プロフィールと、あらかじめ定めた値とを比較し、
    (g) 前記の測定した補正均一性プロフィールと、あらかじめ定めた値とが一致しない場合、前記の未補正均一性プロフィールを変更して、ステップ(c)〜(f)を繰り返すステップを含む、
    請求項16に記載の方法。
  19. さらに
    (e) 補正均一性プロフィールを測定し、
    (f) 当該の測定した補正均一性プロフィールと、あらかじめ定めた値とを比較し、
    (g) 前記の測定した補正均一性プロフィールと、あらかじめ定めた値とが一致しない場合、前記のステップ(a)で形成したマップを変更してステップ(c)〜(f)を繰り返すステップを含む、
    請求項16に記載の方法。
  20. さらに
    前記ステップ(a)の後、
    標準未補正均一プロフィールを補正するために調整可能部材に対する初期値を計算し、
    当該初期値をステップ(c)における計算に対する初期条件として使用する、
    請求項16に記載の方法。
JP2005377303A 2004-12-28 2005-12-28 強度積分を計算する方法 Pending JP2006203192A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/022,888 US7173688B2 (en) 2004-12-28 2004-12-28 Method for calculating an intensity integral for use in lithography systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010231833A Division JP5313989B2 (ja) 2004-12-28 2010-10-14 均一性補正方法および光学システム

Publications (1)

Publication Number Publication Date
JP2006203192A true JP2006203192A (ja) 2006-08-03

Family

ID=36611061

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2005377303A Pending JP2006203192A (ja) 2004-12-28 2005-12-28 強度積分を計算する方法
JP2010231833A Expired - Fee Related JP5313989B2 (ja) 2004-12-28 2010-10-14 均一性補正方法および光学システム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010231833A Expired - Fee Related JP5313989B2 (ja) 2004-12-28 2010-10-14 均一性補正方法および光学システム

Country Status (2)

Country Link
US (3) US7173688B2 (ja)
JP (2) JP2006203192A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333176B2 (en) 2004-12-28 2008-02-19 Asml Holding N.V. De-focus uniformity correction
JP2008294442A (ja) * 2007-05-23 2008-12-04 Asml Holding Nv フィールドに依存する楕円度および均一性の補正のための光減衰フィルタ
JP2016524182A (ja) * 2013-05-16 2016-08-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 基板内に構造を作製するためのシステム

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7499147B2 (en) * 2005-02-08 2009-03-03 Advanced Lcd Technologies Development Center Co., Ltd. Generation method of light intensity distribution, generation apparatus of light intensity distribution, and light modulation element assembly
WO2006084479A1 (en) * 2005-02-12 2006-08-17 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus
JP4756984B2 (ja) * 2005-10-07 2011-08-24 キヤノン株式会社 露光装置、露光装置の制御方法およびデバイスの製造方法
JP2008098382A (ja) * 2006-10-11 2008-04-24 Toshiba Corp 露光装置、露光方法、及び光近接効果補正方法
US7714984B2 (en) * 2007-03-28 2010-05-11 Asml Holding N.V. Residual pupil asymmetry compensator for a lithography scanner
JP2009016558A (ja) * 2007-07-04 2009-01-22 Harison Toshiba Lighting Corp 紫外線照射ユニット
EP3252801A1 (en) * 2007-08-10 2017-12-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN101221373B (zh) * 2008-01-25 2010-06-02 上海微电子装备有限公司 一种照明均匀性校正装置
CN101221374B (zh) * 2008-01-25 2010-06-09 上海微电子装备有限公司 一种照明均匀性校正装置
DE102008001694A1 (de) * 2008-05-09 2009-11-12 Carl Zeiss Smt Ag Projektionsoptik für die Mikrolithografie
JP5250871B2 (ja) * 2008-12-24 2013-07-31 インターナショナル・ビジネス・マシーンズ・コーポレーション ムラ評価装置、ムラ評価方法、ディスプレイ検査装置、およびプログラム
NL2004770A (nl) * 2009-05-29 2010-11-30 Asml Holding Nv Lithographic apparatus and method for illumination uniformity correction and uniformity drift compensation.
TWI441062B (zh) * 2011-06-21 2014-06-11 Pixart Imaging Inc 光學觸控系統及其影像處理方法
DE102012205886A1 (de) 2012-04-11 2013-10-17 Carl Zeiss Smt Gmbh Beleuchtungsintensitäts-Korrekturvorrichtung zur Vorgabe einer Beleuchtungsintensität über ein Beleuchtungsfeld einer lithographischen Projektionsbelichtungsanlage
CN102722090B (zh) * 2012-06-08 2015-03-04 中国科学院光电技术研究所 一种照明均匀性补偿装置
JP6113021B2 (ja) * 2013-08-09 2017-04-12 株式会社キーエンス 接触式変位計
US9411240B2 (en) * 2014-05-15 2016-08-09 United Microeletronics Corporation Method for compensating slit illumination uniformity
JP6581220B2 (ja) 2015-07-17 2019-09-25 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置及び方法
CN109863458B (zh) * 2016-10-14 2021-06-22 Asml荷兰有限公司 选择与衬底上的测量或特征相关联的部位的集合
US10503076B1 (en) * 2018-08-29 2019-12-10 Applied Materials, Inc. Reserving spatial light modulator sections to address field non-uniformities
US11221564B2 (en) * 2018-10-31 2022-01-11 Taiwan Semiconductor Manufacturing Company Ltd. Method for improving exposure performance and apparatus thereof
CN115542678A (zh) * 2022-09-05 2022-12-30 上海镭望光学科技有限公司 校正组件设计方法、校正组件及光刻机照明系统
CN116243563B (zh) * 2022-09-09 2024-04-02 上海镭望光学科技有限公司 光刻机照明均匀性校正装置的校正方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216658A (ja) * 1990-01-22 1991-09-24 Hitachi Ltd マスクパターン投影像のシミュレーション方法
JPH07220995A (ja) * 1994-01-31 1995-08-18 Nec Corp 光強度分布シミュレーション方法
JPH10319321A (ja) * 1997-03-14 1998-12-04 Nikon Corp 照明装置及び該照明装置を用いた投影露光装置並びに該投影露光装置を用いたデバイスの製造方法及び該投影露光装置の製造方法
WO1999036832A1 (fr) * 1998-01-19 1999-07-22 Nikon Corporation Dispositif d'eclairement et appareil de sensibilisation
JPH11317348A (ja) * 1998-04-30 1999-11-16 Canon Inc 投影露光装置及びそれを用いたデバイスの製造方法
JP2000058442A (ja) * 1998-04-21 2000-02-25 Asm Lithography Bv リソグラフィック投影装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013401A (en) * 1997-03-31 2000-01-11 Svg Lithography Systems, Inc. Method of controlling illumination field to reduce line width variation
AU2962099A (en) * 1998-04-07 1999-10-25 Nikon Corporation Exposure method, exposure apparatus, method of producing the same, device, and method of fabricating the same
US6772350B1 (en) 1998-05-15 2004-08-03 E.Piphany, Inc. System and method for controlling access to resources in a distributed environment
TW546699B (en) * 2000-02-25 2003-08-11 Nikon Corp Exposure apparatus and exposure method capable of controlling illumination distribution
JP2001313250A (ja) * 2000-02-25 2001-11-09 Nikon Corp 露光装置、その調整方法、及び前記露光装置を用いるデバイス製造方法
JP2002100561A (ja) * 2000-07-19 2002-04-05 Nikon Corp 露光方法及び装置、並びにデバイス製造方法
TWI257524B (en) * 2002-12-09 2006-07-01 Asml Netherlands Bv A method for determining parameters for lithographic projection, a computer system and computer program therefor, a method of manufacturing a device and a device manufactured thereby
KR100598095B1 (ko) * 2003-07-10 2006-07-07 삼성전자주식회사 노광 장치
US7027130B2 (en) * 2004-04-28 2006-04-11 Advanced Micro Devices, Inc. Device and method for determining an illumination intensity profile of an illuminator for a lithography system
US7119883B2 (en) * 2004-10-13 2006-10-10 Asml Holding N.V. Correcting variations in the intensity of light within an illumination field without distorting the telecentricity of the light
US7173688B2 (en) * 2004-12-28 2007-02-06 Asml Holding N.V. Method for calculating an intensity integral for use in lithography systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216658A (ja) * 1990-01-22 1991-09-24 Hitachi Ltd マスクパターン投影像のシミュレーション方法
JPH07220995A (ja) * 1994-01-31 1995-08-18 Nec Corp 光強度分布シミュレーション方法
JPH10319321A (ja) * 1997-03-14 1998-12-04 Nikon Corp 照明装置及び該照明装置を用いた投影露光装置並びに該投影露光装置を用いたデバイスの製造方法及び該投影露光装置の製造方法
WO1999036832A1 (fr) * 1998-01-19 1999-07-22 Nikon Corporation Dispositif d'eclairement et appareil de sensibilisation
JP2000058442A (ja) * 1998-04-21 2000-02-25 Asm Lithography Bv リソグラフィック投影装置
JPH11317348A (ja) * 1998-04-30 1999-11-16 Canon Inc 投影露光装置及びそれを用いたデバイスの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7333176B2 (en) 2004-12-28 2008-02-19 Asml Holding N.V. De-focus uniformity correction
US7525641B2 (en) 2004-12-28 2009-04-28 Asml Holding N.V. System and method for uniformity correction
JP2008294442A (ja) * 2007-05-23 2008-12-04 Asml Holding Nv フィールドに依存する楕円度および均一性の補正のための光減衰フィルタ
JP4719772B2 (ja) * 2007-05-23 2011-07-06 エーエスエムエル ホールディング エヌ.ブイ. フィールドに依存する楕円度および均一性の補正のための光減衰フィルタ
JP2016524182A (ja) * 2013-05-16 2016-08-12 カール・ツァイス・エスエムティー・ゲーエムベーハー 基板内に構造を作製するためのシステム

Also Published As

Publication number Publication date
JP2011014934A (ja) 2011-01-20
US7173688B2 (en) 2007-02-06
US7525641B2 (en) 2009-04-28
US20070103665A1 (en) 2007-05-10
US20060139608A1 (en) 2006-06-29
JP5313989B2 (ja) 2013-10-09
US20070109518A1 (en) 2007-05-17
US7333176B2 (en) 2008-02-19

Similar Documents

Publication Publication Date Title
JP5313989B2 (ja) 均一性補正方法および光学システム
JP4771730B2 (ja) 結像性能の最適化方法
JP4255918B2 (ja) 空間光変調器を校正するためのシステム及び方法
KR102136796B1 (ko) 비선형 거동의 영향을 저감시키는 방법 및 장치
US9341957B2 (en) Method for operating an illumination system of a microlithographic projection exposure apparatus
KR100962911B1 (ko) 마이크로리소그라피 투영 광학 시스템, 디바이스 제작 방법 및 광학 표면을 설계하기 위한 방법
JP4237729B2 (ja) 空間光変調器アレイの空間像を計算する方法およびシステム
JP6333304B2 (ja) 投影レンズの少なくとも1つのマニピュレータを制御するための制御デバイス
KR101098070B1 (ko) 고정밀도 패턴 인쇄 방법
JP6249449B2 (ja) マイクロリソグラフィのための投影対物系
TW201727357A (zh) 校正圖案化製程誤差之方法與裝置
TW201725442A (zh) 校正圖案化製程誤差之方法與裝置
JP7441640B2 (ja) マイクロリソグラフィ投影露光装置に関してマニピュレータを制御する制御装置及び方法
CN108548490A (zh) 用于确定光栅像在成像平面上的移位的方法和设备和用于确定物体高度的方法和设备
JP4815461B2 (ja) リソグラフィスキャナのための瞳の残留非対称補償器
US20240027784A1 (en) Methods for aberration correction in high numerical aperture optical systems

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014