JP2006203058A - Light emitting device and its manufacturing method - Google Patents

Light emitting device and its manufacturing method Download PDF

Info

Publication number
JP2006203058A
JP2006203058A JP2005014320A JP2005014320A JP2006203058A JP 2006203058 A JP2006203058 A JP 2006203058A JP 2005014320 A JP2005014320 A JP 2005014320A JP 2005014320 A JP2005014320 A JP 2005014320A JP 2006203058 A JP2006203058 A JP 2006203058A
Authority
JP
Japan
Prior art keywords
layer
electrode
nitride semiconductor
light
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005014320A
Other languages
Japanese (ja)
Other versions
JP4367348B2 (en
Inventor
Hiroyuki Kitabayashi
弘之 北林
Yoichi Nagai
陽一 永井
Koji Katayama
浩二 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005014320A priority Critical patent/JP4367348B2/en
Publication of JP2006203058A publication Critical patent/JP2006203058A/en
Application granted granted Critical
Publication of JP4367348B2 publication Critical patent/JP4367348B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device which has a simple structure, is easily manufactured, and can stably obtain a large luminous efficiency over a long period of time. <P>SOLUTION: The light emitting device contains a nitride semiconductor substrate (GaN substrate), a nitride semiconductor layer laminated on the first main surface of the nitride semiconductor substrate, and a second electrode (n electrode 11) formed on a second main surface as a main surface opposed to the first main surface of the nitride semiconductor substrate. The nitride semiconductor substrate contains an area (plate-like crystal reversal area 51) where a dislocation bundle exists to concentrate a dislocation along a thickness direction from the first main surface of the nitride semiconductor substrate to the second main surface; and a monocrystal area enclosed with an area where the dislocation bundle exists. A specific resistance of the monocrystal area is 0.5 Ωcm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光装置およびその製造方法に関し、より具体的には窒化物半導体から形成される発光装置に関するものである。なお、本発明における発光装置とは、窒化物半導体基板とその上に積層された半導体層とを主体に形成される半導体素子または半導体チップのみを指す場合もあるし、また、半導体チップが実装部品に搭載され樹脂封止されたデバイスのみを指す場合もある。さらに、両方の意味に用いられる場合もある。また、半導体チップを単にチップと呼ぶ場合がある。また、チップのうち基板とその上に形成されたエピタキシャル層とを、単に基板と呼ぶ場合がある。   The present invention relates to a light emitting device and a method for manufacturing the same, and more specifically to a light emitting device formed of a nitride semiconductor. The light emitting device in the present invention may refer only to a semiconductor element or a semiconductor chip mainly formed of a nitride semiconductor substrate and a semiconductor layer stacked thereon, or the semiconductor chip may be a mounting component. In some cases, it refers only to a device mounted on and sealed with resin. Furthermore, it may be used for both meanings. A semiconductor chip may be simply called a chip. Further, the substrate and the epitaxial layer formed thereon may be simply referred to as a substrate.

白色発光ダイオード(LED:Light Emitting Diode)は、今のところ携帯情報端末などの小型電子機器の照明に盛んに用いられているが、今後、大きな空間または大面積の照明に用いられる可能性を秘めている。大空間、大面積の照明に用いられるためには、LEDの光の出力を大きくする必要がある。このためにLEDの電極に大電流を流し、発熱にともなう温度上昇の問題を解決する必要がある。   White light emitting diodes (LEDs) are currently actively used for lighting small electronic devices such as personal digital assistants, but have the potential to be used for lighting in large spaces or large areas in the future. ing. In order to be used for illumination in a large space and a large area, it is necessary to increase the light output of the LED. For this reason, it is necessary to apply a large current to the electrode of the LED to solve the problem of temperature rise due to heat generation.

図84に、現在、提案されているGaN系LEDの構造を示す(特許文献1)。このGaN系LEDでは、サファイア基板101の上にn型GaN層102を設け、そのn型GaN層102とp型GaN層104との間に量子井戸構造103を形成している。発光はこの量子井戸構造103で発生する。p型GaN層104の上にはp電極105がオーミック接触するように形成され、また、n型GaN層102にはn電極106がオーミック接触するように形成されている。   FIG. 84 shows the structure of a GaN-based LED currently proposed (Patent Document 1). In this GaN-based LED, an n-type GaN layer 102 is provided on a sapphire substrate 101, and a quantum well structure 103 is formed between the n-type GaN layer 102 and the p-type GaN layer 104. Light emission occurs in this quantum well structure 103. A p-electrode 105 is formed on the p-type GaN layer 104 so as to be in ohmic contact, and an n-electrode 106 is formed on the n-type GaN layer 102 so as to be in ohmic contact.

これらp電極105およびn電極106は、はんだボール107,108を介在させて実装部品109に接続されている。実装部品(サブマウント部品)はSi基板から構成され、外部からのサージ電圧から保護するための回路が形成されている。すなわち、Ga、Al、InなどのIII族窒化物半導体についての回路故障の主要な要因が、過渡電圧や静電放電などのサージ電圧であることを重視して、発光装置に大きな順電圧および逆電圧が印加されないように、発光装置保護のための電力分路回路をツェナーダイオードなどで形成している。サージ電圧からの保護についてはこのあと詳しく説明する。   The p electrode 105 and the n electrode 106 are connected to the mounting component 109 with solder balls 107 and 108 interposed therebetween. The mounting component (submount component) is composed of a Si substrate, and a circuit for protecting from an external surge voltage is formed. In other words, a large forward voltage and reverse voltage are applied to the light-emitting device with an emphasis on the fact that the main cause of circuit failure for a group III nitride semiconductor such as Ga, Al, In is a surge voltage such as a transient voltage or electrostatic discharge. A power shunt circuit for protecting the light emitting device is formed of a Zener diode or the like so that no voltage is applied. The protection from surge voltage will be described in detail later.

上記のGaN系LEDは、サファイア基板101の裏面側から光を放出するように(a1)p型GaN層104をダウン実装し、かつ(a2)n型GaN層102にn電極層106を形成している点に特徴を有する。このGaN系LEDの構造は、図84に見るとおり、非常に複雑である。このような複雑な構造の原因となる(a2)n型GaN層102にn電極層106を形成した理由は、サファイア基板101が絶縁体なのでサファイア基板にn型電極を設けることができないからである。   In the GaN-based LED, (a1) the p-type GaN layer 104 is down-mounted so as to emit light from the back surface side of the sapphire substrate 101, and (a2) the n-electrode layer 106 is formed on the n-type GaN layer 102. It has a feature in that. The structure of this GaN-based LED is very complex as seen in FIG. The reason why the n-electrode layer 106 is formed on the (a2) n-type GaN layer 102 that causes such a complicated structure is that the n-type electrode cannot be provided on the sapphire substrate because the sapphire substrate 101 is an insulator. .

上述のサファイア基板を用いた発光装置だけでなく、発光装置に用いられるGaAs系、GaP系、GaN系の化合物半導体では、過渡電圧および静電放電からの保護回路を発光装置に併設する提案が、これまで度々なされてきた(特許文献2〜4参照)。とくにGaN系化合物半導体では、逆方向の耐圧が50V程度と低く、また順方向電圧も150V程度の耐圧しかないために、上記保護のための電力分路回路を設けることが重要視されている。すなわち、上記GaN系などのチップをサブマウントのSi基板上に形成し、そのSi基板にツェナーダイオードなどを含む保護回路を形成する。上記のような多くの保護回路の提案は、Ga、Al、InなどのIII族窒化物半導体についての回路故障の主要な要因が、過渡電圧や静電放電などのサージ電圧であることを示す証左であるといえる。   In the GaAs-based, GaP-based, and GaN-based compound semiconductors used in the light-emitting device as well as the light-emitting device using the sapphire substrate described above, a proposal for providing a protective circuit against transient voltage and electrostatic discharge in the light-emitting device is provided. It has been done frequently (see Patent Documents 2 to 4). In particular, a GaN-based compound semiconductor has a reverse breakdown voltage as low as about 50 V and a forward voltage as low as about 150 V, so that it is important to provide a power shunt circuit for the protection. That is, the GaN-based chip or the like is formed on a submount Si substrate, and a protection circuit including a Zener diode or the like is formed on the Si substrate. Many of the above protection circuit proposals are evidence that the main cause of circuit failure for III-nitride semiconductors such as Ga, Al, In, etc. is surge voltage such as transient voltage or electrostatic discharge. You can say that.

また、上述の保護回路を設けた発光装置とは別に、導電体であるSiC基板上にGaN系発光装置を形成した例も知られている。すなわち、(SiC基板の裏面n電極/SiC基板/n型GaN層/量子井戸積層構造(発光層)/p型GaN層/p電極)の積層構造を用いて、p型GaN層から光を放出する構造のLEDも、広く用いられている。   In addition to the light-emitting device provided with the above-described protection circuit, an example in which a GaN-based light-emitting device is formed on a SiC substrate that is a conductor is also known. That is, light is emitted from the p-type GaN layer using a laminated structure of (SiC substrate rear surface n electrode / SiC substrate / n-type GaN layer / quantum well laminated structure (light emitting layer) / p-type GaN layer / p electrode). LEDs having such a structure are also widely used.

また、発光装置の主面を5角形以上の多角形とすることで、素子の端面から光反射凹部の内壁までの距離を均一にして光出力のばらつきを低減するとともに、光反射凹部に搭載可能なチップサイズを大きくすることにより出力を高めることも提案されている(たとえば、特許文献5参照)。
特開2003−8083号公報 特開2000−286457号公報 特開平11−54801号公報 特開平11−220176号公報 特開2000−261038号公報
In addition, by making the main surface of the light-emitting device a pentagon or more polygon, the distance from the end face of the element to the inner wall of the light reflecting recess is made uniform to reduce the variation in light output and can be mounted in the light reflecting recess. It has also been proposed to increase the output by increasing the chip size (see, for example, Patent Document 5).
JP 2003-8083 A JP 2000-286457 A JP-A-11-54801 Japanese Patent Laid-Open No. 11-220176 JP 2000-261038 A

上記の図84に示すサファイア基板を用いたGaN系LEDでは、構造が複雑となり、製造コストが高くなることは避けられない。広い空間の照明の用途に需要を開拓するためには、LEDは安価であることが必須であるので、上記の構造は好ましくない。また、ダウン実装面の側に、p電極105と、n電極106とが配置されるため、電極の面積、とくにp電極の面積が制限を受ける。大電流を流して高出力を得るためには、p電極はとくに大面積とすることが望ましいが、図84に示す構造では制限を受け、この結果、光出力に制限を受けることになる。さらに、電流にともなって発生する熱を逃がす上でも、片側の面に2つの電極層を配置することは好ましくない。   In the GaN-based LED using the sapphire substrate shown in FIG. 84, it is inevitable that the structure becomes complicated and the manufacturing cost increases. In order to cultivate demand for the use of lighting in a wide space, it is essential that the LED is inexpensive, so the above structure is not preferable. Further, since the p-electrode 105 and the n-electrode 106 are arranged on the down mounting surface side, the electrode area, particularly the p-electrode area, is limited. In order to obtain a high output by flowing a large current, it is desirable that the p electrode has a particularly large area. However, the structure shown in FIG. 84 is limited, and as a result, the optical output is limited. Furthermore, it is not preferable to dispose two electrode layers on one surface in order to release heat generated with current.

また、n型GaN層102を基板と平行方向に電流が流れる際の抵抗が大きく、発熱や駆動電圧ひいては消費電力の増加の原因ともなる。とくに、成膜工程の短縮化を目的にn型GaN層の厚みを薄くすると、上記の発熱や消費電力増加の問題のほかに、そのn型GaN膜の露出の歩留りが非常に悪くなる。   In addition, resistance when a current flows through the n-type GaN layer 102 in a direction parallel to the substrate is large, which causes heat generation, driving voltage, and power consumption. In particular, if the thickness of the n-type GaN layer is reduced for the purpose of shortening the film formation process, the yield of exposure of the n-type GaN film becomes very poor in addition to the above-mentioned problems of heat generation and power consumption.

また、上記のサファイア基板を用いた発光装置を含めて発光装置全般に言えることであるが、放熱面積が制限され、また、熱抵抗(単位面積当たり単位エネルギー投入による温度上昇)も大きいため、1発光装置当たり注入電流を大きくとることができない。とくにサファイア基板を用いた場合には、上述のようにp電極の面積が制限を受けるため、余裕がほとんどない熱設計をするのが通例である。   In addition, it can be said for all light-emitting devices including the above-described light-emitting device using the sapphire substrate. However, since the heat radiation area is limited and the thermal resistance (temperature increase due to unit energy input per unit area) is large, 1 The injection current per light emitting device cannot be increased. In particular, when a sapphire substrate is used, since the area of the p-electrode is limited as described above, it is usual to perform a thermal design with little margin.

さらに、上記サファイア基板を用いたGaN系LEDの場合には、放熱面積が制約されるため、少しでも電気抵抗を下げて発熱量を低減するために、p電極とn電極とを櫛型状に入り組ませて接触面積を拡大する構造を採用する事態に追い込まれる。このような櫛型形状の電極は加工が容易ではなく、確実に製造コスト上昇につながる。   Furthermore, in the case of a GaN-based LED using the sapphire substrate, the heat radiation area is limited, so that the p electrode and the n electrode are formed in a comb shape in order to lower the electrical resistance and reduce the amount of heat generation. It is driven into the situation of adopting a structure that expands the contact area by making it complicated. Such a comb-shaped electrode is not easy to process and surely increases the manufacturing cost.

上述のように、発光装置において熱的条件の設計は基本的な重要性を持ち、大出力を得ようとする場合、上記のような熱的条件によって制約を受け、それを少しでも緩和するために複雑な電極形状をあえて採用せざるをえない。   As described above, the design of the thermal conditions in the light emitting device is of fundamental importance. When trying to obtain a large output, the thermal conditions are limited by the above-mentioned thermal conditions, and it is alleviated as much as possible. Inevitably, a complicated electrode shape must be adopted.

さらに、次のような問題がある。サファイア基板上に形成されたGaN系発光装置をダウン実装して、サファイア基板の裏面を光の放出面にする場合、サファイアの屈折率が1.8程度であり、GaNの屈折率が2.4程度であるので、光を発生し伝播させてきたGaN層とサファイア基板との界面で、所定の入射角以上の光は全反射して、外に出ない。すなわち、入射角θ≧sin-1(1.8/2.4)≒48.6°の範囲の光は、GaN層内に止まり、外に出ない。このため、サファイア基板の主面における発光効率が低下する。しかし、発光効率の問題も重要であるが、それだけに止まらない。上記全反射した光はGaN層を伝播し、GaN層の側部から出射される。上記の全反射する光量はかなりの割合を占め、また、GaN層は薄いため、側部から出射される光のエネルギー密度は高くなる。GaN層の側部に位置してその光に照射される封止樹脂は損傷を受け、発光装置の寿命を短縮するという問題を生じる。 Furthermore, there are the following problems. When a GaN-based light emitting device formed on a sapphire substrate is mounted down and the back surface of the sapphire substrate is used as a light emission surface, the refractive index of sapphire is about 1.8 and the refractive index of GaN is 2.4. Therefore, at the interface between the GaN layer that has generated and propagated the light and the sapphire substrate, light having a predetermined incident angle or more is totally reflected and does not go outside. That is, light in the range of incident angle θ ≧ sin −1 (1.8 / 2.4) ≈48.6 ° stops in the GaN layer and does not go outside. For this reason, the light emission efficiency in the main surface of a sapphire substrate falls. However, the problem of luminous efficiency is important, but it does not stop there. The totally reflected light propagates through the GaN layer and is emitted from the side of the GaN layer. The amount of light that is totally reflected occupies a considerable proportion, and since the GaN layer is thin, the energy density of light emitted from the side portion becomes high. The sealing resin that is located on the side of the GaN layer and is irradiated with the light is damaged, causing a problem of shortening the lifetime of the light emitting device.

また、p層側から光を取り出す(SiC基板裏面n電極/SiC基板/n型GaN層/量子井戸積層構造(発光層)/p型GaN層/p電極)構造のGaN系LEDでは、p電極の光吸収率が大きいため大出力の光を効率よく外に放出することができない。p電極の被覆率を減少させ、すなわち開口率を増大させて光の放出量を増やそうとすると、p型GaN層は電気抵抗が高いため電流をp型GaN層全体にゆきわたらせて流すことができない。このため発光を量子井戸構造の全体にわたって活性化することができず、発光出力が低下する。また、電気抵抗が上昇し、発熱や電源容量の問題を生じる。さらに、電流をp型GaN層全体に一様に流すことを目的にp型GaN層の厚みを厚くすると、このp型GaN層による光の吸収が大きく、出力が制約される。   Further, in a GaN-based LED having a structure in which light is extracted from the p-layer side (SiC substrate back surface n electrode / SiC substrate / n-type GaN layer / quantum well stacked structure (light-emitting layer) / p-type GaN layer / p electrode), the p-electrode Because of the large light absorption rate, high output light cannot be efficiently emitted outside. If the coverage of the p-electrode is decreased, that is, the aperture ratio is increased to increase the amount of light emitted, the p-type GaN layer has a high electric resistance, so that current cannot be caused to flow through the entire p-type GaN layer. . For this reason, light emission cannot be activated over the whole quantum well structure, and a light emission output falls. Also, the electrical resistance increases, causing problems of heat generation and power supply capacity. Further, if the thickness of the p-type GaN layer is increased for the purpose of allowing current to flow uniformly throughout the p-type GaN layer, the light absorption by the p-type GaN layer is large and the output is restricted.

また、上述した特許文献5では、五角形以上の多角形として六角形の主面を有する発光ダイオードが記載されているが、その具体的な製造方法は記載されていない。そして、機械加工などにより主面が五角形以上の多角形である発光ダイオードなどの発光装置を作成することは通常困難である。   Further, in Patent Document 5 described above, a light emitting diode having a hexagonal principal surface as a pentagon or more polygon is described, but a specific manufacturing method thereof is not described. It is usually difficult to produce a light-emitting device such as a light-emitting diode whose main surface is a pentagon or more polygon by machining or the like.

本発明は、構造が簡単であり、かつ、製造が容易で、大きな発光効率を長時間にわたって安定して得ることができる発光装置を提供することを目的とする。   An object of the present invention is to provide a light emitting device that has a simple structure, is easy to manufacture, and can stably obtain a large light emission efficiency over a long period of time.

この発明に従った発光装置は、窒化物半導体基板と、窒化物半導体基板の第1の主表面上に積層された窒化物半導体層と、窒化物半導体層上に形成された第1の電極と、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面上に形成された第2の電極とを含む発光装置であって、窒化物半導体基板は、窒化物半導体基板の第1の主表面から第2の主表面まで厚み方向に沿って転位が集中化した転位束が存在する領域と、転位束が存在する領域に囲まれた単結晶領域とを含む。単結晶領域の比抵抗は0.5Ω・cm以下である。   A light emitting device according to the present invention includes a nitride semiconductor substrate, a nitride semiconductor layer stacked on a first main surface of the nitride semiconductor substrate, and a first electrode formed on the nitride semiconductor layer. A light emitting device including a second electrode formed on a second main surface opposite to the first main surface of the nitride semiconductor substrate, wherein the nitride semiconductor substrate is a nitride The semiconductor substrate includes a region where dislocation bundles in which dislocations are concentrated along the thickness direction from the first main surface to the second main surface of the semiconductor substrate, and a single crystal region surrounded by the region where the dislocation bundles exist. The specific resistance of the single crystal region is 0.5 Ω · cm or less.

このようにすれば、転位束が存在する領域に窒化物半導体基板中の転位が集中化するので、発光装置を構成する窒化物半導体基板の大部分を、欠陥(転位)密度の低い領域(低欠陥領域)である単結晶領域とすることができる。このため、特に大電流を印加したときの光の取出し効率を向上させることができる。   In this way, since dislocations in the nitride semiconductor substrate are concentrated in the region where the dislocation bundle exists, most of the nitride semiconductor substrate constituting the light-emitting device is formed in a region having a low defect (dislocation) density (low A single crystal region which is a defect region). For this reason, it is possible to improve the light extraction efficiency particularly when a large current is applied.

また、この構成では、電気抵抗の低い窒化物半導体基板の裏面(第2の主表面)に電極(n型電極)を設けるので、小さな被覆率すなわち大きな開口率でn電極を設けても電流を窒化物半導体基板全体にゆきわたらせて流すことができる。このため、放出面で光を吸収される率が小さくなり、発光効率を高くすることができる。なお、光の放出は第2の主表面だけでなく側面からなされてもよいことは言うまでもない。以下の発光装置においても同様である。   Further, in this configuration, since an electrode (n-type electrode) is provided on the back surface (second main surface) of the nitride semiconductor substrate having a low electrical resistance, current can be supplied even if an n-electrode is provided with a small coverage, that is, a large aperture ratio. The entire nitride semiconductor substrate can be made to flow. For this reason, the rate of light absorption at the emission surface is reduced, and the light emission efficiency can be increased. Needless to say, light may be emitted not only from the second main surface but also from the side surface. The same applies to the following light-emitting devices.

なお、窒化物半導体「基板」は、独立して持ち運びできる厚みが相応に厚い板状物体をさし、持ち運びにおいて単独ではそれ自身の形状を保ち難い「膜」や「層」とは区別される。このあと説明する、GaN基板およびAlN基板についても同様である。   Nitride semiconductor “substrate” refers to a plate-like object that can be carried independently, and is distinct from “film” and “layer” that are difficult to maintain by themselves. . The same applies to the GaN substrate and the AlN substrate described later.

この発明に従った上記発光装置の製造方法は、アルカリ溶液のエッチャントに窒化物半導体基板を浸漬する工程と、窒化物半導体基板が浸漬されたエッチャントを密閉した状態で、窒化物半導体基板のエッチングを行なうことにより窒化物半導体基板を分割する分割工程とを備える。   The method for manufacturing a light emitting device according to the present invention includes a step of immersing a nitride semiconductor substrate in an etchant of an alkaline solution, and etching the nitride semiconductor substrate in a state where the etchant in which the nitride semiconductor substrate is immersed is sealed. And a dividing step of dividing the nitride semiconductor substrate.

このようにすれば、本発明による発光装置の製造工程において、エッチングにより基板の分割を行なうことができる。このため、転位束が存在する領域に囲まれた単結晶領域の平面形状が正三角形や正六角形など、正方形以外の形状であっても、容易に基板の分割を行なうことができる。   Thus, the substrate can be divided by etching in the manufacturing process of the light emitting device according to the present invention. For this reason, even if the planar shape of the single crystal region surrounded by the region where the dislocation bundle exists is a shape other than a square such as a regular triangle or a regular hexagon, the substrate can be easily divided.

次に図面を用いて、本発明の実施の形態および実施例について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。   Next, embodiments and examples of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.

(実施の形態1)
図1は、本発明によるLEDの実施の形態1を示す図である。図2は、図1のLEDの発光層を含む積層構造を示す図である。図3は、図1のLEDの平面図である。図4は、図1に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図5は、図1に示したLEDを構成するチップをn電極が形成された側から見た平面図である。図1〜図5を参照して、本発明に従った発光装置としてのLEDの実施の形態1を説明する。
(Embodiment 1)
FIG. 1 is a diagram showing Embodiment 1 of an LED according to the present invention. FIG. 2 is a view showing a laminated structure including the light emitting layer of the LED of FIG. FIG. 3 is a plan view of the LED of FIG. 4 is a plan view of the chip constituting the LED shown in FIG. 1 as viewed from the side where the p-electrode is formed. FIG. 5 is a plan view of the chip constituting the LED shown in FIG. 1 as viewed from the side where the n-electrode is formed. Embodiment 1 of LED as a light-emitting device according to the present invention will be described with reference to FIGS.

図1に示すように、GaN基板1の第1の主表面の側に後で詳細に説明する発光層などを含む積層構造が形成され、p電極12が設けられている。本実施の形態では、このp電極12が導電性接着剤14によってリードフレームマウント部21aにダウン実装されている。   As shown in FIG. 1, a laminated structure including a light emitting layer, which will be described in detail later, is formed on the first main surface side of the GaN substrate 1, and a p-electrode 12 is provided. In the present embodiment, the p-electrode 12 is down-mounted on the lead frame mount 21 a by the conductive adhesive 14.

GaN基板1の第2の主表面1aは、発光層で発光した光を放出する面であり、この面にn電極11が設けられている。図3から分かるように、n電極11の平面形状は直径Dの円形状である。このn電極11は、第2の主表面全体を覆わないように、第2の主表面1aの中央部に形成される。   The second main surface 1a of the GaN substrate 1 is a surface that emits light emitted from the light emitting layer, and an n-electrode 11 is provided on this surface. As can be seen from FIG. 3, the planar shape of the n-electrode 11 is a circular shape having a diameter D. The n electrode 11 is formed at the center of the second main surface 1a so as not to cover the entire second main surface.

n電極11はワイヤ13によりリードフレームのリード部21bと電気的に接続されている。ワイヤ13および上記の積層構造は、封止部材としてのエポキシ系樹脂15により封止されている。上記の構成のうち、GaN基板1からp電極12にいたる間の積層構造が拡大されて図2に示されている。図2では、図1における積層構造が上下逆になっている。   The n-electrode 11 is electrically connected to the lead portion 21 b of the lead frame by a wire 13. The wire 13 and the laminated structure are sealed with an epoxy resin 15 as a sealing member. Of the above configuration, the stacked structure from the GaN substrate 1 to the p-electrode 12 is enlarged and shown in FIG. In FIG. 2, the laminated structure in FIG. 1 is turned upside down.

図2を参照して、GaN基板1の上にn型GaNエピタキシャル層2が位置し、その上にn型AlxGa1-xN層3が形成されている。その上にAlxGa1-xN層とAlxInyGa1-x-yN層とからなる量子井戸(MQW:Multi-Quantum Well)4が形成されている。その量子井戸4をn型AlxGa1-xN層3とはさむようにp型AlxGa1-xN層5が配置されている。また、p型AlxGa1-xN層5の上にp型GaN層6が配置されている。上記の構造においては、量子井戸4において発光する。また、図1に示すように、p型GaN層6の上に、p電極12がp型GaN層6の上部表面の全面を被覆するように形成され、ダウン実装される。 Referring to FIG. 2, n-type GaN epitaxial layer 2 is positioned on GaN substrate 1, and n-type Al x Ga 1-x N layer 3 is formed thereon. A quantum well (MQW: Multi-Quantum Well) 4 composed of an Al x Ga 1-x N layer and an Al x In y Ga 1-xy N layer is formed thereon. A p-type Al x Ga 1-x N layer 5 is arranged so that the quantum well 4 is sandwiched between the n-type Al x Ga 1-x N layer 3. A p-type GaN layer 6 is disposed on the p-type Al x Ga 1 -x N layer 5. In the above structure, the quantum well 4 emits light. Also, as shown in FIG. 1, a p-electrode 12 is formed on the p-type GaN layer 6 so as to cover the entire upper surface of the p-type GaN layer 6, and is down-mounted.

図3から分かるように、GaN基板1およびその上の積層構造、およびp電極12の平面形状は正六角形になっている。当該正六角形の内角は((60゜±3゜)×2=(120゜±6゜))という数値範囲に入るように設定されている。図4に示すように、p電極12は、外周の一辺の長さがLP1の正六角形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0の正六角形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図5に示すように、GaN基板1の平面形状も1辺の長さがLN0の正六角形である。GaN基板1のほぼ中央部に直径Dの円形状のn電極11が配置されている。なお、ここではGaN基板1などの端面は傾斜していないので、上記長さLP0=長さLN0である。 As can be seen from FIG. 3, the planar shape of the GaN substrate 1, the stacked structure thereon, and the p-electrode 12 is a regular hexagon. The interior angle of the regular hexagon is set to fall within a numerical range of ((60 ° ± 3 °) × 2 = (120 ° ± 6 °)). As shown in FIG. 4, the p-electrode 12 has a regular hexagonal shape in which the length of one side of the outer periphery is L P1 . Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the stacked structure formed on the GaN substrate 1 is also a regular hexagon with one side length L P0 . The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. As shown in FIG. 5, the planar shape of the GaN substrate 1 is also a regular hexagon with one side length of L N0 . A circular n-electrode 11 having a diameter D is disposed at the substantially central portion of the GaN substrate 1. Here, since the end face of the GaN substrate 1 or the like is not inclined, the length L P0 = the length L N0 .

次に、図1〜図5に示したLEDの製造方法を簡単に説明する。図6は、図1〜図5に示したLEDの製造方法を説明するためのフローチャートである。図7は、図1〜図5に示したLEDのチップをウエハから採取するときのウエハの状態を示す平面模式図である。図8は、図7の線分VIII−VIIIにおける断面模式図である。図6〜図8を参照して、図1〜図5に示したLEDの製造方法を説明する。   Next, a method for manufacturing the LED shown in FIGS. 1 to 5 will be briefly described. FIG. 6 is a flowchart for explaining a method of manufacturing the LED shown in FIGS. FIG. 7 is a schematic plan view showing a state of the wafer when the LED chips shown in FIGS. 1 to 5 are collected from the wafer. FIG. 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG. With reference to FIGS. 6-8, the manufacturing method of LED shown in FIGS. 1-5 is demonstrated.

まず、図6に示すようにGaN基板準備工程(S10)を実施する。この工程では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51を有するGaN基板を準備する。図7に示すように、当該板状結晶反転領域51は、平面形状が正六角形となる単結晶領域を囲むように配置されている。なお、窒化物半導体基板(GaN基板1)を作製するとき、転位束(=コア)を集めた領域では周囲の結晶配列に対して反転した結晶配列をとる。このため、板状結晶反転領域51と転位束とは、周囲と結晶配列が反転しているという点で同じである。両者の相違は、転位束が転位をひも状または太さのある線状に集め、したがって結晶反転領域がひも状であるのに対して、板状結晶反転領域51ではそれが板状である点にある。すなわち、板状結晶反転領域51は、転位が、厚みを有する面状領域内に高密度で分布する。   First, as shown in FIG. 6, a GaN substrate preparation step (S10) is performed. In this step, a GaN substrate having plate-like crystal inversion regions 51 distributed in parallel in the thickness direction of the GaN substrate is prepared. As shown in FIG. 7, the plate crystal inversion region 51 is arranged so as to surround a single crystal region whose planar shape is a regular hexagon. When the nitride semiconductor substrate (GaN substrate 1) is manufactured, the region where dislocation bundles (= cores) are collected takes a crystal arrangement that is inverted with respect to the surrounding crystal arrangement. For this reason, the plate-like crystal inversion region 51 and the dislocation bundle are the same in that the periphery and the crystal arrangement are inverted. The difference between the two is that the dislocation bundle collects dislocations in a string-like or thick line shape, and thus the crystal inversion region is a string, whereas the plate-like crystal inversion region 51 is plate-like. It is in. That is, in the plate-like crystal inversion region 51, dislocations are distributed with high density in a planar region having a thickness.

次に、GaN基板1からp電極12にいたる間の積層構造を形成するためのエピタキシャル膜形成工程(S20)を実施する。この工程では、通常のエピタキシャル膜を形成するために用いる任意の工程を利用できる。この結果、n型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6が形成される。なお、GaN基板1の板状結晶反転領域51は、上述したn型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6にそれぞれ伝播する。 Next, an epitaxial film forming step (S20) for forming a laminated structure from the GaN substrate 1 to the p-electrode 12 is performed. In this process, any process used for forming a normal epitaxial film can be used. As a result, an n-type GaN epitaxial layer 2, an n-type Al x Ga 1-x N layer 3, a quantum well 4, a p-type Al x Ga 1-x N layer 5, and a p-type GaN layer 6 are formed. The plate-like crystal inversion region 51 of the GaN substrate 1 includes the n-type GaN epitaxial layer 2, the n-type Al x Ga 1 -x N layer 3, the quantum well 4, and the p-type Al x Ga 1 -x N layer 5 described above. , And propagates to the p-type GaN layer 6 respectively.

次に、電極形成工程(S30)を実施する。当該工程(S30)では、p型GaN層6上にp電極12を形成する。また、GaN基板1において上記積層構造が形成された表面と反対側の裏面上にn電極11を形成する。p電極12およびn電極11の形成方法としては、任意の成膜方法を用いることができる。なお、このときp電極12は板状結晶反転領域51により囲まれる正六角形の単結晶領域上に配置される。また、p電極12の平面形状はすでに述べたように正六角形である。隣接するp電極12は、距離L3だけ離れた状態で形成される。距離L3は板状結晶反転領域51の幅より大きい。また、n電極11は、平面形状が円形状であり、やはり正六角形の単結晶領域上に配置される。隣接するn電極11は、距離L2だけ離れた状態で形成される。   Next, an electrode formation step (S30) is performed. In the step (S30), the p-electrode 12 is formed on the p-type GaN layer 6. In addition, an n-electrode 11 is formed on the back surface of the GaN substrate 1 opposite to the surface on which the stacked structure is formed. As a method for forming the p-electrode 12 and the n-electrode 11, any film forming method can be used. At this time, the p-electrode 12 is disposed on a regular hexagonal single crystal region surrounded by the plate-like crystal inversion region 51. The planar shape of the p-electrode 12 is a regular hexagon as already described. Adjacent p-electrodes 12 are formed in a state separated by a distance L3. The distance L3 is larger than the width of the plate crystal inversion region 51. The n-electrode 11 has a circular planar shape and is also disposed on a regular hexagonal single crystal region. Adjacent n-electrodes 11 are formed in a state separated by a distance L2.

次に、後述するエッチング工程においてチップの光取出し面(第2の主表面1a)をエッチング液から保護するため、基板の光取出し面上に保護マスクを形成する工程(S110)を実施する。この工程(S110)では、GaN基板1の第2の主表面1a上に、エッチングに用いるエッチャント(たとえばKOH溶液などのアルカリ溶液)に対して耐性を有する膜を保護マスクとして形成する。保護マスクを構成する材料としては、エッチャントに対する耐性を有する材料であれば任意の材料を用いることができる。例えば,保護マスクを構成する材料として、ニッケルなどを用いることができる。   Next, in order to protect the light extraction surface (second main surface 1a) of the chip from the etching solution in an etching step described later, a step (S110) of forming a protective mask on the light extraction surface of the substrate is performed. In this step (S110), a film having resistance to an etchant (for example, an alkaline solution such as a KOH solution) used for etching is formed on the second main surface 1a of the GaN substrate 1 as a protective mask. As a material constituting the protective mask, any material can be used as long as the material has resistance to the etchant. For example, nickel or the like can be used as a material constituting the protective mask.

次に、エッチングによる分割工程(S40)を実施する。この分割工程(S40)では、アルカリ溶液のエッチャントに上述したn電極11およびp電極12などが形成されたGaN基板1を所定の時間だけ浸漬させる。この結果、GaN基板1および上述したn型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6に伝播した板状結晶反転領域51が選択的にエッチングされることにより、GaN基板1を分割することができる。なお、エッチャントの温度は任意に設定することができる。たとえば、エッチャントとしてKOH溶液を用いる場合、その温度を80℃以上250℃以下の範囲の任意の温度に設定することが好ましい。また、GaN基板1を分割できれば、板状結晶反転領域51の一部が残存していてもよい。たとえば、図5に示したチップの外縁部(GaN基板1の外縁部)に、板状結晶反転領域51の一部が残存していてもよい。なお、エッチャントとしてのKOH溶液を保持するための容器(エッチング用の容器)を構成する材料としては、KOH溶液に対する耐性を有する材料であれば任意の材料を用いることができる。たとえば、上記容器を構成する材料としては、テフロン(登録商標)などを用いることができる。 Next, a dividing step (S40) by etching is performed. In this dividing step (S40), the GaN substrate 1 on which the n electrode 11 and the p electrode 12 described above are formed is immersed in an alkaline solution etchant for a predetermined time. As a result, the GaN substrate 1 and the n-type GaN epitaxial layer 2, the n-type Al x Ga 1-x N layer 3, the quantum well 4, the p-type Al x Ga 1-x N layer 5, and the p-type GaN layer 6 are formed. By selectively etching the propagated plate crystal inversion region 51, the GaN substrate 1 can be divided. The temperature of the etchant can be arbitrarily set. For example, when a KOH solution is used as the etchant, the temperature is preferably set to an arbitrary temperature in the range of 80 ° C. to 250 ° C. If the GaN substrate 1 can be divided, a part of the plate crystal inversion region 51 may remain. For example, a part of the plate-like crystal inversion region 51 may remain at the outer edge of the chip shown in FIG. 5 (the outer edge of the GaN substrate 1). Note that as a material constituting a container (etching container) for holding a KOH solution as an etchant, any material can be used as long as the material has resistance to the KOH solution. For example, Teflon (registered trademark) or the like can be used as a material constituting the container.

次に、GaN基板1の分割が終了した後、GaN基板1をエッチャントとしてのアルカリ溶液から引き上げ、上述した保護マスクを除去する。次に、洗浄および図1に示したLEDとするための組立などを行なう洗浄・組立工程(S50)を実施する。このようにして、図1に示すLEDを得ることができる。   Next, after the division of the GaN substrate 1 is completed, the GaN substrate 1 is pulled up from an alkaline solution as an etchant, and the above-described protective mask is removed. Next, a cleaning / assembling step (S50) is performed for cleaning and assembly for obtaining the LED shown in FIG. In this way, the LED shown in FIG. 1 can be obtained.

なお、図1〜図5に示したLEDでは、GaN基板1の第1および第2の主表面の平面形状が正六角形となっている場合を示したが、GaN基板1の第1および第2の主表面の平面形状は、上述した正六角形に限られず、任意の多角形とすることができる。以下、当該平面形状が正六角形以外の形状となっているチップを用いたLEDを説明する。   In the LED shown in FIGS. 1 to 5, the planar shape of the first and second main surfaces of the GaN substrate 1 is a regular hexagon, but the first and second of the GaN substrate 1 are shown. The planar shape of the main surface is not limited to the regular hexagon described above, and may be an arbitrary polygon. Hereinafter, an LED using a chip whose planar shape is a shape other than a regular hexagon will be described.

図9は、図1〜図5に示した本発明によるLEDの実施の形態1の第1の変形例を示す平面図である。図10は、図9に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図11は、図9に示したLEDを構成するチップをn電極が形成された側から見た平面図である。図9〜図11を参照して、本発明によるLEDの実施の形態1の第1の変形例を説明する。   FIG. 9 is a plan view showing a first modification of the first embodiment of the LED according to the present invention shown in FIGS. FIG. 10 is a plan view of the chip constituting the LED shown in FIG. 9 as viewed from the side where the p-electrode is formed. FIG. 11 is a plan view of the chip constituting the LED shown in FIG. 9 as viewed from the side where the n-electrode is formed. With reference to FIGS. 9-11, the 1st modification of Embodiment 1 of LED by this invention is demonstrated.

図9〜図11に示したLEDは、基本的に図1〜図5に示したLEDと同様の構造を備えるが、チップの平面形状が異なる。すなわち、図1〜図5に示したLEDでは、チップの平面形状が正六角形であったのに対して、図9〜図11に示したLEDでは、チップの平面形状が正三角形となっている。   The LED shown in FIGS. 9 to 11 basically has the same structure as the LED shown in FIGS. 1 to 5, but the planar shape of the chip is different. That is, in the LEDs shown in FIGS. 1 to 5, the planar shape of the chip is a regular hexagon, whereas in the LEDs shown in FIGS. 9 to 11, the planar shape of the chip is a regular triangle. .

具体的には、図9〜図11から分かるように、GaN基板1およびその上の積層構造、およびp電極12の平面形状は正三角形になっている。当該正三角形の内角は(60゜±3゜)という数値範囲に入るように設定されている。図10に示すように、p電極12は、外周の一辺の長さがLP1の正三角形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0の正三角形形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図11に示すように、GaN基板1の平面形状も1辺の長さがLN0の正三角形である。なお、ここではGaN基板1などの端面は傾斜していないので、上記長さLP0=長さLN0である。また、図9〜図11に示したLEDは、基本的には図1〜図5に示した本発明によるLEDの実施の形態1の製造方法と同様の方法により製造できる。ただし、GaN基板1に形成される板状結晶反転領域51によって囲まれる領域(単結晶領域)の平面形状を正三角形とする点が異なる。 Specifically, as can be seen from FIGS. 9 to 11, the planar shape of the GaN substrate 1, the stacked structure thereon, and the p-electrode 12 is an equilateral triangle. The interior angle of the equilateral triangle is set to fall within a numerical range of (60 ° ± 3 °). As shown in FIG. 10, the p-electrode 12 is an equilateral triangle having a length of one side of the outer periphery of L P1 . Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the stacked structure formed on the GaN substrate 1 is also an equilateral triangle with one side length L P0 . The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. Further, as shown in FIG. 11, the planar shape of the GaN substrate 1 is also an equilateral triangle having a side length of L N0 . Here, since the end face of the GaN substrate 1 or the like is not inclined, the above length L P0 = length L N0 . The LED shown in FIGS. 9 to 11 can be basically manufactured by the same method as that of Embodiment 1 of the LED according to the present invention shown in FIGS. However, the difference is that the planar shape of the region (single crystal region) surrounded by the plate-like crystal inversion region 51 formed on the GaN substrate 1 is an equilateral triangle.

図12は、図1〜図5に示した本発明によるLEDの実施の形態1の第2の変形例を示す平面図である。図13は、図12に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図14は、図12に示したLEDを構成するチップをn電極が形成された側から見た平面図である。図12〜図14を参照して、本発明によるLEDの実施の形態1の第2の変形例を説明する。   FIG. 12 is a plan view showing a second modification of the first embodiment of the LED according to the present invention shown in FIGS. FIG. 13 is a plan view of the chip constituting the LED shown in FIG. 12 as viewed from the side where the p-electrode is formed. FIG. 14 is a plan view of the chip constituting the LED shown in FIG. 12 as viewed from the side where the n-electrode is formed. With reference to FIGS. 12-14, the 2nd modification of Embodiment 1 of LED by this invention is demonstrated.

図12〜図14に示したLEDは、基本的に図1〜図5に示したLEDと同様の構造を備えるが、チップの平面形状が異なる。すなわち、図1〜図5に示したLEDでは、チップの平面形状が正六角形であったのに対して、図12〜図14に示したLEDでは、チップの平面形状が菱形となっている。   The LED shown in FIGS. 12 to 14 basically has the same structure as the LED shown in FIGS. 1 to 5, but the planar shape of the chip is different. That is, in the LED shown in FIGS. 1 to 5, the planar shape of the chip is a regular hexagon, whereas in the LED shown in FIGS. 12 to 14, the planar shape of the chip is a rhombus.

具体的には、図12〜図14から分かるように、GaN基板1およびその上の積層構造、およびp電極12の平面形状は菱形になっている。図13に示すように、p電極12は、外周の一辺の長さがLP1の菱形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0の菱形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図14に示すように、GaN基板1の平面形状も1辺の長さがLN0の菱形である。なお、ここではGaN基板1などの端面は傾斜していないので、上記長さLP0=長さLN0である。また、図12〜図14に示したLEDは、基本的には図1〜図5に示した本発明によるLEDの実施の形態1の製造方法と同様の方法により製造できる。ただし、GaN基板1に形成される板状結晶反転領域51によって囲まれる領域(単結晶領域)の平面形状を菱形とする点が異なる。 Specifically, as can be seen from FIGS. 12 to 14, the planar shape of the GaN substrate 1, the stacked structure thereon, and the p-electrode 12 is rhombus. As shown in FIG. 13, the p-electrode 12 has a rhombus whose length on one side of the outer periphery is L P1 . Further, in the laminated structure formed on the GaN substrate 1, the planar shape of the layer closest to the p-electrode 12 (p-type GaN layer 6) is also a rhombus whose side is L P0 . The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. Further, as shown in FIG. 14, the planar shape of the GaN substrate 1 is also a rhombus whose length of one side is L N0 . Here, since the end face of the GaN substrate 1 or the like is not inclined, the length L P0 = the length L N0 . The LED shown in FIGS. 12 to 14 can be basically manufactured by the same method as that of Embodiment 1 of the LED according to the present invention shown in FIGS. However, the difference is that the planar shape of the region (single crystal region) surrounded by the plate-like crystal inversion region 51 formed on the GaN substrate 1 is a rhombus.

図15は、図1〜図5に示した本発明によるLEDの実施の形態1の第3の変形例を示す平面図である。図16は、図15に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図17は、図15に示したLEDを構成するチップをn電極が形成された側から見た平面図である。図15〜図17を参照して、本発明によるLEDの実施の形態1の第3の変形例を説明する。   FIG. 15 is a plan view showing a third modification of the first embodiment of the LED according to the present invention shown in FIGS. 16 is a plan view of the chip constituting the LED shown in FIG. 15 as viewed from the side on which the p-electrode is formed. FIG. 17 is a plan view of the chip constituting the LED shown in FIG. 15 as viewed from the side where the n-electrode is formed. With reference to FIGS. 15-17, the 3rd modification of Embodiment 1 of LED by this invention is demonstrated.

図15〜図17に示したLEDは、基本的に図1〜図5に示したLEDと同様の構造を備えるが、チップの平面形状が異なる。すなわち、図1〜図5に示したLEDでは、チップの平面形状が正六角形であったのに対して、図15〜図17に示したLEDでは、チップの平面形状が平行四辺形となっている。   The LED shown in FIGS. 15 to 17 basically has the same structure as the LED shown in FIGS. 1 to 5, but the planar shape of the chip is different. That is, in the LED shown in FIGS. 1 to 5, the planar shape of the chip is a regular hexagon, whereas in the LED shown in FIGS. 15 to 17, the planar shape of the chip is a parallelogram. Yes.

具体的には、図15〜図17から分かるように、GaN基板1およびその上の積層構造、およびp電極12の平面形状は平行四辺形になっている。図16に示すように、p電極12は、外周の相対的に長い一辺の長さがLP1であり、相対的に短い一辺の長さがTP1の平行四辺形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も外周の相対的に長い一辺の長さがLP0であり、相対的に短い一辺の長さがTP0の菱形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図17に示すように、GaN基板1の平面形状も外周の相対的に長い一辺の長さがLN0であり、相対的に短い一辺の長さがTN0の平行四辺形である。なお、ここではGaN基板1などの端面は傾斜していないので、上記長さLP0=長さLN0であり、長さTP0=長さTN0である。また、図15〜図17に示したLEDは、基本的には図1〜図5に示した本発明によるLEDの実施の形態1の製造方法と同様の方法により製造できる。ただし、GaN基板1に形成される板状結晶反転領域51によって囲まれる領域(単結晶領域)の平面形状を平行四辺形とする点が異なる。 Specifically, as can be seen from FIGS. 15 to 17, the planar shape of the GaN substrate 1, the stacked structure thereon, and the p-electrode 12 is a parallelogram. As shown in FIG. 16, p electrode 12 is it is in L P1 length of relatively long one side of the outer periphery, the length of the relatively short side is in the parallelogram T P1. Further, in the laminated structure formed on the GaN substrate 1, the plane shape of the layer closest to the p-electrode 12 (p-type GaN layer 6) is such that the length of one side of the outer periphery is relatively long, L P0. Is a rhombus with a side length of T P0 . The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. As shown in FIG. 17, the planar shape of the GaN substrate 1 is also a parallelogram having a relatively long side of the outer periphery of L N0 and a relatively short side of T N0 . Here, since the end face of the GaN substrate 1 or the like is not inclined, the length L P0 = the length L N0 and the length T P0 = the length T N0 . The LED shown in FIGS. 15 to 17 can be basically manufactured by a method similar to the manufacturing method of Embodiment 1 of the LED according to the present invention shown in FIGS. However, the difference is that the planar shape of the region (single crystal region) surrounded by the plate-like crystal inversion region 51 formed on the GaN substrate 1 is a parallelogram.

図18は、図1〜図5に示した本発明によるLEDの実施の形態1の第4の変形例を示す平面図である。図19は、図18に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図20は、図18に示したLEDを構成するチップをn電極が形成された側から見た平面図である。図18〜図20を参照して、本発明によるLEDの実施の形態1の第4の変形例を説明する。   FIG. 18 is a plan view showing a fourth modification of the first embodiment of the LED according to the present invention shown in FIGS. FIG. 19 is a plan view of the chip constituting the LED shown in FIG. 18 as viewed from the side where the p-electrode is formed. 20 is a plan view of the chip constituting the LED shown in FIG. 18 as viewed from the side on which the n-electrode is formed. With reference to FIGS. 18-20, the 4th modification of Embodiment 1 of LED by this invention is demonstrated.

図18〜図20に示したLEDは、基本的に図1〜図5に示したLEDと同様の構造を備えるが、チップの平面形状が異なる。すなわち、図1〜図5に示したLEDでは、チップの平面形状が正六角形であったのに対して、図18〜図20に示したLEDでは、チップの平面形状が台形となっている。   The LED shown in FIGS. 18 to 20 basically has the same structure as the LED shown in FIGS. 1 to 5, but the planar shape of the chip is different. That is, in the LED shown in FIGS. 1 to 5, the planar shape of the chip is a regular hexagon, whereas in the LED shown in FIGS. 18 to 20, the planar shape of the chip is a trapezoid.

具体的には、図18〜図20から分かるように、GaN基板1およびその上の積層構造、およびp電極12の平面形状は台形になっている。図19に示すように、p電極12は、外周において平行な2辺のうちの相対的に長い一辺の長さがLP12であり、平行な2辺のうちの相対的に短い一辺の長さがLP11であり、上述した2辺を繋ぐ図19の縦方向の辺の長さがTP1の台形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も、外周において平行な2辺のうちの相対的に長い一辺の長さがLP02であり、上記2辺のうちの相対的に短い一辺の長さがLP01であり、上述した2辺を繋ぐ縦方向の辺の長さがTP0の台形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図20に示すように、GaN基板1の平面形状も外周において平行な2辺のうちの相対的に長い一辺の長さがLN02であり、上記2辺のうちの相対的に短い一辺の長さがLN01であり、上述した2辺を繋ぐ縦方向の辺の長さがTN0の台形である。なお、ここではGaN基板1などの端面は傾斜していないので、上記長さLP02=長さLN02であり、長さLP01=長さLN01であり、長さTP0=長さTN0である。また、図18〜図20に示したLEDは、基本的には図1〜図5に示した本発明によるLEDの実施の形態1の製造方法と同様の方法により製造できる。ただし、GaN基板1に形成される板状結晶反転領域51によって囲まれる領域(単結晶領域)の平面形状を台形とする点が異なる。 Specifically, as can be seen from FIGS. 18 to 20, the planar shape of the GaN substrate 1, the stacked structure thereon, and the p-electrode 12 is a trapezoid. As shown in FIG. 19, the p-electrode 12 has a length of a relatively long one of two sides parallel to each other on the outer periphery is L P12 and a length of a relatively short one of the two parallel sides. Is L P11 , and the length of the vertical side in FIG. 19 connecting the two sides described above is a trapezoid with T P1 . In addition, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the stacked structure formed on the GaN substrate 1 is also the length of a relatively long one of two sides parallel to each other on the outer periphery. Is L P02 , the length of a relatively short one of the two sides is L P01 , and the length of the vertical side connecting the two sides is T P0 . The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. In addition, as shown in FIG. 20, the planar shape of the GaN substrate 1 is such that the length of a relatively long side of two sides parallel to each other on the outer periphery is L N02 , and the relatively short side of the two sides of it is an L N01 length, the length of the longitudinal sides connecting the two sides described above is the trapezoidal T N0. Here, since the end face of the GaN substrate 1 or the like is not inclined, the length L P02 = the length L N02 , the length L P01 = the length L N01 , and the length T P0 = the length T N0 . Further, the LED shown in FIGS. 18 to 20 can be basically manufactured by a method similar to the manufacturing method of Embodiment 1 of the LED according to the present invention shown in FIGS. However, the difference is that the planar shape of the region (single crystal region) surrounded by the plate-like crystal inversion region 51 formed on the GaN substrate 1 is a trapezoid.

(実施の形態2)
図21は、本発明に従った発光装置としてのLEDの実施の形態2を示す図である。図22は、図21に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図23は、図21に示したLEDを構成するチップをn電極が形成された側から見た平面図である。図21〜図23を参照して、本発明によるLEDの実施の形態2を説明する。
(Embodiment 2)
FIG. 21 is a diagram showing a second embodiment of an LED as a light-emitting device according to the present invention. 22 is a plan view of the chip constituting the LED shown in FIG. 21 as viewed from the side on which the p-electrode is formed. FIG. 23 is a plan view of the chip constituting the LED shown in FIG. 21 as viewed from the side on which the n-electrode is formed. A second embodiment of the LED according to the present invention will be described with reference to FIGS.

図21に示す、本発明に従ったLEDの実施の形態2は、基本的には図1〜図5に示した本発明に従ったLEDの実施の形態1と同様の構造を備える。ただし、図21に示したLEDは、GaN基板1、n型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6からなるチップの側面80がGaN基板1の第2の主表面1aに対して傾斜するように形成されている点が、図1〜図5に示したLEDとは異なっている。 The second embodiment of the LED according to the present invention shown in FIG. 21 basically has the same structure as the first embodiment of the LED according to the present invention shown in FIGS. However, the LED shown in FIG. 21 includes a GaN substrate 1, an n-type GaN epitaxial layer 2, an n-type Al x Ga 1-x N layer 3, a quantum well 4, a p-type Al x Ga 1-x N layer 5, p The LED 80 shown in FIGS. 1 to 5 is different from the LED shown in FIGS. 1 to 5 in that the side surface 80 of the chip made of the type GaN layer 6 is formed to be inclined with respect to the second main surface 1a of the GaN substrate 1.

図22に示すように、p電極12は、外周の一辺の長さがLP1の正六角形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0の正六角形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図23に示すように、GaN基板1の第2の主表面の平面形状も1辺の長さがLN0の正六角形である。GaN基板1のほぼ中央部に直径Dの円形状のn電極11が配置されている。なお、ここでは図21に示すようにチップの側面80が傾斜しているので、上記長さLP0より長さLN0の方が大きくなっている。このようにチップの側面80を傾斜させることで、光の取出し効率をより向上させることができる。 As shown in FIG. 22, the p-electrode 12 has a regular hexagonal shape in which the length of one side of the outer periphery is L P1 . Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the stacked structure formed on the GaN substrate 1 is also a regular hexagon with one side length L P0 . The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. As shown in FIG. 23, the planar shape of the second main surface of the GaN substrate 1 is also a regular hexagon with one side length of L N0 . A circular n-electrode 11 having a diameter D is disposed at the substantially central portion of the GaN substrate 1. Here, as shown in FIG. 21, since the side surface 80 of the chip is inclined, the length L N0 is larger than the length L P0 . Thus, the light extraction efficiency can be further improved by inclining the side surface 80 of the chip.

次に、図21〜図23に示したLEDの製造方法を簡単に説明する。図24は、図21〜図23に示したLEDの製造方法を説明するためのフローチャートである。図25は、図21〜図23に示したLEDのチップをウエハから採取するときのウエハの状態を示す平面模式図である。図26は、図25の線分XXVI−XXVIにおける断面模式図である。図27は、図25に示したウエハにおける1つのチップに該当する領域を示す拡大模式図である。図24〜図27を参照して、図21〜図23に示したLEDの製造方法を説明する。   Next, a method for manufacturing the LED shown in FIGS. 21 to 23 will be briefly described. FIG. 24 is a flowchart for explaining a method of manufacturing the LED shown in FIGS. FIG. 25 is a schematic plan view showing a state of the wafer when the LED chips shown in FIGS. 21 to 23 are collected from the wafer. 26 is a schematic cross-sectional view taken along line XXVI-XXVI in FIG. FIG. 27 is an enlarged schematic view showing a region corresponding to one chip in the wafer shown in FIG. With reference to FIGS. 24 to 27, a method of manufacturing the LED shown in FIGS. 21 to 23 will be described.

図24からも分かるように、図21〜図23に示したLEDの製造方法は、基本的には図6に示したLEDの製造方法と同様である。つまり、図21〜図23に示したLEDの製造方法では、図6に示した製造方法と同様に、GaN基板準備工程(S10)、エピタキシャル膜形成工程(S20)、電極形成工程)(S30)を実施する。その後、後述するエッチング工程においてチップの光取出し面(第2の主表面1a)をエッチング液から保護するため、基板の光取出し面上に保護マスクを形成する工程(S110)を実施する。この工程(S110)では、GaN基板1の第2の主表面1a上に、エッチングに用いるエッチャント(たとえばKOH溶液などのアルカリ溶液)に対して耐性を有する膜を保護マスクとして形成する。保護マスクを構成する材料としては、エッチャントに対する耐性を有する材料であれば任意の材料を用いることができる。   As can be seen from FIG. 24, the LED manufacturing method shown in FIGS. 21 to 23 is basically the same as the LED manufacturing method shown in FIG. 6. That is, in the LED manufacturing method shown in FIGS. 21 to 23, as in the manufacturing method shown in FIG. 6, the GaN substrate preparation step (S10), the epitaxial film formation step (S20), and the electrode formation step) (S30). To implement. Thereafter, in order to protect the light extraction surface (second main surface 1a) of the chip from the etching solution in an etching step described later, a step (S110) of forming a protective mask on the light extraction surface of the substrate is performed. In this step (S110), a film having resistance to an etchant (for example, an alkaline solution such as a KOH solution) used for etching is formed on the second main surface 1a of the GaN substrate 1 as a protective mask. As a material constituting the protective mask, any material can be used as long as the material has resistance to the etchant.

その後、図6に示した製造方法と同様に、エッチングによる分割工程(S40)を実施する。ただし、分割工程(S40)は、エッチャントにGaN基板1を浸漬する工程(S41)およびGaN基板1が浸漬されたエッチャントを所定の温度及び圧力条件に維持してエッチングを行なうことにより、GaN基板1を分離(分割)する分離工程(S42)を含む。そして、この分割工程(S40)では、エッチャントの温度や圧力、エッチング時間などのプロセス条件を調整することにより、GaN基板1および上述したn型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6などからなるエピタキシャル膜層に伝播した板状結晶反転領域51が選択的にエッチングされる。また同時に、エッチャントの温度や圧力、エッチング時間などのプロセス条件を最適化することによりGaN基板1および上述したエピタキシャル膜層の側面をエッチングにより部分的に除去することにより、GaN基板1および上述したエピタキシャル膜層の側面(境界線82を挟んで対向するチップの側面80)を図25および図26に示すように傾斜した状態とする。このように、エピタキシャル膜層の側面の形状(たとえば当該側面を傾斜させるか否か)はエッチングの条件を適宜変更することにより制御することができる。 Thereafter, the dividing step (S40) by etching is performed as in the manufacturing method shown in FIG. However, in the dividing step (S40), the GaN substrate 1 is etched by immersing the GaN substrate 1 in the etchant (S41) and performing etching while maintaining the etchant in which the GaN substrate 1 is immersed at a predetermined temperature and pressure. Includes a separation step (S42) for separating (dividing). In this dividing step (S40), the GaN substrate 1, the n-type GaN epitaxial layer 2, and the n-type Al x Ga 1-x N are adjusted by adjusting process conditions such as the temperature and pressure of the etchant and the etching time. The plate-like crystal inversion region 51 propagated to the epitaxial film layer composed of the layer 3, the quantum well 4, the p-type Al x Ga 1-x N layer 5, the p-type GaN layer 6 and the like is selectively etched. At the same time, the side surfaces of the GaN substrate 1 and the above-described epitaxial film layer are partially removed by etching by optimizing the process conditions such as the temperature and pressure of the etchant and the etching time, so that the GaN substrate 1 and the above-described epitaxial layer are removed. The side surface of the film layer (the side surface 80 of the chip facing the boundary line 82) is inclined as shown in FIGS. As described above, the shape of the side surface of the epitaxial film layer (for example, whether the side surface is inclined) can be controlled by appropriately changing the etching conditions.

なお、上述した分離工程(S42)において、エッチャントの圧力条件を大気圧から変更するため、たとえば密閉容器にエッチャントを入れ、当該密閉容器の内部にGaN基板1を浸漬させたエッチャントを密閉した状態でエッチングを行なってもよい。この後、上述した保護マスクを除去する。この結果、図27に示すように、傾斜した側面80を有し、平面形状が正六角形状の凸部(単結晶領域を含むチップとなるべき凸部)が、複数個形成同時に形成されることになる。   In the separation step (S42) described above, in order to change the pressure condition of the etchant from atmospheric pressure, for example, the etchant is put in a sealed container and the etchant in which the GaN substrate 1 is immersed in the sealed container is sealed. Etching may be performed. Thereafter, the protective mask described above is removed. As a result, as shown in FIG. 27, a plurality of convex portions having convex side surfaces 80 and having a regular hexagonal planar shape (a convex portion to be a chip including a single crystal region) are formed simultaneously. become.

なお、分割工程(S40)におけるエッチングにより各チップを完全に分割してもよいが、図26に示すように深さHだけエッチングによりGaN基板1などの板状結晶反転領域51を部分的に除去する一方、深さHだけGaN基板1をエッチングせずに残存させた状態で、エッチングを終了してもよい。この場合、エッチングの後、単結晶領域を1つあるいは複数含む単位となるように、エッチングにより形成された溝の底に位置するGaN基板1の接続部を劈開するなどの工程を実施する。 Incidentally, the dividing step may each chip is completely divided by etching in (S40), but by only the depth H 1 etching as shown in FIG. 26 the plate-shaped crystal inversion regions 51 such as GaN substrate 1 partially while removing, in a state of being left without etching the GaN substrate 1 by a depth H 2, may end the etching. In this case, after the etching, a process such as cleaving the connection portion of the GaN substrate 1 located at the bottom of the groove formed by the etching is performed so as to be a unit including one or a plurality of single crystal regions.

その後、図6に示した製造方法と同様に、洗浄・組立工程(S50)を実施することにより、図21〜図23に示したLEDを得ることができる。   Thereafter, the LED shown in FIGS. 21 to 23 can be obtained by performing the cleaning / assembly process (S50) in the same manner as the manufacturing method shown in FIG.

(実施の形態3)
図28は、本発明に従った発光装置としてのLEDの実施の形態3を示す図である。図28を参照して、本発明によるLEDの実施の形態3を説明する。
(Embodiment 3)
FIG. 28 is a diagram showing Embodiment 3 of an LED as a light-emitting device according to the present invention. With reference to FIG. 28, Embodiment 3 of the LED according to the present invention will be described.

図28に示す、本発明に従ったLEDの実施の形態3は、基本的には図21〜図23に示した本発明に従ったLEDの実施の形態2と同様の構造を備える。ただし、図28に示したLEDでは、n電極11が形成されたGaN基板1の第2の主表面1a表面において、非鏡面処理が行なわれている。具体的には、GaN基板1の第2の主表面1aには、n電極11が配置された領域以外の部分に凹凸部が形成されている。このようにすれば、図21〜図23に示したLEDによる効果に加えて、さらにGaN基板1の第2の主表面(光の出射面)に非鏡面処理を施すことにより、光の出射面において、発光層で発生した光が全反射によりGaN基板1内部に閉じ込められること確率を低減できる。この結果、光の出射面から出射される光の光量を大きくできるので、光の取出し効率を向上させることができる。   The third embodiment of the LED according to the present invention shown in FIG. 28 basically has the same structure as the second embodiment of the LED according to the present invention shown in FIGS. However, in the LED shown in FIG. 28, the non-specular treatment is performed on the surface of the second main surface 1a of the GaN substrate 1 on which the n-electrode 11 is formed. Specifically, an uneven portion is formed on the second main surface 1a of the GaN substrate 1 in a portion other than the region where the n-electrode 11 is disposed. In this way, in addition to the effects of the LEDs shown in FIGS. 21 to 23, the second main surface (light emission surface) of the GaN substrate 1 is further subjected to non-specular treatment, so that the light emission surface is obtained. The probability that the light generated in the light emitting layer is confined in the GaN substrate 1 by total reflection can be reduced. As a result, the amount of light emitted from the light exit surface can be increased, so that the light extraction efficiency can be improved.

次に、図28に示したLEDの製造方法を、図29を参照しながら簡単に説明する。ここで、図29は、図28に示したLEDのチップをウエハから採取するときのウエハの状態を示す平面模式図である。   Next, a method for manufacturing the LED shown in FIG. 28 will be briefly described with reference to FIG. Here, FIG. 29 is a schematic plan view showing a state of the wafer when the LED chip shown in FIG. 28 is taken from the wafer.

図28に示したLEDの製造方法は、基本的には図24に示したLEDの製造方法と同様であるが、基板の光取出し面上に保護マスクを形成する工程(S110)を実施しない点が図24に示した製造方法と異なる。つまり、図28に示したLEDの製造方法では、図24に示した製造方法と同様に、GaN基板準備工程(S10)、エピタキシャル膜形成工程(S20)、電極形成工程(S30)を実施した後、上記保護マスクを形成する工程(S110)を実施することなく、そのままエッチングによる分割工程(S40)を実施する。   The LED manufacturing method shown in FIG. 28 is basically the same as the LED manufacturing method shown in FIG. 24 except that the step (S110) of forming a protective mask on the light extraction surface of the substrate is not performed. Is different from the manufacturing method shown in FIG. That is, in the LED manufacturing method shown in FIG. 28, after the GaN substrate preparation step (S10), the epitaxial film formation step (S20), and the electrode formation step (S30), as in the manufacturing method shown in FIG. Without performing the step of forming the protective mask (S110), the dividing step (S40) by etching is performed as it is.

このため、分割工程(S40)では、GaN基板1の第2の主表面1a(光の出射面)もアルカリ溶液などのエッチャントに晒されることになる。この結果、第2の主表面1aもエッチングされ、結果的に図28に示すように第2の主表面1aに凹凸部が形成される。つまり、上述した分割工程(S40)では、図29に示すように、チップの分割、および傾斜した側面80の形成、および第2の主表面1aにおける非鏡面処理が同時に実施される。図29に示すように、この分割工程(S40)により、エピタキシャル膜層、n電極11およびp電極12が形成されたGaN基板1には、それぞれの単結晶領域を分割するように、板状結晶反転領域51が選択的にエッチングされることにより、深さHのV字状の溝が形成される。また、同時に、n電極11が形成された面であるGaN基板1の第2の主表面には、エッチングにより凹凸部が形成される。このとき、V字状の溝の深さH1を十分大きくして各チップを分割してもよいし、図29に示すようにエッチングされない部分を厚さH2だけ残し、V字状の溝の底に位置する厚さH2の部分を後で劈開することによりチップを分割してもよい。 For this reason, in the dividing step (S40), the second main surface 1a (light emission surface) of the GaN substrate 1 is also exposed to an etchant such as an alkaline solution. As a result, the second main surface 1a is also etched, and as a result, an uneven portion is formed on the second main surface 1a as shown in FIG. That is, in the division step (S40) described above, as shown in FIG. 29, the chip division, the formation of the inclined side surface 80, and the non-specular treatment on the second main surface 1a are performed simultaneously. As shown in FIG. 29, in the division step (S40), the GaN substrate 1 on which the epitaxial film layer, the n electrode 11 and the p electrode 12 are formed has a plate-like crystal so as to divide each single crystal region. by inversion region 51 is selectively etched, V-shaped grooves of depth H 1 is formed. At the same time, an uneven portion is formed by etching on the second main surface of the GaN substrate 1 on which the n-electrode 11 is formed. At this time, each chip may be divided by sufficiently increasing the depth H1 of the V-shaped groove, or the portion not etched is left as shown in FIG. 29, and the bottom of the V-shaped groove is left. The chip may be divided by later cleaving the portion of the thickness H2 located in the area.

そして、分割工程(S40)を実施した後、図24に示した製造方法と同様に、洗浄・組立工程(S50)を実施することにより、図28に示したLEDを得ることができる。   And after implementing a division | segmentation process (S40), LED shown in FIG. 28 can be obtained by implementing a washing | cleaning and assembly process (S50) similarly to the manufacturing method shown in FIG.

なお、すでに説明した本発明によるLEDの実施の形態1および実施の形態2において、図28に示したようにGaN基板1の第2の主表面1aに凹凸部を形成してもよい(非鏡面処理を施してもよい)。   In the first and second embodiments of the LED according to the present invention already described, a concavo-convex portion may be formed on the second main surface 1a of the GaN substrate 1 as shown in FIG. May be processed).

(実施の形態4)
図30は、本発明に従った発光装置としてのLEDの実施の形態4を示す平面図である。図31は、図30に示したLEDを構成するチップをp電極が形成された側から見た平面図である。図32は、図31の線分XXXII−XXXIIにおける断面模式図である。図30〜図32を参照して、本発明によるLEDの実施の形態4を説明する。
(Embodiment 4)
FIG. 30 is a plan view showing Embodiment 4 of an LED as a light emitting device according to the present invention. FIG. 31 is a plan view of the chip constituting the LED shown in FIG. 30 as viewed from the side on which the p-electrode is formed. 32 is a schematic cross-sectional view taken along line XXXII-XXXII in FIG. A fourth embodiment of an LED according to the present invention will be described with reference to FIGS.

図30〜図32に示すLEDは、基本的には図28に示したLEDと同様の構造を備えるが、チップとして複数(9つ)の単結晶領域を含む大面積のチップを用いている点が図28に示したLEDと異なる。図30〜図32に示したLEDでは、平面形状が六角形である図28に示したLEDのチップ(単位チップ)が3行×3列の9つ集まったチップを用いている。単位チップのそれぞれは、その側面80がGaN基板1の第2の主表面1aに対して傾斜している。そして、単位チップには、それぞれ平面形状が正六角形のp電極12が形成されている。また、チップにおけるGaN基板1の第2の主表面1aの中央部(中央部に位置する単位チップの第2の主表面1aの中央部)には、図29に示すように直径Dである平面形状が円形状のn電極11が形成されている。このようにすれば、単位チップを複数備えるチップを用いることで、光の出射面の面積を大きくしたLEDを容易に実現できる。   The LED shown in FIGS. 30 to 32 basically has the same structure as the LED shown in FIG. 28, but uses a large-area chip including a plurality (nine) of single crystal regions as the chip. Is different from the LED shown in FIG. The LED shown in FIGS. 30 to 32 uses a chip in which nine chips (unit chips) of the LED shown in FIG. 28 having a hexagonal planar shape are gathered in 3 rows × 3 columns. Each of the unit chips has a side surface 80 inclined with respect to the second main surface 1 a of the GaN substrate 1. Each unit chip is formed with a p-electrode 12 having a regular hexagonal planar shape. Further, in the center of the second main surface 1a of the GaN substrate 1 in the chip (the center of the second main surface 1a of the unit chip located in the center), a plane having a diameter D as shown in FIG. An n-electrode 11 having a circular shape is formed. If it does in this way, LED which enlarged the area of the light emission surface is easily realizable by using a chip provided with a plurality of unit chips.

次に、図30〜図32に示したLEDの製造方法を簡単に説明する。図30〜図32に示したLEDの製造方法は、基本的に図28に示したLEDの製造方法と同様である。ただし、単位チップを9つ含むようにウエハを分割する点が異なる。つまり、図30〜図32に示したLEDの製造方法では、図24に示した製造方法と同様に、GaN基板準備工程(S10)、エピタキシャル膜形成工程(S20)、電極形成工程(S30)を実施する。なお、電極形成工程(S30)では、n電極11を9つの単位チップあたり1つ形成されるように配置する。この後、チップの分割と同時にn電極11が形成された第2の主表面を非鏡面処理を行なうため、図24に示した保護マスクを形成する工程(S110)を実施することなく、そのままエッチングによる分割工程(S40)を実施する。上述した分割工程(S40)では、チップの分割、および傾斜した側面80の形成、および第2の主表面1aにおける非鏡面処理が同時に実施される。この分割工程(S40)により、エピタキシャル膜層、n電極11およびp電極12が形成されたGaN基板1には、それぞれの単位チップの単結晶領域を分割するように、板状結晶反転領域51が選択的にエッチングされることにより、深さHのV字状の溝が形成される。また、同時に、n電極11が形成された面であるGaN基板1の第2の主表面には、エッチングにより凹凸部が形成される。 Next, a method for manufacturing the LED shown in FIGS. 30 to 32 will be briefly described. The manufacturing method of the LED shown in FIGS. 30 to 32 is basically the same as the manufacturing method of the LED shown in FIG. However, the difference is that the wafer is divided so as to include nine unit chips. That is, in the LED manufacturing method shown in FIGS. 30 to 32, the GaN substrate preparation step (S10), the epitaxial film formation step (S20), and the electrode formation step (S30) are performed as in the manufacturing method shown in FIG. carry out. In the electrode formation step (S30), the n electrodes 11 are arranged so that one n electrode 11 is formed per nine unit chips. Thereafter, the second main surface on which the n-electrode 11 is formed at the same time as the chip division is subjected to non-specular treatment, so that the etching is performed without performing the step (S110) of forming the protective mask shown in FIG. The dividing step (S40) is performed. In the division step (S40) described above, the chip division, the formation of the inclined side surface 80, and the non-mirror surface treatment on the second main surface 1a are performed simultaneously. By this dividing step (S40), the plate-like crystal inversion region 51 is formed on the GaN substrate 1 on which the epitaxial film layer, the n electrode 11 and the p electrode 12 are formed so as to divide the single crystal region of each unit chip. by being selectively etched, V-shaped grooves of depth H 1 is formed. At the same time, an uneven portion is formed by etching on the second main surface of the GaN substrate 1 on which the n-electrode 11 is formed.

そして、当該エッチングが終了した後、単位チップを9つ含む、図30に示すような平面形状となるように、ウエハからチップを分割する。分割の方法としては、たとえば図30に示したLEDのチップとなる3行×3列の単位チップ群の外周に位置するV字溝の底に位置するGaN基板1の部分を劈開するなどの方法を用いてもよいし、3行×3列の単位チップ群を覆うように保護マスクを形成し、当該単位チップ群の外周部に位置するGaN基板1のV字溝の底の部分をエッチングにより除去するといった方法を用いてもよい。   Then, after the etching is completed, the chips are divided from the wafer so as to have a planar shape as shown in FIG. 30 including nine unit chips. As a method of division, for example, a method of cleaving a portion of the GaN substrate 1 located at the bottom of the V-shaped groove located on the outer periphery of the 3 × 3 unit chip group that becomes the LED chip shown in FIG. Or a protective mask is formed so as to cover the unit chip group of 3 rows × 3 columns, and the bottom portion of the V-shaped groove of the GaN substrate 1 located on the outer periphery of the unit chip group is etched. You may use the method of removing.

その後、図24に示した製造方法と同様に、洗浄・組立工程(S50)を実施することにより、図30〜図32に示したLEDを得ることができる。   Thereafter, in the same manner as the manufacturing method shown in FIG. 24, the LED shown in FIGS. 30 to 32 can be obtained by performing the cleaning / assembly process (S50).

本発明によるLEDは、上述のようにGaN基板1(窒化物半導体基板)を利用したものである。以下、発光装置としてのLEDの具体的な構成およびその効果について、より詳しく説明する。   The LED according to the present invention uses the GaN substrate 1 (nitride semiconductor substrate) as described above. Hereinafter, the specific configuration and effect of the LED as the light emitting device will be described in more detail.

最初に、サファイア基板と窒化物半導体基板であるGaN基板との比較を行なう。ここで、本発明の実施例1における本発明例AのLEDは、図1に示したLEDと同様の構造とした。以下、図1を参照しながら本発明例AのLEDを説明する。図1に示すように、本発明例AのLEDでは、GaN基板1の第1の主表面の側に後で詳細に説明する発光層などを含む積層構造が形成され、p電極12が設けられている。本実施の形態では、このp電極12が導電性接着剤14によってリードフレームマウント部21aにダウン実装されている点に1つの特徴がある。   First, a sapphire substrate is compared with a GaN substrate that is a nitride semiconductor substrate. Here, the LED of Invention Example A in Example 1 of the present invention has the same structure as the LED shown in FIG. Hereinafter, the LED of Example A of the present invention will be described with reference to FIG. As shown in FIG. 1, in the LED of Invention Example A, a laminated structure including a light emitting layer, which will be described in detail later, is formed on the first main surface side of the GaN substrate 1, and a p-electrode 12 is provided. ing. The present embodiment has one feature in that the p-electrode 12 is down-mounted on the lead frame mount portion 21 a by the conductive adhesive 14.

GaN基板1の第2の主表面1aは、発光層で発光した光を放出する面であり、この面にn電極11が設けられている。このn電極11は、第2の主表面全体を覆わないようにする。n電極11に被覆されていない部分の比率を大きくとることが重要である。開口率を大きくすれば、n電極によって遮られる光が減り、光を外に放出する放出効率を高めることができる。   The second main surface 1a of the GaN substrate 1 is a surface that emits light emitted from the light emitting layer, and an n-electrode 11 is provided on this surface. The n electrode 11 does not cover the entire second main surface. It is important to increase the ratio of the portion not covered with the n-electrode 11. If the aperture ratio is increased, the light blocked by the n-electrode is reduced, and the emission efficiency for emitting light to the outside can be increased.

n電極11はワイヤ13によりリードフレームのリード部21bと電気的に接続されている。ワイヤ13および上記の積層構造は、エポキシ系樹脂15により封止されている。すでに述べたように、上記の構成のうち、GaN基板1からp電極12にいたる間の積層構造を拡大して示したのが図2である。図2では、図1における積層構造が上下逆になっている。   The n-electrode 11 is electrically connected to the lead portion 21 b of the lead frame by a wire 13. The wire 13 and the laminated structure are sealed with an epoxy resin 15. As described above, FIG. 2 shows an enlarged view of the laminated structure from the GaN substrate 1 to the p-electrode 12 in the above configuration. In FIG. 2, the laminated structure in FIG. 1 is turned upside down.

次に、本発明例AのLEDの製造方法について説明する。
(a1)c面から0.5°ずらしたGaNのオフ基板を使用した。この基板の比抵抗は0.01Ω・cmであり、厚みは400μmとした。また、当該GaN基板では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51(図8参照)が形成されている。この板状結晶反転領域51における転位密度は1E9/cm2であった。また、当該板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であった。なお、上記のように板状結晶反転領域51が形成されたGaN基板の比抵抗の測定方法は、四端子法による電気抵抗測定といった方法を用いることができる。また、比抵抗を測定する方法としては、上記の方法に限られず他の任意の方法を用いることもできる。
(a2)MOCVD(Metal Organic Chemical Vapor Deposition)でGaN基板の第1の主面であるGa面上に次の積層構造を形成した。(Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.15Ga0.85N層との2層構造が3層重ねられたMQW(Multi-Quantum Well)/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)なお、当該積層構造には、図8に示すようにGaN基板の板状結晶反転領域51が伝播する。
(a3)発光波長は450nmであり、低温4.2KでのPL(Photo Luminescence)強度と室温298KでのPL強度を比較することにより便宜的に算出した内部量子効率は50%であった。
(a4)このウエハを活性化処理して、Mgドープp型層の低抵抗化を行なった。ホール測定によるキャリア濃度は、Mgドープp型Al0.2Ga0.8N層が5E17/cm3、Mgドープp型GaN層が1E18/cm3であった。
(a5)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とによりL2=439μmおきにチップの中心に直径(D)100μmのn電極をつけた(図7参照)。n電極として、GaN基板に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(a6)p電極としてはp型GaN層に接して、平面形状が正六角形状であって、一辺の長さLP1が186μm、厚み4nmのNi層を形成し、その上に厚み4nmのAu層を形成した(図7参照)。これを不活性ガス雰囲気中で加熱処理することにより、接触抵抗を5E−4Ω・cm2とした。隣接するp電極12の間の距離L3は117μmとした(図7参照)。
(a7)そして、n電極11が形成されたGaN基板の第2の主面である裏面のN面上に、後述するエッチング工程から第2の主表面を保護するための保護マスクを形成する。保護マスクとしては、エッチングに用いるKOH溶液に対する耐性を有する膜を形成する。
(a8)その後に、図6のエッチングによる分割工程(S40)において説明したように、アルカリ溶液としてのKOH溶液をエッチャントとして用いたエッチングにより、板状結晶反転領域51(図7および図8参照)を選択的に除去する。このようにして得られた、平面形状が正六角形のチップを発光装置とした。チップ化した発光装置は、チップの最外周の平面形状が1辺236μmの正六角形であり、光の放出面が1辺186μmの正六角形の形状(発光面積が0.09mm)で、発光層が1辺186μmの正六角形の形状をとる。すなわち図5において、LN0=236μmである。また、n電極の直径D=100μmである。
(a9)図1を参照して、リードフレームのマウント部21aに、上記チップのp型GaN層側が接するように搭載して、発光装置を形成した。マウント部に塗布した導電性接着剤14によって発光装置とマウントとを固定するとともに、導通が得られるようにしている。
(a10)発光装置からの放熱性を良くするために、発光装置のp型GaN層が全面マウント部と接するように搭載した。また接着剤は熱伝導の良いAg系のものを、またリードフレームも熱伝導の良いCuW系のものを選択した。これにより、得られた熱抵抗は8℃/Wであった。
(a11)さらに、n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、エポキシ系樹脂により樹脂封止を行なって発光装置をランプ化した。
Next, a method for manufacturing the LED of Invention Example A will be described.
(A1) A GaN off-substrate shifted by 0.5 ° from the c-plane was used. This substrate had a specific resistance of 0.01 Ω · cm and a thickness of 400 μm. In the GaN substrate, plate-like crystal inversion regions 51 (see FIG. 8) distributed in parallel in the thickness direction of the GaN substrate are formed. The dislocation density in the plate crystal inversion region 51 was 1E9 / cm 2 . Further, the dislocation density of the single crystal region surrounded by the plate crystal inversion region 51 was 1E6 / cm 2 . As a method for measuring the specific resistance of the GaN substrate on which the plate-like crystal inversion region 51 is formed as described above, a method such as electrical resistance measurement by a four-terminal method can be used. Further, the method of measuring the specific resistance is not limited to the above method, and any other method can be used.
(A2) The following laminated structure was formed on the Ga surface which is the first main surface of the GaN substrate by MOCVD (Metal Organic Chemical Vapor Deposition). (SiW-doped n-type GaN layer / Clad layer Si-doped n-type Al 0.2 Ga 0.8 N layer / MQW (Multi-Quantum Well) / two layers of GaN layer and In 0.15 Ga 0.85 N layer) (Clad layer Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer) Note that a plate-like crystal inversion region 51 of a GaN substrate propagates in the laminated structure as shown in FIG.
(A3) The emission wavelength was 450 nm, and the internal quantum efficiency calculated for convenience by comparing PL (Photo Luminescence) intensity at a low temperature of 4.2 K and PL intensity at a room temperature of 298 K was 50%.
(A4) The wafer was activated to reduce the resistance of the Mg-doped p-type layer. The carrier concentration by hole measurement was 5E17 / cm 3 for the Mg-doped p-type Al 0.2 Ga 0.8 N layer and 1E18 / cm 3 for the Mg-doped p-type GaN layer.
(A5) An n-electrode having a diameter (D) of 100 μm is formed at the center of the chip every L2 = 439 μm on the N surface of the back surface, which is the second main surface of the GaN substrate, by photolithography, vapor deposition, and lift-off method (See FIG. 7). As the n-electrode, a stacked structure (Ti layer 20 nm / Al layer 100 nm / Ti layer 20 nm / Au layer 200 nm) was formed in order from the bottom in contact with the GaN substrate. By heating this in a nitrogen (N 2 ) atmosphere, the contact resistance was set to 1E-5 Ω · cm 2 or less.
(A6) The p-electrode is in contact with the p-type GaN layer, a planar shape is a regular hexagonal shape, and a Ni layer having a side length L P1 of 186 μm and a thickness of 4 nm is formed thereon. A layer was formed (see FIG. 7). This was heat-treated in an inert gas atmosphere, so that the contact resistance was 5E-4 Ω · cm 2 . The distance L3 between adjacent p-electrodes 12 was 117 μm (see FIG. 7).
(A7) Then, a protective mask for protecting the second main surface from an etching process to be described later is formed on the N surface on the back surface which is the second main surface of the GaN substrate on which the n electrode 11 is formed. As the protective mask, a film having resistance to a KOH solution used for etching is formed.
(A8) Thereafter, as described in the dividing step (S40) by etching in FIG. 6, the plate-like crystal inversion region 51 (see FIGS. 7 and 8) is obtained by etching using a KOH solution as an alkaline solution as an etchant. Is selectively removed. The chip having a regular hexagonal plan shape thus obtained was used as a light emitting device. The light emitting device formed into a chip has a regular hexagonal shape with a side of 236 μm on the outermost periphery of the chip, a regular hexagonal shape with a light emission surface of 186 μm on one side (light emitting area is 0.09 mm 2 ), Takes the shape of a regular hexagon with a side of 186 μm. That is, in FIG. 5, L N0 = 236 μm. Further, the diameter D of the n electrode is 100 μm.
(A9) Referring to FIG. 1, the chip was mounted so that the p-type GaN layer side of the chip was in contact with the mount 21a of the lead frame to form a light emitting device. The light emitting device and the mount are fixed by the conductive adhesive 14 applied to the mount portion, and conduction is obtained.
(A10) In order to improve heat dissipation from the light emitting device, the p-type GaN layer of the light emitting device was mounted so as to be in contact with the entire mount portion. Also, an Ag-based adhesive with good thermal conductivity was selected, and a lead frame of CuW-based adhesive with high thermal conductivity was selected. Thereby, the obtained thermal resistance was 8 ° C./W.
(A11) Further, the n electrode and the lead portion of the lead frame were made conductive by wire bonding, and then resin sealing was performed with an epoxy resin to form a lamp.

次に比較例Bについて簡単に説明する。図33において、p電極112がリードフレームマウント部に導電性接着剤114によりダウン実装されている。また、n電極が導電性接着剤114により、p電極が接続されているリードフレームマウント部とは分離されたリードフレームマウント部121aに接続されている。この上に発光層を含む積層構造(図34)が設けられ、n型GaN層102の所定範囲に接している。n型GaN層102はサファイア基板101に形成されており、上記積層構造が接している範囲の外の範囲にn電極111が設けられている。n電極111は、ワイヤまたは導電性接着剤によりリードフレームマウント部121a、またはリードフレームリード部121bと電気的に接続されている。   Next, Comparative Example B will be briefly described. In FIG. 33, a p-electrode 112 is down-mounted with a conductive adhesive 114 on the lead frame mount. The n electrode is connected by a conductive adhesive 114 to a lead frame mount 121a that is separated from the lead frame mount to which the p electrode is connected. A laminated structure including a light emitting layer (FIG. 34) is provided thereon, and is in contact with a predetermined range of the n-type GaN layer 102. The n-type GaN layer 102 is formed on the sapphire substrate 101, and an n-electrode 111 is provided in a range outside the range where the above laminated structure is in contact. The n-electrode 111 is electrically connected to the lead frame mount 121a or the lead frame lead 121b by a wire or a conductive adhesive.

発光層から発光した光はサファイア基板101を通って外部に放出される。サファイア基板を含む上記の積層構造を覆うようにエポキシ系樹脂115が封止される。
(b1)c面から0.2°ずらしたサファイアの絶縁オフ基板を使用した。このサファイア基板の厚みは400μmとした。
(b2)〜(b4)本発明例Aにおける(a2)〜(a4)と同じ処理を施した。
(b5)比較例Bの場合、サファイア基板は絶縁体であるため、n電極はp電極と同じ成長膜側に設ける必要がある。そこでこのウエハをさらにフォトリソグラフィ技術とRIEにより、Mgドープp型層側からSiドープn型層までCl系ガスでエッチングすることにより、n電極を設けるためのn型GaN層を露出させ、素子分離を行なった(図35,図36)。素子の形状は300μm□(一辺が300μmの正方形)で、その中で露出させたn型GaNの広さは1つの素子当り150μm□である。すなわち露出部の四角形の段の辺の長さL4は150μmである。
(b6)露出したn型GaN層上には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより直径100μmのn電極をつけた。厚み、熱処理、接触抵抗は本発明例Aと同じとした。
(b7)p電極を素子300μm□からn型GaN露出部150μm□を除いた、p型GaN層部に設置した。厚み、熱処理、接触抵抗は本発明例Aと同じにした。
(b8)その後に、図35および図36に示すように、チップ境界150が側面として現れるようにスクライブを行ない、チップ化したものを発光装置とした。チップ化した発光装置は、光の放出面が300μm□(1辺の長さが300μmの四角形)の形状で、発光層が300μm□の形状をとる。すなわち図36において、L1=300μmであり、L2=400μmである。また、n電極の1つの辺の幅D=100μmである。
(b9)本発明例Aにおいて対応する処理と同じ処理を行なった。
(b10)本発明例Aと同様に、発光装置からの放熱性を良くするために、発光装置のp型GaN層が全面マウント部と接するように搭載した。図33において、p型GaN層106とp電極112との接触面積は0.0675mm2とした。発光装置の発熱は量子井戸層104とp型GaN層106とで生じるので、この放熱は主としてp電極112の面積で決まる。図33の場合には、n電極111も導電性接着剤114でリードフレームのマウント部121aに接続されているが、放熱面積は、実質的に上記の接触面積0.0675mm2である。本発明例Aのp型GaN層6とp電極12との接触面積は0.18mm2である。接着剤、リードフレームの材質は本発明例Aと同じとした。比較例Bでは、上記の構造を反映して、熱抵抗は10.4℃/Wと本発明例Aの1.3倍と悪くなった。
(b11)本発明例Aにおいて対応する処理と同じ処理を行なった。
Light emitted from the light emitting layer is emitted to the outside through the sapphire substrate 101. An epoxy resin 115 is sealed so as to cover the laminated structure including the sapphire substrate.
(B1) A sapphire insulating off substrate shifted by 0.2 ° from the c-plane was used. The thickness of this sapphire substrate was 400 μm.
(B2) to (b4) The same treatment as (a2) to (a4) in Invention Example A was performed.
(B5) In Comparative Example B, since the sapphire substrate is an insulator, the n-electrode needs to be provided on the same growth film side as the p-electrode. Therefore, this wafer is further etched by photolithography and RIE from the Mg-doped p-type layer side to the Si-doped n-type layer with a Cl-based gas to expose the n-type GaN layer for providing the n-electrode, thereby isolating elements. (FIGS. 35 and 36). The shape of the element is 300 μm □ (a square having a side of 300 μm), and the exposed n-type GaN has a width of 150 μm □ per element. That is, the length L4 of the side of the rectangular step of the exposed portion is 150 μm.
(B6) On the exposed n-type GaN layer, an n-electrode having a diameter of 100 μm was attached by photolithography, vapor deposition, and lift-off method. The thickness, heat treatment, and contact resistance were the same as Example A of the present invention.
(B7) The p-electrode was placed on the p-type GaN layer portion obtained by removing the n-type GaN exposed portion 150 μm □ from the device 300 μm □. The thickness, heat treatment, and contact resistance were the same as Example A of the present invention.
(B8) Thereafter, as shown in FIGS. 35 and 36, scribing was performed so that the chip boundary 150 appeared as a side surface, and the resulting light-emitting device was made into a chip. The light-emitting device formed into a chip has a light emission surface of a shape of 300 μm □ (a square having a side length of 300 μm) and a light-emitting layer of a shape of 300 μm □. That is, in FIG. 36, L1 = 300 μm and L2 = 400 μm. Further, the width D of one side of the n-electrode is 100 μm.
(B9) The same process as the corresponding process in Invention Example A was performed.
(B10) Similarly to Example A of the present invention, in order to improve heat dissipation from the light emitting device, the p-type GaN layer of the light emitting device was mounted so as to be in contact with the entire mount portion. In FIG. 33, the contact area between the p-type GaN layer 106 and the p-electrode 112 is 0.0675 mm 2 . Since heat generation of the light emitting device occurs in the quantum well layer 104 and the p-type GaN layer 106, this heat dissipation is mainly determined by the area of the p electrode 112. In the case of FIG. 33, the n-electrode 111 is also connected to the mount portion 121a of the lead frame by the conductive adhesive 114, but the heat radiation area is substantially the above contact area of 0.0675 mm 2 . The contact area between the p-type GaN layer 6 and the p-electrode 12 in Invention Example A is 0.18 mm 2 . The materials of the adhesive and the lead frame were the same as those of Example A of the present invention. In Comparative Example B, reflecting the above structure, the thermal resistance was 10.4 ° C./W, which was 1.3 times that of Invention Example A.
(B11) The same process as the corresponding process in Invention Example A was performed.

(実験およびその結果)
本発明例Aと比較例Bとを、積分球内に搭載した後所定の電流を印加し、集光されディテクタから出力される光出力値の比較を行なった。結果を図37に示す。図37によれば、電流がリークすることなくMQW層に注入され、MQW層での非発光性再結合が比較的少なく、また発熱によるチップの温度上昇が小さいような比較的理想的な状態では、光出力値は印加した電流の増加に比例して増加する。たとえば20mAの注入では本発明例Aが8mWであり、また比較例Bが7.2mWの出力が得られた。
(Experiment and its results)
The present invention example A and comparative example B were mounted in an integrating sphere, and then a predetermined current was applied to compare the light output values collected and output from the detector. The results are shown in FIG. According to FIG. 37, in a relatively ideal state where current is injected into the MQW layer without leaking, non-radiative recombination in the MQW layer is relatively small, and the temperature rise of the chip due to heat generation is small. The light output value increases in proportion to the increase in applied current. For example, in the case of 20 mA injection, the output of Invention Example A was 8 mW, and Comparative Example B was 7.2 mW.

これは、本発明例AではGaN系エピタキシャル膜/GaN基板を主な構成とするのに比して、比較例BではGaN系エピタキシャル膜/サファイア基板を主な構成とする。サファイア基板の屈折率は約1.8であり、GaNの屈折率2.4よりもかなり小さいため、比較例Bでは、GaN系エピタキシャル膜中で形成され伝播してきた光は、GaN系エピタキシャル膜とサファイア基板との界面で、本発明例Aより全反射しやすい。これが原因で、比較例Bの出力が本発明例Aのそれより小さくなる。   This is because the GaN-based epitaxial film / sapphire substrate is the main configuration in Comparative Example B, as compared with the GaN-based epitaxial film / GaN substrate as the main configuration in Invention Example A. Since the refractive index of the sapphire substrate is about 1.8, which is considerably smaller than the refractive index 2.4 of GaN, in Comparative Example B, the light formed and propagated in the GaN-based epitaxial film is the same as that of the GaN-based epitaxial film. At the interface with the sapphire substrate, the total reflection is easier than in the invention example A. This causes the output of Comparative Example B to be smaller than that of Invention Example A.

しかし、電流を5倍にして100mAを印加した場合、本発明例Aでは5倍の40mWの出力が得られたが、比較例Bでは25.2mWしか得られなかった(図37参照)。このときのMQW発光部での電流密度は、図38に示すように、本発明例Aでは110A/cm2であり、比較例Bでは150A/cm2であった。すなわち本発明例AのMQW発光部での電流密度が、比較例Bのそれより大きくなっている。 However, when the current was increased 5 times and 100 mA was applied, an output of 40 mW, which was 5 times greater, was obtained in Example A of the present invention, but only 25.2 mW was obtained in Comparative Example B (see FIG. 37). The current density in the MQW light emitting section at this time was 110 A / cm 2 in Invention Example A and 150 A / cm 2 in Comparative Example B, as shown in FIG. That is, the current density in the MQW light emitting portion of Invention Example A is larger than that of Comparative Example B.

これは、本発明例Aでは放熱面積が発生する熱に対して十分広く、またn電極を基板の第2の主表面側に設けることで電流密度が極端に大きくなる部位がない構造となっていることを意味する。これに対し、比較例Bでは放熱面積が本発明例Aよりも小さい上に、n電極を露出させたn型GaN層上に設けたため、n型GaN層中を層に平行な方向に流れる電流の電流密度が極端に大きくなり過ぎたことを意味する。その結果、比較例Bでは、発熱がさらに増加することとなる。   In the present invention example A, the heat radiation area is sufficiently wide with respect to the generated heat, and the n-electrode is provided on the second main surface side of the substrate so that there is no portion where the current density becomes extremely large. Means that On the other hand, in Comparative Example B, the heat dissipation area is smaller than that of Invention Example A, and the n-type GaN layer is provided with the n-electrode exposed, so that the current flowing in the n-type GaN layer in a direction parallel to the layer. This means that the current density of becomes extremely large. As a result, in Comparative Example B, the heat generation further increases.

また、本発明例Aは比較例Bと異なりn電極とp電極が対向した位置にあるため電気的ショートのおそれがなく、同じ側にある比較例Bでたとえばショートを防止するためにp電極とn電極との間を電気的に絶縁するための膜を設けるような余計な製造コストの増加を防ぐことも可能である。   In addition, unlike the comparative example B, the inventive example A is in the position where the n electrode and the p electrode are opposed to each other, so there is no risk of an electrical short. In the comparative example B on the same side, for example, It is also possible to prevent an unnecessary increase in manufacturing cost by providing a film for electrically insulating the n electrode.

さらに、本発明例Aおよび比較例Bの静電耐圧についての試験結果を説明する。試験は、発光装置と、静電気がチャージされたコンデンサとを対向させて両者間に放電を生じさせた。このとき、比較例Bではおよそ100Vの静電圧で破壊された。一方、本発明例Aではおよそ8000Vまで破壊することがなかった。本発明例Aでは、比較例Bの約80倍の静電耐圧を有することが分った。   Furthermore, the test result about the electrostatic withstand voltage of the invention example A and the comparative example B will be described. In the test, a light emitting device and a capacitor charged with static electricity were opposed to each other to cause discharge between them. At this time, in Comparative Example B, it was broken at a static voltage of about 100V. On the other hand, the invention sample A did not break down to about 8000V. Inventive Example A was found to have an electrostatic withstand voltage about 80 times that of Comparative Example B.

また、上記の本発明例Aでは、GaN基板の上にGaN系発光装置を形成するため、GaN系発光チップをダウン実装してGaN基板裏面から光を放出するようにしても、屈折率の相違が両者の間にないため、全反射をすることなく、GaN系発光チップからGaN基板へと光が伝播する。このため、サファイア基板を用いてGaN系発光装置を形成した構造に比べて、GaN基板主面における光出力を高めることができる。さらに、GaN層の側部から光が極端に集中して出射されることがないので、封止樹脂が損傷を受けることがなくなり、封止樹脂により寿命が制約を受けることがなくなる。   In the above invention example A, since the GaN-based light emitting device is formed on the GaN substrate, even if the GaN-based light-emitting chip is mounted down and light is emitted from the back surface of the GaN substrate, the difference in refractive index Since there is no between them, light propagates from the GaN-based light emitting chip to the GaN substrate without total reflection. For this reason, compared with the structure which formed the GaN-type light-emitting device using the sapphire substrate, the light output in a GaN substrate main surface can be raised. Furthermore, since light is not concentrated and emitted from the side portion of the GaN layer, the sealing resin is not damaged, and the lifetime is not limited by the sealing resin.

本発明例では、発光波長450nmでの一例を示したにすぎず、発光波長や層構造を変えた場合でも同じ効果を得ることができる。また基板の特性が同等であれば、GaN基板の代わりに、AlxGa1-xN基板(ただし、xは0より大きく1以下)を用いても同様の効果が得られることは言うまでもない。 In the present invention example, only an example with an emission wavelength of 450 nm is shown, and the same effect can be obtained even when the emission wavelength and the layer structure are changed. Needless to say, the same effect can be obtained even if an Al x Ga 1-x N substrate (where x is larger than 0 and equal to or smaller than 1) is used instead of the GaN substrate if the substrate characteristics are equivalent.

本発明の実施例2では、さらに大面積化したときの本発明例Cについて説明する。本発明例Cは、図1に示す本発明例Aの構造と同じであるが、その寸法である長さLP1(図4参照)が本発明例Aでは186μmであったのに比して、本発明例Cでは、長さLP1は1.87mmとほぼ10倍になっており、したがって面積では100倍になっている。まず、本発明例Cの製造方法はつぎのとおりである。 In Example 2 of the present invention, Example C of the present invention when the area is further increased will be described. Invention Example C is the same as the structure of Invention Example A shown in FIG. 1, but the length L P1 (see FIG. 4), which is the dimension, is 186 μm in Invention Example A. In the present invention example C, the length L P1 is about 10 times as long as 1.87 mm, and thus the area is 100 times. First, the manufacturing method of Example C of the present invention is as follows.

(本発明例C)
(c1)〜(c4)GaN基板に大きいものを用いるが、本発明例Aにおいて対応する処理と同じ処理を行なう。
(c5)GaN基板の裏面である第2の主表面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより3.36mmおきに、チップの中心に直径100μmのn電極をつけた。n電極としては、上記GaN基板の裏面に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを不活性雰囲気中で加熱処理することにより、接触抵抗を1E−5Ω・cm2以下とした。
(c6)その後に所定の形状になるよう、エッチングによる分割工程を行ない、チップ化したものを発光装置とした。チップ化した発光素子における長さLP0=LN0=1.92mm、長さLP1=1.87mm、直径D=100μm(図4および図5参照)である。
(c7)〜(c11)本発明例Aにおいて対応する処理と同じ処理を施した。次に、本発明例Cのn電極の配置を変形した変形例C1を、以下のように作製した。
(Invention Sample C)
(C1) to (c4) Although a large GaN substrate is used, the same process as the corresponding process in Example A of the present invention is performed.
(C5) On the second main surface which is the back surface of the GaN substrate, an n-electrode having a diameter of 100 μm was attached to the center of the chip every 3.36 mm by photolithography, vapor deposition, and lift-off method. As the n-electrode, a stacked structure of (Ti layer 20 nm / Al layer 100 nm / Ti layer 20 nm / Au layer 200 nm) was formed in order from the bottom in contact with the back surface of the GaN substrate. This was heat-treated in an inert atmosphere so that the contact resistance was 1E-5 Ω · cm 2 or less.
(C6) After that, a dividing process by etching was performed so as to obtain a predetermined shape, and a chip was obtained as a light emitting device. The length L P0 = L N0 = 1.92 mm, the length L P1 = 1.87 mm, and the diameter D = 100 μm (see FIGS. 4 and 5) in the light-emitting element formed into a chip.
(C7)-(c11) The same process as the corresponding process in Invention Example A was performed. Next, a modified example C1 in which the arrangement of the n-electrode according to Invention Example C was modified was produced as follows.

(本発明例C1)
図39および図40は、上記本発明例Cの変形例である本発明例C1を示す図である。本発明例C1では、n電極11をGaN基板の6つの角部、すなわち6つのコーナーに配置した点に特徴がある。また、半導体チップの実装において半導体チップを取り囲むようにリードフレームに反射カップ37を配置している。
(Invention Sample C1)
FIG. 39 and FIG. 40 are diagrams showing the present invention example C1, which is a modification of the above-described invention example C. FIG. The invention example C1 is characterized in that the n-electrode 11 is arranged at six corners of the GaN substrate, that is, at six corners. In addition, a reflective cup 37 is disposed on the lead frame so as to surround the semiconductor chip in mounting the semiconductor chip.

上記本発明例C1の製造では、本発明例Aと対応する工程において同じ処理を施した。ただしボンディングワイヤには6本のAu線を用い、それぞれの断面の直径は25μmとした。6つのコーナーに位置する各n電極の形状は36μm□である。   In the production of the present invention example C1, the same treatment was performed in the steps corresponding to the invention example A. However, six Au wires were used as bonding wires, and the diameter of each cross section was 25 μm. The shape of each n electrode located at the six corners is 36 μm □.

次に比較例Dについて説明する。比較例Dの構造は、図33に示す構造と同じである。ただし、図33の比較例BにおけるL1が300μm(0.3mm)であったのに比して、比較例DのL1は3mmと10倍としている。また、n電極を形成するn型GaN層の部分の寸法L4は、図33の比較例Bと同じ150μmである。比較例Dの製造方法は次のとおりである。   Next, Comparative Example D will be described. The structure of Comparative Example D is the same as the structure shown in FIG. However, compared with L1 in Comparative Example B of FIG. 33 being 300 μm (0.3 mm), L1 in Comparative Example D is 3 mm, which is 10 times. Further, the dimension L4 of the n-type GaN layer portion forming the n-electrode is 150 μm, which is the same as in Comparative Example B in FIG. The manufacturing method of Comparative Example D is as follows.

(比較例D)
(d1)c面から0.2°ずらしたサファイアの大サイズの絶縁オフ基板を使用した。サファイア基板の厚みは400μmとした。
(d2)〜(d4)本発明例Aにおいて対応する処理と同じ処理を施した。
(d5)比較例Dの場合、サファイア基板が絶縁体であるため、n電極はp電極と同じ成長膜側に設ける必要がある。そこで、このウエハをさらにフォトリソグラフィ技術とRIEにより、Mgドープのp型層側からSiドープのn型層までCl系ガスでエッチングすることにより、n電極を設けるためのn型GaN層を露出させ、素子分離を行なった。素子のサイズは、上記したように3mm□と大型サイズとした。n電極を配置するために露出させたn型GaN層の部分の広さは1つの素子当り150μm□とした。
(d6)露出させたn型GaN層上には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより直径100μmのn型電極をつけた。厚み、熱処理、接触抵抗は本発明例Aと同じである。
(d7)p電極は、素子領域3.1mm□から素子分離溝とn電極とを配置するためのn型GaN層の露出部150μm□を除いた、p型GaN層に設けた。厚み、熱処理、接触抵抗は本発明例Aと同じとした。
(d8)〜(d11)本発明例Aにおいて対応する処理と同じ処理を行なった。
(Comparative Example D)
(D1) A sapphire large-sized insulating off-substrate shifted by 0.2 ° from the c-plane was used. The thickness of the sapphire substrate was 400 μm.
(D2) to (d4) The same processes as those in Example A of the present invention were performed.
(D5) In the case of Comparative Example D, since the sapphire substrate is an insulator, the n electrode needs to be provided on the same growth film side as the p electrode. Therefore, the n-type GaN layer for providing the n-electrode is exposed by further etching this wafer with Cl-based gas from the Mg-doped p-type layer side to the Si-doped n-type layer by photolithography and RIE. Then, element isolation was performed. The size of the element was 3 mm □ and a large size as described above. The width of the portion of the n-type GaN layer exposed to arrange the n-electrode was 150 μm □ per element.
(D6) On the exposed n-type GaN layer, an n-type electrode having a diameter of 100 μm was attached by photolithography technique, vapor deposition, and lift-off method. The thickness, heat treatment, and contact resistance are the same as Example A of the present invention.
(D7) The p-electrode was provided on the p-type GaN layer excluding the exposed portion 150 μm □ of the n-type GaN layer for disposing the element isolation trench and the n-electrode from the element region 3.1 mm □. The thickness, heat treatment, and contact resistance were the same as Example A of the present invention.
(D8) to (d11) The same processing as that in the invention sample A was performed.

次に、もう一つの比較例Eについて説明する。比較例Eは、図41に示すようにサファイア基板を用いて、p電極112およびn電極111をともにダウン実装側に設ける点では比較例BおよびDと同じである。しかし、図42の平面図から明らかなように、p電極112を櫛形状にして、n電極111を櫛の歯の間に配置し、p電極112とn電極111との間に絶縁体を配置している点で異なっている。これは、p電極とn電極とを流れる電流を均等化して電流密度が極端に高くなる箇所を生じないようにするためである。この比較例Eの製造方法は次のとおりである。   Next, another comparative example E will be described. Comparative Example E is the same as Comparative Examples B and D in that a p-electrode 112 and an n-electrode 111 are both provided on the down-mounting side using a sapphire substrate as shown in FIG. However, as apparent from the plan view of FIG. 42, the p electrode 112 is formed in a comb shape, the n electrode 111 is disposed between the teeth of the comb, and an insulator is disposed between the p electrode 112 and the n electrode 111. Is different in that This is because the current flowing through the p-electrode and the n-electrode is equalized so that a portion where the current density becomes extremely high is not generated. The manufacturing method of Comparative Example E is as follows.

(比較例E)
比較例Dと同様の作製方法で、n電極111は0.5mmおきに5本、0.1mm幅の櫛形電極を設けた(図41および図42参照)。n電極111とp電極112との間を0.1mm隔離しながら、n型GaN層102の残りの裏面部分にp電極を設けた。さらに各々の電極が電気的ショートしないように、n電極とp電極との間の隙間には表面保護のための絶縁体119を設けた。さらにショートしないようにリードフレームのマウント部121aの各々の電極位置に対応する部分に導電性接着剤114を設け、チップとリードフレームの横および縦方向、さらに回転方向のずれを制御しながらチップをリードフレームに搭載した。
(Comparative Example E)
In the same manufacturing method as in Comparative Example D, five n-electrodes 111 were provided at intervals of 0.5 mm, and 0.1 mm wide comb-shaped electrodes (see FIGS. 41 and 42). A p-electrode was provided on the remaining back surface portion of the n-type GaN layer 102 while separating the n-electrode 111 and the p-electrode 112 by 0.1 mm. Furthermore, an insulator 119 for protecting the surface was provided in the gap between the n electrode and the p electrode so that each electrode would not be electrically short-circuited. In order to prevent further short circuiting, a conductive adhesive 114 is provided at a portion corresponding to each electrode position of the mounting portion 121a of the lead frame, and the chip is mounted while controlling the deviation of the chip and the lead frame in the horizontal and vertical directions and the rotation direction. Mounted on the lead frame.

(実験およびその結果)
本発明例Cと比較例Dとを積分球内に搭載した後所定の電流を印加し、集光されディテクタから出力される光出力値の比較を行なった。20mAの電流印加において、本発明例Cの出力は8mWであり、一方比較例Dでは7.2mWであった。一方、2A(2000mA)の電流を印加したとき、本発明例Cでは100倍の出力の800mWが得られた。しかし、比較例Dでは破損していた。
(Experiment and its results)
The present invention example C and the comparative example D were mounted in an integrating sphere, a predetermined current was applied, and the light output values collected and output from the detector were compared. At a current application of 20 mA, the output of Invention Example C was 8 mW, while Comparative Example D was 7.2 mW. On the other hand, when a current of 2 A (2000 mA) was applied, in Example C of the present invention, an output of 800 mW of 100 times was obtained. However, Comparative Example D was damaged.

そこで比較例Dを樹脂封止をしない状態で、電流を印加しながらサーモビュアで素子の温度を測定した結果、n電極からMQW発光部へn型GaN層中を層に平行な方向に集中して電流が流れる部位が異常発熱し、破損したことがわかった。   Therefore, as a result of measuring the temperature of the element with a thermoviewer while applying current without applying resin sealing to Comparative Example D, the n-type GaN layer was concentrated in the direction parallel to the layer from the n electrode to the MQW light emitting portion. It was found that the part where the current flows was abnormally heated and damaged.

そこで、さらに比較例Dに対してn型電極からMQW発光部へn型GaN層中を層に平行な方向に流れる電流が分散する構造のものを作製した。これが上記の比較例Eである。比較例Eでは、印加電流20mAで7.2mW、2Aで720mWと、本発明例Cの0.9倍の出力を得ることができた。   Therefore, a structure having a structure in which a current flowing in a direction parallel to the n-type GaN layer from the n-type electrode to the MQW light-emitting portion is dispersed in comparison with Comparative Example D was prepared. This is Comparative Example E described above. In Comparative Example E, an output of 7.2 mW at an applied current of 20 mA and 720 mW at 2 A, 0.9 times that of Example C of the present invention, could be obtained.

このように、本発明例Cに近い性能を得ようとすれば、本発明例Cと比べて非常に複雑な構造およびプロセスが必要となるため製造コストは非常に大きなものとなる。   Thus, if it is going to obtain the performance close | similar to this invention example C, compared with this invention example C, since a very complicated structure and process are needed, a manufacturing cost will become very large.

次に、上記の本発明例C、比較例DおよびEについて静電耐圧の試験を行なった。試験は、上記のように、発光装置と、静電気がチャージされたコンデンサとを対向させて両者間に放電を生じさせた。このとき、比較例DおよびEではおよそ100Vの静電圧で破壊された。一方、本発明例Cではおよそ8000Vまで破壊することがなかった。すなわち、本発明例においては80倍程度の非常に高い静電耐圧を得ることができた。   Next, an electrostatic withstand voltage test was performed on the above-described inventive example C and comparative examples D and E. In the test, as described above, the light emitting device and the capacitor charged with static electricity were opposed to each other to cause discharge between them. At this time, Comparative Examples D and E were broken at a static voltage of about 100V. On the other hand, Example C of the present invention did not break down to about 8000V. That is, in the present invention example, an extremely high electrostatic withstand voltage of about 80 times could be obtained.

本発明例C1では、開口率は50%を大きく上回りほとんど100%である。また、GaN基板のコーナーに位置することにより、中央に位置する場合に比較して光取り出しの障害になることは飛躍的に低減される。図39に示す場合、平面的に見てn電極は活性層の外に位置するのでn電極が光取り出しに影響を及ぼすことはまったく無くなる。この結果、本発明例C1では本発明例Cよりさらに高い出力を得ることが可能である。   In Example C1 of the present invention, the aperture ratio greatly exceeds 50% and is almost 100%. Further, by being positioned at the corner of the GaN substrate, it is drastically reduced that it becomes an obstacle to light extraction as compared with the case of being positioned at the center. In the case shown in FIG. 39, since the n-electrode is located outside the active layer as viewed in plan, the n-electrode has no influence on the light extraction. As a result, the present invention example C1 can obtain a higher output than the present invention example C.

本発明の実施例3では、光放出面における開口率およびGaN基板の電気抵抗の光出力に及ぼす影響を測定した。開口率の調整は、基板面積またはp電極サイズとn電極サイズとを変えることにより行なった。試験体は、図1に示す構造のLEDを用いたが、一部の試験については、図43に示すように、蛍光材26を配置して白色LEDとした試験体についても試験した。試験体は、本発明例Fと、GaN基板の比抵抗が本発明の範囲に入らない比較例GおよびHの3体である。この後で説明する試験体F、G、Hの各々について図1に示す蛍光材を含まずエポキシ系樹脂で封止したものと、図43に示す蛍光材を搭載した白色LEDとを作製した。開口率は、{(p電極面積−n電極面積)/p電極面積}×100(%)とした。   In Example 3 of the present invention, the influence of the aperture ratio on the light emission surface and the electrical resistance of the GaN substrate on the light output was measured. The aperture ratio was adjusted by changing the substrate area or the p electrode size and the n electrode size. As the test body, an LED having the structure shown in FIG. 1 was used. However, as shown in FIG. 43, a test body in which a fluorescent material 26 was arranged to form a white LED was also tested for some tests. There are three test bodies, Example F of the present invention and Comparative Examples G and H, in which the specific resistance of the GaN substrate does not fall within the scope of the present invention. Each of test bodies F, G, and H to be described later was prepared by sealing with an epoxy resin without including the fluorescent material shown in FIG. 1 and a white LED equipped with the fluorescent material shown in FIG. The aperture ratio was {(p electrode area−n electrode area) / p electrode area} × 100 (%).

本発明例FのLP0=LN0=5.05mm、D=100μmであり、開口率はほぼ100%である。また、比較例GのLP0=LN0=5.05mm、D=100μmであり、開口率は97%である。また、比較例HのLP0=LN0=5.05mm、D=4.3mmであり、開口率は77%である。上記本発明例Fおよび比較例G、Hの製造方法について次に説明する。 In Example F of the present invention, L P0 = L N0 = 5.05 mm, D = 100 μm, and the aperture ratio is almost 100%. In Comparative Example G, L P0 = L N0 = 5.05 mm, D = 100 μm, and the aperture ratio is 97%. Further, L P0 = L N0 = 5.05 mm, D = 4.3 mm of Comparative Example H, and the aperture ratio is 77%. The manufacturing method of the above-mentioned Invention Example F and Comparative Examples G and H will be described below.

(本発明例F)
(f1)〜(f7)本発明例Aにおいて対応する処理と同じ処理を行なった。
(f8)その後に所定の形状になるよう、エッチングによる分割工程を行ない、チップ化したものを発光装置とした。得た発光装置は平面形状が正六角形であり、LP0=LN0=5.05mm、LP1=5mm、D=100mmである。
(f9)〜(f11)本発明例Aにおいて対応する処理と同じ処理を行なった。
(f12)上記の(f11)とは別に(f9)においてリードフレームのマウントに搭載したものの上のn電極側に蛍光材を搭載した後にエポキシ系樹脂により樹脂封止を行なって、白色に発光するランプをも作製した。これには450nmの光出力1ワット当り180lmが得られる蛍光材を使用した。
(Invention Sample F)
(F1)-(f7) The same process as the corresponding process in Invention Example A was performed.
(F8) After that, a dividing process by etching was performed so as to obtain a predetermined shape, and a chip was obtained as a light emitting device. The obtained light emitting device has a regular hexagonal plan shape, and L P0 = L N0 = 5.05 mm, L P1 = 5 mm, and D = 100 mm.
(F9)-(f11) The same process as the corresponding process in Invention Example A was performed.
(F12) Separately from the above (f11), after mounting the fluorescent material on the n-electrode side above the one mounted on the lead frame mount in (f9), resin sealing with epoxy resin is performed to emit white light. A lamp was also made. For this, a fluorescent material capable of obtaining 180 lm per watt of 450 nm light output was used.

(比較例G)
(g1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。比抵抗0.6Ω・cmと本発明の範囲0.5Ω・cm以下より高いものを選んだ。このG
aN基板の板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であり、また厚みは400μmとした。
(g2)〜(g7)本発明例Fにおいて対応する処理と同じ処理を行なった。
(g8)その後に、所定の形状になるようエッチングによる分割工程を行ない、チップ化したものを発光装置とした。得た発光装置は平面形状が正六角形であり、LP0=LN0=0.8mm、LP1=0.75mm、D=100μmである。
(g9)〜(g12)本発明例Fにおいて対応する処理と同じ処理を行なった。
(Comparative Example G)
(G1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. A specific resistance of 0.6 Ω · cm and higher than the range of 0.5 Ω · cm in the present invention were selected. This G
The dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 of the aN substrate was 1E6 / cm 2 and the thickness was 400 μm.
(G2) to (g7) The same processes as those in Example F of the present invention were performed.
(G8) After that, a dividing process by etching was performed so as to obtain a predetermined shape, and a chip was obtained as a light emitting device. The obtained light emitting device has a regular hexagonal planar shape, and L P0 = L N0 = 0.8 mm, L P1 = 0.75 mm, and D = 100 μm.
(G9)-(g12) The same process as the corresponding process in Invention Example F was performed.

(比較例H)
(h1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。比抵抗0.6Ω・cmと本発明の範囲0.5Ω・cm以下より高いものを選んだ。このGaN基板の板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であり、また厚みは400μmとした。
(h2)〜(h7)本発明例Fにおいて対応する処理と同じ処理を行なった。
(h8)その後に所定の形状になるよう、エッチングによる分割工程を行ない、チップ化したものを発光装置とした。得た発光装置は平面形状が正六角形であり、LP0=LN0=5.05mm、LP1=5mm、D=4.3mmである。
(h9)〜(h12)本発明例Fにおいて対応する処理と同じ処理を行なった。
(Comparative Example H)
(H1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. A specific resistance of 0.6 Ω · cm and higher than the range of 0.5 Ω · cm in the present invention were selected. The dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 of this GaN substrate was 1E6 / cm 2 and the thickness was 400 μm.
(H2) to (h7) The same processes as those in Example F of the present invention were performed.
(H8) After that, a dividing process by etching was performed so as to obtain a predetermined shape, and a light-emitting device was obtained as a chip. The obtained light emitting device has a regular hexagonal plan shape, and L P0 = L N0 = 5.05 mm, L P1 = 5 mm, and D = 4.3 mm.
(H9) to (h12) The same processes as those in Example F of the present invention were performed.

(実験およびその結果)
(1)本発明例Fおよび比較例G、Hについて、n電極からMQW層へ電流が比較的均一に広がる範囲の電流分布をシミュレーションで算出した。このシミュレーション結果を、本発明例Fおよび比較例G、Hの素子設計に反映している。図44に、電流の広がりのイメージ図を示す。図45は、MQWの発光層4における中心からの径方向距離をrとして、距離rにおける電流密度比を示す図である。電流密度はn電極中心の値を1とする。(i)本発明例Fの結果:n電極直下は最も電流密度が大きく、n電極から離れるにつれ電流密度は小さくなった。またn電極直下の1/3以上の電流密度が得られる範囲がn電極直下を中心に直径12mmとなった。この結果を基に、発光装置の大きさはそれに内包されるサイズとした。GaN基板の第2の主表面であるN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより8.78mm置きにチップの中心に直径100μmのn型電極をつけた。この場合、GaN基板のN面上でn型電極のない部分、つまり開口率は素子当りほぼ100%である。厚み、熱処理、接触抵抗は本発明例Aと同じである。(ii)比較例Gの結果:n電極直下の1/3以上の電流密度が得られる範囲がn電極直下を中心に直径1.4mmとなった。そこで本発明例Eとn電極の大きさとを合わせて直径100μmとし、チップサイズは直径1.4mmに内包される一辺の長さLP1=0.75mmであるである正六角形とした。そこでGaN基板のN面にはフォトリソグラフィ技術と、蒸着と、リフトオフ法とにより1.42mm置きにチップの中心に直径100μmのn型電極をつけた。この場合、開口率は素子当りほぼ99%である。厚み、熱処理、接触抵抗は本発明例A〜Eと同じである。(iii)比較例Hでは、本発明例Eとチップの大きさを合わせて本発明例Eのチップサイズと同様のチップサイズとした。GaN基板の電気抵抗は比較例Gと同じであり、電流の広がりが直径1.4mmとなるので、比較例Hの全体に均一に電流を流そうとすると(n型電極直下の1/3以上)、n電極は直径4.3mm必要である。そこで、GaN基板の第2の主表面(光放出面)には、エッチングによる分割工程でのエッチング代を考慮し、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより8.78mmおきに直径4.3mmのn電極をつけた。この場合、開口率は素子当りほぼ77%となる。
(Experiment and its results)
(1) For the inventive example F and comparative examples G and H, the current distribution in a range where the current spreads relatively uniformly from the n-electrode to the MQW layer was calculated by simulation. This simulation result is reflected in the element design of Example F of the present invention and Comparative Examples G and H. FIG. 44 shows an image diagram of current spreading. FIG. 45 is a diagram showing a current density ratio at a distance r, where r is a radial distance from the center of the MQW light-emitting layer 4. The current density is 1 at the center of the n electrode. (I) Result of Invention Example F: The current density was highest immediately below the n electrode, and the current density decreased as the distance from the n electrode was increased. In addition, the range in which a current density of 1/3 or more directly under the n electrode was obtained was 12 mm in diameter centering directly under the n electrode. Based on this result, the size of the light emitting device was set to a size included therein. On the N surface, which is the second main surface of the GaN substrate, an n-type electrode having a diameter of 100 μm was attached to the center of the chip every 8.78 mm by photolithography, vapor deposition, and lift-off method. In this case, the portion without the n-type electrode on the N surface of the GaN substrate, that is, the aperture ratio is almost 100% per element. The thickness, heat treatment, and contact resistance are the same as Example A of the present invention. (Ii) Results of Comparative Example G: The range in which a current density of 1/3 or more directly below the n electrode was obtained was 1.4 mm in diameter centering directly below the n electrode. Accordingly, the present invention example E and the size of the n-electrode were combined to a diameter of 100 μm, and the chip size was a regular hexagon with one side L P1 included in the diameter of 1.4 mm = 0.75 mm. Therefore, an n-type electrode having a diameter of 100 μm was attached to the center of the chip every 1.42 mm by photolithography technique, vapor deposition, and lift-off method on the N surface of the GaN substrate. In this case, the aperture ratio is approximately 99% per element. The thickness, heat treatment, and contact resistance are the same as those of Examples A to E of the present invention. (Iii) In Comparative Example H, the chip size of the inventive example E and the chip size were combined to be the same as the chip size of the inventive example E. The electrical resistance of the GaN substrate is the same as that of Comparative Example G, and the current spread is 1.4 mm in diameter. Therefore, when the current is to flow uniformly through Comparative Example H (1/3 or more directly below the n-type electrode) ), The n electrode needs a diameter of 4.3 mm. Therefore, the second main surface (light emission surface) of the GaN substrate is formed with a diameter of 4.78 mm every 8.78 mm by photolithography technique, vapor deposition, and lift-off method in consideration of the etching allowance in the dividing step by etching. A 3 mm n-electrode was attached. In this case, the aperture ratio is approximately 77% per element.

(2)本発明例Fと比較例G、Hとを、蛍光材を搭載しないもの同士を、積分球内に搭載した後、所定の電流を印加し、集光されディテクタから出力される光出力値の比較を行なった。結果を図46および図47に示す。   (2) The present invention F and Comparative Examples G and H, which are not mounted with a fluorescent material, are mounted in an integrating sphere, and then a predetermined current is applied to collect and output light from the detector. The values were compared. The results are shown in FIGS. 46 and 47.

20mAの電流印加では、本発明例Fと比較例G、Hとは、電極を配置していない部分の面積率と整合するように、それぞれ8mW、8mW、6.2mWの出力となった。本発明例Fと比較例Gで最も高光出力が得られた。そこでさらに500倍の10Aを印加した場合、本発明例Fおよび比較例Hとは、各々電極を配置しない部分の面積率に応じて4Wおよび3.1Wの出力が得られた。   When a current of 20 mA was applied, Examples F and Comparative Examples G and H resulted in outputs of 8 mW, 8 mW, and 6.2 mW, respectively, so as to match the area ratio of the portion where no electrode was disposed. The highest light output was obtained in Invention Example F and Comparative Example G. Therefore, when 500 A of 10 A was further applied, the outputs of 4 W and 3.1 W were obtained in the invention example F and the comparative example H in accordance with the area ratio of the portion where no electrode was arranged.

比較例Gでは、発光部の電流密度が110A/cm2のときまでは印加電流の増加に比例して出力が増加した。しかし、その後熱発生による温度上昇とともに出力が飽和し、電流10Aの印加により発光装置が壊れていた。 In Comparative Example G, the output increased in proportion to the increase in applied current until the current density of the light emitting portion was 110 A / cm 2 . However, the output was saturated as the temperature increased due to heat generation thereafter, and the light emitting device was broken by the application of the current 10A.

また、上記の3種の試験体の輝度を測定した結果を図48および図49に示す。図48は、蛍光材を配置して白色化したLEDの印加電流と得られた輝度との関係を示す図であり、また図49は同様に電流密度と輝度との関係を示す図である。本発明例Fと比較例Hは同じ蛍光材を使用しても、各々電極を配置しない部分の面積率に応じて得られる輝度が変わるので、10Aの印加電流で720lm/チップ、234lm/チップとなった。比較例Gは電流を10A印加すると破損した。図48および図49によれば、高電流で高い輝度が得られたのは本発明例Fだけであった。   Moreover, the result of having measured the brightness | luminance of said 3 types of test body is shown in FIG. 48 and FIG. FIG. 48 is a diagram showing the relationship between the applied current of the LED that is whitened by arranging the fluorescent material and the obtained luminance, and FIG. 49 is a diagram showing the relationship between the current density and the luminance similarly. In the present invention example F and comparative example H, even when the same fluorescent material is used, the luminance obtained varies depending on the area ratio of the portion where no electrode is arranged, so that the applied current of 10 A is 720 lm / chip, 234 lm / chip. became. Comparative Example G was damaged when a current of 10 A was applied. According to FIG. 48 and FIG. 49, only the present invention example F was able to obtain a high luminance at a high current.

なお、本実施例において電流印加を最大10Aとしたのは、それ以上電流を増やすとn電極でのジュール発熱密度が大きくなり過ぎて発熱が大きくなる可能性があるからである。   The reason why the current application is set to 10 A at the maximum in this embodiment is that if the current is increased further, the Joule heat generation density at the n electrode becomes too large and the heat generation may increase.

n電極を大きくするか、または接触抵抗を充分下げれば、最大電流が電流密度110A/cm2に対する70Aまで同じ効果を得ることができる。 If the n-electrode is enlarged or the contact resistance is sufficiently lowered, the same effect can be obtained up to a maximum current of 70 A with respect to a current density of 110 A / cm 2 .

(本発明例F-2およびF-3)
そこで、本発明例Fと同じ処理を施し、本発明例F-2ではn電極の直径Dを1mm(面積0.785mm2)とし、GaN基板の中央に配置した。また、本発明例F-3ではn電極を450μm□とし、GaN基板の6つのコーナーに配置した(図39および図40参照)。図39および図40に示したように、6つのコーナーに位置するn電極は、それぞれボンディングワイヤによってリードフレームと電気的に接続されている。ボンディングワイヤにはAu線を用い、その断面の直径は300μmである。この場合の開口率はいずれもほぼ100%である。また、本発明例C1と同様に、カップ状の反射体である反射カップ37を配置した。
(Invention Examples F-2 and F-3)
Therefore, the same processing as in Invention Example F was performed, and in Invention Example F-2, the diameter D of the n-electrode was set to 1 mm (area 0.785 mm 2 ) and arranged at the center of the GaN substrate. Further, in Example F-3 of the present invention, the n-electrode was set to 450 μm □ and arranged at six corners of the GaN substrate (see FIGS. 39 and 40). As shown in FIGS. 39 and 40, the n electrodes located at the six corners are electrically connected to the lead frame by bonding wires, respectively. Au wire is used as the bonding wire, and the cross-sectional diameter is 300 μm. In this case, the aperture ratio is almost 100%. In addition, a reflection cup 37, which is a cup-shaped reflector, was disposed in the same manner as in the inventive example C1.

本発明例Fと同様に蛍光材を搭載しないものを積分球に装入した後、所定の電流を印加して発光させた。その光を集光するディテクタから出力される光出力値を計測したところ、20mAの電流印加では8mW、印加電流を前記の500倍の10Aとした場合では4W、さらに70Aを印加した場合では28Wの出力を得ることができた。   As in Invention Example F, a non-fluorescent material-mounted one was inserted into an integrating sphere, and then light was emitted by applying a predetermined current. When the light output value output from the detector for condensing the light was measured, it was 8 mW when a current of 20 mA was applied, 4 W when the applied current was 10 times 500 times the above, and 28 W when 70 A was applied. The output could be obtained.

また、蛍光材を配置して白色光化したLEDの場合、5040lm/チップの輝度を得ることができた。   In addition, in the case of an LED that was whitened by arranging a fluorescent material, a luminance of 5040 lm / chip could be obtained.

もちろんサイズが小さく、印加電流の比較的小さい発光装置を多数個並べて同様の出力を得ることが可能であるが、素子配置の位置精度のためや電気的ショートを回避するため素子間に一定距離が必要となり、全体の大きさが極端に大きくなったり、また1個1個の素子に導通を施したりすると、極端にコストが高くなったりして実用的ではない。本発明によればそうした問題を避け従来と全く同じ製造プロセス数を用いて、ほぼ同じコストでまた大きさも必要最小限で高発光出力を得ることができる。   Of course, it is possible to arrange a large number of light emitting devices with a small size and a relatively small applied current to obtain the same output, but there is a certain distance between the elements for the positional accuracy of the element arrangement and to avoid electrical shorts. This is not practical because the overall size becomes extremely large, or if each element is electrically connected, the cost becomes extremely high. According to the present invention, such a problem can be avoided, and the same number of manufacturing processes as in the prior art can be used to obtain a high light output with substantially the same cost and the minimum size.

また発光波長や層構造が変わっても、または基板の特性が同等であれば、GaN基板の代わりにAlxGa1-xN基板(ただしxは0より大きく1以下)を用いても同様の効果があることは言うまでもない。 Even if the emission wavelength or the layer structure is changed or if the substrate characteristics are equivalent, an Al x Ga 1-x N substrate (where x is greater than 0 and less than or equal to 1) may be used instead of the GaN substrate. Needless to say, it is effective.

図39および図40に示すように、GaN基板のコーナーに位置するn電極とリードフレームとを半径150μmの6本のAu線で電気的に接続することにより、電極やワイヤが光取り出しの障害になることがなくなるので、さらに光出力を高めることが可能である。   As shown in FIGS. 39 and 40, by electrically connecting the n-electrode located at the corner of the GaN substrate and the lead frame with six Au wires having a radius of 150 μm, the electrodes and wires can obstruct light extraction. Therefore, it is possible to further increase the light output.

本発明の実施例4では、GaN基板厚みの光出力に及ぼす影響について説明する。図1に示すLEDと同じ構造を有する本発明例I、J、Kの3体の試験体を用いて、GaN基板の光吸収を測定した。試験体の作製方法について説明する。   In Example 4 of the present invention, the influence of the GaN substrate thickness on the light output will be described. The light absorption of the GaN substrate was measured using three specimens of Invention Examples I, J, and K having the same structure as the LED shown in FIG. A method for producing the test body will be described.

(本発明例I)
(i1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。このGaN基板の比抵抗は0.01Ω・cmであり、板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であった。このGaN基板は、厚み100μmとした。また、当該GaN基板では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51(図8参照)が形成されている。
(i2)MOCVDにより、GaN基板の第1の主表面上に、順に次の層を形成した。すなわち、(GaNバッファ層/Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.05Ga0.95N層との2層構造が3層重ねられたMQW層/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)の積層構造を形成した。なお、当該積層構造には、図8に示すようにGaN基板の板状結晶反転領域51が伝播する。
(i3)発光波長は380nmであり、低温4.2KでのPL強度と室温298KでのPL強度を比較することにより便宜的に算出した内部量子効率は50%であった。
(i4)本発明例Aにおいて対応する処理と同じ処理を施した。
(i5)まず点状のn電極からMQW層へ電流が比較的均一に広がる範囲をシミュレーションで算出した。その結果、n電極直下が最も電流密度が大きくn電極から離れるにつれ電流密度が小さくなった。またn電極直下の1/3以上の電流密度が得られる範囲がn電極直下を中心に直径3mmとなったので、発光装置の形状はそれに内包されるように、一辺の長さLP0=LN0=1.55mmである正六角形とした。GaN基板のN面にはフォトリソグラフィ技術と、蒸着と、リフトオフ法とにより2.8mm置きに直径100μmのn型電極をつけた。この場合、GaN基板のGa面上でn型電極のない部分、つまり開口率は素子当りほぼ100%である。厚み、熱処理、接触抵抗は本発明例Aと同じである。
(i6)〜(i7)本発明例Aにおいて対応する処理と同じ処理を行なった。
(i8)その後に所定の形状になるよう、エッチングによる分割工程を行ない、チップ化したものを発光装置とした。得た発光装置の平面形状は、一辺の長さLP0=LN0=1.6mmである正六角形である。
(i9)〜(i11)本発明例Aにおいて対応する処理と同じ処理を行なった。
(Invention Sample I)
(I1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. The specific resistance of this GaN substrate was 0.01 Ω · cm, and the dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 was 1E6 / cm 2 . This GaN substrate had a thickness of 100 μm. In the GaN substrate, plate-like crystal inversion regions 51 (see FIG. 8) distributed in parallel in the thickness direction of the GaN substrate are formed.
(I2) The following layers were formed in order on the first main surface of the GaN substrate by MOCVD. That is, (MQW layer in which two layers of GaN buffer layer / Si doped n-type GaN layer / Si doped n-type Al 0.2 Ga 0.8 N layer / GaN layer and In 0.05 Ga 0.95 N layer are stacked in three layers) A stacked structure of / clad layer Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer) was formed. In addition, as shown in FIG. 8, the plate-like crystal inversion region 51 of the GaN substrate propagates in the laminated structure.
(I3) The emission wavelength was 380 nm, and the internal quantum efficiency calculated for convenience by comparing the PL intensity at a low temperature of 4.2K and the PL intensity at a room temperature of 298K was 50%.
(I4) The same process as the corresponding process in Invention Example A was performed.
(I5) First, the range in which the current spreads relatively uniformly from the dotted n-electrode to the MQW layer was calculated by simulation. As a result, the current density was the largest directly under the n electrode, and the current density decreased as the distance from the n electrode was increased. In addition, since the range in which a current density of 1/3 or more directly under the n electrode is obtained is 3 mm in diameter centering directly under the n electrode, the length of one side L P0 = L so that the shape of the light emitting device is included therein. A regular hexagon having N0 = 1.55 mm was used. On the N surface of the GaN substrate, n-type electrodes having a diameter of 100 μm were attached every 2.8 mm by photolithography, vapor deposition, and lift-off method. In this case, the portion without the n-type electrode on the Ga surface of the GaN substrate, that is, the aperture ratio is approximately 100% per element. The thickness, heat treatment, and contact resistance are the same as Example A of the present invention.
(I6)-(i7) The same process as the corresponding process in Invention Example A was performed.
(I8) After that, a dividing process by etching was performed so as to obtain a predetermined shape, and a light-emitting device was formed as a chip. The planar shape of the obtained light-emitting device is a regular hexagon with one side length L P0 = L N0 = 1.6 mm.
(I9) to (i11) The same processes as those in Example A of the present invention were performed.

(本発明例J)
(j1)c面から0.5°ずらしたAlxGa1-xNのオフ基板を使用した。比抵抗は0.01Ω・cmであり、板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であった。n型AlxGa1-xN基板の厚みは100μmとした。Alの原子比率x=0.2、0.5、1と3種類のものを用いた。また、当該基板では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51(図8参照)が形成されている。
(j2)MOCVDにより、AlxGa1-xN基板の第1の主表面上に、次の積層構造を形成した。(クラッド層のSiドープn型クラッドAl0.2Ga0.8N/GaNとIn0.05Ga0.95Nとの2層構造を3層重ねたMQW層/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)を順に形成する。なお、当該積層構造には、図8に示すようにGaN基板の板状結晶反転領域51が伝播する。
(j3)〜(j4)本発明例Iにおいて対応する処理と同じ処理を行なった。
(j5)Al1-xGaxN基板の第2の主表面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより2.8mmおきに直径100μmのn電極をつけた。n電極は、Al1-xGaxN基板の第2の主表面に接して下から順に(Ti層20nm/Al層/100nm/Ti層20nm/Au層200nm)の積層構造を形成することにより構成した。これを不活性雰囲気中で加熱処理することにより、接触抵抗を1E−4Ω・cm2以下とした。
(j6)〜(j11)本発明例Iにおいて対応する処理と同じ処理を行なった。
(Invention Sample J)
(J1) An off substrate of Al x Ga 1-x N shifted by 0.5 ° from the c-plane was used. The specific resistance was 0.01 Ω · cm, and the dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 was 1E6 / cm 2 . The thickness of the n-type Al x Ga 1-x N substrate was 100 μm. Three kinds of Al atomic ratios x = 0.2, 0.5, 1 were used. Further, on the substrate, plate-like crystal inversion regions 51 (see FIG. 8) distributed in parallel in the thickness direction of the GaN substrate are formed.
(J2) The following laminated structure was formed on the first main surface of the Al x Ga 1-x N substrate by MOCVD. (Clad layer Si-doped n-type clad Al 0.2 Ga 0.8 N / GaN and In 0.05 Ga 0.95 N two-layer MQW layer / clad layer Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg A doped p-type GaN layer) is formed in order. In addition, as shown in FIG. 8, the plate-like crystal inversion region 51 of the GaN substrate propagates in the laminated structure.
(J3) to (j4) The same processing as that in Example I of the present invention was performed.
(J5) On the second main surface of the Al 1-x Ga x N substrate, n-electrodes having a diameter of 100 μm were attached every 2.8 mm by photolithography, vapor deposition, and lift-off method. The n-electrode is in contact with the second main surface of the Al 1-x Ga x N substrate to form a laminated structure of (Ti layer 20 nm / Al layer / 100 nm / Ti layer 20 nm / Au layer 200 nm) in order from the bottom. Configured. This was heat-treated in an inert atmosphere so that the contact resistance was 1E-4 Ω · cm 2 or less.
(J6) to (j11) The same processing as that in Example I of the present invention was performed.

(比較例K)
(k1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。このGaN基板の比抵抗は0.01Ω・cmであり、板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であった。このGaN基板は、厚み1mm(1000μm)とした。また、当該GaN基板では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51(図8参照)が形成されている。
(k2)〜(k4)本発明例Iにおいて対応する処理と同じ処理を施した。
(k5)発光素子(チップ)のサイズは本発明例Gと同じサイズとした。GaN基板の第2の主表面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより2.8mmおきに直径100μmのn型電極をつけた。この場合GaN基板の第2の主表面(光放出面)でn電極のない部分の比率、つまり、開口率は素子当りほぼ100%である。厚み、熱処理、接触抵抗は本発明例Iと同じとした。
(k6)〜(k11)発明例Iにおいて対応する処理と同じ処理を行なった。
(Comparative Example K)
(K1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. The specific resistance of this GaN substrate was 0.01 Ω · cm, and the dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 was 1E6 / cm 2 . The GaN substrate had a thickness of 1 mm (1000 μm). In the GaN substrate, plate-like crystal inversion regions 51 (see FIG. 8) distributed in parallel in the thickness direction of the GaN substrate are formed.
(K2) to (k4) The same processes as those in Example I of the present invention were performed.
(K5) The size of the light emitting element (chip) was the same as that of Example G of the present invention. On the second main surface of the GaN substrate, n-type electrodes having a diameter of 100 μm were attached every 2.8 mm by photolithography, vapor deposition, and lift-off method. In this case, the ratio of the second main surface (light emitting surface) of the GaN substrate where no n-electrode is present, that is, the aperture ratio is approximately 100% per element. The thickness, heat treatment, and contact resistance were the same as in Invention Example I.
(K6) to (k11) The same processing as that in Invention Example I was performed.

(実験およびその結果)
まず、基板厚みの違う本発明例I、Jおよび比較例Kの基板1を用意し、波長380nmの入射光に対する透過率を測定した。図50および図51に光透過率測定試験の概要を示す。本発明例IおよびJの厚みが100μmであるのに比して比較例Kの厚みが1mm(1000μm)と厚い。試験の結果を図52に整理して示す。
(Experiment and its results)
First, the substrates 1 of Invention Examples I and J and Comparative Example K having different substrate thicknesses were prepared, and the transmittance for incident light having a wavelength of 380 nm was measured. 50 and 51 show an outline of the light transmittance measurement test. The thickness of Comparative Example K is as thick as 1 mm (1000 μm) as compared to Inventive Examples I and J of 100 μm. The test results are shown in FIG.

図52によれば、本発明例I、Jおよび比較例Kについて、透過率は各々70%、90%および10%であった。本発明例Jでは、Alの原子数比x=0.2、0.5および1と3種類の基板を作製したが、いずれの透過率も90%であった。   According to FIG. 52, the transmittances of Examples I and J of the present invention and Comparative Example K were 70%, 90% and 10%, respectively. In Example J of the present invention, three types of substrates were prepared: Al atomic ratio x = 0.2, 0.5, and 1, and the transmittance was 90%.

そこで、蛍光材を搭載して白色LEDにした本発明例I、J、および比較例Kとを、積分球内に搭載した後所定の電流を印加し、集光されディテクタから出力される光出力値の比較を行なった。電流20mAを印加したところ、本発明例I、J、および比較例Kとで、4.2mW、5.4mW(上記3種類すべて)および0.6mWの出力が得られた。この差は各々の基板の透過率の差によるものであるが、GaN基板の場合波長400nmより短波長で極端にその光の透過率が小さくなるため、その場合、本発明のように基板をAlxGa1-xNとすることで高い光の取出しを得ることができる。 Therefore, the present invention Examples I and J and Comparative Example K, which are white LEDs with a fluorescent material, are mounted in an integrating sphere, and then a predetermined current is applied to collect and output from the detector. The values were compared. When a current of 20 mA was applied, outputs of 4.2 mW, 5.4 mW (all three types) and 0.6 mW were obtained in Invention Examples I and J and Comparative Example K. This difference is due to the difference in the transmittance of each substrate. In the case of a GaN substrate, the light transmittance is extremely small at a wavelength shorter than 400 nm. By using xGa1 -xN , high light extraction can be obtained.

また、GaN基板を薄くすることでも高い光の取出しを得ることができる。厚みは薄すぎてもn電極からMQWへの電流の広がり範囲が小さくなりすぎ、厚すぎると前述のように取出し効率が悪くなるため、発光波長にもよるが、その厚みは50μm〜500μmが望ましい。また本発明例のようにGaN基板の厚みが100μm程度の薄いものを使用することにより、GaN基板の製造コストを小さくすることができ、より低コストの発光装置を製造することが可能となる。発光波長によらず、基板厚みの低減により低コスト化できることは言うまでもない。   Also, high light extraction can be obtained by thinning the GaN substrate. Even if the thickness is too thin, the current spreading range from the n-electrode to the MQW becomes too small, and if it is too thick, the extraction efficiency deteriorates as described above, so that the thickness is preferably 50 μm to 500 μm, although it depends on the emission wavelength. . Further, by using a thin GaN substrate having a thickness of about 100 μm as in the present invention example, it is possible to reduce the manufacturing cost of the GaN substrate and to manufacture a light emitting device at a lower cost. It goes without saying that the cost can be reduced by reducing the substrate thickness regardless of the emission wavelength.

本発明の実施例5では、基板上に形成されるn型GaN層の厚みの製造歩留りについて説明する。用いた試験体は、GaN基板を用いる本発明例Aと同じ構造の本発明例Lと、サファイア基板を用いる比較例Bと同様の構造の比較例M、Nの3体である。   In Example 5 of the present invention, the manufacturing yield of the thickness of the n-type GaN layer formed on the substrate will be described. The test bodies used are the present invention example L having the same structure as the present invention example A using the GaN substrate, and the comparative examples M and N having the same structure as the comparative example B using the sapphire substrate.

(本発明例L)
(l1)本発明例Aにおいて対応する処理と同じ処理を行なう。
(l2)MOCVDにより、次の積層構造を形成する(図2参照)。(GaN基板/GaNバッファ層/Siドープn型GaN層2/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.1Ga0.9N層の2層構造を3層重ねたMQW層/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)を形成する。図2を参照して、Siドープn型GaN層2の厚みtは100nmとした。
(l3)〜(l11)本発明例Aにおいて対応する処理と同様の処理を行なった。このとき素子分離にエッチング溝25を形成すると、エッチング溝底部25aは図53に示すように完全には平坦にはならず多少の凹凸のある形状となる。本発明例Lの場合は、上記のように中央部がGaN基板やバッファ層に達してもこの部分に電極などを設けることがないので、この部分における深さや底部の平坦度が多少変動しても製造歩留り等に及ぼす影響は小さい。
(Invention Sample L)
(L1) The same process as the corresponding process in Invention Example A is performed.
(L2) The following laminated structure is formed by MOCVD (see FIG. 2). (GaN substrate / GaN buffer layer / Si doped n-type GaN layer 2 / Clad layer Si-doped n-type Al 0.2 Ga 0.8 N layer / MQW layer in which two layers of GaN layer and In 0.1 Ga 0.9 N layer are stacked in three layers) / Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer). Referring to FIG. 2, the thickness t of the Si-doped n-type GaN layer 2 was 100 nm.
(L3)-(l11) The same process as the corresponding process in Invention Example A was performed. At this time, if the etching groove 25 is formed for element isolation, the etching groove bottom 25a does not become completely flat as shown in FIG. In the case of the present invention example L, as described above, even if the central portion reaches the GaN substrate or the buffer layer, no electrode or the like is provided in this portion. However, the effect on manufacturing yield is small.

(比較例M)
(m1)比較例Bにおいて対応する処理と同様の処理を行なった。
(m2)MOCVDにより、サファイア基板上に、次の積層構造を形成した(図34参照)。(サファイア基板/GaNバッファ層/Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.1Ga0.9N層との2層構造を3層重ねたMQW層/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)を形成する。図34を参照して、Siドープn型GaN層102の厚みは3μmとした。
(m3)〜(m11)比較例Bにおける対応する処理と同じ処理を行なった。このとき素子分離のエッチング溝125を形成すると、エッチング溝底部125aは、図54に示すように完全には平坦にはならず多少の凹凸のある形状となる。しかし比較例Mの場合は、Siドープn型GaN層102の厚みは3μmと厚いので、上記のように中央部がバッファ層やサファイア基板に達することがない。この結果、この部分における深さや底部の平坦度が多少変動しても製造歩留り等に及ぼす影響は小さい。
(Comparative Example M)
(M1) A process similar to the corresponding process in Comparative Example B was performed.
(M2) The following laminated structure was formed on the sapphire substrate by MOCVD (see FIG. 34). (Sapphire substrate / GaN buffer layer / Si doped n-type GaN layer / Si doped n-type Al 0.2 Ga 0.8 N layer / clad layer MQW layer in which two layers of GaN layer and In 0.1 Ga 0.9 N layer are stacked in three layers / Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer). Referring to FIG. 34, the thickness of the Si-doped n-type GaN layer 102 was 3 μm.
(M3)-(m11) The same process as the corresponding process in Comparative Example B was performed. At this time, when the element isolation etching groove 125 is formed, the etching groove bottom portion 125a does not become completely flat as shown in FIG. However, in the case of the comparative example M, since the thickness of the Si-doped n-type GaN layer 102 is as thick as 3 μm, the central portion does not reach the buffer layer or the sapphire substrate as described above. As a result, even if the depth in this portion and the flatness of the bottom portion vary somewhat, the influence on the manufacturing yield is small.

(比較例N)
(n1)比較例Bにおける対応する処理と同じ処理を行なった。
(n2)MOCVDにより、サファイア基板面上に、次の積層構造を形成した(図34参照)。(GaNバッファ層/Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.1Ga0.9N層との2層構造を3層重ねたMQW層/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層を形成した。図34を参照して、Siドープn型GaN層102の厚みは100nmとした。
(n3)〜(n4)比較例Bにおける対応する処理と同じ処理を行なった。
(n5)比較例Nの場合、サファイア基板の上にサファイアとは格子定数の異なるGaN系多層膜を成長させるため、n型GaN層の厚みが100nmと薄過ぎると良質の多層膜を得ることができず、発光出力は極端に小さくなる。
(Comparative Example N)
(N1) The same process as the corresponding process in Comparative Example B was performed.
(N2) The following laminated structure was formed on the sapphire substrate surface by MOCVD (see FIG. 34). (GaN buffer layer / Si-doped n-type GaN layer / Clad layer Si-doped n-type Al 0.2 Ga 0.8 N layer / MQW layer / cladding layer in which two layers of a GaN layer and an In 0.1 Ga 0.9 N layer are stacked in three layers) The Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer was formed with reference to Fig. 34. The thickness of the Si-doped n-type GaN layer 102 was 100 nm.
(N3)-(n4) The same process as the corresponding process in Comparative Example B was performed.
(N5) In the case of Comparative Example N, a GaN-based multilayer film having a lattice constant different from that of sapphire is grown on the sapphire substrate, so that a good-quality multilayer film can be obtained if the n-type GaN layer is too thin at 100 nm. The light emission output becomes extremely small.

また、比較例Nの場合、サファイア基板が絶縁体であるためn電極はp電極と同じ成長膜側に設ける必要がある。そこでこのウエハをさらに、フォトリソグラフィ技術とRIEにより、Mgドープp型層側からSiドープn型GaN層までCl系ガスでエッチングすることにより、n型電極を設けるためにn型GaN層を露出させようとした。しかし、図55に示すように、本比較例NではSiドープn型GaN層の厚みが100nm(0.1μm)と薄いために、ウエハ内に均一にn型GaN層を露出させることができない。このため、場所によって露出面がn型AlxGa1-xN層だったり、GaNバッファ層だったりした。熱リン酸などを用いてウエットエッチングを試みたが、どのようなエッチャントでも同様の結果だった。 In the case of Comparative Example N, since the sapphire substrate is an insulator, the n electrode needs to be provided on the same growth film side as the p electrode. Therefore, the n-type GaN layer is exposed to provide an n-type electrode by etching this wafer with Cl-based gas from the Mg-doped p-type layer side to the Si-doped n-type GaN layer by photolithography and RIE. I tried. However, as shown in FIG. 55, in this comparative example N, since the thickness of the Si-doped n-type GaN layer is as thin as 100 nm (0.1 μm), the n-type GaN layer cannot be uniformly exposed in the wafer. For this reason, the exposed surface was an n-type Al x Ga 1-x N layer or a GaN buffer layer depending on the location. Wet etching was attempted using hot phosphoric acid, but the results were the same for any etchant.

(実験結果)
実施例1と同じ要領で光出力を測定した結果、本発明例Lでは印加電流20mAで8mWの出力を得た。一方、同じ印加電流で、比較例Mでは7.2mWの出力を得た。また、本発明例Lの構造では、n型GaN層の厚みを3μmから100nmと薄くしても同等の出力を得ることができた。またn電極を導電性GaN基板のN面に設けることができるため、Siドープn型GaN層を露出させることは必要ない。
(Experimental result)
As a result of measuring the optical output in the same manner as in Example 1, in Example L of the present invention, an output of 8 mW was obtained at an applied current of 20 mA. On the other hand, in the comparative example M, an output of 7.2 mW was obtained with the same applied current. In the structure of Invention Example L, the same output could be obtained even if the thickness of the n-type GaN layer was reduced from 3 μm to 100 nm. Further, since the n-electrode can be provided on the N surface of the conductive GaN substrate, it is not necessary to expose the Si-doped n-type GaN layer.

基板上に成長する発光素子の膜厚は、対象とする波長や出力にもよるが、通常せいぜい6μm以下であり、その大部分を占めるSiドープn型GaN層の厚みを、本発明例では3μmから100nmと薄くすることができる。この結果、本発明例によれば、膜成長のコストを飛躍的に小さくすることが可能である。   The thickness of the light-emitting element grown on the substrate is usually 6 μm or less at most, although it depends on the target wavelength and output, and the thickness of the Si-doped n-type GaN layer occupying most of it is 3 μm in the present invention example. To 100 nm. As a result, according to the example of the present invention, the cost of film growth can be drastically reduced.

比較例Nの試験体の処理工程(n5)で説明したように、n型GaN層を100nm(0.1μm)と薄くすると、n型GaN層露出の歩留まりが非常に悪く実用的ではない。また、将来の技術進歩により仮に均一な露出が実現したとしても、層の厚みが薄すぎるため、実施例1における比較例Bのように、n型GaN層中を層に平行な方向に流れる電流の電流密度が極端に大きくなり過ぎて発熱が増加し、実用的な光出力は得ることができない(図55参照)。もちろん蛍光材を用いて白色とした場合や発光波長を変えた場合でも同様の効果が得られるのは言うまでもない。   As described in the processing step (n5) of the test body of Comparative Example N, when the n-type GaN layer is made as thin as 100 nm (0.1 μm), the yield of n-type GaN layer exposure is very poor and is not practical. Further, even if uniform exposure is realized by future technological advancement, since the thickness of the layer is too thin, the current flowing in the n-type GaN layer in a direction parallel to the layer as in Comparative Example B in Example 1 The current density becomes excessively large and heat generation increases, so that practical light output cannot be obtained (see FIG. 55). Of course, it goes without saying that the same effect can be obtained even when the fluorescent material is used in white or when the emission wavelength is changed.

本発明の実施例6では、GaN基板の転位密度の光出力に及ぼす影響について説明する。用いた試験体は、本発明例Aと同じ構造を有し、転位密度が1E6/cm2の本発明例Oおよび転位密度が1E9/cm2の比較例Pの2体である。 In Example 6 of the present invention, the influence of the dislocation density of the GaN substrate on the light output will be described. The test specimens used are two bodies of the invention example O having the same structure as the invention example A, a dislocation density of 1E6 / cm 2 , and a comparative example P having a dislocation density of 1E9 / cm 2 .

(本発明例O)
(o1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。このGaN基板の比抵抗は0.01Ω・cmであり、当該GaN基板では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51(図8参照)が形成されている。当該板状結晶反転領域51に囲まれた正六角形状の単結晶領域の転位密度は1E6/cm2であった。このGaN基板の厚みは400μmとした。
(o2)〜(o11)本発明例Aにおける対応する処理と同じ処理を行なった。
(Invention Sample O)
(O1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. The specific resistance of the GaN substrate is 0.01 Ω · cm. In the GaN substrate, plate-like crystal inversion regions 51 (see FIG. 8) distributed in parallel in the thickness direction of the GaN substrate are formed. The dislocation density of the regular hexagonal single crystal region surrounded by the plate crystal inversion region 51 was 1E6 / cm 2 . The thickness of this GaN substrate was 400 μm.
(O2) to (o11) The same process as the corresponding process in Invention Example A was performed.

(比較例P)
(p1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。このGaN基板の比抵抗は0.01Ω・cmであり、当該GaN基板では、GaN基板の厚み方向に並列に分布した、板状結晶反転領域51(図8参照)が形成されている。当該板状結晶反転領域51に囲まれた正六角形状の単結晶領域の転位密度は5E8/cm2であった。このGaN基板の厚みは、本発明例Oと同じ400μmとした。
(p2)〜(p11)本発明例Aにおける対応する処理と同じ処理を行なった。
(Comparative Example P)
(P1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. The specific resistance of the GaN substrate is 0.01 Ω · cm. In the GaN substrate, plate-like crystal inversion regions 51 (see FIG. 8) distributed in parallel in the thickness direction of the GaN substrate are formed. The dislocation density of the regular hexagonal single crystal region surrounded by the plate crystal inversion region 51 was 5E8 / cm 2 . The thickness of the GaN substrate was 400 μm, which is the same as Example O of the present invention.
(P2) to (p11) The same processing as that in Example A of the present invention was performed.

(実験結果)
実施例1と同じように、光出力を測定した結果、本発明例Oおよび比較例Pにおいて、印加電流20mAでともに8mWの出力を、また印加電流100mAでは各々40mWおよび30mWの出力を得た。このように本発明例Oは比較例Pと比べたとき、より高い発光出力を得ることができる。
(Experimental result)
As in Example 1, the optical output was measured. As a result, in Invention Example O and Comparative Example P, an output of 8 mW was obtained at an applied current of 20 mA, and outputs of 40 mW and 30 mW were obtained at an applied current of 100 mA, respectively. Thus, the inventive example O can obtain a higher light output when compared with the comparative example P.

本発明例Oと比較例Pとでは、比抵抗や厚み等は同じなので、発熱や放熱は同じである。上記光出力の差が熱の影響でないことを確認するため、duty比1%、印加時間1μsの100μsサイクルのパルス電流を印加し比較した。この試験結果は、上述の結果と同じであり、印加電流100mAにおいて各々40mWおよび30mWの出力を得た。   The invention example O and the comparative example P have the same specific resistance, thickness, and the like, and thus generate heat and release heat. In order to confirm that the difference in light output was not affected by heat, a pulse current of 100 μs cycle with a duty ratio of 1% and an application time of 1 μs was applied for comparison. This test result was the same as the above-mentioned result, and outputs of 40 mW and 30 mW were obtained at an applied current of 100 mA, respectively.

したがって、メカニズムは必ずしも明らかではないが、熱の影響ではなく転位密度の差によって、高電流密度での発光出力の差が得られた。また、発光波長や層構造を変えた場合や、蛍光材を設けた白色とした場合でも同様の効果が得られることを発明者の実験により確認している。   Therefore, although the mechanism is not necessarily clear, a difference in light emission output at a high current density was obtained due to a difference in dislocation density rather than a thermal effect. Moreover, it has been confirmed by the inventors' experiment that the same effect can be obtained even when the emission wavelength or the layer structure is changed, or when the fluorescent material is white.

本発明の実施例7では、光出力に及ぼす表面および端面の非鏡面化の影響について説明する。用いた試験体は、本発明例Q、Rである。本発明例Qは、表面および端面を非鏡面化した図56に示すLEDであり、本発明例Rは、非鏡面化を行なわない図57に示すLEDである。   In the seventh embodiment of the present invention, the influence of non-specularization of the surface and the end surface on the light output will be described. The specimens used are Examples Q and R of the present invention. Example Q of the present invention is the LED shown in FIG. 56 with the surface and end surfaces being made non-specular, and Example R of the invention is the LED shown in FIG. 57 without being made non-specular.

(本発明例Q)
(q1)〜(q6)本発明例Fにおいて対応する処理と同じ処理を行なった。
(q7)GaN基板のN面および素子端面を非鏡面とするため、本発明例Fの製造方法における(f7)に示した工程(保護マスクを形成する工程)を実施することなく、本発明例Fの製造方法における(f8)に示した工程を実施する。なお、非鏡面とする方法はRIEなどのドライエッチやウエットエッチなどを用いてもよい。このようなエッチングによる非鏡面化方法のほかに機械的に研磨する方法を用いてもよい。本実施例では、上述のようにエッチャントとしてKOH水溶液を用いたウエットエッチによる方法を適用した。なお、GaN基板のN面を非鏡面化処理するためだけにウエットエッチを行なう場合、4mol/lのKOH水溶液を、温度を40℃に保った状態で十分に攪拌したのち、ウエハを30分間スターラーの中に浸漬するという方法を用いてもよい。このようにしても、GaN基板のN面および素子端面を非鏡面化できる。
(q8)〜(q11)本発明例Fにおいて対応する処理と同じ処理を行なった。
(Invention Sample Q)
(Q1)-(q6) The same process as the corresponding process in Invention Example F was performed.
(Q7) In order to make the N-face and element end face of the GaN substrate non-specular, the present invention example was carried out without carrying out the step (the step of forming a protective mask) shown in (f7) in the production method of the present invention example F The process shown in (f8) in the manufacturing method of F is performed. The non-mirror surface may be dry etching such as RIE or wet etching. A mechanical polishing method may be used in addition to such a non-mirror surface method by etching. In this embodiment, as described above, the wet etching method using a KOH aqueous solution as an etchant was applied. When wet etching is performed only for the non-specularization of the N surface of the GaN substrate, a 4 mol / l aqueous KOH solution is sufficiently stirred while maintaining the temperature at 40 ° C., and then the wafer is stirred for 30 minutes. You may use the method of immersing in. Even in this case, the N-face and the element end face of the GaN substrate can be made non-specular.
(Q8)-(q11) The same process as the corresponding process in Invention Example F was performed.

(比較例R)
本発明例Fと同じものである。
(Comparative Example R)
This is the same as Example F of the present invention.

(実験結果)
実施例1と同じように光出力を測定した結果、本発明例Qおよび比較例Rは印加電流10Aで各々4.8Wおよび4Wの出力を得た。また蛍光材を設けて白色とした場合、印加電流10Aにおいて、本発明例Qで1150lmを、また比較例Rで960lmの出力を得た。すなわち、本発明例Qにおいて、より高発光出力を得ることができた。もちろん発光波長を変えた場合でも同様の効果があることは言うまでもない。これは、基板およびn型GaN層の表面および端面が鏡面状態では、図57に示すように、屈折率の高いGaNの表面で全反射が生じ易く、内部から外側に光が抜けにくいからである。これに対して、図57に示すように非鏡面化すると、外部への光放出効率を高めることができる。
(Experimental result)
As a result of measuring the optical output in the same manner as in Example 1, Examples Q and R of the present invention obtained outputs of 4.8 W and 4 W, respectively, at an applied current of 10 A. Further, when the fluorescent material was provided to be white, an output of 1150 lm was obtained in the invention example Q and 960 lm was obtained in the comparative example R at an applied current of 10 A. That is, in Example Q of the present invention, a higher light emission output could be obtained. Needless to say, the same effect can be obtained even when the emission wavelength is changed. This is because, when the surface and the end face of the substrate and the n-type GaN layer are in a mirror state, total reflection is likely to occur on the surface of GaN having a high refractive index as shown in FIG. . On the other hand, when it is made non-specular as shown in FIG. 57, the light emission efficiency to the outside can be increased.

なお、非鏡面化にKOH水溶液を使用する場合、濃度が0.1〜8mol/l、温度が20〜80℃の範囲で行なうと同様の効果が得られることが発明者の実験によりわかっている。   In addition, when using KOH aqueous solution for non-specularization, it is known from the experiment of the inventors that the same effect can be obtained if the concentration is 0.1 to 8 mol / l and the temperature is in the range of 20 to 80 ° C. .

本発明の実施例8では、光出力に及ぼすp型電極における反射率の影響について説明する。用いた試験体は、本発明例S、T、U、V、Wの5体である。   In Example 8 of the present invention, the influence of the reflectance of the p-type electrode on the light output will be described. The test bodies used were five examples S, T, U, V, and W of the present invention examples.

(本発明例S)
(s1)〜(s5)本発明例Fにおいて対応する処理と同じ処理を行なった。
(s6)p電極は、次の方法で作製される。p型GaN層に接して下層から順に4nm厚みのNi層、および4nm厚みのAu層を形成する。次いで、不活性雰囲気中で加熱処理する。この後に、上記のAu層の上に100nm厚みのAg層を形成する。上記方法で作製されたp電極の接触抵抗は5E−4Ω・cm2であった。
(Invention Sample S)
(S1) to (s5) The same processes as those in Example F of the present invention were performed.
(S6) The p-electrode is manufactured by the following method. A 4 nm thick Ni layer and a 4 nm thick Au layer are formed in this order from the lower layer in contact with the p-type GaN layer. Next, heat treatment is performed in an inert atmosphere. Thereafter, an Ag layer having a thickness of 100 nm is formed on the Au layer. The contact resistance of the p-electrode produced by the above method was 5E-4 Ω · cm 2 .

また上記p電極のうち、ガラス板の上に接して下層から順に形成した(4nm厚みのNi層/4nm厚みのAu層)に、同じ熱処理を施した後に透過率を測定した。その結果、Ni層側からの450nmの入射光に対する透過率は70%であった。さらに、100nm厚みのAg層をガラス板につけて反射率を測定した。この結果、450nmの入射光に対して反射率88%が得られた。そこで(4nm厚みのNi層/4nm厚みのAu層/100nmのAg層)をNi層を下層にしてガラス板に形成して、同じ熱処理をした後に反射率を測定した。その結果、450nmの入射光に対して44%の反射率が得られた。この反射率は、波長450nmの入射光が、(4nm厚みのNi層/4nm厚みのAu電極層)を70%の透過率で透過した後、Ag層で88%の反射率で反射し、再び(4nm厚みのNi層と4nm厚みのAu電極層)を70%の透過率で透過したとする反射率に一致する。
(s7)〜(s11)本発明例Fにおいて対応する処理と同じ処理を行なった。
Moreover, the transmittance | permeability was measured after performing the same heat processing to the p electrode which contacted on the glass plate and formed in order from the lower layer (4 nm-thickness Ni layer / 4 nm-thickness Au layer). As a result, the transmittance for incident light of 450 nm from the Ni layer side was 70%. Further, an Ag layer having a thickness of 100 nm was attached to a glass plate, and the reflectance was measured. As a result, a reflectance of 88% was obtained with respect to 450 nm incident light. Therefore, (4 nm thick Ni layer / 4 nm thick Au layer / 100 nm Ag layer) was formed on a glass plate with the Ni layer as the lower layer, and the reflectance was measured after the same heat treatment. As a result, a reflectivity of 44% was obtained for 450 nm incident light. This reflectivity is such that incident light with a wavelength of 450 nm is transmitted with a transmittance of 70% through the Ni layer with a thickness of 4 nm / Au electrode layer with a thickness of 4 nm and then reflected with a reflectance of 88% with the Ag layer. It corresponds to the reflectance that the (4 nm-thickness Ni layer and 4 nm-thickness Au electrode layer) are transmitted at 70% transmittance.
(S7)-(s11) The same process as the corresponding process in Invention Example F was performed.

(本発明例T)
(t1)〜(t5)本発明例Fにおいて対応する処理と同じ処理を行なった。
(t6)p電極は次の方法で作製する。p型GaN層の上に下から順に、4nm厚みのNi層、および4nm厚みのAu層を形成する。この後、不活性雰囲気中で熱処理する。次いで、上記のAu層の上に、100nm厚みのAl層および100nm厚みのAu層を形成する。上記の方法で作製されたp電極の接触抵抗は5E−4Ω・cm2であった。
(Invention Sample T)
(T1)-(t5) The same process as the corresponding process in Invention Example F was performed.
(T6) The p-electrode is manufactured by the following method. On the p-type GaN layer, a 4 nm thick Ni layer and a 4 nm thick Au layer are formed in order from the bottom. Thereafter, heat treatment is performed in an inert atmosphere. Next, an Al layer having a thickness of 100 nm and an Au layer having a thickness of 100 nm are formed on the Au layer. The contact resistance of the p-electrode produced by the above method was 5E-4 Ω · cm 2 .

またこの電極のうち、(厚み4nmのNi層/厚み4nmのAu層)の積層膜をガラス板につけて同じ熱処理をした後に透過率を測定した結果、Ni側からの450nmの入射光に対して70%であった。さらに、100nm厚のAl層をガラス板につけて反射率を測定した結果、450nmの入射光に対して84%であった。また、下から順に(4nm厚のNi層/4nm厚のAu層/100nm厚のAl層)の積層膜をガラス板に形成して、同じ熱処理をした後に反射率を測定した。この結果、450nmの入射光に対して42%の反射率が得られた。この反射率は、波長450nmの入射光が、(4nm厚のNi層/4nm厚のAu電極層)を70%の透過率で透過した後、Al層で42%の反射率で反射し、再び(4nm厚のNi層/4nm厚のAu電極層)を70%の透過率で透過したときに算出される反射率と一致する。
(t7)〜(t11)本発明例Fにおいて対応する処理と同じ処理を行なった。
Of these electrodes, the transmittance was measured after applying the same heat treatment by attaching a laminated film of (Ni layer with a thickness of 4 nm / Au layer with a thickness of 4 nm) to a glass plate. 70%. Furthermore, the reflectance was measured by attaching an Al layer having a thickness of 100 nm to a glass plate. As a result, it was 84% with respect to incident light of 450 nm. Further, a laminated film (4 nm thick Ni layer / 4 nm thick Au layer / 100 nm thick Al layer) was formed on a glass plate in order from the bottom, and the reflectance was measured after the same heat treatment. As a result, a reflectance of 42% was obtained with respect to 450 nm incident light. This reflectivity is such that incident light with a wavelength of 450 nm is transmitted at a transmittance of 70% through (4 nm thick Ni layer / 4 nm thick Au electrode layer), then reflected at the Al layer with a reflectivity of 42%, and again This coincides with the reflectance calculated when the (4 nm thick Ni layer / 4 nm thick Au electrode layer) is transmitted at a transmittance of 70%.
(T7)-(t11) The same process as the corresponding process in Invention Example F was performed.

(本発明例U)
(u1)〜(u5)本発明例Fにおいて対応する処理と同じ処理を行なった。
(u6)p電極として、p型GaN層に、p型GaN層に対してオーミック性の電極で反射率も高いRhを厚み100nmで全面につけた。接触抵抗は5e−4Ω・cm2である。またこの電極のRhをガラス板につけて透過率を測定した結果、450nmの入射光に対して60%であった。
(u7)〜(u11)本発明例Fにおいて対応する処理と同じ処理を行なった。
(Invention Sample U)
(U1)-(u5) The same process as the corresponding process in Invention Example F was performed.
(U6) As the p-electrode, Rh having a thickness of 100 nm was applied to the p-type GaN layer with a thickness of 100 nm, which is ohmic with respect to the p-type GaN layer and has a high reflectance. The contact resistance is 5e-4 Ω · cm 2 . Further, the Rh of this electrode was attached to a glass plate and the transmittance was measured. As a result, it was 60% with respect to 450 nm incident light.
(U7) to (u11) The same processes as those in Example F of the present invention were performed.

(本発明例V)
(v1)〜(v7)本発明例Sにおいて対応する処理と同じ処理を行なった。
(v8)本発明例Qの製造方法と同様に、保護マスクを形成することなくエッチングによる分割工程を行なう。このとき、n電極が形成された基板の第2の主表面が同時にエッチングにより非鏡面処理される。
(v9)〜(v11)本発明例Sにおいて対応する処理と同じ処理を行なった。
(Invention Sample V)
(V1)-(v7) The same process as the corresponding process in Invention Example S was performed.
(V8) As in the manufacturing method of Invention Example Q, the dividing step by etching is performed without forming a protective mask. At this time, the second main surface of the substrate on which the n-electrode is formed is simultaneously subjected to non-specular treatment by etching.
(V9) to (v11) The same processing as that in the invention sample S was performed.

(本発明例W)
本発明例Wは本発明例Fと同じものである。
(Invention Sample W)
Invention Example W is the same as Invention Example F.

(実験結果)
実施例1と同じように光出力を測定した結果、本発明例S、T、U、VおよびWは、印加電流10Aで、各々4.8W、4.8W、5.2W、5.8Wおよび4Wの出力を得た。本発明例S、Tの実装側での反射の模式図を図58に、本発明例Uの実装側での反射の模式図を図59に、また本発明例Wの実装側での反射の模式図を図60に示す。本発明例S、Tではp電極12と導電性接着剤14との間に高反射層35を配置しているのに対して、本発明例Uではp電極12そのものを高反射率材料とし、本発明例Vではさらに非鏡面化されている。また、本発明例Wでは実装側における反射についてはとくに配慮していない。
(Experimental result)
As a result of measuring the optical output in the same manner as in Example 1, the inventive examples S, T, U, V and W were 4.8 W, 4.8 W, 5.2 W, 5.8 W and An output of 4 W was obtained. FIG. 58 is a schematic diagram of reflection on the mounting side of Examples S and T of the present invention, FIG. 59 is a schematic diagram of reflection on the mounting side of Example U of the present invention, and FIG. A schematic diagram is shown in FIG. In the present invention examples S and T, the highly reflective layer 35 is disposed between the p electrode 12 and the conductive adhesive 14, whereas in the present invention example U, the p electrode 12 itself is made of a highly reflective material, In Example V of the present invention, it is further non-specular. Further, in the invention sample W, no special consideration is given to the reflection on the mounting side.

本発明例S、T、U、Vにおいて蛍光材を設けて白色LEDとした場合、印加電流10Aで、各々864lm、864lm、936lmおよび1044lmの出力を得た。これらの結果によれば、p電極を高反射率材料で形成したり、またp電極と導電性接着剤との間に高反射率材を配置することにより、光の有効活用をはかり、光出力を向上させることができる。すなわち、電極層にAgやAlやRhの反射膜をp電極そのもの、またはp電極と導電性接着剤との間に組み込むことにより、発光出力をさらに向上することができた。さらに、本発明例Vのように、GaN基板のN面や端面を非鏡面とすることで、さらなる向上が可能となった。   In the present invention examples S, T, U, and V, when a fluorescent material was provided to form a white LED, outputs of 864 lm, 864 lm, 936 lm, and 1044 lm were obtained at an applied current of 10 A, respectively. According to these results, the p-electrode is formed of a high-reflectivity material, or a high-reflectivity material is disposed between the p-electrode and the conductive adhesive, so that the light can be effectively used and the light output can be improved. Can be improved. That is, it was possible to further improve the light emission output by incorporating a reflective film of Ag, Al, or Rh into the electrode layer, or between the p electrode and the conductive adhesive. Further, as in the present invention example V, the N surface and the end surface of the GaN substrate are made non-mirror surfaces, and further improvement is possible.

発光波長を変えた場合、Ag層やAl層での反射率やAuおよびNi層での吸収率が変わるので効果の程度は一概には言えないが、いずれの波長でも効果があることは言うまでもない。またRhの代わりに同等以上の仕事関数を持ち、同等以上の反射率のある元素を用いて同等以上の効果を得ることも可能である。   When the emission wavelength is changed, the reflectivity in the Ag layer or Al layer and the absorption rate in the Au and Ni layers change, so the degree of effect cannot be generally stated, but it goes without saying that any wavelength is effective. . It is also possible to obtain an equivalent or better effect using an element having an equivalent or higher work function instead of Rh and having an equivalent or higher reflectance.

本発明の実施例9では、GaN基板の酸素濃度と比抵抗および光の透過率との関係を把握した。その関係に基づいてpダウン実装、すなわちGaN基板を光放出面とする発光素子において、所定の光放出面積の場合に最適なGaN基板厚みと酸素濃度との関係を樹立した点に特徴がある。上述のようにpダウン実装では光放出面がGaN基板となるので、つぎに示すように、比抵抗と光透過率とに大きな影響を有する酸素濃度はとくに重要である。   In Example 9 of the present invention, the relationship between the oxygen concentration of the GaN substrate, the specific resistance, and the light transmittance was determined. Based on this relationship, p-down mounting, that is, in a light emitting device having a GaN substrate as a light emission surface, is characterized in that an optimum relationship between the GaN substrate thickness and the oxygen concentration is established for a predetermined light emission area. As described above, since the light emission surface is a GaN substrate in the p-down mounting, the oxygen concentration having a large influence on the specific resistance and the light transmittance is particularly important as described below.

図61は、GaN基板の比抵抗に及ぼす酸素濃度の影響を示す図である。図61より、比抵抗0.5Ωcm以下は、酸素濃度1E17個/cm3以上とすることにより実現することができる。また、図62は、GaN基板400μmのときの波長450nmの光の透過率に及ぼす酸素濃度の影響を示す図である。同図より酸素濃度が2E19個/cm3を超えると波長450nmの光の透過率が急激に低下することが分かる。図61と図62とから、酸素濃度の増大は、GaN基板の比抵抗を減少させ、発光面を拡大するのに有効であるが光の透過率を低下させることが分かる。したがって、pダウン実装される発光素子に用いられるGaN基板としては酸素濃度、GaN基板の厚さ、発光の平面サイズをどのように設定するかが非常に重要となる。 FIG. 61 is a diagram showing the influence of the oxygen concentration on the specific resistance of the GaN substrate. From FIG. 61, a specific resistance of 0.5 Ωcm or less can be realized by setting the oxygen concentration to 1E17 / cm 3 or more. FIG. 62 is a diagram showing the influence of the oxygen concentration on the transmittance of light having a wavelength of 450 nm when the GaN substrate is 400 μm. From the figure, it can be seen that when the oxygen concentration exceeds 2E19 atoms / cm 3 , the transmittance of light having a wavelength of 450 nm rapidly decreases. From FIG. 61 and FIG. 62, it can be seen that increasing the oxygen concentration reduces the specific resistance of the GaN substrate and is effective for enlarging the light emitting surface, but reduces the light transmittance. Therefore, how to set the oxygen concentration, the thickness of the GaN substrate, and the planar size of light emission is very important for a GaN substrate used for a light-emitting element mounted in a p-down manner.

図63は本発明例Aに対して厚みおよび酸素濃度を変化させたGaN基板からランプを作製したとき、そのランプの光出力および電流が均一に流れる平面サイズを測定した結果を示す図である。ランプの光出力についていえば、厚みが厚いほど、また酸素濃度が高いほど光出力は低下する傾向にある。また電流が均一に流れる最大の平面サイズについていえば、厚みが厚いほど、また酸素濃度が高いほど大きくなる傾向にある。   FIG. 63 is a diagram showing the results of measuring the plane size in which the light output and current of the lamp uniformly flow when a lamp is manufactured from a GaN substrate with the thickness and oxygen concentration varied with respect to Example A of the present invention. Regarding the light output of the lamp, the light output tends to decrease as the thickness increases and the oxygen concentration increases. As for the maximum planar size through which current flows uniformly, the thickness tends to increase as the thickness increases and the oxygen concentration increases.

図63から、たとえば電流が均一に流れる平面サイズが一辺4mm(一辺5mm)の正方形とする場合(あるいは一辺2.8mm(または一辺3.5mm)の正六角形とする場合)、光出力として本発明例Aの大きさで20mA印加時に8mW相当以上を得たいとき、厚み200μmのGaN基板では酸素濃度を6E18個/cm3以上(一辺5mm正方形では8E18個/cm3以上)とすれば、本発明例Aの大きさで20mA印加時に光出力8mW以上を確保した上で、均一な発光を得ることができる。つまり本発明例Aの大きさ一辺236μmの正六角形における20mA印加と電流密度を合わせた場合、一辺4mm(一辺5mm)の正方形では3.6A(5.6A)印加に相当し(一辺2.8mm(一辺3.5mm)の正六角形では4.5A(7A)印加に相当し)、3.6A(5.6A)印加時に印加電流に比例して光出力1.4W(2.3W)以上(チップの形状が正六角形の場合は4.5A(7A)印加時に光出力1.8mW(2.8mW)以上)確保した上で、均一な発光を得ることができる。 From FIG. 63, for example, when the plane size in which the current flows uniformly is a square with a side of 4 mm (side of 5 mm) (or a regular hexagon with a side of 2.8 mm (or side of 3.5 mm)), the present invention as an optical output. when it is desired to obtain a 8mW or equivalent at 20mA applied at a magnitude of example a, if 6E18 atoms / cm 3 or more an oxygen concentration in the GaN substrate having a thickness of 200μm (8E18 atoms / cm 3 or more in one side 5mm square), the present invention In the size of Example A, uniform light emission can be obtained after securing an optical output of 8 mW or more when 20 mA is applied. That is, when the current density is combined with 20 mA application in a regular hexagon having a side of 236 μm in the size of the invention example A, a square of 4 mm (5 mm on one side) corresponds to 3.6 A (5.6 A) application (2.8 mm on one side). (Regarding a regular hexagon with a side of 3.5 mm, this corresponds to applying 4.5 A (7 A).) When applying 3.6 A (5.6 A), the optical output is 1.4 W (2.3 W) or more in proportion to the applied current ( When the chip shape is a regular hexagon, it is possible to obtain uniform light emission after securing a light output of 1.8 mW (2.8 mW or more) when 4.5 A (7 A) is applied.

また、厚み400μmのGaN基板では、上記厚み200μmの場合と同じ目標性能としたとき、一辺4mm正方形では3E18個/cm3以上(一辺5mm正方形の場合、酸素濃度4E18個/cm3以上)とすればよい。ただし、厚み400μmでは酸素濃度を2E19個/cm3以下にしないと本発明例Aの大きさで20mA印加時に8mW相当以上の光出力を得ることができない。 By addition, the GaN substrate having a thickness of 400 [mu] m, when the same target performance as that of the thickness 200 [mu] m, and 3E18 atoms / cm 3 or more in one side 4mm square (in the case of side 5mm square, oxygen concentration 4E18 / cm 3 or higher) That's fine. However, at a thickness of 400 μm, unless the oxygen concentration is 2E19 / cm 3 or less, the light output equivalent to 8 mW or more cannot be obtained when 20 mA is applied in the size of Example A of the present invention.

さらに、厚み600μmのGaN基板では、一辺4mm正方形の領域を電流が均一に流れる酸素濃度2.5E18個/cm3以上に比して、本発明例Aの大きさで20mA印加時に光出力8mW相当以上となる酸素濃度の限界値は2.5E18個/cm3よりわずかに高いだけである。したがって、上記2つの条件を満たす酸素濃度範囲は狭い範囲しかない。一方、一辺3mm正方形の領域に均一に電流が流れる酸素濃度2E18個/cm3程度以上なので、一辺4mm正方形に比較して酸素濃度の許容範囲はわずかに広くなる。 Furthermore, in the case of a GaN substrate having a thickness of 600 μm, compared with an oxygen concentration of 2.5E18 / cm 3 or more in which a current flows uniformly in a square area of 4 mm on a side, the light output is equivalent to 8 mW when 20 mA is applied in the size of the present invention example A. The limit value of the oxygen concentration is only slightly higher than 2.5E18 / cm 3 . Therefore, the oxygen concentration range that satisfies the above two conditions is only a narrow range. On the other hand, since the oxygen concentration is more than about 2E18 / cm 3 in which current flows uniformly in a 3 mm square area, the allowable range of oxygen concentration is slightly wider than that of a 4 mm square.

また、図63によれば、GaN基板の厚みが200μm〜400μmの場合、一辺10mmの正方形に均一に電流を流し、本発明例Aの大きさで20mA印加時に8mW相当以上の出力を得ることを可能にする酸素濃度範囲は実用上十分広いことが分かる。厚み200μmでは酸素濃度2E19個/cm3より低い酸素濃度以上で可能であることが分かる。また厚み400μmでは酸素濃度8E18/cm3以上で可能である。 In addition, according to FIG. 63, when the thickness of the GaN substrate is 200 μm to 400 μm, a current is uniformly passed through a square with a side of 10 mm, and an output equivalent to 8 mW or more is obtained when 20 mA is applied with the size of the present invention example A. It can be seen that the range of oxygen concentration that can be made is sufficiently wide in practice. It can be seen that a thickness of 200 μm is possible at an oxygen concentration lower than an oxygen concentration of 2E19 / cm 3 . Further, when the thickness is 400 μm, an oxygen concentration of 8E18 / cm 3 or more is possible.

次に具体的な実施例について説明する。実施例では次の試験体を用いた。   Next, specific examples will be described. In the examples, the following specimens were used.

(本発明例S1):1E19個/cm3の酸素濃度によりn型化されている厚み400μmのGaN基板を用いた。このGaN基板の比抵抗は0.007Ωcmであり、波長450nmの光に対する透過率は72%である。上記GaN基板を用いて発光素子に組み上げるに際し、上記以外の部分は本発明例Aと同じ条件とした。すなわち、GaN基板の平面サイズは、光放出面が1辺の長さ0.236mmの正六角形となるようにとり(実施例1の(a1)参照)、(a2)MOCVDでGaN基板の第1の主面であるGa面上に次の積層構造を形成した。(Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.15Ga0.85N層との2層構造が3層重ねられたMQW/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)の積層構造を有する。 (Invention Sample S1): A GaN substrate having a thickness of 400 μm that is n-type with an oxygen concentration of 1E19 / cm 3 was used. The specific resistance of this GaN substrate is 0.007 Ωcm, and the transmittance for light with a wavelength of 450 nm is 72%. In assembling a light emitting device using the GaN substrate, the other conditions were the same as those of Example A of the present invention. That is, the planar size of the GaN substrate is such that the light emission surface is a regular hexagon with a side length of 0.236 mm (see (a1) in Example 1), and (a2) the first GaN substrate of MOCVD is used. The following laminated structure was formed on the Ga surface which is the main surface. (SiW doped n-type GaN layer / Si doped n type Al 0.2 Ga 0.8 N layer / GaN layer and In 0.15 Ga 0.85 N layer, three layers of MQW / clad layer Mg doped p) Type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer).

(比較例T1):厚み400μmであり、酸素濃度5E19個/cm3によりn型化されているGaN基板を用いた。このGaN基板の比抵抗は0.002Ωcmであり、波長450nmの光に対する透過率は35%である。上記以外の条件は本発明例S1と同じである。 (Comparative Example T1): A GaN substrate having a thickness of 400 μm and being n-type with an oxygen concentration of 5E19 / cm 3 was used. The specific resistance of this GaN substrate is 0.002 Ωcm, and the transmittance for light with a wavelength of 450 nm is 35%. Conditions other than those described above are the same as in the present invention example S1.

(比較例T2):厚み400μmであり、酸素濃度2E16個/cm3によりn型化されているGaN基板を用いた。このGaN基板の比抵抗は1.0Ωcmであり、波長450nmの光に対する透過率は90%である。上記以外の条件は本発明例S1と同じである。 (Comparative Example T2): A GaN substrate having a thickness of 400 μm and being n-type with an oxygen concentration of 2E16 / cm 3 was used. The specific resistance of the GaN substrate is 1.0 Ωcm, and the transmittance for light with a wavelength of 450 nm is 90%. Conditions other than those described above are the same as in the present invention example S1.

(試験およびその結果):上記試験体のpダウン実装の発光素子を組み上げて20mAの電流を印加したところ、本発明例S1では8mWの光出力を得ることができた。これに比して比較例T1では4mW、また比較例T2では5mWの光出力しか得ることができなかった。比較例T1の4mWという光出力は、そのGaN基板の透過率に応じた出力ということができる。比較例T2について出光面であるGaN基板の第2主面側から発光の状態を観察したところ、面内に発光の強弱が認められた。すなわちn電極の周囲において発光強度が極端に強く、n電極から遠ざかるにつれて急激に発光強度は弱くなる。これは、GaN基板の比抵抗が大きいためにn電極を経由する電流が発光素子の面内に十分に広がらなかったからである。このため、発光は電流が集中するp電極周囲でのみ生じた。この結果、比較例T2の発光素子全体の発光出力は、本発明例S1より劣るものとなった。   (Test and results thereof): When the p-down mounted light emitting element of the above test body was assembled and a current of 20 mA was applied, an optical output of 8 mW could be obtained in Example S1 of the present invention. On the other hand, only a light output of 4 mW was obtained in Comparative Example T1, and 5 mW was obtained in Comparative Example T2. The light output of 4 mW in Comparative Example T1 can be said to be an output corresponding to the transmittance of the GaN substrate. In Comparative Example T2, when the state of light emission was observed from the second main surface side of the GaN substrate which is the light output surface, the intensity of light emission was observed in the surface. That is, the light emission intensity is extremely strong around the n electrode, and the light emission intensity rapidly decreases as the distance from the n electrode increases. This is because the current flowing through the n-electrode does not sufficiently spread in the plane of the light-emitting element due to the large specific resistance of the GaN substrate. For this reason, light emission occurred only around the p-electrode where the current is concentrated. As a result, the light emission output of the entire light emitting device of Comparative Example T2 was inferior to that of Invention Example S1.

本発明の実施例10は、GaN基板とn型AlGaNクラッド層3との間に、n型AlGaNバッファ層とn型GaNバッファ層とを配置した点に特徴がある。通常、基板には反りがあるが、GaN基板ではとくに反りが大きい。このためGaN基板では、オフ角も図64に示すように、基板面内で大きく変動する。図64は、20mm×20mmのGaN基板のc面からのオフ角分布例を示している。このGaN基板にエピタキシャル膜を形成して発光素子に個片化して光出力を測定すると、コーナに位置してオフ角が0.05°レベルと小さい領域R1、およびオフ角が1.5°レベルと大きい領域R2に形成された発光装置は、20mAの印加電流に対して光出力8mW以上を得ることができない。これは、GaN基板上に形成されたエピタキシャル膜の結晶性がよくないことに起因している。このため、図65に示すように、GaN基板1とAlGaNクラッド層3との間に、両者の中間の格子定数を有するn型AlGaNバッファ層31と、n型GaNバッファ層2とを配置して格子定数の相違を緩和する試みを行った。より具体的には、n型AlGaNバッファ層31を上記位置に配置した点に特徴がある。   Example 10 of the present invention is characterized in that an n-type AlGaN buffer layer and an n-type GaN buffer layer are disposed between a GaN substrate and an n-type AlGaN cladding layer 3. Usually, the substrate is warped, but the GaN substrate is particularly warped. For this reason, in the GaN substrate, as shown in FIG. 64, the off-angle also varies greatly within the substrate surface. FIG. 64 shows an example of off-angle distribution from the c-plane of a 20 mm × 20 mm GaN substrate. When an epitaxial film is formed on this GaN substrate and separated into light emitting elements and the optical output is measured, the region R1 with an off angle as small as 0.05 ° level located at the corner and an off angle of 1.5 ° level. The light emitting device formed in the large region R2 cannot obtain an optical output of 8 mW or more with respect to an applied current of 20 mA. This is due to the poor crystallinity of the epitaxial film formed on the GaN substrate. Therefore, as shown in FIG. 65, an n-type AlGaN buffer layer 31 having an intermediate lattice constant between the GaN substrate 1 and the AlGaN cladding layer 3 and an n-type GaN buffer layer 2 are arranged. An attempt was made to alleviate the difference in lattice constant. More specifically, it is characterized in that the n-type AlGaN buffer layer 31 is arranged at the above position.

用いた試験体は次のとおりである。   The test specimens used are as follows.

(本発明例S3):用いたGaN基板は、図64に示すように20mm×20mmの面内で、c面からのオフ角度が0.05°の領域から1.5°の領域へと連続して変化している。このGaN基板の比抵抗は0.01Ω・cmであり、板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であり、厚みは400μmである。このようにオフ角度分布があるGaN基板を用いて、実施例1の本発明例Aの製造工程(a1)〜(a11)にしたがって、上記20mm×20mmの基板の各位置から発光素子を作製した。このとき図65に示すように、GaN基板1とn型GaNバッファ層2との間に厚み50nmのAl0.15Ga0.85Nバッファ層を配置した。 (Invention Sample S3): As shown in FIG. 64, the GaN substrate used is continuous within a 20 mm × 20 mm plane from an area where the off angle from the c-plane is 0.05 ° to a region where the angle is 1.5 °. It has changed. The specific resistance of this GaN substrate is 0.01 Ω · cm, the dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 is 1E6 / cm 2 , and the thickness is 400 μm. Using such a GaN substrate having an off-angle distribution, a light emitting device was fabricated from each position of the 20 mm × 20 mm substrate according to the manufacturing steps (a1) to (a11) of Example A of the invention of Example 1. . At this time, as shown in FIG. 65, an Al 0.15 Ga 0.85 N buffer layer having a thickness of 50 nm was disposed between the GaN substrate 1 and the n-type GaN buffer layer 2.

(比較例T4):GaN基板は20mm×20mmの面内で、c面からのオフ角度が0.05°の領域から1.5°の領域へと連続したものを用いた。このGaN基板の比抵抗は0.01Ω・cmであり、板状結晶反転領域51に囲まれた単結晶領域の転位密度は1E6/cm2であり、厚みは400μmである。実施例1の本発明例Aの製造工程(a1)〜(a11)にしたがって各位置から複数の発光素子を作製した。比較例T4では、GaN基板1に接してn型GaN層を形成し、GaN基板とn型GaN層との間にAl0.15Ga0.85Nバッファ層を配置しなかった。 (Comparative Example T4): A GaN substrate having a 20 mm × 20 mm plane and having an off angle from the c-plane ranging from 0.05 ° to 1.5 ° was used. The specific resistance of this GaN substrate is 0.01 Ω · cm, the dislocation density of the single crystal region surrounded by the plate-like crystal inversion region 51 is 1E6 / cm 2 , and the thickness is 400 μm. In accordance with the manufacturing steps (a1) to (a11) of Invention Example A of Example 1, a plurality of light emitting elements were produced from each position. In Comparative Example T4, an n-type GaN layer was formed in contact with the GaN substrate 1, and no Al 0.15 Ga 0.85 N buffer layer was disposed between the GaN substrate and the n-type GaN layer.

(試験およびその結果):発光素子に20mAの電流を印加したとき、本発明例S3では20mm×20mmのGaN基板の上記領域R1,R2を含む0.05〜1.5°の領域で、光出力8mW以上を得ることができた(図66参照)。しかし比較例T4では、オフ角度0.1°〜1.0°の領域上に形成された発光素子においてのみ光出力8mW以上を得ることができた。0.05°および1.5°のオフ角レベルでは光出力8mWに未達であった。   (Test and results): When a current of 20 mA was applied to the light emitting element, in Example S3 of the present invention, light was emitted in a 0.05 to 1.5 ° region including the regions R1 and R2 of the 20 mm × 20 mm GaN substrate. An output of 8 mW or more was obtained (see FIG. 66). However, in Comparative Example T4, it was possible to obtain an optical output of 8 mW or more only in a light emitting device formed on a region with an off angle of 0.1 ° to 1.0 °. At 0.05 ° and 1.5 ° off-angle levels, an optical output of 8 mW was not achieved.

これは、本発明例S3では、オフ角度が大きく変動するGaN基板を用いても、上記のようにAl0.15Ga0.85Nバッファ層を配置することにより結晶性に優れたエピタキシャル層を形成できるからである。 This is because in the present invention example S3, an epitaxial layer having excellent crystallinity can be formed by arranging the Al 0.15 Ga 0.85 N buffer layer as described above, even if a GaN substrate whose off-angle varies greatly is used. is there.

本発明の実施例11は、実施例10と同じくGaN基板とn型AlGaNクラッド層3との間に、n型AlGaNバッファ層とn型GaNバッファ層とを配置することで、GaN基板の単結晶領域に発生する転位束の部分にエピタキシャル膜を形成したときに生じる図67に示した孔状凹部をなくした点に特徴がある。   In the eleventh embodiment of the present invention, an n-type AlGaN buffer layer and an n-type GaN buffer layer are disposed between the GaN substrate and the n-type AlGaN cladding layer 3 as in the tenth embodiment. This is characterized in that the hole-shaped concave portion shown in FIG. 67 which is generated when an epitaxial film is formed in the dislocation bundle portion generated in the region is eliminated.

GaN基板の形成の際に、単結晶領域の結晶性を高めるために、転位束が集中した領域と、それに囲まれた単結晶領域を形成するわけであるが、上記単結晶領域にも、ある確率で転位束は存在し得る。上記単結晶領域の転位束は、図68に示すようにp型GaN層などエピタキシャル膜のp型GaN層6にも継承され、エピタキシャル膜上にコア61として現れる。したがって、転位束密度とコア密度とはほぼ一致する。このコア61は、エピタキシャル膜の成膜条件によっては、図67に示すような孔状凹部となる。この孔状凹部の密度が、GaN基板を放出面とするpダウン実装発光装置では、製造歩留まりに劇的に影響する。   When forming a GaN substrate, in order to increase the crystallinity of the single crystal region, a region where dislocation bundles are concentrated and a single crystal region surrounded by the region are formed. Dislocation bundles can exist with probability. The dislocation bundle in the single crystal region is inherited by the p-type GaN layer 6 such as a p-type GaN layer as shown in FIG. 68 and appears as a core 61 on the epitaxial film. Therefore, the dislocation bundle density and the core density are almost the same. The core 61 becomes a hole-shaped recess as shown in FIG. 67 depending on the film formation conditions of the epitaxial film. The density of the hole-like recesses dramatically affects the manufacturing yield in the p-down mounted light emitting device having the GaN substrate as the emission surface.

(本発明例S2):転位束が1μm×1μm当たり1個分布している直径2インチのGaN基板を用いた。これは転位束密度1E4個/cm2の密度に対応する。図65に示すように、GaN基板1とn型バッファ層2との間に厚み50nmのAl0.15Ga0.85Nバッファ層を配置した。他の条件は本発明例S1と同じとした。 (Invention Sample S2): A GaN substrate having a diameter of 2 inches in which one dislocation bundle was distributed per 1 μm × 1 μm was used. This corresponds to a dislocation bundle density of 1E4 / cm 2 . As shown in FIG. 65, an Al 0.15 Ga 0.85 N buffer layer having a thickness of 50 nm was disposed between the GaN substrate 1 and the n-type buffer layer 2. Other conditions were the same as those of Example S1 of the present invention.

(試験およびその結果)
エピタキシャル層を生成したのち、微分干渉顕微鏡およびSEM(走査型電子顕微鏡)でエピタキシャル層側のウエハ面内を観察した。その結果、図67に示すような孔状凹部は一つもないことを確認した。上記の直径2インチのGaN基板を外周から縁5mm程度を除き、すべて発光素子に組み上げた。発光素子を50個に1個の割合で抜き取り、20mAの電流を印加し、光出力が8mW以上得られる歩留まりを調査した。結果は、100%の歩留まりであった。上記の歩留まりは、より多くの製造を行なえば、孔状凹部以外の製造要因により100%未満の100%に近い歩留まりが得られると考えられる。しかし、孔状凹部に焦点を絞って行った上記歩留まり試験結果では、100%という特異に良好な歩留まりを得ることができた。
(Test and results)
After producing the epitaxial layer, the inside of the wafer on the epitaxial layer side was observed with a differential interference microscope and SEM (scanning electron microscope). As a result, it was confirmed that there was no hole-shaped recess as shown in FIG. All of the above GaN substrates having a diameter of 2 inches were assembled into a light emitting device except for an edge of about 5 mm from the outer periphery. The yield of obtaining light output of 8 mW or more was examined by extracting 20 light-emitting elements at a ratio of 1 to 50, applying a current of 20 mA. The result was 100% yield. If the above-mentioned yield is increased, it is considered that a yield close to 100%, which is less than 100%, is obtained due to manufacturing factors other than the hole-shaped recess. However, according to the yield test result focused on the hole-shaped recess, a particularly good yield of 100% could be obtained.

本発明の実施例12は、MQW4/p型AlGaNクラッド層5/p型GaN層6の外側に電導性を高めたp型InGaN層を配置して、p電極として反射率の高いAg電極層のみを全面に配置した点に特徴がある。したがって仕事関数等を考慮した他の金属電極を設けていない。この構成によりダウン側底部において高い反射率を有するため、他の金属電極を用いた場合に生じる光の吸収が小さくなり、光放出効率を高めることができる。   In Example 12 of the present invention, a p-type InGaN layer having enhanced conductivity is disposed outside the MQW4 / p-type AlGaN cladding layer 5 / p-type GaN layer 6, and only an Ag electrode layer having high reflectivity is used as a p-electrode. It is characterized by the fact that is placed on the entire surface. Therefore, no other metal electrode considering the work function is provided. Since this structure has a high reflectivity at the bottom of the down side, the absorption of light generated when other metal electrodes are used is reduced, and the light emission efficiency can be increased.

試験体は次のとおりである。   The test specimens are as follows.

(本発明例S4(図69参照)):本発明例Aと同様にGaN基板の第1の主面であるGa面上に次の積層構造を有する。/MQW4/クラッド層のMgドープp型Al0.2Ga0.8N層5/Mgドープp型GaN層6/厚み5nmのMgドープInGaN層32上記の積層構造ではMgドープp型GaN層6に接して厚み5nmのMgドープInGaN層32を有する点に特徴がある。さらに実施例1の本発明例Aでは処理工程(a6)においてNi/Au電極層を形成していたが、(a6)の処理工程を行わず、代わりに厚みが100nmのAg電極層33を形成した。 (Invention Sample S4 (see FIG. 69)): Like the Invention Sample A, the following laminated structure is formed on the Ga surface which is the first main surface of the GaN substrate. / MQW4 / Mg-doped p-type Al 0.2 Ga 0.8 N layer 5 of cladding layer / Mg-doped p-type GaN layer 6 / Mg-doped InGaN layer 32 of 5 nm thickness In the above laminated structure, the thickness is in contact with the Mg-doped p-type GaN layer 6 It is characterized by having a 5 nm Mg-doped InGaN layer 32. Further, in the invention example A of Example 1, the Ni / Au electrode layer was formed in the processing step (a6), but the processing step of (a6) was not performed, and instead an Ag electrode layer 33 having a thickness of 100 nm was formed. did.

(比較例T5):実施例1の本発明例Aの構造において、Ni/Au電極層に接してさらに厚み100nmのAg電極層を配置した。   (Comparative Example T5): In the structure of Invention Example A of Example 1, an Ag electrode layer having a thickness of 100 nm was further disposed in contact with the Ni / Au electrode layer.

(試験およびその結果):本発明例S4では、p型GaN層6に接してp型InGaN層32があるためにアクセプタレベルが低くなる。このためキャリア濃度が増加し、それほど仕事関数が大きくないAg反射膜33をp電極としてp型InGaN層32に接して配置しても、Ag反射膜33とp型InGaN層32との接触抵抗はそれほど大きくならない。本発明例S4の発光素子の駆動電圧と、比較例T5の発光素子の駆動電圧とを比較したが、差は0.05V未満であり、有意な差を認めることはできなかった。   (Test and results): In the present invention example S4, the acceptor level is low because the p-type InGaN layer 32 is in contact with the p-type GaN layer 6. For this reason, even if the Ag reflection film 33 whose carrier function is increased and the work function is not so large is disposed as a p-electrode in contact with the p-type InGaN layer 32, the contact resistance between the Ag reflection film 33 and the p-type InGaN layer 32 is Not so big. The drive voltage of the light emitting device of Invention Example S4 and the drive voltage of the light emitting device of Comparative Example T5 were compared, but the difference was less than 0.05 V, and no significant difference could be recognized.

本発明例S4では、20mAの電流を印加したとき11.5mWの光出力を得ることができたのに比して、比較例T5では9.6mWであった。なお、本発明例Aは8mWであった。   In the invention sample S4, the light output of 11.5 mW was obtained when a current of 20 mA was applied, and in the comparative example T5, it was 9.6 mW. In addition, Invention Example A was 8 mW.

上記のように本発明例S4において大きな光出力が得られるのは、発光層からp半導体層側に向かう光が、Ni/Au電極層がないためにNi/Au電極層で吸収されることはなく、反射率88%のAg層に反射されるためである。一方、比較例T5では、p電極層における光の反射率=Ni/Auによる吸収70%×Ag反射率×再吸収70%=44%と低いものになる。この結果、本発明例S4では、外部に取り出すことができた光出力が、比較例T5の1.2倍に達した。   As described above, the light output from the light emitting layer toward the p semiconductor layer side is absorbed by the Ni / Au electrode layer because there is no Ni / Au electrode layer because the large light output is obtained in the present invention example S4. This is because the light is reflected by the Ag layer having a reflectance of 88%. On the other hand, in the comparative example T5, the reflectance of light in the p electrode layer = 70% absorption by Ni / Au × Ag reflectance × 70% reabsorption = 44%. As a result, in Example S4 of the present invention, the light output that could be taken out reached 1.2 times that in Comparative Example T5.

なお、本実施例ではp電極にAg膜を用いたが、そのほか反射率が高くp型InGaN層32との接触抵抗がそれほど高くなければどのような材料を用いてもよく、たとえばAl、Rhを用いることができる。   In this embodiment, an Ag film is used for the p-electrode, but any other material may be used as long as the reflectivity is high and the contact resistance with the p-type InGaN layer 32 is not so high. Can be used.

本発明の実施例13では、p電極をp型GaN層との接触抵抗が小さいNi/Au層を離散的に配置し、その間隙を埋めるようにAg膜を被覆して光出力を向上させた点に特徴がある。図70はp電極に着目した断面図である。エピタキシャル層のダウン側底面に、所定のピッチでNi/Au電極層12aが離散的に配置されている。さらにその間を埋め、エピタキシャル層のダウン側底面およびNi/Au電極層12aを被覆するようにAg層33が配置されている。図71は、p電極の上側部分を透してp電極を見た平面図である。   In Example 13 of the present invention, Ni / Au layers having low contact resistance with the p-type GaN layer were discretely arranged on the p-electrode, and the Ag film was coated so as to fill the gaps, thereby improving the light output. There is a feature in the point. FIG. 70 is a cross-sectional view focusing on the p-electrode. The Ni / Au electrode layers 12a are discretely arranged at a predetermined pitch on the bottom side of the epitaxial layer. Further, an Ag layer 33 is disposed so as to fill the gap and to cover the down-side bottom surface of the epitaxial layer and the Ni / Au electrode layer 12a. FIG. 71 is a plan view of the p electrode seen through the upper part of the p electrode.

また、離散的なNi/Au電極層12aの典型的なピッチは3μmである。ピッチ3μmは、通常のp型GaN層やp型AlGaNクラッド層では、その比抵抗から電流が広がる範囲の直径がせいぜい6μmであることに基づいている。すなわちピッチ3μmとすることにより、1つの離散電極から隣りの離散電極に電流が届く。電流を電極層にわたって抜けのないように流すためには、ピッチ3μm以下とするのがよいが、あまりピッチを小さくすると離散配置のNi/Au電極層により光の有効取出量が減ることになる。   The typical pitch of the discrete Ni / Au electrode layers 12a is 3 μm. The pitch of 3 μm is based on the fact that in a normal p-type GaN layer or p-type AlGaN clad layer, the diameter in the range in which current spreads from the specific resistance is at most 6 μm. That is, by setting the pitch to 3 μm, a current reaches from one discrete electrode to an adjacent discrete electrode. In order to allow current to flow across the electrode layer, the pitch is preferably 3 μm or less. However, if the pitch is made too small, the effective extraction amount of light is reduced by the discretely arranged Ni / Au electrode layers.

たとえば離散的Ni/Au電極の面積率が20%のとき、図70および図71に示すp電極の構造によれば、光の反射率(計算)=反射率88%×面積率80%+反射率40%×面積率20%=78%(計算)が得られる。本試算をベースにして実際に上記構造のp電極を作製し、光出力を測定した。試験体は次のとおりである。   For example, when the area ratio of the discrete Ni / Au electrode is 20%, according to the structure of the p electrode shown in FIGS. 70 and 71, the light reflectance (calculation) = the reflectance 88% × the area ratio 80% + the reflection The ratio 40% × the area ratio 20% = 78% (calculation) is obtained. Based on this trial calculation, a p-electrode having the above structure was actually produced, and the light output was measured. The test specimens are as follows.

(本発明例S5):実施例1の本発明例Aと同じ製造工程にしたがって作製したが、p電極の作製工程(a6)において、p型GaN層に接して厚み4nmのNi層を形成し、その上に厚み4nmのAu層を全面に形成した。次いで、レジストマスクをもちいてパターニングし、離散的に分布したNi/Au電極を形成した(図70、71参照)。次いで、不活性ガス雰囲気中で加熱処理することにより、接触抵抗を5E-4Ω・cm2とした。このあと、Ni/Au電極の間隙を埋め込み、かつNi/Au電極を覆うように全面にAg層を形成し、反射電極とした。離散的に配置されたNi/Au層のp型GaN層における占有率は20%とし、Agの占有率は80%とした。また、Ni/Au電極層12のピッチは3μmとした(図72参照)。 (Invention Sample S5): Prepared according to the same manufacturing process as Invention Example A of Example 1, but in the p-electrode manufacturing process (a6), a 4 nm thick Ni layer was formed in contact with the p-type GaN layer. An Au layer having a thickness of 4 nm was formed on the entire surface. Next, patterning was performed using a resist mask to form discretely distributed Ni / Au electrodes (see FIGS. 70 and 71). Subsequently, the contact resistance was set to 5E-4 Ω · cm 2 by heat treatment in an inert gas atmosphere. Thereafter, an Ag layer was formed on the entire surface so as to fill the gap between the Ni / Au electrodes and cover the Ni / Au electrodes, thereby forming a reflective electrode. The occupation ratio of the discretely arranged Ni / Au layers in the p-type GaN layer was 20%, and the occupation ratio of Ag was 80%. The pitch of the Ni / Au electrode layers 12 was 3 μm (see FIG. 72).

(比較例T6):実施例1の本発明例Aと同じ製造工程にしたがって積層構造をGaN基板上に形成した。p電極は、その作製工程(a6)にしたがってp型GaN層に接して全面にNi/Au層を配置し、熱処理を行った。次いで、本発明例Aの構成と異なり、さらにNi/Au層に接してAg層を全面に形成した(図73参照)。   (Comparative Example T6): A laminated structure was formed on a GaN substrate in accordance with the same manufacturing process as Example A of the invention of Example 1. The p electrode was subjected to heat treatment by placing a Ni / Au layer over the entire surface in contact with the p-type GaN layer according to the production step (a6). Next, unlike the configuration of Invention Example A, an Ag layer was formed on the entire surface in contact with the Ni / Au layer (see FIG. 73).

比較のために本発明例Aと同じ発光素子について、ダウン側に向かった光の反射挙動を図74に示す。   For comparison, FIG. 74 shows the reflection behavior of light directed to the down side with respect to the same light emitting element as Example A of the present invention.

(試験およびその結果):上記のように作製された各発光素子に電流20mAを印加して光出力を測定した。本発明例S5では11.5mWの光出力が得られたが、比較例T6では9.6mWであった。また、活性層からマウント側(ダウン側)に向かった光のうちp電極で反射されて出射面から出射される比率は、本発明例では86%に達する(図72参照)。これに対して比較例T6では67%であった(図73)。一方、本発明例Aにおける上記の比率は40%であった(図74)。   (Test and results): A current of 20 mA was applied to each of the light-emitting elements fabricated as described above, and the light output was measured. In the invention sample S5, an optical output of 11.5 mW was obtained, but in the comparative example T6, it was 9.6 mW. Further, the ratio of the light traveling from the active layer toward the mount side (down side) reflected by the p-electrode and emitted from the exit surface reaches 86% in the present invention example (see FIG. 72). On the other hand, it was 67% in Comparative Example T6 (FIG. 73). On the other hand, the ratio in the invention sample A was 40% (FIG. 74).

本発明例S5ではダウン側に向かった光は、p電極の80%を占有するAgにより、その80%分が88%の反射率で反射され、またp電極の20%を占めるNi/Au層によりその20%分が40%を超える反射率(単純に反射率40%ではない)で反射される。この結果、本発明例S5では上記の比率は86%となる。比較例T6では、Ni/Au層のダウン側に位置するAg層によってさらに反射され、その反射分があるために本発明例Aよりも大きな比率となる。   In the present invention example S5, the light directed toward the down side is reflected with a reflectance of 88% by Ag occupying 80% of the p electrode, and a Ni / Au layer occupying 20% of the p electrode. Thus, 20% of the light is reflected with a reflectance exceeding 40% (simply not 40% reflectance). As a result, in the invention sample S5, the above ratio is 86%. In the comparative example T6, it is further reflected by the Ag layer located on the down side of the Ni / Au layer, and the ratio is larger than that of the inventive example A due to the reflection.

なお、比較例T6は、最も広くは本発明例に属することは言うまでもない。本実施例を説明するため便宜上比較例としているだけである。   Needless to say, the comparative example T6 belongs to the invention example most widely. In order to describe the present embodiment, it is only used as a comparative example for convenience.

上記のNi/Au電極層は、Pt電極層またはPd電極層で置き換えてもよい。また、反射電極Ag層は、Pt層またはRh層で置き換えてもよい。   The Ni / Au electrode layer may be replaced with a Pt electrode layer or a Pd electrode layer. The reflective electrode Ag layer may be replaced with a Pt layer or an Rh layer.

同様にNi/Au電極の面積率が10%のとき20mA印加時の光出力は11.8mW、Ni/Au電極の面積率が40%のとき20mA印加時の光出力は10.6mWと、その面積率に応じて比較例T6よりも大きい光出力が得られる。しかし、Ni/Au電極の面積率が10%未満の2%の場合、光出力は比較例T6と同じ9.6mWしか得られず、Ni/Au電極の周りで極端に強い発光むらがあることが本発明者の実験で確認されている。   Similarly, when the area ratio of the Ni / Au electrode is 10%, the light output when 20 mA is applied is 11.8 mW, and when the area ratio of the Ni / Au electrode is 40%, the light output when 20 mA is applied is 10.6 mW. A light output larger than that of the comparative example T6 is obtained depending on the area ratio. However, when the area ratio of the Ni / Au electrode is 2%, which is less than 10%, the light output is only 9.6 mW, which is the same as that of the comparative example T6, and there is extremely strong uneven emission around the Ni / Au electrode. Has been confirmed by the inventors' experiments.

本発明の実施例14は、GaN基板からエピタキシャル層に伝播した並行した複数の板状結晶反転領域を除去し、その板状結晶反転領域の間隙領域である平面形状が四角形である単結晶領域ごとにp電極を配置した点に特徴がある。GaN基板には、GaN基板の厚み方向に並行に分布してストライプ状にGaN基板の主面に現れ、その結晶反転領域がエピタキシャル層2,3,4,5,6に伝播する。図75、図72に示す板状結晶反転領域は主面上で格子状に配置されている。窒化物半導体基板を作製するとき、転位束(=コア)を集めた領域では周囲の結晶配列に対して反転した結晶配列をとる。このため、板状結晶反転領域と転位束とは、周囲と結晶配列が反転しているという点で同じである。両者の相違は、転位束が転位をひも状または太さのある線状に集め、したがって結晶反転領域がひも状であるのに対して、板状結晶反転領域ではそれが板状である点にある。すなわち、板状結晶反転領域は、転位が、厚みを有する面状領域内に高密度で分布する。   Example 14 of the present invention removes a plurality of parallel plate-like crystal inversion regions propagated from the GaN substrate to the epitaxial layer, and each single crystal region whose plane shape that is a gap region of the plate-like crystal inversion regions is a quadrangle. This is characterized in that a p-electrode is disposed in The GaN substrate is distributed in parallel in the thickness direction of the GaN substrate and appears on the main surface of the GaN substrate in a stripe shape, and the crystal inversion region propagates to the epitaxial layers 2, 3, 4, 5, and 6. 75 and 72 are arranged in a lattice pattern on the main surface. When a nitride semiconductor substrate is manufactured, a region where dislocation bundles (= cores) are collected takes a crystal arrangement that is inverted with respect to the surrounding crystal arrangement. For this reason, the plate-like crystal inversion region and the dislocation bundle are the same in that the periphery and the crystal arrangement are inverted. The difference between the two is that the dislocation bundle collects dislocations in a string-like or thick line, and thus the crystal inversion region is a string, whereas in the plate-like crystal inversion region it is plate-like. is there. That is, in the plate crystal inversion region, dislocations are distributed at a high density in the planar region having a thickness.

本実施例では、上記エピタキシャル層中の結晶反転領域を完全除去し、またGaN基板の結晶反転領域を第1主面側の所定深さに至るまで除去し、各エピタキシャル層を隔て、隔てられたエピタキシャル層ごとにp電極を設けた点に特徴がある(図77参照)。板状結晶反転領域は、図75に示すように板状結晶反転領域が主面上で交差する格子状結晶反転領域から形成されていてもよいし、あとで説明するように主面上で一定方向に揃って分布する並行配置でもよい。   In this example, the crystal inversion region in the epitaxial layer was completely removed, and the crystal inversion region of the GaN substrate was removed up to a predetermined depth on the first main surface side, and the epitaxial layers were separated from each other. It is characterized in that a p-electrode is provided for each epitaxial layer (see FIG. 77). The plate-like crystal inversion region may be formed of a lattice-like crystal inversion region where the plate-like crystal inversion region intersects on the main surface as shown in FIG. 75, or may be constant on the main surface as will be described later. It may be a parallel arrangement distributed in the direction.

(本発明例S6):図75、図76に示すGaN基板では、エピタキシャル層側の第1の主表面は面方位が(0001)面つまりc面である。この第1の主表面と面対称の関係にある結晶反転領域は、(000-1)面つまり-c面であり、c軸が反転して成長している。c面では表面はGa原子が配列されたGa面であり、結晶反転領域ではその表面はN原子が配列されたN面である。本発明例S6では、第1の主表面において100μmおきに幅30μmの結晶反転領域が格子状に配列されたGaN基板を用いた。結晶反転領域は、GaN基板上に形成されたエピタキシャル膜に伝播する。   (Invention Sample S6): In the GaN substrate shown in FIGS. 75 and 76, the first main surface on the epitaxial layer side has a (0001) plane, that is, a c-plane. The crystal inversion region having a plane symmetry relationship with the first main surface is the (000-1) plane, that is, the -c plane, and grows with the c-axis reversed. In the c plane, the surface is a Ga plane on which Ga atoms are arranged, and in the crystal inversion region, the surface is an N plane on which N atoms are arranged. In Invention Example S6, a GaN substrate was used in which crystal inversion regions having a width of 30 μm were arranged in a lattice pattern every 100 μm on the first main surface. The crystal inversion region propagates to the epitaxial film formed on the GaN substrate.

上記GaN基板を用いて、本発明例Aと同じ製造方法で積層構造を形成した(本発明例Aの工程(a1)-(a5)参照)。p電極を形成する工程では(a6)に代えて次の処理を行う。すなわち、p型GaN層に図76のように伝播した結晶反転領域のみを被覆するマスクパターンを用いて、マスク間隙のc面の領域のみにp電極層を形成したのち、マスクパターンを取り除いた。   Using the GaN substrate, a laminated structure was formed by the same manufacturing method as that of Invention Example A (see steps (a1) to (a5) of Invention Example A). In the step of forming the p-electrode, the following process is performed instead of (a6). That is, using the mask pattern that covers only the crystal inversion region propagated on the p-type GaN layer as shown in FIG. 76, the p electrode layer was formed only on the c-plane region of the mask gap, and then the mask pattern was removed.

次いで、上記GaN基板の第2の主面(裏面)全面にマスクを被覆した半導体基板を、8N(規定)80℃のKOH中に保持して、第1の主面側の結晶反転領域をp型GaN層などのエピタキシャル層を経てGaN基板の中にまでエッチングして除去して溝52を設けた。板状結晶反転領域51は転位密度が高い転位密集部なのでKOHによるエッチングが容易である。GaN基板内のエッチング深さは、エピタキシャル層とGaN基板との界面からGaN基板側に150μm入った位置までである。このあとマスクを取り除き、溝52を埋め込むように絶縁膜を堆積した(図77)。   Next, the semiconductor substrate having the entire second main surface (back surface) of the GaN substrate covered with a mask is held in 8N (regular) 80 ° C. KOH so that the crystal inversion region on the first main surface side is p. A trench 52 was formed by etching and removing the GaN substrate through an epitaxial layer such as a type GaN layer. Since the plate-like crystal inversion region 51 is a dislocation dense portion having a high dislocation density, etching by KOH is easy. The etching depth in the GaN substrate is from the interface between the epitaxial layer and the GaN substrate to a position of 150 μm on the GaN substrate side. Thereafter, the mask was removed, and an insulating film was deposited so as to fill the groove 52 (FIG. 77).

(試験および試験結果):上記の本発明例S6を発光素子に組み上げ、20mAの電流を印加したところ、9.6mWの光出力を得ることができた。これは本発明例Aの光出力8mWの1.2倍である。   (Test and test results): When the above-described Invention Example S6 was assembled in a light emitting device and a current of 20 mA was applied, a light output of 9.6 mW could be obtained. This is 1.2 times the optical output 8 mW of Example A of the present invention.

上述したように、本発明例S6では板状結晶反転領域が格子状に配列されていたが、板状結晶反転領域は格子状である必要はなく、図78(平面図)および図79(断面図)に示すように、GaN基板の主面に一定方向に沿って並列的にのみ配置された板状結晶反転領域であってもよい。また、点状(実際は面又は小円状)の結晶反転領域が規則的に存在する窒化物半導体基板を使用した場合でも、エッチング孔の大きさや深さに応じて本発明例S6と同様に本発明例Aよりも大きい光出力を得ることができる。   As described above, in the present invention example S6, the plate-like crystal inversion regions are arranged in a lattice shape, but the plate-like crystal inversion regions do not have to be in a lattice shape, and FIG. 78 (plan view) and FIG. As shown in the figure, it may be a plate-like crystal inversion region arranged only in parallel along a certain direction on the main surface of the GaN substrate. Even when a nitride semiconductor substrate in which dot-like (actually plane or small circular) crystal inversion regions are regularly present is used, the present invention is similar to the present invention example S6 depending on the size and depth of the etching hole. A light output larger than that of Invention Example A can be obtained.

本発明の実施例15では、図80に示すように、半導体チップの上方に、GaN基板1に対面するように蛍光板46を配置して樹脂15によって封止した点に特徴がある。pダウン実装における放射面となるGaN基板に対面させて蛍光板を配置した構成に、斬新さがある。用いた試験体は、図80に示す本発明例S7、S8および比較例T7である。   As shown in FIG. 80, the embodiment 15 of the present invention is characterized in that the fluorescent plate 46 is disposed above the semiconductor chip so as to face the GaN substrate 1 and sealed with the resin 15. There is a novelty in the configuration in which the fluorescent plate is disposed so as to face the GaN substrate that becomes the radiation surface in p-down mounting. The specimens used are examples S7 and S8 of the present invention and comparative example T7 shown in FIG.

(本発明例S7):本発明例S7は基本的には実施例3に示した本発明例Fの製造工程にしたがって製造される。図80に示すように、pダウン搭載したチップの上に蛍光板46をGaN基板1裏面に対面するように配置し、エポキシ系樹脂15で封止して白色発光装置とした。   (Invention Sample S7): Invention Sample S7 is basically produced according to the production steps of Invention Example F shown in Example 3. As shown in FIG. 80, a fluorescent plate 46 is arranged on the p-down mounted chip so as to face the back surface of the GaN substrate 1 and sealed with an epoxy resin 15 to obtain a white light emitting device.

上記の蛍光板46は、次の製造方法で作製した。ハロゲン輸送法によりI(ヨウ素)が拡散された塊状のZnSSe結晶を作製し、この塊状ZnSSe結晶をZn、Cu雰囲気中で加熱することにより、ZnSSe内部にCuを拡散させた。ついでこの塊状ZnSSe結晶を粗い研磨盤を用いて厚さ0.5mmまで研磨したのち、リードフレームに収まる形状に切り出した。上記の方法で作製された蛍光板の表面および裏面の粗さは、Rmax=1μmであった。   The fluorescent plate 46 was produced by the following manufacturing method. A bulk ZnSSe crystal in which I (iodine) was diffused by a halogen transport method was prepared, and this bulk ZnSSe crystal was heated in a Zn and Cu atmosphere to diffuse Cu into the ZnSSe. Next, this massive ZnSSe crystal was polished to a thickness of 0.5 mm using a rough polishing disk, and then cut into a shape that fits in the lead frame. The roughness of the front and back surfaces of the fluorescent plate produced by the above method was Rmax = 1 μm.

(本発明例S8):本発明例S8では、上記蛍光板46のGaN基板に対面する表面46aに凹凸を形成した(図81参照)。凹凸の高さは2μmとし、凹凸の平均的なピッチは5μmとした。他の構造は、本発明例S7と同じとした。   (Invention Sample S8): In Invention Sample S8, irregularities were formed on the surface 46a of the fluorescent plate 46 facing the GaN substrate (see FIG. 81). The height of the unevenness was 2 μm, and the average pitch of the unevenness was 5 μm. The other structure was the same as that of the present invention example S7.

(比較例T7):図82に示すように、pトップ搭載したチップの上方に蛍光板46をチップに対面するように配置し、エポキシ系樹脂15で封止して白色発光装置とした。   (Comparative Example T7): As shown in FIG. 82, the fluorescent plate 46 was disposed above the chip mounted on the p-top so as to face the chip, and sealed with the epoxy resin 15 to obtain a white light emitting device.

(試験および試験結果):上記のGaN基板から組み上げた発光装置に電流10Aを印加したとき、得られた発光の輝度はつぎのとおりであった。本発明例S7では800lm、本発明例S8では880lmといずれも高い輝度を得ることができた。一方、比較例T7の輝度は540lmであった。上記の結果は、pダウン搭載においてGaN基板に対面して蛍光板を配置する方が、pトップ搭載に蛍光板を配置するよりも高い輝度を確保できることを示すものであり、蛍光板のGaN基板に対面する表面を租面化することによりさらに輝度を向上させることが判明した。   (Test and test results): When a current of 10 A was applied to the light-emitting device assembled from the GaN substrate, the luminance of light emission obtained was as follows. In the present invention example S7, 800 lm was obtained, and in the present invention example S8, 880 lm was obtained. On the other hand, the luminance of Comparative Example T7 was 540 lm. The above results show that the phosphor plate facing the GaN substrate in p-down mounting can secure higher luminance than the phosphor plate disposed in the p-top mounting, and faces the GaN substrate of the phosphor plate. It has been found that the brightness is further improved by roughening the surface.

本発明の実施例16では、比較的小型のLEDについて、本発明によるLEDと比較例としてのLEDとの青発光強度および白色輝度を測定、対比した。検討した試験体は、本発明例S9〜S11および比較例T8である。以下、説明する。   In Example 16 of the present invention, for a relatively small LED, the blue light emission intensity and the white luminance of the LED according to the present invention and the LED as a comparative example were measured and compared. The examined specimens are Invention Examples S9 to S11 and Comparative Example T8. This will be described below.

(本発明例S9):本発明例Aと基本的に同様の構造を備える。また、用いるGaN基板の厚みは200μmとなっている。チップ化した発光装置は、チップの最外周の平面形状が1辺236μmの正六角形であり、光の放出面が1辺186μmの正六角形の形状(発光面積が0.09mm)で、発光層が1辺186μmの正六角形の形状をとる。 (Invention Sample S9): A structure basically similar to that of Invention Example A is provided. The GaN substrate used has a thickness of 200 μm. The light emitting device formed into a chip has a regular hexagonal shape with a side of 236 μm on the outermost periphery of the chip, a regular hexagonal shape with a light emission surface of 186 μm on one side (light emitting area is 0.09 mm 2 ), Takes the shape of a regular hexagon with a side of 186 μm.

なお、本発明例S9を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、本発明例S9の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the present invention example S9, was prepared using the fluorescent material capable of obtaining 180 lm per 1 watt (W) of 450 nm light output using the present invention example S9. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、本発明例S9の製造方法を説明する。
(S9−1)〜(S9−11)本発明例Aの製造方法における(a1)〜(a11)と同様の処理を行なった。つまり、本発明例S9の製造方法は、基本的には本発明例Aと同様である。
Next, a method for producing the present invention example S9 will be described.
(S9-1) to (S9-11) The same processes as (a1) to (a11) in the production method of Invention Example A were performed. That is, the manufacturing method of Invention Example S9 is basically the same as that of Invention Example A.

また、上述した本発明例S9の変形例である白色LEDの製造方法は、基本的に本発明例Fの製造方法と同様である。   Further, the manufacturing method of the white LED which is a modified example of the present invention example S9 is basically the same as the manufacturing method of the present invention example F.

(本発明例S10):図21〜図23に示した本発明によるLEDの実施の形態2と基本的に同様の構造を備える。つまり、チップ化した発光装置は側面80がGaN基板1の第2の主表面1aに対して傾斜している。図22に示すように、p電極12は、外周の一辺の長さがLP1=186μmである正六角形になっている。このため、発光面は一辺の長さがLP1=186μm(面積が0.09mm)である正六角形となる。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0=236μmの正六角形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図23に示すように、GaN基板1の第2の主表面の平面形状も1辺の長さがLN0=302μmの正六角形である。GaN基板1のほぼ中央部に直径D=100μmである円形状のn電極11が配置されている。 (Invention Sample S10): A structure basically similar to that of Embodiment 2 of the LED according to the present invention shown in FIGS. That is, the side surface 80 of the light emitting device formed into a chip is inclined with respect to the second main surface 1 a of the GaN substrate 1. As shown in FIG. 22, the p-electrode 12 has a regular hexagonal shape in which the length of one side of the outer periphery is L P1 = 186 μm. For this reason, the light emitting surface is a regular hexagon having a side length of L P1 = 186 μm (area is 0.09 mm 2 ). Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the stacked structure formed on the GaN substrate 1 is also a regular hexagon with one side length L P0 = 236 μm. The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. As shown in FIG. 23, the planar shape of the second main surface of the GaN substrate 1 is also a regular hexagon with one side length of L N0 = 302 μm. A circular n-electrode 11 having a diameter D = 100 μm is disposed at the substantially central portion of the GaN substrate 1.

なお、本発明例S10を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、本発明例S10の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the present invention example S10, was produced using the fluorescent material capable of obtaining 180 lm per 1 watt (W) of 450 nm light output using the present invention example S10. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、本発明例S10の製造方法を説明する。
(S10−1)〜(S10−7)本発明例Aにおいて対応する処理(a1)〜(a7)と同じ処理を行なった。
(S10−8)アルカリ溶液としてのKOH溶液をエッチャントとして用いたエッチングにより、板状結晶反転領域51(図7および図8参照)を選択的に除去する。このとき、図25〜図27に示すように、チップの側面も同時にエッチングにより除去されることにより、傾斜した側面80が形成される。ここでは、アルカリ溶液として8NのKOH溶液を用いた。また、KOH溶液の温度を150℃に設定した。このKOH溶液を、図83に示すエッチング用装置の密閉容器87内部に配置する。なお、図83は、本発明によるLEDの製造方法において用いられるエッチング装置を示す模式図である。図83に示したエッチング装置は、架台84の下部表面にベース板90が配置され、当該ベース板90上に密閉容器87が配置されている。密閉容器87の内部にはKOH溶液からなるエッチャント88が配置され、当該エッチャント88に上述したGaN基板が浸漬される。そして、密閉容器87の上部開口部を塞ぐように密閉容器蓋86が配置される。密閉容器蓋86上には押え板85が配置される。押え板85を密閉容器87側に押圧するように、架台84の上部に形成された穴を通して押えボルト89が取付けられている。そして、上記のような条件のKOH溶液(エッチャント88)にGaN基板を浸漬し、図83に示したエッチング装置を用いてエッチャント88を密閉状態にして1.5時間保持する。この結果、図25〜図27に示したような構造を得る。なお、密閉容器87および密閉容器蓋86を構成する材料としては、たとえばテフロン(登録商標)などを用いることができる。
Next, a method for producing the present invention example S10 will be described.
(S10-1) to (S10-7) The same processes as the corresponding processes (a1) to (a7) in the invention sample A were performed.
(S10-8) The plate crystal inversion region 51 (see FIGS. 7 and 8) is selectively removed by etching using a KOH solution as an alkaline solution as an etchant. At this time, as shown in FIGS. 25 to 27, the side surface of the chip is also removed by etching at the same time, so that the inclined side surface 80 is formed. Here, an 8N KOH solution was used as the alkaline solution. The temperature of the KOH solution was set to 150 ° C. This KOH solution is placed inside the sealed container 87 of the etching apparatus shown in FIG. FIG. 83 is a schematic diagram showing an etching apparatus used in the LED manufacturing method according to the present invention. In the etching apparatus shown in FIG. 83, a base plate 90 is disposed on the lower surface of the gantry 84, and an airtight container 87 is disposed on the base plate 90. An etchant 88 made of a KOH solution is disposed inside the sealed container 87, and the GaN substrate described above is immersed in the etchant 88. And the airtight container lid | cover 86 is arrange | positioned so that the upper opening part of the airtight container 87 may be plugged up. A presser plate 85 is disposed on the hermetic container lid 86. A presser bolt 89 is attached through a hole formed in the upper portion of the gantry 84 so as to press the presser plate 85 toward the sealed container 87. Then, the GaN substrate is dipped in the KOH solution (etchant 88) under the above conditions, and the etchant 88 is sealed and held for 1.5 hours using the etching apparatus shown in FIG. As a result, the structure as shown in FIGS. In addition, as a material which comprises the airtight container 87 and the airtight container lid | cover 86, Teflon (trademark) etc. can be used, for example.

なお、図26に示した、エッチングにより形成されたV溝の深さHは150μmであり、エッチングされなかった部分の厚み(深さH)は50μmであった。そして、V溝の底に位置するエッチングされなかった部分を劈開する、あるいはエッチングなどの手法で部分的に除去するといった工程を実施することで、図21に示したLEDに用いられるチップを得た。得られたチップは、図22および図23に示すような形状となっている。具体的には、p電極12は、外周の一辺の長さLP1=186μmの正六角形になっている。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さLP0=236μmの正六角形である。上述したp型GaN層6の平面形状とp電極12の平面形状とは相似形になっている。また、図23に示すように、GaN基板1の第2の主表面の平面形状も1辺の長さLN0=302μmの正六角形である。GaN基板1のほぼ中央部に直径D=100μmの円形状のn電極11が配置されている。
(S10−9)〜(S10−11)本発明例Aにおいて対応する処理(a9)〜(a11)と同じ処理を行なった。
In addition, the depth H 1 of the V groove formed by etching shown in FIG. 26 was 150 μm, and the thickness (depth H 2 ) of the unetched portion was 50 μm. And the chip | tip used for LED shown in FIG. 21 was obtained by implementing the process of cleaving the part which was not etched located in the bottom of V groove | channel, or removing partially by methods, such as an etching. . The obtained chip has a shape as shown in FIGS. Specifically, the p-electrode 12 has a regular hexagonal shape with a length L P1 = 186 μm on one side of the outer periphery. Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the laminated structure formed on the GaN substrate 1 is also a regular hexagon with one side length L P0 = 236 μm. The planar shape of the p-type GaN layer 6 and the planar shape of the p-electrode 12 are similar. As shown in FIG. 23, the planar shape of the second main surface of the GaN substrate 1 is also a regular hexagon with one side length L N0 = 302 μm. A circular n-electrode 11 having a diameter D = 100 μm is arranged at substantially the center of the GaN substrate 1.
(S10-9) to (S10-11) The same processes as the corresponding processes (a9) to (a11) in the invention sample A were performed.

また、上述した本発明例S10の変形例である白色LEDの製造方法は、基本的に上述した本発明例S10の製造方法に、本発明例Fの製造方法と同様の工程(リードフレームのマウントに搭載したチップのn電極側に蛍光材を搭載した後、樹脂封止を行なう工程)を組合せたものである。   In addition, the white LED manufacturing method, which is a modification of the above-described invention example S10, is basically the same as the manufacturing method of the invention example F in the above-described manufacturing method of the invention example S10 (lead frame mounting). And a step of resin sealing after mounting a fluorescent material on the n-electrode side of the chip mounted on.

(本発明例S11):図28に示した本発明によるLEDの実施の形態3と基本的に同様の構造を備える。つまり、上述した本発明例S11の構造においてGaN基板の第2の主表面1aに非鏡面処理が成されている(凹凸部が形成されている)。チップ化した発光装置は側面80がGaN基板1の第2の主表面1aに対して傾斜している。p電極12は、外周の一辺の長さがLP1=186μmである正六角形になっている。このため、発光面は一辺の長さがLP1=186μm(面積が0.09mm)である正六角形となる。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0=236μmの正六角形である。また、GaN基板1の第2の主表面の平面形状も1辺の長さがLN0=302μmの正六角形である。GaN基板1のほぼ中央部に直径D=100μmである円形状のn電極11が配置されている。第2の主表面1aの表面には凹凸部が形成されている。 (Invention Sample S11): It has a structure basically similar to that of Embodiment 3 of the LED according to the present invention shown in FIG. That is, in the structure of the present invention example S11 described above, the second main surface 1a of the GaN substrate is subjected to non-specular treatment (an uneven portion is formed). In the light emitting device formed into a chip, the side surface 80 is inclined with respect to the second main surface 1 a of the GaN substrate 1. The p-electrode 12 has a regular hexagonal shape in which the length of one side of the outer periphery is L P1 = 186 μm. For this reason, the light emitting surface is a regular hexagon having a side length of L P1 = 186 μm (area is 0.09 mm 2 ). Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the stacked structure formed on the GaN substrate 1 is also a regular hexagon with one side length L P0 = 236 μm. The planar shape of the second main surface of the GaN substrate 1 is also a regular hexagon with one side length of L N0 = 302 μm. A circular n-electrode 11 having a diameter D = 100 μm is disposed at the substantially central portion of the GaN substrate 1. Concave and convex portions are formed on the surface of second main surface 1a.

なお、本発明例S11を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、本発明例S11の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the present invention example S11, was produced using the phosphor material capable of obtaining 180 lm per 1 watt (W) of 450 nm light output using the present invention example S11. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、本発明例S11の製造方法を説明する。
(S11−1)〜(S11−6)本発明例Aにおいて対応する処理(a1)〜(a6)と同じ処理を行なった。
(S11−7)そして、本発明例Aにおける処理(a7)を行なうことなく、つまりGaN基板の第2の主表面1a植えに保護マスクを形成することなく、アルカリ溶液としてのKOH溶液をエッチャントとして用いたエッチングにより、板状結晶反転領域51(図7および図8参照)を選択的に除去する。このとき、図29に示すように、チップの側面も同時にエッチングにより除去されることにより、傾斜した側面80が形成される。また、保護マスクが形成されていないため、GaN基板の第2の主表面1aもエッチングにより部分的に除去される。この結果、第2の主表面1aに凹凸部が形成される。なお、エッチング工程のプロセス条件(エッチャントの濃度や種類、温度、加圧状態(密閉容器により保持したかどうか)など)は、基本的に上述した本発明例S10の処理(S10−8)と同様である。エッチングの結果、図29に示したような構造を得る。なお、図29に示した、エッチングにより形成されたV溝の深さHは150μmであり、エッチングされなかった部分の厚み(深さH)は50μmであった。そして、上記処理(S10−8)と同様に、V溝の底に位置するエッチングされなかった部分を劈開する、あるいはエッチングなどの手法で部分的に除去するといった工程を実施することで、図28に示したLEDに用いられるチップを得た。
(S11−8)〜(S11−10)本発明例Aにおいて対応する処理(a9)〜(a11)と同じ処理を行なった。
Next, a method for producing the present invention example S11 will be described.
(S11-1) to (S11-6) The same processes as the corresponding processes (a1) to (a6) in the invention sample A were performed.
(S11-7) Then, without performing the process (a7) in the present invention example A, that is, without forming a protective mask on the second main surface 1a planting of the GaN substrate, the KOH solution as an alkaline solution is used as an etchant. The plate crystal inversion region 51 (see FIGS. 7 and 8) is selectively removed by the etching used. At this time, as shown in FIG. 29, the side surface of the chip is simultaneously removed by etching, thereby forming an inclined side surface 80. Further, since the protective mask is not formed, the second main surface 1a of the GaN substrate is also partially removed by etching. As a result, an uneven portion is formed on the second main surface 1a. The process conditions (etchant concentration, type, temperature, pressurized state (whether held by a sealed container), etc.) of the etching process are basically the same as those in the above-described processing of the invention example S10 (S10-8). It is. As a result of the etching, a structure as shown in FIG. 29 is obtained. Incidentally, as shown in FIG. 29, the depth H 1 of the V groove formed by etching is 150 [mu] m, the thickness of the portion that has not been etched (depth H 2) was 50 [mu] m. Then, similarly to the above processing (S10-8), the step of cleaving the unetched portion located at the bottom of the V-groove or partially removing it by a technique such as etching is performed, so that FIG. The chip | tip used for LED shown in was obtained.
(S11-8) to (S11-10) The same processes as the corresponding processes (a9) to (a11) in the invention sample A were performed.

また、上述した本発明例S11の変形例である白色LEDの製造方法は、基本的に上述した本発明例S11の製造方法に、本発明例Fの製造方法と同様の工程(リードフレームのマウントに搭載したチップのn電極側に蛍光材を搭載した後、樹脂封止を行なう工程)を組合せたものである。   The white LED manufacturing method, which is a modification of the above-described invention example S11, is basically the same as the manufacturing method of the invention example F in the manufacturing method of the invention example S11 described above (lead frame mounting). And a step of resin sealing after mounting a fluorescent material on the n-electrode side of the chip mounted on.

次に、比較例T8を説明する。   Next, Comparative Example T8 will be described.

(比較例T8):基本的に本願発明Aと同様の構造を備えるが、チップの平面形状およびGaN基板中の転位密度が異なる。すなわち、比較例T8は、チップの平面形状が一辺400μmの正方形であり、GaN基板中の転位密度が1E9/cm2である。また、発光領域の形状は300μm□(1辺が300μmの四角形)であり、発光面積は0.09mm2である。 (Comparative Example T8): Although basically provided with the same structure as that of the present invention A, the planar shape of the chip and the dislocation density in the GaN substrate are different. That is, in Comparative Example T8, the planar shape of the chip is a square having a side of 400 μm, and the dislocation density in the GaN substrate is 1E9 / cm 2 . Further, the shape of the light emitting region is 300 μm □ (a square with one side of 300 μm), and the light emitting area is 0.09 mm 2 .

なお、比較例T8を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、比較例T8の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the comparative example T8, was prepared using a fluorescent material that can obtain 180 lm per 1 watt (W) of 450 nm light output using the comparative example T8. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、比較例T8の製造方法を説明する。
(T8−1)c面から0.5°ずらしたn型GaNのオフ基板を使用した。このGaN基板の比抵抗は0.01Ω・cmであり、転位密度は1E9/cm2であった。このGaN基板の厚みは200μmとした。
(T8−2)MOCVDでGaN基板の第1の主面であるGa面上に次の積層構造を形成した。(Siドープn型GaN層/クラッド層のSiドープn型Al0.2Ga0.8N層/GaN層とIn0.15Ga0.85N層との2層構造が3層重ねられたMQW(Multi-Quantum Well)/クラッド層のMgドープp型Al0.2Ga0.8N層/Mgドープp型GaN層)
(T8−3)発光波長は450nmであり、低温4.2KでのPL強度と室温298KでのPL強度を比較することにより便宜的に算出した内部量子効率は50%であった。
(T8−4)このウエハを活性化処理して、Mgドープp型層の低抵抗化を行なった。ホール測定によるキャリア濃度は、Mgドープp型Al0.2Ga0.8N層が5E17/cm3、Mgドープp型GaN層が1E18/cm3であった。
(T8−5)このウエハをさらに、フォトリソグラフィ技術とRIE(Reactive Ion Etching)により、Mgドープp型層側からSiドープn型層までCl系ガスでエッチングする。このエッチングにより、個々のチップとなる正方形状の領域の間に位置し、個々のチップを分割するための格子状の素子分離溝25を形成し、素子分離を行なった。素子分離溝の幅は100μmである。
(T8−6)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより400μmおきにチップの中心に平面形状が円形状であり、直径(D)100μmのn電極をつけた。n電極として、GaN基板に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(T8−7)p電極としては、平面形状が正方形状であり、p型GaN層に接して厚み4nmのNi層を形成し、その上に厚み4nmのAu層を全面に形成した。これを不活性ガス雰囲気中で加熱処理することにより、接触抵抗を5E−4Ω・cm2とした。
(T8−8)その後に、チップ境界が側面として現れるようにスクライブを行ない、チップ化したものを発光装置とした。チップ化した発光装置は、光の放出面が300μm□(1辺の長さが300μmの四角形)の形状で、発光層が300μm□の形状をとる。なお、チップの外形の平面形状は、一辺が400μmの正方形である。
(T8−9)図1に示したLEDと同様に、リードフレームのマウント部21aに、上記チップのp型GaN層側が接するように搭載して、発光装置を形成した。マウント部に塗布した導電性接着剤14によって発光装置とマウントとを固定するとともに、導通が得られるようにしている。
(T8−10)発光装置からの放熱性を良くするために、発光装置のp型GaN層が全面マウント部と接するように搭載した。また接着剤は熱伝導の良いAg系のものを、またリードフレームも熱伝導の良いCuW系のものを選択した。これにより、得られた熱抵抗は8℃/Wであった。
(T8−11)さらに、n電極とリードフレームのリード部とをワイヤボンドにより導通させた後、エポキシ系樹脂により樹脂封止を行なって発光装置をランプ化した。
Next, a manufacturing method of Comparative Example T8 will be described.
(T8-1) An n-type GaN off-substrate shifted by 0.5 ° from the c-plane was used. The specific resistance of this GaN substrate was 0.01 Ω · cm, and the dislocation density was 1E9 / cm 2 . The thickness of this GaN substrate was 200 μm.
(T8-2) The following laminated structure was formed on the Ga surface, which is the first main surface of the GaN substrate, by MOCVD. (SiW n-type GaN layer / Si-doped n-type Al 0.2 Ga 0.8 N layer of cladding layer / MQW (Multi-Quantum Well) / two layers of In 0.15 Ga 0.85 N layer stacked on top of each other) (Clad layer Mg-doped p-type Al 0.2 Ga 0.8 N layer / Mg-doped p-type GaN layer)
(T8-3) The emission wavelength was 450 nm, and the internal quantum efficiency calculated for convenience by comparing the PL intensity at a low temperature of 4.2 K and the PL intensity at a room temperature of 298 K was 50%.
(T8-4) This wafer was activated to reduce the resistance of the Mg-doped p-type layer. The carrier concentration by hole measurement was 5E17 / cm 3 for the Mg-doped p-type Al 0.2 Ga 0.8 N layer and 1E18 / cm 3 for the Mg-doped p-type GaN layer.
(T8-5) The wafer is further etched with a Cl-based gas from the Mg-doped p-type layer side to the Si-doped n-type layer by photolithography and RIE (Reactive Ion Etching). By this etching, a lattice-shaped element isolation groove 25 is formed between the square regions to be the individual chips and for dividing the individual chips, and the elements are separated. The width of the element isolation groove is 100 μm.
(T8-6) The N-face of the back surface, which is the second main surface of the GaN substrate, has a circular planar shape at the center of the chip every 400 μm by photolithography, vapor deposition, and lift-off method. (D) A 100 μm n-electrode was attached. As the n-electrode, a stacked structure (Ti layer 20 nm / Al layer 100 nm / Ti layer 20 nm / Au layer 200 nm) was formed in order from the bottom in contact with the GaN substrate. By heating this in a nitrogen (N 2 ) atmosphere, the contact resistance was set to 1E-5 Ω · cm 2 or less.
The (T8-7) p electrode had a square shape in plan view, and a Ni layer with a thickness of 4 nm was formed in contact with the p-type GaN layer, and an Au layer with a thickness of 4 nm was formed on the entire surface. This was heat-treated in an inert gas atmosphere, so that the contact resistance was 5E-4 Ω · cm 2 .
(T8-8) Thereafter, scribing was performed so that the chip boundary appeared as a side surface, and the chip was made into a light emitting device. The light-emitting device formed into a chip has a light emission surface of a shape of 300 μm □ (a square having a side length of 300 μm) and a light-emitting layer of a shape of 300 μm □. The planar shape of the outer shape of the chip is a square having a side of 400 μm.
(T8-9) Similarly to the LED shown in FIG. 1, the chip was mounted so that the p-type GaN layer side of the chip was in contact with the mount 21a of the lead frame to form a light emitting device. The light emitting device and the mount are fixed by the conductive adhesive 14 applied to the mount portion, and conduction is obtained.
(T8-10) In order to improve the heat dissipation from the light emitting device, the p-type GaN layer of the light emitting device was mounted so as to be in contact with the entire mount portion. Also, an Ag-based adhesive with good thermal conductivity was selected, and a lead frame of CuW-based adhesive with high thermal conductivity was selected. Thereby, the obtained thermal resistance was 8 ° C./W.
(T8-11) Further, the n electrode and the lead portion of the lead frame were made conductive by wire bonding, and then resin sealing was performed with an epoxy resin to form a lamp.

また、上述した比較例T8の変形例である白色LEDの製造方法は、基本的に上述した比較例T8の製造方法に、本発明例Fの製造方法と同様の工程(リードフレームのマウントに搭載したチップのn電極側に蛍光材を搭載した後、樹脂封止を行なう工程)を組合せたものである。   Further, the white LED manufacturing method, which is a modification of the above-described comparative example T8, is basically the same as the manufacturing method of the above-described comparative example T8 in the same process as the manufacturing method of the present invention example F (mounted on the lead frame mount). And a step of resin sealing after mounting a fluorescent material on the n-electrode side of the chip.

(実験結果)
本発明例S9〜S11および比較例T8、について、青発光強度を測定した。具体的には、本発明例S9〜S11および比較例T8を、積分球内に搭載した後所定の電流を印加し、集光されディテクタから出力される光出力値の比較を行なった。このとき、本発明例S9〜S11および比較例T8のそれぞれの試験体には、それぞれ20mAの電流を印加した。その結果、青発光強度(青色(波長450nm)の光の出力)は、比較例T8が8mWであったのに対して、本発明例S9〜S11は、それぞれ8mW、9.6mW、11.5mWであった。また、それぞれの試験体に、100mAの電流を印加した場合についても、青発光強度を測定した。その結果、青発光強度は、比較例T8が30mWであったのに対して、本発明例S9〜S11は、それぞれ40mW、48mW、57.6mWであった。
(Experimental result)
Blue emission intensity was measured for inventive examples S9 to S11 and comparative example T8. Specifically, the present invention examples S9 to S11 and comparative example T8 were mounted in an integrating sphere and then a predetermined current was applied to compare the light output values collected and output from the detector. At this time, a current of 20 mA was applied to each of the specimens of Invention Examples S9 to S11 and Comparative Example T8. As a result, the blue emission intensity (light output of blue light (wavelength 450 nm)) was 8 mW in the comparative example T8, whereas the invention examples S9 to S11 were 8 mW, 9.6 mW, and 11.5 mW, respectively. Met. Moreover, the blue luminescence intensity was also measured when a current of 100 mA was applied to each specimen. As a result, the blue light emission intensity was 30 mW in Comparative Example T8, while Inventive Examples S9 to S11 were 40 mW, 48 mW, and 57.6 mW, respectively.

このように、比較例T8に比べて、本発明例S9〜S11は、20mAの電流を印加した場合または100mAの電流を印加した場合のいずれにおいても、高い発光強度を示した。また、本発明例S9より、本発明例S9の構成に加えてチップの側面を傾斜させた(テーパ状にした)本発明例S10の方が、高い発光強度を示している。さらに、本発明例S10より、本発明例S10の構成に加えてGaN基板の第2の主表面を凹凸化した(非鏡面処理を施した)本発明例S11の方が、高い発光強度を示している。   Thus, compared with Comparative Example T8, Invention Examples S9 to S11 showed higher emission intensity in both cases where a current of 20 mA was applied or a current of 100 mA was applied. Further, the present invention example S10 in which the side surface of the chip is inclined (tapered) in addition to the configuration of the present invention example S9 shows higher light emission intensity than the present invention example S9. Furthermore, the present invention example S11 in which the second main surface of the GaN substrate is roughened (non-specular treatment) in addition to the configuration of the present invention example S10 shows higher emission intensity than the present invention example S10. ing.

また、本発明例S9〜S11および比較例T8の変形例(白色LED)について、上述した積分球を用いた測定方法と同様の方法により、白色輝度の測定を行なった。このとき、本発明例S9〜S11および比較例T8の変形例の試験体には、それぞれ20mAの電流を印加した。その結果、白色輝度は、比較例T8の変形例が1.0lmであったのに対して、本発明例S9〜S11の変形例は、それぞれ1.0lm、1.2lm、2.1lmであった。また、それぞれの試験体に、100mAの電流を印加した場合についても、白色輝度を測定した。その結果、白色輝度は、比較例T8の変形例が5.4lmであったのに対して、本発明例S9〜S11の変形例は、それぞれ7.2lm、8.6lm、10.4lmであった。   Further, for the modified examples (white LEDs) of the inventive examples S9 to S11 and the comparative example T8, the white luminance was measured by the same method as the measuring method using the integrating sphere described above. At this time, a current of 20 mA was applied to the test specimens of the modified examples of Invention Examples S9 to S11 and Comparative Example T8. As a result, the white luminance was 1.0 lm in the modified example of the comparative example T8, whereas the modified examples in the inventive examples S9 to S11 were 1.0 lm, 1.2 lm, and 2.1 lm, respectively. It was. Also, white luminance was measured when a current of 100 mA was applied to each specimen. As a result, the white luminance was 5.4 lm in the modified example of the comparative example T8, whereas the modified examples in the present invention examples S9 to S11 were 7.2 lm, 8.6 lm, and 10.4 lm, respectively. It was.

本発明の実施例17では、比較的大型のLEDについて、本発明によるLEDと比較例としてのLEDとの青発光強度および白色輝度を測定、対比した。検討した試験体は、本発明例S12〜S14および比較例T9である。以下、説明する。   In Example 17 of the present invention, for a relatively large LED, the blue light emission intensity and the white luminance of the LED according to the present invention and the LED as a comparative example were measured and compared. The examined specimens are Invention Examples S12 to S14 and Comparative Example T9. This will be described below.

(本発明例S12):本発明例Aと基本的に同様の構造を備えるが、本発明例S9よりチップサイズが大きくなっている。また、用いるGaN基板の厚みも400μmとなっている。つまり、チップ化した発光装置は、チップの最外周の平面形状が1辺1.30mmの正六角形であり、光の放出面が1辺1.25mmの正六角形の形状(発光面積が4mm)で、発光層が1辺1.25mmの正六角形の形状をとる。また、n電極の直径Dは600μmである。 (Invention Sample S12): A structure basically similar to that of Invention Sample A is provided, but the chip size is larger than that of Invention Sample S9. The thickness of the GaN substrate used is also 400 μm. That is, the light emitting device formed into a chip has a regular hexagonal shape in which the planar shape of the outermost periphery of the chip is 1.30 mm per side and a regular hexagonal shape whose light emission surface is 1.25 mm per side (light emitting area is 4 mm 2 ). Thus, the light emitting layer has a regular hexagonal shape with a side of 1.25 mm. The diameter D of the n electrode is 600 μm.

なお、本発明例S9の場合と同様に、本発明例S12についても、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、本発明例S12の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   As in the case of the present invention example S9, the present invention example S12 also uses a fluorescent material capable of obtaining 180 lm per 1 watt (W) of 450 nm light output, and is a modified example of the present invention example S12. A white LED emitting light was prepared. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、本発明例S12の製造方法を説明する。
(S12−1)〜(S12−11)本発明例Aの製造方法における(a1)〜(a11)と同様の処理を行なった。つまり、本発明例S12の製造方法は、基本的には本発明例Aと同様である。
Next, the manufacturing method of Example S12 of the present invention will be described.
(S12-1) to (S12-11) The same processes as (a1) to (a11) in the production method of Invention Example A were performed. That is, the manufacturing method of Invention Example S12 is basically the same as that of Invention Example A.

また、上述した本発明例S12の変形例である白色LEDの製造方法は、基本的に本発明例Fの製造方法と同様である。   Further, the manufacturing method of the white LED which is a modification of the above-described invention example S12 is basically the same as the manufacturing method of the invention example F.

(本発明例S13):図28に示した本発明によるLEDの実施の形態3と基本的に同様の構造を備える。つまり、上述した本発明例S12の構造においてチップ化した発光装置は側面80がGaN基板1の第2の主表面1aに対して傾斜しているとともに、GaN基板の第2の主表面1aに非鏡面処理が成されている(凹凸部が形成されている)。p電極12は、外周の一辺の長さがLP1=1.25mmである正六角形になっている。このため、発光面は一辺の長さがLP1=1.25mm(面積が4mm)である正六角形となる。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さがLP0=1.30mmの正六角形である。また、GaN基板1の第2の主表面の平面形状も1辺の長さがLN0=1.53mmの正六角形である。GaN基板1のほぼ中央部に直径D=600μmである円形状のn電極11が配置されている。第2の主表面1aの表面には上述のように凹凸部が形成されている。 (Invention Sample S13): The LED has the same structure as that of Embodiment 3 of the LED according to the present invention shown in FIG. That is, in the light emitting device formed into a chip in the structure of the present invention example S12 described above, the side surface 80 is inclined with respect to the second main surface 1a of the GaN substrate 1 and is not in contact with the second main surface 1a of the GaN substrate. Mirror surface treatment is performed (uneven portions are formed). The p-electrode 12 has a regular hexagonal shape in which the length of one side of the outer periphery is L P1 = 1.25 mm. For this reason, the light emitting surface has a regular hexagonal shape in which the length of one side is L P1 = 1.25 mm (the area is 4 mm 2 ). Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the laminated structure formed on the GaN substrate 1 is also a regular hexagon with one side length L P0 = 1.30 mm. The planar shape of the second main surface of the GaN substrate 1 is also a regular hexagon having a side length of L N0 = 1.53 mm. A circular n-electrode 11 having a diameter D = 600 μm is disposed at the substantially central portion of the GaN substrate 1. As described above, the uneven portion is formed on the surface of the second main surface 1a.

なお、本発明例S13を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、本発明例S13の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the invention example S13, was produced using the phosphor material capable of obtaining 180 lm per 1 watt (W) of 450 nm light output using the invention example S13. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、本発明例S13の製造方法を説明する。
(S13−1)〜(S13−6)本発明例Aにおいて対応する処理(a1)〜(a6)と同じ処理を行なった。
(S13−7)そして、本発明例Aにおける処理(a7)を行なうことなく、つまりGaN基板の第2の主表面1a植えに保護マスクを形成することなく、アルカリ溶液としてのKOH溶液をエッチャントとして用いたエッチングにより、板状結晶反転領域51(図7および図8参照)を選択的に除去する。このとき、図29に示すように、チップの側面も同時にエッチングにより除去されることにより、傾斜した側面80が形成される。また、保護マスクが形成されていないため、GaN基板の第2の主表面1aもエッチングにより部分的に除去される。この結果、第2の主表面1aに凹凸部が形成される。なお、エッチング工程のプロセス条件(エッチャントの濃度や種類、温度、加圧状態(密閉容器により保持したかどうか)など)は、基本的に上述した本発明例S10の処理(S10−8)と同様である。ただし、本発明例S13の製造工程では、エッチング時間が3.5時間と本発明例S10の製造方法におけるエッチング時間より長くなっている。エッチングの結果、図29に示したような構造を得る。なお、図29に示した、エッチングにより形成されたV溝の深さHは350μmであり、エッチングされなかった部分の厚み(深さH)は50μmであった。そして、上記処理(S10−8)と同様に、V溝の底に位置するエッチングされなかった部分を劈開する、あるいはエッチングなどの手法で部分的に除去するといった工程を実施することで、図28に示したLEDに用いられるチップを得た。
(S13−8)〜(S13−10)本発明例Aにおいて対応する処理(a9)〜(a11)と同じ処理を行なった。
Next, a method for producing the present invention example S13 will be described.
(S13-1) to (S13-6) The same processes as the corresponding processes (a1) to (a6) in the invention sample A were performed.
(S13-7) Then, without performing the process (a7) in the present invention example A, that is, without forming a protective mask on the second main surface 1a planting of the GaN substrate, the KOH solution as an alkaline solution is used as an etchant. The plate crystal inversion region 51 (see FIGS. 7 and 8) is selectively removed by the etching used. At this time, as shown in FIG. 29, the side surface of the chip is simultaneously removed by etching, thereby forming an inclined side surface 80. Further, since the protective mask is not formed, the second main surface 1a of the GaN substrate is also partially removed by etching. As a result, an uneven portion is formed on the second main surface 1a. The process conditions (etchant concentration, type, temperature, pressurized state (whether held by a sealed container), etc.) of the etching process are basically the same as those in the above-described processing of the invention example S10 (S10-8). It is. However, in the manufacturing process of Invention Example S13, the etching time is 3.5 hours, which is longer than the etching time in the manufacturing method of Invention Example S10. As a result of the etching, a structure as shown in FIG. 29 is obtained. The depth H 1 of the V groove formed by etching shown in FIG. 29 was 350 μm, and the thickness (depth H 2 ) of the unetched portion was 50 μm. Then, similarly to the above processing (S10-8), the step of cleaving the unetched portion located at the bottom of the V-groove or partially removing it by a technique such as etching is performed, so that FIG. The chip | tip used for LED shown in was obtained.
(S13-8) to (S13-10) The same processes as the corresponding processes (a9) to (a11) in the invention sample A were performed.

また、上述した本発明例S13の変形例である白色LEDの製造方法は、基本的に上述した本発明例S13の製造方法に、本発明例Fの製造方法と同様の工程(リードフレームのマウントに搭載したチップのn電極側に蛍光材を搭載した後、樹脂封止を行なう工程)を組合せたものである。   The white LED manufacturing method, which is a modification of the above-described invention example S13, is basically the same as the manufacturing method of the invention example F in the manufacturing method of the invention example S13 described above (lead frame mounting). And a step of resin sealing after mounting a fluorescent material on the n-electrode side of the chip mounted on.

(本発明例S14):図30〜図32に示した本発明によるLEDの実施の形態4と基本的に同様の構造を備える。つまり、上述した本発明例S13の構造においてチップ化した発光装置が9つ(3行×3列)集まったチップ群が、LEDのチップとしてリードフレームのマウント部21aに設置されている。チップ群を構成する単位チップでは側面80がGaN基板1の第2の主表面1aに対して傾斜しているとともに、GaN基板の第2の主表面1aに非鏡面処理が成されている(凹凸部が形成されている)。チップ群を構成する単位チップのそれぞれにはp電極12が形成されている。p電極12は、外周の一辺の長さが415μmである正六角形になっている。このため、各単位チップにおける発光面は一辺の長さが415μmである正六角形となる。また、GaN基板1の上に形成された積層構造において最もp電極12寄りの層(p型GaN層6)の平面形状も1辺の長さが465μmの正六角形である。また、各単位チップにおいてGaN基板1の第2の主表面の平面形状も正六角形である。GaN基板1のほぼ中央部に直径D=600μmである円形状のn電極11が配置されている。第2の主表面1aの表面には上述のように凹凸部が形成されている。また、各単位チップのp電極12の中心の間の距離(ピッチ)は835μmである。また、各単位チップの間の傾斜した側面80を有するV字状の溝の深さH1は200μm、V字状の溝の底に位置する、エッチングされていない残存部分の厚みH2は200μmである。   (Invention Sample S14): A structure basically similar to that of Embodiment 4 of the LED according to the present invention shown in FIGS. 30 to 32 is provided. That is, a chip group in which nine (3 rows × 3 columns) light emitting devices formed into chips in the structure of the present invention example S13 are assembled is installed on the mount portion 21a of the lead frame as an LED chip. In the unit chip constituting the chip group, the side surface 80 is inclined with respect to the second main surface 1a of the GaN substrate 1, and the second main surface 1a of the GaN substrate is subjected to non-specular treatment (unevenness). Part is formed). A p-electrode 12 is formed on each of the unit chips constituting the chip group. The p-electrode 12 has a regular hexagonal shape with a side length of 415 μm. For this reason, the light emitting surface of each unit chip is a regular hexagon having a side length of 415 μm. Further, the planar shape of the layer (p-type GaN layer 6) closest to the p-electrode 12 in the laminated structure formed on the GaN substrate 1 is also a regular hexagon with one side length of 465 μm. In each unit chip, the planar shape of the second main surface of the GaN substrate 1 is also a regular hexagon. A circular n-electrode 11 having a diameter D = 600 μm is disposed at the substantially central portion of the GaN substrate 1. As described above, the uneven portion is formed on the surface of the second main surface 1a. The distance (pitch) between the centers of the p-electrodes 12 of each unit chip is 835 μm. Further, the depth H1 of the V-shaped groove having the inclined side surface 80 between the unit chips is 200 μm, and the thickness H2 of the remaining unetched portion located at the bottom of the V-shaped groove is 200 μm. .

なお、本発明例S14を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、本発明例S14の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the present invention example S14, was produced using the fluorescent material capable of obtaining 180 lm per 1 watt (W) of 450 nm light output using the present invention example S14. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、本発明例S14の製造方法を説明する。
(S14−1)〜(S14−6)本発明例Aにおいて対応する処理(a1)〜(a6)と同じ処理を行なった。
(S14−7)そして、本発明例Aにおける処理(a7)を行なうことなく、つまりGaN基板の第2の主表面1a植えに保護マスクを形成することなく、アルカリ溶液としてのKOH溶液をエッチャントとして用いたエッチングにより、板状結晶反転領域51(図7および図8参照)を選択的に除去する。このとき、図32に示すように、チップの側面も同時にエッチングにより除去されることにより、傾斜した側面80が形成される。また、保護マスクが形成されていないため、GaN基板の第2の主表面1aもエッチングにより部分的に除去される。この結果、第2の主表面1aに凹凸部が形成される。なお、エッチング工程のプロセス条件(エッチャントの濃度や種類、温度、加圧状態(密閉容器により保持したかどうか)など)は、基本的に上述した本発明例S10の処理(S10−8)と同様である。ただし、本発明例S13の製造工程では、エッチング時間が2時間と本発明例S10の製造方法におけるエッチング時間より長くなっている。エッチングの結果、ウエハは図29に示したようなV字溝(V溝とも呼ぶ)により単位チップに分割される。
Next, a method for producing the present invention example S14 will be described.
(S14-1) to (S14-6) The same processes as the corresponding processes (a1) to (a6) in the invention sample A were performed.
(S14-7) Then, without performing the process (a7) in Example A of the present invention, that is, without forming a protective mask on the second main surface 1a of the GaN substrate, the KOH solution as an alkaline solution is used as an etchant. The plate crystal inversion region 51 (see FIGS. 7 and 8) is selectively removed by the etching used. At this time, as shown in FIG. 32, the side surface of the chip is also removed by etching, thereby forming an inclined side surface 80. Further, since the protective mask is not formed, the second main surface 1a of the GaN substrate is also partially removed by etching. As a result, an uneven portion is formed on the second main surface 1a. The process conditions (etchant concentration, type, temperature, pressurized state (whether held by a sealed container), etc.) of the etching process are basically the same as those in the above-described processing of the invention example S10 (S10-8). It is. However, in the manufacturing process of Invention Example S13, the etching time is 2 hours, which is longer than the etching time in the manufacturing method of Invention Example S10. As a result of the etching, the wafer is divided into unit chips by V-shaped grooves (also referred to as V-grooves) as shown in FIG.

なお、すでにのべたように、エッチングにより形成されたV字溝の深さHは200μmであり、エッチングされなかった部分の厚み(深さH)は200μmであった。そして、上記処理(S10−8)と同様に、V字溝の底に位置するエッチングされなかった部分を劈開する、あるいはエッチングなどの手法で部分的に除去するといった工程を実施する。このとき、図30〜図32に示したように、9つの単位チップにより発光装置としてのチップが形成されるように、3行×3列の9つの単位チップからなるチップ群を1つのまとまりとして分割する。この結果、図30に示したLEDに用いられるチップを得た。
(S14−8)〜(S14−10)本発明例Aにおいて対応する処理(a9)〜(a11)と同じ処理を行なった。
As described above, the depth H 1 of the V-shaped groove formed by etching was 200 μm, and the thickness (depth H 2 ) of the unetched portion was 200 μm. Then, similarly to the above processing (S10-8), a step of cleaving the unetched portion located at the bottom of the V-shaped groove or partially removing it by a technique such as etching is performed. At this time, as shown in FIG. 30 to FIG. 32, a chip group consisting of nine unit chips of 3 rows × 3 columns is formed as one group so that a chip as a light emitting device is formed by nine unit chips. To divide. As a result, a chip used for the LED shown in FIG. 30 was obtained.
(S14-8) to (S14-10) The same processes as the corresponding processes (a9) to (a11) in the invention sample A were performed.

また、上述した本発明例S14の変形例である白色LEDの製造方法は、基本的に上述した本発明例S14の製造方法に、本発明例Fの製造方法と同様の工程(リードフレームのマウントに搭載したチップのn電極側に蛍光材を搭載した後、樹脂封止を行なう工程)を組合せたものである。   The white LED manufacturing method, which is a modification of the above-described invention example S14, is basically the same as the manufacturing method of the invention example F in the manufacturing method of the invention example S14 (lead frame mounting). And a step of resin sealing after mounting a fluorescent material on the n-electrode side of the chip mounted on.

(比較例T9):基本的に比較例T8と同様の構造を備えるが、チップのサイズが異なる。すなわち、比較例T9は、チップの平面形状が一辺2.1mmの正方形であるまた、発光領域の形状は2mm□(1辺が2mmの四角形)であり、発光面積は4mm2である。 (Comparative Example T9): Basically, it has the same structure as Comparative Example T8, but the chip size is different. That is, in the comparative example T9, the planar shape of the chip is a square with a side of 2.1 mm, the shape of the light emitting region is 2 mm □ (a square with a side of 2 mm), and the light emitting area is 4 mm 2 .

なお、比較例T9を用いて、450nmの光出力1ワット(W)当り180lmが得られる蛍光材を使用して、比較例T9の変形例である白色に発光する白色LEDを作成した。蛍光材の配置は、図43に示したLEDと同様とした。   A white LED that emits white light, which is a modified example of the comparative example T9, was prepared using a fluorescent material that can obtain 180 lm per 1 watt (W) of 450 nm light output using the comparative example T9. The arrangement of the fluorescent material was the same as that of the LED shown in FIG.

次に、比較例T8の製造方法を説明する。
(T9−1)〜(T9−5)比較例T8において対応する処理(T8−1)〜(T8−5)と同じ処理を行なった。
(T9−6)GaN基板の第2の主面である裏面のN面には、フォトリソグラフィ技術と、蒸着と、リフトオフ法とにより2.1mmおきにチップの中心に平面形状が円形状であり、直径(D)600μmのn電極をつけた。n電極として、GaN基板に接して下から順に(Ti層20nm/Al層100nm/Ti層20nm/Au層200nm)の積層構造を形成した。これを窒素(N2)雰囲気中で加熱することにより、接触抵抗を1E−5Ω・cm2以下とした。
(T9−7)p電極としては、平面形状が一辺2mmの正方形状であり、p型GaN層に接して厚み4nmのNi層を形成し、その上に厚み4nmのAu層を全面に形成した。これを不活性ガス雰囲気中で加熱処理することにより、接触抵抗を5E−4Ω・cm2とした。
(T9−8)〜(T9−11)比較例T8において対応する処理(T8−8)〜(T8−11)と同じ処理を行なった。
Next, a manufacturing method of Comparative Example T8 will be described.
(T9-1) to (T9-5) The same processes as the corresponding processes (T8-1) to (T8-5) in Comparative Example T8 were performed.
(T9-6) The N-face of the back surface, which is the second main surface of the GaN substrate, has a circular planar shape at the center of the chip every 2.1 mm by photolithography, vapor deposition, and lift-off method. An n-electrode having a diameter (D) of 600 μm was attached. As the n-electrode, a stacked structure (Ti layer 20 nm / Al layer 100 nm / Ti layer 20 nm / Au layer 200 nm) was formed in order from the bottom in contact with the GaN substrate. By heating this in a nitrogen (N 2 ) atmosphere, the contact resistance was set to 1E-5 Ω · cm 2 or less.
(T9-7) The p electrode has a square shape with a planar shape of 2 mm on a side, a Ni layer having a thickness of 4 nm is formed in contact with the p-type GaN layer, and an Au layer having a thickness of 4 nm is formed on the entire surface. . This was heat-treated in an inert gas atmosphere, so that the contact resistance was 5E-4 Ω · cm 2 .
(T9-8) to (T9-11) The same processes as in the corresponding processes (T8-8) to (T8-11) in Comparative Example T8 were performed.

また、上述した比較例T8の変形例である白色LEDの製造方法は、基本的に上述した比較例T8の製造方法に、本発明例Fの製造方法と同様の工程(リードフレームのマウントに搭載したチップのn電極側に蛍光材を搭載した後、樹脂封止を行なう工程)を組合せたものである。   Further, the white LED manufacturing method, which is a modification of the above-described comparative example T8, is basically the same as the manufacturing method of the above-described comparative example T8 in the same process as the manufacturing method of the present invention example F (mounted on the lead frame mount). And a step of resin sealing after mounting a fluorescent material on the n-electrode side of the chip.

(実験結果)
本発明例S12〜S14および比較例T9、について、実施例16の場合と同様に青発光強度を測定した。具体的には、本発明例S12〜S14および比較例T9を、積分球内に搭載した後所定の電流を印加し、集光されディテクタから出力される光出力値の比較を行なった。このとき、本発明例S12〜S14および比較例T9のそれぞれの試験体には、それぞれ4.4Aの電流を印加した。その結果、青発光強度(青色(波長450nm)の光の出力)は、比較例T9が1.32Wであったのに対して、本発明例S12〜S14は、それぞれ1.76W、2.32W、2.55Wであった。
(Experimental result)
For the inventive examples S12 to S14 and comparative example T9, the blue emission intensity was measured in the same manner as in Example 16. Specifically, the present invention examples S12 to S14 and comparative example T9 were mounted in an integrating sphere, and then a predetermined current was applied to compare the light output values collected and output from the detector. At this time, a current of 4.4 A was applied to each of the specimens of Invention Examples S12 to S14 and Comparative Example T9. As a result, the blue light emission intensity (output of light of blue (wavelength 450 nm)) was 1.32 W in Comparative Example T9, whereas the invention examples S12 to S14 were 1.76 W and 2.32 W, respectively. 2.55 W.

このように、比較例T9に比べて、本発明例S12〜S14は、4.4Aの電流を印加した場合、高い発光強度を示した。また、本発明例S12より、本発明例S12の構成に加えてチップの側面を傾斜させた(テーパ状にした)のに加えて、GaN基板の第2の主表面に凹凸部を形成した(非鏡面処理を施した)本発明例S13の方が、高い発光強度を示している。さらに、本発明例S13より、9つの単位チップをまとめたチップ群を用いた本発明例S14の方が、高い発光強度を示している。   Thus, compared with Comparative Example T9, Invention Examples S12 to S14 showed higher emission intensity when a current of 4.4 A was applied. Further, from Example S12 of the present invention, in addition to the configuration of Example S12 of the present invention, the side surface of the chip was inclined (tapered), and an uneven portion was formed on the second main surface of the GaN substrate ( Invention Example S13 (which has been subjected to non-specular surface treatment) shows a higher emission intensity. Furthermore, the present invention example S14 using a chip group in which nine unit chips are combined shows a higher light emission intensity than the present invention example S13.

また、本発明例S12〜S14および比較例T9の変形例(白色LED)について、上述した積分球を用いた測定方法と同様の方法により、白色輝度の測定を行なった。このとき、本発明例S12〜S14および比較例T9の変形例の試験体には、それぞれ4.4Aの電流を印加した。その結果、白色輝度は、比較例T9の変形例が330lmであったのに対して、本発明例S12〜S14の変形例は、それぞれ440lm、580m、638lmであった。   Further, for the modified examples (white LEDs) of the inventive examples S12 to S14 and the comparative example T9, white luminance was measured by the same method as the measuring method using the integrating sphere described above. At this time, a current of 4.4 A was applied to the test specimens of the modified examples of the inventive examples S12 to S14 and the comparative example T9. As a result, the white luminance was 330 lm in the modified example of the comparative example T9, whereas the modified examples in the inventive examples S12 to S14 were 440 lm, 580 m, and 638 lm, respectively.

エッチングを用いたウエハの分割工程について、エッチングのプロセス条件を変更した場合の影響について検討した。以下、この検討に際して実施した実験について説明する。   The effect of changing the etching process conditions on the wafer splitting process using etching was investigated. Hereinafter, the experiment conducted in the case of this examination is demonstrated.

ここでは、厚みが400μmのGaN基板を用いて以下に述べる4条件の実験を行なった。なお、このGaN基板を準備する工程は、基本的に上述した本発明例Aの製造方法における処理(a1)と同様である。   Here, an experiment under the four conditions described below was performed using a GaN substrate having a thickness of 400 μm. The step of preparing the GaN substrate is basically the same as the process (a1) in the manufacturing method of the invention example A described above.

(実験1)
ビーカーに高さ2cmになるまで8NのKOH溶液を配置した。そして、このKOH溶液中に上述したGaN基板の試料を横置きの状態で浸漬した。なお、溶液の温度は室温とした。そして、試料をKOH溶液に浸漬したままで2時間保持し、その後試料をKOH溶液から取出した。取出された試料では、板状結晶反転領域51(図7および図8参照)が選択的にエッチングされているものの、基板の厚み400μmに対してエッチングにより形成された溝の深さは1μmであった。つまり、基板を分割することはできなかった。
(Experiment 1)
An 8N KOH solution was placed in a beaker until the height was 2 cm. And the sample of the GaN substrate mentioned above was immersed horizontally in this KOH solution. The solution temperature was room temperature. Then, the sample was kept for 2 hours while immersed in the KOH solution, and then the sample was taken out from the KOH solution. In the sample taken out, although the plate crystal inversion region 51 (see FIGS. 7 and 8) is selectively etched, the depth of the groove formed by etching is 1 μm with respect to the thickness of the substrate 400 μm. It was. In other words, the substrate could not be divided.

(実験2)
実験1と同様に、ビーカーに高さ2cmになるまで8NのKOH溶液を配置した。そして、このKOH溶液中に上述したGaN基板の試料を横置きの状態で浸漬した。ただし、実験2ではKOH溶液の温度を80℃に保持した。具体的には、基板が浸漬されたKOH溶液が入ったビーカーをホットプレートで加熱することで、KOH溶液の温度を80℃に維持した。この状態でGaN基板のエッチングを行なった。当該エッチングにより、GaN基板の板状結晶反転領域51が選択的にエッチングされた。板状結晶反転領域51のエッチングレートを測定すると、20μm/hであった。ただし、上述のようにエッチャントであるKOH溶液を加熱しているので、エッチング中にKOH溶液が揮発していき、1時間後には試料がKOH溶液から露出していた。そのため、ビーカーにKOH溶液を高さ40cmまで満たし、上述した温度条件(80℃)の下、当該KOH溶液に試料を浸漬した状態で20時間保持した。20時間経過後、KOH溶液は揮発することでその量が減っていたものの、試料(GaN基板)はKOH溶液に完全に浸漬された状態となっていた。また、基板の分割も完了していた(板状結晶反転領域51がGaN基板の第1の主表面から第2の主表面まで貫通するようにエッチングにより除去されることにより、板状結晶反転領域51に囲まれた領域ごとにGaN基板が分割されていた)。
(Experiment 2)
As in Experiment 1, an 8N KOH solution was placed in a beaker until the height was 2 cm. And the sample of the GaN substrate mentioned above was immersed horizontally in this KOH solution. However, in Experiment 2, the temperature of the KOH solution was maintained at 80 ° C. Specifically, the temperature of the KOH solution was maintained at 80 ° C. by heating the beaker containing the KOH solution in which the substrate was immersed with a hot plate. In this state, the GaN substrate was etched. By this etching, the plate-like crystal inversion region 51 of the GaN substrate was selectively etched. The etching rate of the plate crystal inversion region 51 was measured and found to be 20 μm / h. However, since the KOH solution as the etchant was heated as described above, the KOH solution was volatilized during the etching, and the sample was exposed from the KOH solution after 1 hour. Therefore, the beaker was filled with the KOH solution up to a height of 40 cm, and the sample was held for 20 hours under the above-described temperature condition (80 ° C.) while being immersed in the KOH solution. After 20 hours, the amount of the KOH solution was reduced due to volatilization, but the sample (GaN substrate) was completely immersed in the KOH solution. Further, the division of the substrate has been completed (the plate-like crystal inversion region 51 is removed by etching so that the plate-like crystal inversion region 51 penetrates from the first main surface to the second main surface of the GaN substrate. The GaN substrate was divided for each region surrounded by 51).

(実験3)
高さ6cmの密閉容器中に高さ2cmになるまで8NのKOH溶液を配置した。そして、このKOH溶液中に上述したGaN基板の試料を横置きの状態で浸漬した。そして、当該密閉容器を密閉した。なお、密閉容器としては、図83に示した密閉容器を用いた。また、密閉容器中のKOH溶液の温度を80℃に保持した。具体的には、基板が浸漬されたKOH溶液が入った密閉容器を80℃に保持した恒温槽内に配置することで、KOH溶液の温度を80℃に維持した。この状態でGaN基板のエッチングを行なった。当該エッチングにより、GaN基板の板状結晶反転領域51が選択的にエッチングされた。板状結晶反転領域51のエッチングレートを測定すると、実験2の場合と同様に20μm/hであった。ただし、密閉容器中にKOH溶液が密閉された状態でエッチングを行なっているので、KOH溶液が加熱されることにより揮発してその容量が減るということを防止できる。
(Experiment 3)
The 8N KOH solution was placed in a 6 cm high closed container until the height was 2 cm. And the sample of the GaN substrate mentioned above was immersed in this KOH solution in the state where it was placed horizontally. And the said airtight container was sealed. As the sealed container, the sealed container shown in FIG. 83 was used. The temperature of the KOH solution in the sealed container was kept at 80 ° C. Specifically, the temperature of the KOH solution was maintained at 80 ° C. by placing the sealed container containing the KOH solution in which the substrate was immersed in a constant temperature bath maintained at 80 ° C. In this state, the GaN substrate was etched. By this etching, the plate crystal inversion region 51 of the GaN substrate was selectively etched. When the etching rate of the plate crystal inversion region 51 was measured, it was 20 μm / h as in the case of Experiment 2. However, since the etching is performed in a state where the KOH solution is sealed in the sealed container, it is possible to prevent the KOH solution from volatilizing and reducing its capacity when heated.

そして、上述した温度条件(80℃)の下、当該密閉容器中のKOH溶液に試料を浸漬した状態で20時間保持した。20時間経過後、密閉容器中にKOH溶液が密閉されていたので、加熱によりKOH溶液が揮発する事は無かった。そのため、試料(GaN基板)はKOH溶液に完全に浸漬された状態となっていた。また、基板の分割も完了していた。結果的に、実験3の場合に1枚の試料をエッチングにより分割するのに必要なKOH溶液の量は実験2の場合に必要なKOH溶液の量の1/20であった。   And it hold | maintained for 20 hours in the state which immersed the sample in the KOH solution in the said airtight container under the temperature conditions (80 degreeC) mentioned above. After 20 hours had elapsed, the KOH solution was sealed in a sealed container, so that the KOH solution was not volatilized by heating. Therefore, the sample (GaN substrate) was completely immersed in the KOH solution. Moreover, the division of the substrate was completed. As a result, in the case of Experiment 3, the amount of KOH solution necessary to divide one sample by etching was 1/20 of the amount of KOH solution required in Experiment 2.

(実験4)
基本的に上述した実験3と同様の条件を用いて試料のエッチングを行なった。ただし、実験4においてはエッチングの際のKOH溶液の温度を150℃に設定した。このとき、密閉容器中の圧力は5気圧であった。この結果、試料であるGaN基板の分割は80分で終了した。また、実験4においてGaN基板の試料を分割するのに必要なKOH溶液の量は、実験3の場合と同様に、実験2の場合に必要なKOH溶液の量の1/20であった。
(Experiment 4)
The sample was etched using basically the same conditions as in Experiment 3 described above. However, in Experiment 4, the temperature of the KOH solution during etching was set to 150 ° C. At this time, the pressure in the sealed container was 5 atm. As a result, the division of the sample GaN substrate was completed in 80 minutes. In Experiment 4, the amount of KOH solution required to divide the GaN substrate sample was 1/20 of the amount of KOH solution required in Experiment 2, as in Experiment 3.

このように、エッチングに用いるエッチャント(上述した実験ではKOH溶液)の温度を室温より高くする(少なくとも上記実験2の温度条件である80℃以上とする)、あるいはエッチャントに加えられる圧力を大気圧より高くすることにより、エッチングレートを高くすることができる。この結果、基板を分割するのに必要なエッチング時間を短くできる。つまり、高温または高圧のエッチャントを用いることにより、基板の分割工程に要するプロセス時間を短縮できるので、当該基板を用いたLEDのプロセスコストを低減することが可能である。   As described above, the temperature of the etchant used for etching (KOH solution in the above-described experiment) is set higher than room temperature (at least 80 ° C., which is the temperature condition of the above-mentioned experiment 2), or the pressure applied to the etchant is higher than the atmospheric pressure. By increasing the etching rate, the etching rate can be increased. As a result, the etching time required for dividing the substrate can be shortened. That is, by using a high-temperature or high-pressure etchant, the process time required for the substrate dividing step can be shortened, so that the process cost of the LED using the substrate can be reduced.

なお、発明者は、密閉容器中に保持されたエッチャント(KOH溶液)の温度を250℃超えとした場合についても同様の実験を行なった。しかし、このようにエッチャントの温度を250℃超えとすると、上述した密閉容器中の圧力が40気圧程度になり、密閉容器の気密性を保つことが困難であった。このため、エッチャントの温度を250℃超えとすることは、実際のLEDの製造プロセスにおいて現実的ではないと考えられる。   The inventor conducted the same experiment even when the temperature of the etchant (KOH solution) held in the closed container exceeded 250 ° C. However, when the temperature of the etchant exceeds 250 ° C. as described above, the pressure in the above-described sealed container becomes about 40 atm, and it is difficult to maintain the hermeticity of the sealed container. For this reason, it is considered that making the temperature of the etchant over 250 ° C. is not practical in the actual LED manufacturing process.

次に、上記の実施の形態および実施例と重複するものもあるが本発明の実施例を羅列的に挙げて説明する。   Next, examples of the present invention will be enumerated and described although there are some overlaps with the above embodiments and examples.

この発明に従った発光装置は、窒化物半導体基板(GaN基板1)と、窒化物半導体基板の第1の主表面上に積層された窒化物半導体層(n型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6)と、窒化物半導体層上に形成された第1の電極(p電極12)と、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面1a上に形成された第2の電極(n電極11)とを含む発光装置であって、窒化物半導体基板は、窒化物半導体基板の第1の主表面から第2の主表面まで厚み方向に沿って転位が集中化した転位束が存在する領域(板状結晶反転領域51)と、転位束が存在する領域に囲まれた単結晶領域とを含む。単結晶領域の比抵抗は0.5Ω・cm以下である。 A light emitting device according to the present invention includes a nitride semiconductor substrate (GaN substrate 1) and a nitride semiconductor layer (n-type GaN epitaxial layer 2, n-type Al) laminated on the first main surface of the nitride semiconductor substrate. x Ga 1-x N layer 3, quantum well 4, p-type Al x Ga 1-x N layer 5, p-type GaN layer 6) and a first electrode (p-electrode 12) formed on the nitride semiconductor layer. And a second electrode (n electrode 11) formed on the second main surface 1a which is the main surface opposite to the first main surface of the nitride semiconductor substrate, The nitride semiconductor substrate includes a dislocation bundle in which dislocations are concentrated along the thickness direction from the first main surface to the second main surface of the nitride semiconductor substrate (plate-like crystal inversion region 51), a dislocation A single crystal region surrounded by a region where a bundle exists. The specific resistance of the single crystal region is 0.5 Ω · cm or less.

このようにすれば、転位束が存在する領域である板状結晶反転領域51に窒化物半導体基板(GaN基板1)中の転位が集中化するので、発光装置を構成するGaN基板1の大部分を、欠陥(転位)密度の低い領域(低欠陥領域)である単結晶領域とすることができる。このため、特に大電流を印加したときの光の取出し効率を向上させることができる。   In this way, dislocations in the nitride semiconductor substrate (GaN substrate 1) are concentrated in the plate-like crystal inversion region 51 where dislocation bundles exist, so that most of the GaN substrate 1 constituting the light emitting device Can be a single crystal region which is a region having a low defect (dislocation) density (low defect region). For this reason, it is possible to improve the light extraction efficiency particularly when a large current is applied.

また、この構成では、電気抵抗の低いGaN基板1の裏面(第2の主表面1a)にn電極11を設けるので、小さな被覆率すなわち大きな開口率でn電極11を設けても電流をGaN基板1全体にゆきわたらせて流すことができる。このため、放出面で光を吸収される率が小さくなり、発光効率を高くすることができる。なお、光の放出は第2の主表面1aだけでなく側面からなされてもよいことは言うまでもない。以下の発光装置においても同様である。   In this configuration, since the n electrode 11 is provided on the back surface (second main surface 1a) of the GaN substrate 1 having a low electrical resistance, the current is supplied to the GaN substrate even if the n electrode 11 is provided with a small coverage, that is, a large aperture ratio. It can be swept through the whole 1 and shed. For this reason, the rate of light absorption at the emission surface is reduced, and the light emission efficiency can be increased. Needless to say, light may be emitted not only from the second main surface 1a but also from the side surfaces. The same applies to the following light-emitting devices.

上記発光装置において、窒化物半導体基板はGaN単結晶基板(GaN基板1)であり、窒化物半導体層はGaN系半導体エピタキシャル薄膜層(n型GaNエピタキシャル層2、n型AlxGa1-xN層3、量子井戸4、p型AlxGa1-xN層5、p型GaN層6)であってもよい。この場合、GaN基板1が導電性に優れることから、サージ電圧に対する保護回路(窒化物半導体基板と、ダウン実装されるp型AlxGa1-xN層の側との間に加わる過渡電圧または静電放電から発光装置を保護するための保護回路)をとくに設ける必要がなく、また耐圧性も非常に優れたものにできる。 In the light emitting device, the nitride semiconductor substrate is a GaN single crystal substrate (GaN substrate 1), and the nitride semiconductor layer is a GaN-based semiconductor epitaxial thin film layer (n-type GaN epitaxial layer 2, n-type Al x Ga 1-x N). The layer 3, the quantum well 4, the p-type Al x Ga 1-x N layer 5 and the p-type GaN layer 6) may be used. In this case, since the GaN substrate 1 is excellent in conductivity, a surge voltage protection circuit (transient voltage applied between the nitride semiconductor substrate and the p-type Al x Ga 1-x N layer side to be mounted down or It is not necessary to provide a protective circuit for protecting the light emitting device from electrostatic discharge, and the pressure resistance can be very excellent.

なお、上記発光装置において窒化物半導体基板は、GaNまたはAlxGa1-xN(0<x≦1)のいずれかにより構成されていてもよい。この場合、窒化物半導体基板としてGaN基板1を用いれば、大電流密度を印加することができるため、発光装置において高輝度(および大きな光束)の光を出射できる。また、GaNまたはAlxGa1-xN(0≦x≦1)により窒化物半導体基板を構成すれば、熱伝導のよい、つまり放熱性に優れた窒化物半導体基板を用いて発光装置としてのLEDを構成できる。このため、大電流密度を印加しても、十分放熱を行なうことができるので、熱によりLEDが損傷する可能性を低減できる。したがって、長時間にわたって安定した光を出力できる発光装置を実現できる。 In the light emitting device, the nitride semiconductor substrate may be made of either GaN or Al x Ga 1-x N (0 <x ≦ 1). In this case, if the GaN substrate 1 is used as the nitride semiconductor substrate, a large current density can be applied, so that light with high luminance (and a large luminous flux) can be emitted from the light emitting device. Further, if a nitride semiconductor substrate is composed of GaN or Al x Ga 1-x N (0 ≦ x ≦ 1), a nitride semiconductor substrate having good thermal conductivity, that is, excellent heat dissipation can be used as a light emitting device. An LED can be constructed. For this reason, even if a large current density is applied, sufficient heat dissipation can be performed, so that the possibility of damage to the LED due to heat can be reduced. Therefore, it is possible to realize a light emitting device that can output light stably for a long time.

上記発光装置において、単結晶領域(図7および図8において板状結晶反転領域51により囲まれた領域)における転位密度は5E6個/cm2以下であってもよい。この場合、単結晶領域での転位密度を十分低くしているので、発光装置に大電流を印加した場合の光の取出し効率を確実に向上させることができる。 In the above light-emitting device, the dislocation density in the single crystal region (the region surrounded by the plate-like crystal inversion region 51 in FIGS. 7 and 8) may be 5E6 / cm 2 or less. In this case, since the dislocation density in the single crystal region is sufficiently low, it is possible to reliably improve the light extraction efficiency when a large current is applied to the light emitting device.

上記発光装置において、窒化物半導体基板(GaN基板1)の第2の主表面1aにおいて、転位束が存在する領域(板状結晶反転領域51)は、図78および図79に示すような、規則的な間隔を有するストライプパターンを形成してもよい。この場合、たとえば転位束が存在する領域(板状結晶反転領域51)で窒化物半導体基板(GaN基板1)を分割する場合、当該領域がストライプパターンを形成しているので、ダイシングなどの従来の機械加工工程により窒化物半導体基板の分割を容易に行なうことができる。   In the light emitting device described above, the region where the dislocation bundle exists (plate-like crystal inversion region 51) on the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) is a regular as shown in FIG. 78 and FIG. A stripe pattern having a regular interval may be formed. In this case, for example, when the nitride semiconductor substrate (GaN substrate 1) is divided by a region where dislocation bundles exist (plate-like crystal inversion region 51), since the region forms a stripe pattern, conventional methods such as dicing are used. The nitride semiconductor substrate can be easily divided by the machining process.

上記発光装置では、図7や図25などに示すように、窒化物半導体基板(GaN基板1)の第2の主表面1aにおいて、転位束が存在する領域(板状結晶反転領域51)は単結晶領域の平面形状が多角形状となるように単結晶領域を囲んでいてもよい。この場合、窒化物半導体基板(GaN基板1)において転位束が存在する領域(板状結晶反転領域51)をエッチングなどにより選択的に除去することで、当該領域において窒化物半導体基板(GaN基板1)を分割すれば、平面形状が多角形状の単結晶領域を主体とする部分を用いて発光装置を構成することができる。つまり、図3などに示すように、窒化物半導体基板(GaN基板1)の第2の主表面1aにおける平面形状が多角形状の発光装置を容易に実現できる。   In the above light emitting device, as shown in FIG. 7 and FIG. 25, the region where the dislocation bundle exists (plate-like crystal inversion region 51) on the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) is single. The single crystal region may be surrounded so that the planar shape of the crystal region is a polygonal shape. In this case, the nitride semiconductor substrate (GaN substrate 1) in the nitride semiconductor substrate (GaN substrate 1) is selectively removed by etching or the like in the region where the dislocation bundle exists (plate-like crystal inversion region 51). ) Can be used to form a light emitting device using a portion whose main plane is a polygonal single crystal region. That is, as shown in FIG. 3 and the like, a light-emitting device having a polygonal planar shape on the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) can be easily realized.

上記発光装置において、図7などに示すように、転位束が存在する領域(板状結晶反転領域51)が形成する多角形(たとえば正六角形または正三角形)は、nを自然数としたときに、((60゜±3゜)×n)という角度の内角(たとえば(120゜±6゜)または(60゜±3゜))を有していてもよい。この場合、窒化物半導体基板(GaN基板1)の平面形状を多角形状としたとき、マウント部などに当該窒化物半導体基板を設置するときに、効率的に当該基板を配置することができる。たとえば、内角が10°などの小さな値となる場合、窒化物半導体基板(GaN基板1)の平面形状は扁平した多角形になるので、LEDとして円形状のマウント部などを用いると、マウント部の大きさに対して実際に光を出射する基板部分の面積が極めて小さくなる。しかし、上述のように多角形状の内角の角度を規定すれば、当該多角形状はたとえば正三角形や正六角形などにすることができるので、このようにマウント部の面積に対して基板部分の面積(チップの面積)が極めて小さくなることを抑制できる。   In the above light emitting device, as shown in FIG. 7 and the like, a polygon (for example, a regular hexagon or a regular triangle) formed by a region where dislocation bundles exist (plate-like crystal inversion region 51) is, when n is a natural number, It may have an internal angle (for example, (120 ° ± 6 °) or (60 ° ± 3 °)) of ((60 ° ± 3 °) × n). In this case, when the planar shape of the nitride semiconductor substrate (GaN substrate 1) is a polygonal shape, the substrate can be efficiently arranged when the nitride semiconductor substrate is installed in a mount portion or the like. For example, when the interior angle is a small value such as 10 °, the planar shape of the nitride semiconductor substrate (GaN substrate 1) is a flat polygon. Therefore, when a circular mount portion or the like is used as the LED, The area of the substrate portion that actually emits light with respect to the size is extremely small. However, if the angle of the interior angle of the polygonal shape is defined as described above, the polygonal shape can be, for example, a regular triangle or a regular hexagon, and thus the area of the substrate portion ( It is possible to suppress the chip area) from becoming extremely small.

上記発光装置において、転位束が存在する領域(板状結晶反転領域51)が形成する多角形は、正三角形(図9参照)、菱形(図12参照)、平行四辺形(図15参照)、台形(図18参照)、および六角形(図3参照)からなる群から選択される1つであってもよい。この場合、発光装置の用途などに合せて転位束が存在する領域(板状結晶反転領域51)が形成する多角形(つまり、転位束が存在する領域に囲まれる単結晶領域の平面形状である多角形)を選択することができる。   In the light emitting device, the polygon formed by the region where the dislocation bundle exists (plate-like crystal inversion region 51) is an equilateral triangle (see FIG. 9), a rhombus (see FIG. 12), a parallelogram (see FIG. 15), One selected from the group consisting of a trapezoid (see FIG. 18) and a hexagon (see FIG. 3) may be used. In this case, the polygonal shape formed by the region where the dislocation bundle exists (plate-like crystal inversion region 51) in accordance with the use of the light emitting device (that is, the planar shape of the single crystal region surrounded by the region where the dislocation bundle exists). Polygon) can be selected.

上記発光装置は、転位束が存在する領域(板状結晶反転領域51)において窒化物半導体基板(GaN基板1)が分割されていてもよい。ここで、転位束が存在する領域(結晶欠陥領域である板状結晶反転領域51)は、アルカリ性の溶液を用いて、容易に選択的なウエットエッチングにより除去することができる。このため、機械加工などを用いることなく、窒化物半導体基板(GaN基板1)の単結晶領域を発光装置の基板部分となるよう分割して利用することができる。そして、転位束が存在する領域(板状結晶反転領域51)の形状を変更すれば、結果的に得られる発光装置の平面形状を変更することができる。また、基板の分割にエッチングを用いることができるので、ダイシングなどの機械加工によっては成形が困難であるような多角形状の平面形状を有するように、GaN基板1を分割することができる。   In the light emitting device, the nitride semiconductor substrate (GaN substrate 1) may be divided in a region where dislocation bundles exist (plate-like crystal inversion region 51). Here, the region where the dislocation bundle exists (the plate crystal inversion region 51 which is a crystal defect region) can be easily removed by selective wet etching using an alkaline solution. Therefore, the single crystal region of the nitride semiconductor substrate (GaN substrate 1) can be divided and used so as to become the substrate portion of the light emitting device without using machining or the like. And if the shape of the area | region (plate-like crystal inversion area | region 51) in which a dislocation bundle exists is changed, the planar shape of the light-emitting device obtained as a result can be changed. In addition, since etching can be used for dividing the substrate, the GaN substrate 1 can be divided so as to have a polygonal planar shape that is difficult to be formed by machining such as dicing.

上記発光装置において、当該発光装置を構成する窒化物半導体基板(GaN基板1)の外縁部に転位束が存在する領域(板状結晶反転領域51)が位置していてもよい。この場合、窒化物半導体基板(GaN基板1)の単結晶領域を発光装置の基板部分として利用することができる。   In the light emitting device, a region (a plate crystal inversion region 51) where dislocation bundles exist may be located at the outer edge of the nitride semiconductor substrate (GaN substrate 1) constituting the light emitting device. In this case, the single crystal region of the nitride semiconductor substrate (GaN substrate 1) can be used as the substrate portion of the light emitting device.

上記発光装置は、図30〜図32に示すように、転位束が存在する領域(板状結晶反転領域51)のうち複数個おきの領域において窒化物半導体基板(GaN基板1)が分割されていてもよい。また、上記発光装置は、転位束が存在する上記領域(板状結晶反転領域51)に囲まれた単結晶領域を複数個有していてもよい。この場合、複数の単結晶領域を用いて光の取出し面の面積を大きくした発光装置を容易に実現できる。   In the light emitting device, as shown in FIGS. 30 to 32, the nitride semiconductor substrate (GaN substrate 1) is divided in a plurality of regions in the region where the dislocation bundle exists (plate-like crystal inversion region 51). May be. The light emitting device may include a plurality of single crystal regions surrounded by the region (plate crystal inversion region 51) where dislocation bundles exist. In this case, a light emitting device in which the area of the light extraction surface is increased using a plurality of single crystal regions can be easily realized.

上記発光装置において、図3などに示すように、窒化物半導体基板(GaN基板1)における第2の主表面1aの平面形状が多角形状であってもよい。この場合、窒化物半導体基板(GaN基板1)における第2の主表面1aが光の取出し面であるときには、当該光の取出し面の形状を多角形状にすることができる。つまり、発光装置の用途などに適合するように、光の取出し面の平面形状を任意に選択することができる。   In the light emitting device, as shown in FIG. 3 and the like, the planar shape of the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) may be a polygonal shape. In this case, when the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) is a light extraction surface, the shape of the light extraction surface can be a polygonal shape. That is, the planar shape of the light extraction surface can be arbitrarily selected so as to suit the use of the light emitting device.

上記発光装置において、図3または図9などに示すように、第2の主表面1aが形成する多角形は、nを自然数としたときに、((60゜±3゜)×n)という角度の内角(たとえば(120゜±6゜)または(60゜±3゜))を有していてもよい。この場合、窒化物半導体基板(GaN基板1)の第2の主表面1aの平面形状を多角形状としたとき、その平面形状が極端に扁平した形状となることを防止できる。つまり、上述のように多角形状の内角の角度を規定すれば、当該多角形状はたとえば正三角形や正六角形などにすることができるので、LEDのリードフレームマウント部21aの面積に対して基板部分の面積(チップの面積)が極めて小さくなることを抑制できる。   In the above light emitting device, as shown in FIG. 3 or FIG. 9, the polygon formed by the second main surface 1a is an angle of ((60 ° ± 3 °) × n) where n is a natural number. (For example, (120 ° ± 6 °) or (60 ° ± 3 °)). In this case, when the planar shape of the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) is a polygonal shape, the planar shape can be prevented from becoming an extremely flat shape. In other words, if the inner angle of the polygonal shape is defined as described above, the polygonal shape can be, for example, a regular triangle or a regular hexagon, so that the area of the substrate portion with respect to the area of the lead frame mount portion 21a of the LED is reduced. It is possible to suppress the area (chip area) from becoming extremely small.

上記発光装置において、第2の主表面1aが形成する多角形は、正三角形(図9参照)、菱形(図12参照)、平行四辺形(図15参照)、台形(図18参照)、および六角形(図3参照)からなる群から選択される1つであってもよい。この場合、発光装置の用途などに合せて、第2の主表面1aが形成する多角形(つまり、転位束が存在する領域(板状結晶反転領域51)に囲まれる単結晶領域の平面形状である多角形)の形状を選択することができる。   In the light emitting device, the polygon formed by the second main surface 1a is an equilateral triangle (see FIG. 9), a rhombus (see FIG. 12), a parallelogram (see FIG. 15), a trapezoid (see FIG. 18), and It may be one selected from the group consisting of hexagons (see FIG. 3). In this case, in accordance with the use of the light emitting device, etc., the planar shape of the single crystal region surrounded by the polygon formed by the second main surface 1a (that is, the region where the dislocation bundle exists (plate-like crystal inversion region 51)). The shape of a certain polygon) can be selected.

上記発光装置では、図6のエッチングによる分割工程(S40)において説明したように、アルカリ溶液(KOH溶液)のエッチャントを用いて、転位束が存在する領域(板状結晶反転領域51)をエッチングする事により、転位束が存在する領域(板状結晶反転領域51)において窒化物半導体基板が分割されていてもよい。   In the above light emitting device, as described in the dividing step (S40) by etching in FIG. 6, the region where the dislocation bundle exists (plate-like crystal inversion region 51) is etched using an etchant of an alkaline solution (KOH solution). By this, the nitride semiconductor substrate may be divided in the region where the dislocation bundle exists (plate-like crystal inversion region 51).

この場合、ウエットエッチングにより窒化物半導体基板(GaN基板1)を分割するので、転位束が存在する領域(板状結晶反転領域51)により単結晶領域の平面形状が五角形以上の多角形になっていても、容易に当該基板を分割できる(多角形状のチップを得ることができる)。   In this case, since the nitride semiconductor substrate (GaN substrate 1) is divided by wet etching, the planar shape of the single crystal region is a pentagon or more polygon due to the region where the dislocation bundle exists (plate-like crystal inversion region 51). However, the substrate can be easily divided (a polygonal chip can be obtained).

上記発光装置において、転位束が存在する領域(板状結晶反転領域51)をエッチングするとき、アルカリ溶液のエッチャントの温度が80℃以上に設定されていてもよい。この場合、ウエットエッチングのエッチングレートを十分大きくできるので、発光装置の製造工程(図6に示したエッチングによる分割工程(S40))に要する時間を短くできる。この結果、発光装置の製造コストを低減できる。   In the above light emitting device, when the region where the dislocation bundle exists (plate-like crystal inversion region 51) is etched, the temperature of the etchant of the alkaline solution may be set to 80 ° C. or higher. In this case, since the etching rate of wet etching can be sufficiently increased, the time required for the manufacturing process of the light emitting device (division step (S40) by etching shown in FIG. 6) can be shortened. As a result, the manufacturing cost of the light emitting device can be reduced.

上記発光装置において、転位束が存在する領域(板状結晶反転領域51)をエッチングするとき、アルカリ溶液のエッチャントの温度が250℃以下に設定されていてもよい。また、当該エッチングは、エッチャントを密閉容器中に保持した密閉状態で行なわれる事が好ましい。   In the above light emitting device, when the region where the dislocation bundle exists (plate-like crystal inversion region 51) is etched, the temperature of the etchant of the alkaline solution may be set to 250 ° C. or lower. The etching is preferably performed in a sealed state where the etchant is held in a sealed container.

この場合、エッチャントの温度を250℃超えに設定すると、エッチングによる分割工程において、エッチャントの温度が高くなりすぎて、エッチャントが揮発するため安定してエッチングを行なうことができない。そのため、エッチャントの温度を250℃以下に設定しておけば、上述した問題の程度を実際の発光装置の製造工程において許容できる程度に抑制することができる。   In this case, if the temperature of the etchant is set to exceed 250 ° C., the etchant temperature becomes too high in the dividing step by etching, and the etchant volatilizes, so that the etching cannot be performed stably. Therefore, if the temperature of the etchant is set to 250 ° C. or less, the above-described problem can be suppressed to an allowable level in an actual light emitting device manufacturing process.

上記発光装置において、窒化物半導体基板(GaN基板1)の端面(側面80)が第1の主表面(または第2の主表面1a)に対して傾斜していてもよい。この場合、当該Gan基板1の傾斜した端面(側面80)からも有効な光を取出すことができるので、発光装置からの光の取出し効率を向上させることができる。   In the light emitting device, the end surface (side surface 80) of the nitride semiconductor substrate (GaN substrate 1) may be inclined with respect to the first main surface (or second main surface 1a). In this case, since effective light can be extracted also from the inclined end surface (side surface 80) of the Gan substrate 1, the efficiency of extracting light from the light emitting device can be improved.

上記発光装置において、図28や図32に示すように、窒化物半導体基板(GaN基板1)の第2の主表面1aには非鏡面処理が施されていてもよい。この場合、第2の主表面1a、すなわち光の取出し面(放出面)において、窒化物半導体層中の発光層で発生した光が全反射により上記基板内に閉じ込められ効率が低下するのを防ぐことができる。なお、上記基板や窒化物半導体層の側面にも非鏡面処理を施してもよいことは言うまでもない。   In the above light emitting device, as shown in FIGS. 28 and 32, the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) may be subjected to non-specular treatment. In this case, on the second main surface 1a, that is, the light extraction surface (emission surface), the light generated in the light emitting layer in the nitride semiconductor layer is prevented from being confined in the substrate by total reflection and the efficiency is lowered. be able to. Needless to say, the side surfaces of the substrate and the nitride semiconductor layer may be subjected to non-specular treatment.

上記発光装置の製造方法であって、アルカリ溶液のエッチャントに窒化物半導体基板を浸漬する工程(図24の工程(S41))と、窒化物半導体基板が浸漬されたエッチャントを密閉した状態で、窒化物半導体基板のエッチングを行なうことにより窒化物半導体基板を分割する分割工程(図24の分離工程(S42))とを備える。このようにすれば、本発明による発光装置の製造工程において、エッチングによりGaN基板1の分割を行なうことができる。このため、転位束が存在する領域(板状結晶反転領域51)に囲まれた単結晶領域の平面形状が正三角形や正六角形など、正方形以外の形状であっても、容易にGaN基板1の分割を行なうことができる。   In the method for manufacturing the light emitting device, the nitride semiconductor substrate is immersed in an etchant of an alkaline solution (step (S41) in FIG. 24), and the etchant in which the nitride semiconductor substrate is immersed is sealed in the nitrided state. A dividing step of dividing the nitride semiconductor substrate by etching the nitride semiconductor substrate (separating step (S42 in FIG. 24)). In this way, in the manufacturing process of the light emitting device according to the present invention, the GaN substrate 1 can be divided by etching. For this reason, even if the planar shape of the single crystal region surrounded by the region where the dislocation bundle exists (plate-like crystal inversion region 51) is a shape other than a square such as a regular triangle or a regular hexagon, the GaN substrate 1 can be easily formed. Division can be performed.

上記発光装置の製造方法において、分割工程(図24の分離工程(S42))におけるKOH溶液などのエッチャントの温度は80℃以上250℃以下に設定されていてもよい。このようにすれば、エッチングによる基板の分離工程(S42)におけるエッチング速度をある程度早くできるとともに、エッチャントの温度が高温になり過ぎて安定的なエッチングができないといった問題の発生確率を低減できる。このため、発光装置の製造工程における当該分離工程(S42)に要する時間を極力短縮しながら、エッチング制御を安定的に行なうことができる。   In the method for manufacturing a light emitting device, the temperature of an etchant such as a KOH solution in the dividing step (separating step (S42 in FIG. 24)) may be set to 80 ° C. or higher and 250 ° C. or lower. In this way, the etching rate in the substrate separation step (S42) by etching can be increased to some extent, and the probability of occurrence of a problem that stable etching cannot be performed because the temperature of the etchant becomes too high can be reduced. For this reason, etching control can be stably performed while shortening the time required for the separation step (S42) in the manufacturing process of the light emitting device as much as possible.

上記発光装置の製造方法において、分割工程(分離工程(S42))では、窒化物半導体基板(GaN基板1)の端面(側面80)を第1の主表面(または第2の主表面1a)に対して傾斜するようにGaN基板1をエッチングしてもよい。また、本発明の実施の形態3において説明したように、分離工程(S42)では、窒化物半導体基板(GaN基板1)の第2の主表面1aにおいて、第2の電極(n電極11)により覆われていない領域についてエッチングにより非鏡面処理を行なってもよい。この場合、分離工程(S42)において同時に非鏡面処理や端面(側面80)の傾斜化(テーパ化処理)を行なうことができるので、発光装置の製造工程の簡略化を図ることができる。この結果、発光装置の製造コストを低減できる。   In the method for manufacturing a light emitting device, in the dividing step (separating step (S42)), the end surface (side surface 80) of the nitride semiconductor substrate (GaN substrate 1) is the first main surface (or second main surface 1a). The GaN substrate 1 may be etched so as to be inclined. Further, as described in the third embodiment of the present invention, in the separation step (S42), the second main surface 1a of the nitride semiconductor substrate (GaN substrate 1) is formed by the second electrode (n electrode 11). Non-specular treatment may be performed by etching the uncovered region. In this case, since the non-specular surface treatment and the end surface (side surface 80) can be inclined (tapered) simultaneously in the separation step (S42), the manufacturing process of the light emitting device can be simplified. As a result, the manufacturing cost of the light emitting device can be reduced.

本発明に従った別の発光装置は、窒化物半導体基板(GaN基板1)と、窒化物半導体基板の第1の主表面の側に、n型窒化物半導体層(n型AlxGa1-xN層3)と、窒化物半導体基板から見てn型窒化物半導体層より遠くに位置するp型窒化物半導体層(p型AlxGa1-xN層5)と、n型窒化物半導体層およびp型窒化物半導体層の間に位置する発光層(量子井戸(MQW:Multi-Quantum Well)4)とを備えた発光装置である。この発光装置では、窒化物半導体基板の比抵抗が0.5Ω・cm以下であり、p型窒化物半導体層の側をダウン実装し、窒化物半導体基板の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。窒化物半導体基板は、窒化物半導体基板の第1の主表面から第2の主表面1aまで厚み方向に沿って転位が集中化した転位束が存在する領域(板状結晶反転領域51)と、転位束が存在する領域に囲まれた単結晶領域とを含む。 Another light-emitting device according to the present invention includes a nitride semiconductor substrate (GaN substrate 1) and an n-type nitride semiconductor layer (n-type Al x Ga 1− ) on the first main surface side of the nitride semiconductor substrate. x N layer 3), a p-type nitride semiconductor layer (p-type Al x Ga 1-x N layer 5) located far from the n-type nitride semiconductor layer when viewed from the nitride semiconductor substrate, and an n-type nitride The light emitting device includes a light emitting layer (MQW: Multi-Quantum Well (MQW) 4) located between the semiconductor layer and the p-type nitride semiconductor layer. In this light emitting device, the specific resistance of the nitride semiconductor substrate is 0.5 Ω · cm or less, the p-type nitride semiconductor layer side is down-mounted, and the main surface opposite to the first main surface of the nitride semiconductor substrate is mounted. Light is emitted from the second main surface 1a which is the surface. The nitride semiconductor substrate has a dislocation bundle in which dislocations are concentrated along the thickness direction from the first main surface to the second main surface 1a of the nitride semiconductor substrate (plate-like crystal inversion region 51), And a single crystal region surrounded by a region where dislocation bundles exist.

このようにすれば、転位束が存在する領域(板状結晶反転領域51)を選択的にエッチングする条件により窒化物半導体基板をエッチングすれば、転位束が存在する領域で当該基板を分割することができる。転位束が存在する領域(板状結晶反転領域51)に窒化物半導体基板中の転位が集中化するので、発光装置を構成する窒化物半導体基板の大部分を、欠陥(転位)密度の低い領域(低欠陥領域)である単結晶領域とすることができる。このため、特に大電流を印加したときの光の取出し効率を向上させることができる。また、この構成では、電気抵抗の低い窒化物半導体基板の裏面(第2の主表面)にn型電極を設けるので、小さな被覆率すなわち大きな開口率でn電極を設けても電流を窒化物半導体基板全体にゆきわたらせて流すことができる。このため、放出面で光を吸収される率が小さくなり、発光効率を高くすることができる。なお、光の放出は第2の主表面だけでなく側面からなされてもよいことは言うまでもない。   In this way, if the nitride semiconductor substrate is etched under conditions for selectively etching the region where the dislocation bundle exists (plate-like crystal inversion region 51), the substrate is divided in the region where the dislocation bundle exists. Can do. Since dislocations in the nitride semiconductor substrate are concentrated in a region where the dislocation bundle exists (plate-like crystal inversion region 51), most of the nitride semiconductor substrate constituting the light emitting device is a region having a low defect (dislocation) density. A single crystal region which is a (low defect region) can be obtained. For this reason, it is possible to improve the light extraction efficiency particularly when a large current is applied. Further, in this configuration, since the n-type electrode is provided on the back surface (second main surface) of the nitride semiconductor substrate having a low electric resistance, the current is supplied even if the n-electrode is provided with a small coverage, that is, a large aperture ratio. It can be made to flow over the entire substrate. For this reason, the rate of light absorption at the emission surface is reduced, and the light emission efficiency can be increased. Needless to say, light may be emitted not only from the second main surface but also from the side surface.

また、電気抵抗が高いp型窒化物半導体層の側は光放出面にならないので、p型窒化物半導体層の全面にp型電極層を形成することができ、大電流を流し発熱を抑える上でも、また発生した熱を伝導で逃がす上でも好都合の構造をとることが可能となる。すなわち、熱的要件のために受ける制約が非常に緩和される。このため、電気抵抗を低下させるために、p電極とn電極とを入り組ませた櫛型形状などにする必要がない。   In addition, since the p-type nitride semiconductor layer having a high electrical resistance does not serve as a light emitting surface, a p-type electrode layer can be formed on the entire surface of the p-type nitride semiconductor layer, and a large current is passed to suppress heat generation. However, it is also possible to adopt a structure that is convenient for releasing generated heat by conduction. That is, the constraints imposed by thermal requirements are greatly relaxed. For this reason, in order to reduce electrical resistance, it is not necessary to make it the comb-shaped shape etc. which interposed the p electrode and the n electrode.

さらに、GaN基板が導電性に優れることから、サージ電圧に対する保護回路をとくに設ける必要がなく、また耐圧性も非常に優れたものにできる。また、複雑な加工工程を行なうことがないので、製造コストを低減することも容易化される。   Furthermore, since the GaN substrate is excellent in conductivity, it is not particularly necessary to provide a protection circuit against a surge voltage, and the pressure resistance can be very excellent. In addition, since complicated processing steps are not performed, it is also easy to reduce manufacturing costs.

本発明に従った他の発光装置は、また、窒化物半導体基板のGaN基板1と、GaN基板の第1の主表面の側に、n型窒化物半導体層のn型AlxGa1-xN層3(0≦x≦1)と、GaN基板から見てn型AlxGa1-xN層3より遠くに位置するp型AlxGa1-xN層5(0≦x≦1)と、n型AlxGa1-xN層3およびp型AlxGa1-xN層5の間に位置する発光層(量子井戸(MQW:Multi-Quantum Well)4)とを備えた発光装置である。この発光装置は、GaN基板1の転位密度が、5×108/cm2以下であり、p型AlxGa1-xN層5の側をダウン実装し、GaN基板1の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。GaN基板1は、GaN基板1の第1の主表面から第2の主表面1aまで厚み方向に沿って転位が集中化した転位束が存在する領域(板状結晶反転領域51)と、転位束が存在する領域に囲まれた単結晶領域とを含む。 Another light-emitting device according to the present invention also includes a GaN substrate 1 of a nitride semiconductor substrate and an n-type Al x Ga 1-x of an n-type nitride semiconductor layer on the first main surface side of the GaN substrate. N layer 3 (0 ≦ x ≦ 1) and p-type Al x Ga 1-x N layer 5 (0 ≦ x ≦ 1) located farther from the n-type Al x Ga 1-x N layer 3 when viewed from the GaN substrate ) And a light emitting layer (quantum well (MQW: Multi-Quantum Well) 4) located between the n-type Al x Ga 1 -x N layer 3 and the p-type Al x Ga 1 -x N layer 5 A light emitting device. In this light-emitting device, the dislocation density of the GaN substrate 1 is 5 × 10 8 / cm 2 or less, the p-type Al x Ga 1-x N layer 5 side is down-mounted, Light is emitted from the second main surface 1a which is the main surface opposite to the surface. The GaN substrate 1 includes a dislocation bundle in which dislocation bundles in which dislocations are concentrated along the thickness direction from the first main surface to the second main surface 1a of the GaN substrate 1 (plate-like crystal inversion region 51), and a dislocation bundle. And a single crystal region surrounded by a region in which is present.

この構成によれば、上記本発明におけるGaN基板1は導電性を有することを前提とし、電気抵抗を低減することは容易なので、上記の発光装置における作用効果に加えて、GaN基板の転位密度が、5×108/cm2以下であるので結晶性が高いこと、および高い開口率により第2の主表面からの光出力を高めることができる。また、側面からも光を放出する。また、屈折率の連続性が保たれるので、上述した全反射の問題も生じない。 According to this configuration, the GaN substrate 1 in the present invention is premised on having conductivity, and it is easy to reduce the electrical resistance. Therefore, in addition to the operational effects in the light emitting device, the dislocation density of the GaN substrate is Since it is 5 × 10 8 / cm 2 or less, the light output from the second main surface can be increased due to the high crystallinity and the high aperture ratio. Light is also emitted from the side surface. Further, since the continuity of the refractive index is maintained, the above-described problem of total reflection does not occur.

本発明に従ったさらに別の発光装置は、窒化物半導体基板としての導電性のAlN基板と、AlN基板の第1の主表面の側に、n型窒化物半導体層のn型AlxGa1-xN層3(0≦x≦1)と、AlN基板から見て前記n型AlxGa1-xN層3より遠くに位置するp型AlxGa1-xN層5(0≦x≦1)と、n型AlxGa1-xN層3およびp型AlxGa1-xN層5の間に位置する発光層(量子井戸4)とを備えた発光装置である。そして、上記のAlN基板の熱伝導率が、100W/(m・K)以上であり、p型AlxGa1-xN層5の側をダウン実装し、AlN基板の第1の主表面と反対側の主表面である第2の主表面1aから光を放出する。AlN基板は、AlN基板の第1の主表面から第2の主表面まで厚み方向に沿って転位が集中化した転位束が存在する領域と、転位束が存在する領域に囲まれた単結晶領域とを含む。 Still another light emitting device according to the present invention includes a conductive AlN substrate as a nitride semiconductor substrate, and an n-type Al x Ga 1 n-type nitride semiconductor layer on the first main surface side of the AlN substrate. -x N layer 3 (0 ≦ x ≦ 1) and a p-type Al x Ga 1-x N layer 5 (0 ≦ x) located farther from the n-type Al x Ga 1-x N layer 3 when viewed from the AlN substrate. x ≦ 1) and a light emitting device (quantum well 4) positioned between the n-type Al x Ga 1-x N layer 3 and the p-type Al x Ga 1-x N layer 5. Then, the thermal conductivity of the AlN substrate is 100 W / (m · K) or more, the p-type Al x Ga 1-x N layer 5 side is down-mounted, and the first main surface of the AlN substrate is Light is emitted from the second main surface 1a which is the opposite main surface. The AlN substrate has a single crystal region surrounded by a region where dislocation bundles in which dislocations are concentrated along the thickness direction from the first main surface to the second main surface of the AlN substrate and a region where dislocation bundles exist Including.

AlNは非常に熱伝導率が高く、放熱性に優れているため、上記のp型AlxGa1-xN層5からリードフレーム等に熱を伝達して、発光装置における温度上昇を抑制することができる。また、上記AlN基板からも熱を放散し、温度上昇の抑制に貢献することができる。なお、上記のAlN基板は導電性を持たせるために不純物を導入した導電性AlN基板を前提とする。 Since AlN has very high thermal conductivity and excellent heat dissipation, heat is transferred from the p-type Al x Ga 1-x N layer 5 to the lead frame or the like to suppress temperature rise in the light emitting device. be able to. Also, heat can be dissipated from the AlN substrate to contribute to the suppression of temperature rise. The above AlN substrate is premised on a conductive AlN substrate into which impurities are introduced in order to provide conductivity.

上記のGaN基板は酸素ドープによりn型化されており、酸素濃度が、酸素原子1E17個/cm3〜2E19個/cm3の範囲にあり、GaN基板の厚みが100μm〜600μmであるようにできる。 The GaN substrate is n-type by oxygen doping, the oxygen concentration is in the range of 1E17 oxygen atoms / cm 3 to 2E19 atoms / cm 3 , and the thickness of the GaN substrate can be 100 μm to 600 μm. .

上述のように酸素濃度1E17個/cm3以上とすることにより、GaN基板の比抵抗を向上することができ、p電極から導入された電流をGaN基板に十分広げることができ、活性層の広さを十分使って発光を生じさせることができる。また酸素濃度2E19個/cm3以下とすることにより、波長450nmの光に対して60%以上の透過率を確保することができ、放射面となるGaN基板における透過率を高め、光出力を確保することができる。上記の酸素濃度範囲は、pダウン搭載した構造においてGaN基板の厚みが100μm〜600μmの場合、とくに有効に作用する。 By setting the oxygen concentration to 1E17 / cm 3 or more as described above, the specific resistance of the GaN substrate can be improved, the current introduced from the p-electrode can be sufficiently spread to the GaN substrate, and the active layer can be widened. This can be used to generate light emission. In addition, by setting the oxygen concentration to 2E19 / cm 3 or less, it is possible to secure a transmittance of 60% or more for light having a wavelength of 450 nm, and to enhance the transmittance of the GaN substrate serving as a radiation surface to ensure light output. can do. The above oxygen concentration range works particularly effectively when the thickness of the GaN substrate is 100 μm to 600 μm in a p-down mounted structure.

また、上記の酸素濃度が、酸素原子5E18個/cm3〜2E19個/cm3の範囲にあり、GaN基板の厚みが200μm〜400μmの範囲にあり、第2の主表面の光を放出する矩形状の面の両方の辺が10mm以下の範囲にあるようにできる。 The oxygen concentration is in the range of 5E18 oxygen atoms / cm 3 to 2E19 atoms / cm 3 , the thickness of the GaN substrate is in the range of 200 μm to 400 μm, and the second main surface emits light. Both sides of the shape surface can be in the range of 10 mm or less.

この構成により、発光面の全域にわたって発光させ、かつ十分な光出力を得ることができる。   With this configuration, light can be emitted over the entire light emitting surface, and sufficient light output can be obtained.

さらに、上記の酸素濃度を、酸素原子3E18個/cm3〜5E18個/cm3の範囲にして、GaN基板の厚みを400μm〜600μmの範囲にし、第2の主表面の光を放出する矩形状の面の両方の辺を3mm以下の範囲としてもよい。また、上記の酸素濃度を、酸素原子5E18個/cm3〜5E19個/cm3の範囲にして、GaN基板の厚みを100μm〜200μmの範囲にし、第2の主表面の光を放出する矩形状の面の両方の辺を3mm以下の範囲とすることもできる。 Furthermore, the oxygen concentration is in the range of 3E18 oxygen atoms / cm 3 to 5E18 / cm 3 , the thickness of the GaN substrate is in the range of 400 μm to 600 μm, and the second main surface emits light. Both sides of the surface may be in a range of 3 mm or less. The oxygen concentration is in the range of 5E18 oxygen atoms / cm 3 to 5E19 atoms / cm 3 , the thickness of the GaN substrate is in the range of 100 μm to 200 μm, and the second main surface emits light in a rectangular shape. Both sides of the surface can be in the range of 3 mm or less.

上記のようにGaN基板の厚みに応じて酸素濃度とチップサイズとを適切にすることにより、チップサイズに応じて性能上(全面均一発光、発光効率)より適切なGaN基板を設定することができる。また、製造コスト上、最も望ましい条件設定を行なうこともできる。   By making the oxygen concentration and the chip size appropriate according to the thickness of the GaN substrate as described above, a more appropriate GaN substrate can be set in terms of performance (uniform light emission and light emission efficiency) according to the chip size. . In addition, the most desirable conditions can be set in terms of manufacturing cost.

また、上記のGaN基板とn型AlxGa1-xN層(0≦x≦1)との間において、GaN基板に接してn型AlGaNバッファ層が、またそのn型AlGaNバッファ層に接してn型GaNバッファ層が位置し、そのn型GaNバッファ層に接してn型AlxGa1-xN層(0≦x≦1)が位置する構成としてもよい。 Further, between the GaN substrate and the n-type Al x Ga 1-x N layer (0 ≦ x ≦ 1), the n-type AlGaN buffer layer is in contact with the GaN substrate, and the n-type AlGaN buffer layer is also in contact with the GaN substrate. The n-type GaN buffer layer may be positioned, and the n-type Al x Ga 1-x N layer (0 ≦ x ≦ 1) may be positioned in contact with the n-type GaN buffer layer.

上記のようなヘテロエピタキシャル積層構造の場合、GaN基板と活性層のクラッド層であるn型AlxGa1-xN層(0≦x≦1)との間に、上記のようにn型AlGaNバッファ層とn型GaNバッファ層とを配置してもよい。 In the case of the heteroepitaxial laminated structure as described above, the n-type AlGaN is interposed between the GaN substrate and the n-type Al x Ga 1-x N layer (0 ≦ x ≦ 1) which is the cladding layer of the active layer as described above. A buffer layer and an n-type GaN buffer layer may be disposed.

上記のようなGaN基板とクラッド層との間に、n型GaNバッファ層だけでなくn型AlGaNバッファ層を加えることにより、結晶性の良好なヘテロエピタキシャル積層構造を形成することができる。   By adding not only the n-type GaN buffer layer but also the n-type AlGaN buffer layer between the GaN substrate and the clad layer as described above, a heteroepitaxial laminated structure with good crystallinity can be formed.

とくに上記の積層構造は、GaN基板において、オフ角が0.10°以下の領域と1.0°以上の領域とを有するような場合に、用いるのがよい。   In particular, the above laminated structure is preferably used when the GaN substrate has an off-angle region of 0.10 ° or less and a region of 1.0 ° or more.

この構成により、GaN基板が反っており、上記のようにオフ角が変動する場合においても、n型GaN層に加えてn型AlGaNバッファ層を配置することにより、結晶性に優れたヘテロエピタキシャル積層構造を得ることができる。   With this configuration, even when the GaN substrate is warped and the off angle fluctuates as described above, a heteroepitaxial laminated layer with excellent crystallinity can be obtained by arranging an n-type AlGaN buffer layer in addition to the n-type GaN layer. A structure can be obtained.

上記のGaN基板の単結晶領域には転位束が分布していてもよく、この場合に、前記n型AlGaNバッファ層およびn型AlGaNバッファ層に接して位置するn型GaNバッファ層の上に位置するエピタキシャル層には転位束が伝播していない構成としてもよい。   Dislocation bundles may be distributed in the single crystal region of the GaN substrate, and in this case, the dislocation bundle is located on the n-type GaN buffer layer located in contact with the n-type AlGaN buffer layer and the n-type AlGaN buffer layer. The epitaxial layer may be configured such that dislocation bundles are not propagated.

この構成により、製造歩留まりを非常に大きくすることができる。すなわち、上記のようにn型AlGaNバッファ層と、n型GaNバッファ層とを配置することにより、発光層を含むエピタキシャル積層構造中における転位束を実質的になくすことができる。すなわち、前記n型AlGaNバッファ層およびn型AlGaNバッファ層により、転位束をGaN基板またはその直上層付近において終端させることができる。   With this configuration, the manufacturing yield can be greatly increased. That is, by disposing the n-type AlGaN buffer layer and the n-type GaN buffer layer as described above, the dislocation bundle in the epitaxial multilayer structure including the light emitting layer can be substantially eliminated. That is, the n-type AlGaN buffer layer and the n-type AlGaN buffer layer can terminate the dislocation bundle in the vicinity of the GaN substrate or the layer immediately above it.

上記のp型AlxGa1-xN層(0≦x≦1)に接してダウン側に位置するp型GaNバッファ層と、そのp型GaNバッファ層に接して位置するp型InGaNコンタクト層とを備えてもよい。 A p-type GaN buffer layer located on the down side in contact with the p-type Al x Ga 1-x N layer (0 ≦ x ≦ 1), and a p-type InGaN contact layer located in contact with the p-type GaN buffer layer And may be provided.

上記の構成により、p電極層が載せられるその下層に電気伝導度に優れたp型InGaNコンタクト層を配置することができ、p電極層として仕事関数などを最重要視してその材料を選択する必要性が小さくなる。このため、たとえば反射率などを最重要視してp電極の材料を選択することができる。   With the above configuration, a p-type InGaN contact layer having excellent electrical conductivity can be disposed on the lower layer on which the p-electrode layer is placed, and the material is selected with the work function as the most important p-electrode layer. The need is reduced. For this reason, for example, the material of the p-electrode can be selected with the highest importance on the reflectance.

上記のp型InGaNコンタクト層のMg濃度が、Mg原子1E18〜1E21個/cm3の範囲にあるようにできる。 The Mg concentration of the p-type InGaN contact layer can be in the range of 1E18 to 1E21 Mg atoms / cm 3 .

上記の構成により、電気伝導度を十分確保でき、p電極に導入された電流をエピタキシャル膜の全体にわたって広げることができる。   With the above configuration, sufficient electrical conductivity can be secured, and the current introduced to the p-electrode can be spread over the entire epitaxial film.

上記のp型InGaNコンタクト層に接してAg、AlおよびRh層のいずれかから構成されるp電極層を有する構成としてもよい。   The p-type InGaN contact layer may be in contact with the p-type electrode layer composed of any one of the Ag, Al, and Rh layers.

上記の構成により、搭載部すなわち発光素子底部からの反射率を大きくしてロスされる光を少なくすることにより、光出力を大きくすることができる。   With the above configuration, the light output can be increased by increasing the reflectivity from the mounting portion, that is, the bottom of the light emitting element to reduce the loss of light.

上記のGaN基板は、その厚み方向とそのGaN基板面内とにわたって連続して延びる板状結晶反転領域を有し、そのGaN基板内の板状結晶反転領域と、GaN基板上に形成されたn型およびp型窒化物半導体層に伝播した板状結晶反転領域とが、p型窒化物半導体層側からn型窒化物半導体層を経てGaN基板内にいたる位置まで除去され、その除去されたあとに残ったp型窒化物半導体層に接して、各p型窒化物半導体層ごとにp電極が設けられているようにできる。   The GaN substrate has a plate-like crystal inversion region continuously extending over the thickness direction and in the plane of the GaN substrate, and the plate-like crystal inversion region in the GaN substrate and n formed on the GaN substrate. After the plate-like crystal inversion region propagating to the p-type nitride semiconductor layer and the p-type nitride semiconductor layer is removed from the p-type nitride semiconductor layer side to the position in the GaN substrate through the n-type nitride semiconductor layer. A p-electrode may be provided for each p-type nitride semiconductor layer in contact with the remaining p-type nitride semiconductor layer.

この構成によれば光取り出し面を増大できるので光出力を向上させることができる。   According to this configuration, since the light extraction surface can be increased, the light output can be improved.

上記において、板状結晶反転領域をGaN基板内の位置までKOH水溶液で除去してもよい。   In the above, the plate crystal inversion region may be removed to the position in the GaN substrate with a KOH aqueous solution.

KOH水溶液で板状結晶反転領域を除去するとき、フォトマスクが不要であり、また窒化物半導体基板の第2の主面を非鏡面化する処理と同時処理することができるメリットがある。このため、KOH水溶液を用いることにより上記の構成において製造コストを低下させることができる。   When the plate-like crystal inversion region is removed with an aqueous KOH solution, there is an advantage that a photomask is not necessary and that the second main surface of the nitride semiconductor substrate can be processed simultaneously with the non-mirror processing. For this reason, manufacturing cost can be reduced in said structure by using KOH aqueous solution.

上記のp型窒化物半導体層に接してそのp型窒化物半導体層の表面にわたって離散的に配置される第1のp電極と、その第1のp電極の間隙を充填して、p型窒化物半導体層と第1のp電極とを被覆するAg、AlおよびRhのいずれかからなる第2のp電極とを備えてもよい。   The p-type nitride semiconductor is filled with a gap between the first p-electrode, which is in contact with the p-type nitride semiconductor layer and is discretely arranged over the surface of the p-type nitride semiconductor layer, and the first p-electrode. You may provide the 2nd p electrode which consists of either Ag, Al, and Rh which coat | covers a physical semiconductor layer and a 1st p electrode.

この構成により、p電極に導入された電流を面内にわたって十分広げた上で、反射率を高めて光出力を向上させることができる。   With this configuration, the current introduced into the p-electrode can be sufficiently spread over the surface, and the reflectance can be increased to improve the light output.

上記の離散的に配置される第1のp電極のp型窒化物半導体層の表面における被覆率が、10〜40%の範囲にあるようにしてもよい。   The coverage of the surface of the p-type nitride semiconductor layer of the first p electrode that is discretely arranged may be in the range of 10 to 40%.

この構成により、電気伝導度を確保した上で導入された電流を面内にわたって広げることができる。上記被覆率が10%未満では電流をエピタキシャル層にわたって抜けなく流すことができない。また、40%を超えると離散的に配置されたp電極層による光の取出し効率に対する悪影響を無視できなくなる。   With this configuration, it is possible to spread the current introduced over the surface while ensuring electrical conductivity. If the coverage is less than 10%, current cannot flow through the epitaxial layer without falling. On the other hand, if it exceeds 40%, the adverse effect on the light extraction efficiency by the p electrode layers arranged discretely cannot be ignored.

上記の窒化物半導体基板から離れて窒化物半導体基板の第2の主表面に対面するように蛍光板が配置されてもよい。   The fluorescent plate may be arranged so as to face the second main surface of the nitride semiconductor substrate away from the nitride semiconductor substrate.

pダウン搭載の光放射部を構成する窒化物半導体基板の直上に蛍光板を配置することにより、蛍光板の裏面で反射して戻ってきた光が窒化物半導体表面で再反射され、蛍光板側に向かうようにできる。この結果、光出力を向上させることができる。   By arranging the fluorescent plate directly on the nitride semiconductor substrate constituting the light emitting portion mounted on the p-down, the light reflected and returned from the back surface of the fluorescent plate is re-reflected on the nitride semiconductor surface and directed toward the fluorescent plate. Can be. As a result, the light output can be improved.

上記の蛍光板の窒化物半導体基板の第2の主表面に面する表面が凹凸化処理されるようにできる。   The surface facing the second main surface of the nitride semiconductor substrate of the fluorescent plate can be processed to be roughened.

上記の構成により、さらに光の取り出し効率を高めることができる。   With the above configuration, the light extraction efficiency can be further increased.

上記発光装置の静電耐圧は3000V以上であってもよい。   The light emitting device may have an electrostatic withstand voltage of 3000 V or more.

上記の窒化物半導体基板は、過渡電圧または静電放電に対して、その電力をグラウンドに逃がす接地部材として機能させてもよい。   The nitride semiconductor substrate described above may function as a grounding member that releases its power to the ground against a transient voltage or electrostatic discharge.

電気伝導率の高い窒化物半導体基板は、その窒化物半導体基板とダウン実装されたp型AlxGa1-xN層の側との間に加わる過渡電圧や静電放電に対して発光素子を高電圧から保護するために、それら高電圧をグラウンドに逃がす接地部材として機能させることができる。このため、上記の過渡電圧または静電放電に対処するため、ツェナーダイオードを含む電力分路回路などの保護回路を備えなくてもよくなる。過渡電圧および静電放電は、III族窒化物半導体に対する回路故障の主要な要因であり、上記のように窒素物半導体基板の電気伝導度が高ければ、それを接地部材として用い、製造工程を大幅に短縮し、製造コストも低くすることができる。 A nitride semiconductor substrate having a high electrical conductivity has a light emitting element against a transient voltage or electrostatic discharge applied between the nitride semiconductor substrate and the p-type Al x Ga 1-x N layer side mounted down. In order to protect against high voltages, it can function as a grounding member that releases these high voltages to ground. For this reason, in order to cope with the above transient voltage or electrostatic discharge, it is not necessary to provide a protection circuit such as a power shunt circuit including a Zener diode. Transient voltage and electrostatic discharge are major causes of circuit failure for group III nitride semiconductors. If the electrical conductivity of the nitride semiconductor substrate is high as described above, it can be used as a grounding member, greatly increasing the manufacturing process. And the manufacturing cost can be reduced.

上記の発光素子は4V以下の電圧を印加することにより発光するようにできる。電気伝導度が高い、すなわち電気抵抗の小さい窒化物半導体基板を用いることにより、低い電圧印加で発光に十分な電流を発光層に注入し、発光させることができる。このため、より少ない個数の電池の搭載で済むので、発光素子を組み込んだ照明装置の小型化、軽量化、低コスト化に資することができる。また、消費電力の抑制にも有効である。   The light emitting element can emit light by applying a voltage of 4 V or less. By using a nitride semiconductor substrate having high electrical conductivity, that is, low electrical resistance, a current sufficient for light emission can be injected into the light emitting layer by applying a low voltage, and light can be emitted. For this reason, since it is sufficient to mount a smaller number of batteries, it is possible to contribute to size reduction, weight reduction, and cost reduction of a lighting device incorporating a light emitting element. It is also effective in reducing power consumption.

上記の窒化物半導体基板の厚みを50μm以上としてもよい。   The nitride semiconductor substrate may have a thickness of 50 μm or more.

この構成により、点状または小面積のn電極から電子を流す場合、電子はGaN基板またはn型窒化物半導体基板の表面から内部に入るにしたがって広がってゆく。このため、GaN基板またはn型窒化物半導体は厚いほうが望ましい。上記基板の厚みが50μm未満ではn電極の面積を小さくした場合、量子井戸構造の活性層に到達したときに十分に広がらず、活性層において発光しない部分または発光が十分でない部分を生じる。上記の基板の厚みを50μm以上とすることにより、低い電気抵抗によりn電極の面積を小さくしても上記基板内において電流が十分な広がりをみせて、活性層での発光部分を十分拡大することができる。より好ましくは75μm以上とするのがよい。しかし、あまり厚くしすぎると基板による吸収が無視できなくなるので、500μm以下にするのが望ましい。   With this configuration, when electrons are allowed to flow from a point-like or small-area n-electrode, the electrons spread from the surface of the GaN substrate or n-type nitride semiconductor substrate toward the inside. For this reason, it is desirable that the GaN substrate or the n-type nitride semiconductor is thick. When the thickness of the substrate is less than 50 μm, when the area of the n-electrode is reduced, it does not spread sufficiently when it reaches the active layer of the quantum well structure, and a portion that does not emit light or a portion that does not emit light is generated in the active layer. By making the thickness of the substrate 50 μm or more, even if the area of the n-electrode is reduced due to low electrical resistance, the current can be sufficiently expanded in the substrate, and the light emitting portion in the active layer can be sufficiently expanded. Can do. More preferably, it is 75 μm or more. However, if it is too thick, absorption by the substrate cannot be ignored, so it is desirable that the thickness be 500 μm or less.

上記の窒化物半導体基板の第2の主表面に、開口率50%以上で電極が設けられてもよい。   An electrode may be provided on the second main surface of the nitride semiconductor substrate with an aperture ratio of 50% or more.

この構成により、第2の主表面からの光の放出効率を高めることができる。回効率は大きいほどn電極で吸収される光量が減るので光出力を増大させることができる。このため、開口率は、より望ましくは75%以上、さらに望ましくは90%以上とするのがよい。   With this configuration, the light emission efficiency from the second main surface can be increased. As the recovery efficiency increases, the amount of light absorbed by the n-electrode decreases, so that the light output can be increased. For this reason, the aperture ratio is more desirably 75% or more, and further desirably 90% or more.

上記の窒化物半導体基板に設けられた電極と、その窒化物半導体基板との接触面積が0.055mm2以上であるようにできる。 The contact area between the electrode provided on the nitride semiconductor substrate and the nitride semiconductor substrate can be 0.055 mm 2 or more.

この構成により、たとえば8mm□の半導体チップで70A程度まで、電極発熱の影響なく線形の電流−光出力特性を得ることができる。   With this configuration, for example, a linear current-light output characteristic can be obtained up to about 70 A with an 8 mm square semiconductor chip without the influence of electrode heat generation.

また、電極とリードフレームとを電気的に接続するボンディングワイヤの断面積が0.002mm2以上であるようにしてもよい。 Further, the cross-sectional area of the bonding wire that electrically connects the electrode and the lead frame may be 0.002 mm 2 or more.

この構成により、電流2Aまでワイヤ部の発熱の影響なく稼動させることができる。   With this configuration, it is possible to operate up to the current 2A without being affected by the heat generation of the wire portion.

上記の電極とリードフレームとを電気的に接続するボンディングワイヤの断面積を0.07mm2以上とすることができる。 The cross-sectional area of the bonding wire that electrically connects the electrode and the lead frame can be set to 0.07 mm 2 or more.

この構成により、電流70A程度までワイヤ部の発熱の影響なく稼動させることができる。   With this configuration, it is possible to operate up to a current of about 70 A without being affected by the heat generation of the wire portion.

電極が窒化物半導体基板の2以上のコーナーに分かれて位置し、電極と窒化物半導体基板との接触面積の合計が0.055mm2以上であり、かつリードフレームとコーナーに位置する電極とを電気的に接続するボンディングワイヤの断面積の合計が0.002mm2以上であるようにできる。 The electrode is divided into two or more corners of the nitride semiconductor substrate, the total contact area between the electrode and the nitride semiconductor substrate is 0.055 mm 2 or more, and the lead frame and the electrode located at the corner are electrically connected. The total cross-sectional area of the bonding wires to be connected can be 0.002 mm 2 or more.

この構成により、半導体チップの光取り出しにおいて光の障害となる部分がほとんど配置されないようにすることができる。   With this configuration, it is possible to prevent a portion that becomes an obstacle to light in the light extraction of the semiconductor chip from being arranged.

上記のコーナーに位置する電極とリードフレームとを電気的に接続するボンディングワイヤの断面積の合計を0.07mm2以上とすることができる。 The total cross-sectional area of the bonding wire that electrically connects the electrode located at the corner and the lead frame can be 0.07 mm 2 or more.

この構成により、光取り出しの障害となる部分をほとんど無くしながら、光の出力効率を高めることができる。   With this configuration, it is possible to increase the light output efficiency while eliminating almost all the obstacles to light extraction.

上記の第2の主表面の光を放出する部分の面積を0.25mm2以上としてもよい。 The area of the second main surface that emits light may be 0.25 mm 2 or more.

この構成により、所定の個数の上記発光素子を配列することにより、既存の照明機器に代替しうる範囲が増大する。光を放出する部分の面積が0.25mm2未満では、使用する発光素子の数が多くなりすぎ、既存の照明器具を代替することができない。上記本発明の実施の形態における、光を放出する部分は。窒化物化合物半導体基板で、電流が十分広がる範囲内で大きいほどよい。これは電気抵抗が小さいほど光放出面積を広くとれることを意味し、たとえば窒化物化合物半導体基板の比抵抗が0.01Ω・cmならば、本発明例Fのように、8mm×8mm程度にすることができる。 With this configuration, by arranging a predetermined number of the light-emitting elements, a range that can be replaced with an existing lighting device is increased. When the area of the portion that emits light is less than 0.25 mm 2 , the number of light-emitting elements to be used becomes too large to replace the existing lighting fixture. In the above-described embodiment of the present invention, the part that emits light. In the nitride compound semiconductor substrate, it is better that the current is large enough to spread. This means that the smaller the electrical resistance, the wider the light emission area. For example, if the specific resistance of the nitride compound semiconductor substrate is 0.01 Ω · cm, it is about 8 mm × 8 mm as in Example F of the present invention. be able to.

また、上記の窒化物半導体基板の第2の主表面の光を放出する部分を、1mm×1mm以上のサイズとしてもよい。上記の窒化物半導体基板の第2の主表面の光を放出する部分を、3mm×3mm以上のサイズとすることもできる。さらに、上記の窒化物半導体基板の第2の主表面の光を放出する部分を、5mm×5mm以上のサイズとしてもよい。   The portion of the nitride semiconductor substrate that emits light on the second main surface may have a size of 1 mm × 1 mm or more. The portion of the nitride semiconductor substrate that emits light on the second main surface may have a size of 3 mm × 3 mm or more. Furthermore, the light emitting portion of the second main surface of the nitride semiconductor substrate may have a size of 5 mm × 5 mm or more.

上記のように、光放出面を大面積化することにより、照明装置に搭載する発光素子の数を減らすことができ、加工工数の抑制、部品点数の削減、消費電力の抑制、などを実現することができる。なお、念のために付け加えると、1mm×1mm以上のサイズとは、1mm×1mmを含むサイズをいう。   As described above, by increasing the area of the light emission surface, it is possible to reduce the number of light-emitting elements mounted on the lighting device, thereby realizing reduction in processing steps, reduction in the number of parts, reduction in power consumption, and the like. be able to. As a precaution, the size of 1 mm × 1 mm or more means a size including 1 mm × 1 mm.

AlN基板に形成される発光素子の場合も含んで、上記の発光素子は、熱抵抗が30℃/W以下となるように構成されてもよい。   Including the light emitting element formed on the AlN substrate, the above light emitting element may be configured so that the thermal resistance is 30 ° C./W or less.

発光素子は温度上昇により発光効率が低下し、また、過度に温度上昇が生じる場合には、発光素子が損傷を受ける。このため、発光素子において、温度または熱抵抗は重要な設計要素である。従来、熱抵抗はほぼ60℃/Wとされていた(上記特許文献1)。しかし、上記のように、熱抵抗が30℃/W以下となるように設定することにより、発光素子への投入電力を十分行なっても発光効率の低下をいちじるしく生じたり、また発光素子の損傷を生じることがなくなる。上記のような熱抵抗の半減化は、上記のように比抵抗の小さいGnN基板を用いることによりはじめて実現されたのである。   The luminous efficiency of the light emitting element is lowered due to the temperature rise, and the light emitting element is damaged when the temperature rises excessively. For this reason, temperature or thermal resistance is an important design factor in a light emitting device. Conventionally, the thermal resistance has been approximately 60 ° C./W (Patent Document 1). However, as described above, by setting the thermal resistance to be 30 ° C./W or less, even if the input power to the light emitting element is sufficiently applied, the luminous efficiency is remarkably lowered or the light emitting element is damaged. No longer occurs. The above-described halving of the thermal resistance was realized for the first time by using a GnN substrate having a small specific resistance as described above.

また、上記の発光素子では、連続発光状態で最も温度が上昇する部分の温度を、150℃以下とすることができる。   In the above light emitting element, the temperature of the portion where the temperature rises most in the continuous light emission state can be set to 150 ° C. or less.

この構成により、最も温度が上昇する部分、すなわち発光層の温度を150℃以下にして、十分高い発光効率を確保することができる。さらに従来の発光素子に比較して寿命の大幅延長を得ることが可能になる。   With this configuration, the portion where the temperature rises most, that is, the temperature of the light emitting layer can be set to 150 ° C. or less, and sufficiently high light emission efficiency can be ensured. Furthermore, it is possible to obtain a significant increase in lifetime as compared with conventional light emitting devices.

上記のn型窒化物半導体層の厚みは3μm以下とするのがよい。   The thickness of the n-type nitride semiconductor layer is preferably 3 μm or less.

このn型窒化物半導体層は、窒化物半導体基板の上にエピタキシャル成長させるものであり、むやみに厚くすると成膜処理に長時間を要し、原料費用も増大する。上記のようにn型窒化物半導体層の厚みを3μm以下とすることにより、大きなコスト減を得ることができる。さらに望ましくは2μm以下とするのがよい。   The n-type nitride semiconductor layer is epitaxially grown on the nitride semiconductor substrate. If the n-type nitride semiconductor layer is unnecessarily thick, the film forming process takes a long time and the raw material cost increases. As described above, when the thickness of the n-type nitride semiconductor layer is 3 μm or less, a large cost reduction can be obtained. More desirably, the thickness is 2 μm or less.

上記の窒化物半導体基板の第2の主表面において、電極が被覆していない部分に非鏡面処理を施してもよい。   On the second main surface of the nitride semiconductor substrate, a non-mirror surface treatment may be applied to a portion not covered with the electrode.

この構成により、第2の主表面、すなわち放出面において、発光層で発生した光が全反射により上記基板内に閉じ込められ効率が低下するのを防ぐことができる。積層構造の側面にも非鏡面処理を施してもよいことは言うまでもない。   With this configuration, it is possible to prevent the light generated in the light emitting layer from being confined in the substrate due to total reflection on the second main surface, that is, the emission surface, and the efficiency is lowered. Needless to say, the side surface of the laminated structure may be subjected to non-specular treatment.

上記の非鏡面処理が施された表面が、水酸化カリウム(KOH)水溶液、水酸化ナトリウム(NaOH)水溶液、アンモニア(NH3)水溶液またはその他のアルカリ水溶液を用いて非鏡面化された表面であってもよい。 The surface that has been subjected to the above non-mirror surface treatment is a surface that has been made non-specular using a potassium hydroxide (KOH) aqueous solution, a sodium hydroxide (NaOH) aqueous solution, an ammonia (NH 3 ) aqueous solution or another alkaline aqueous solution. May be.

上記の非鏡面化処理によりGaN基板のN面だけを凹凸の大きな表面を能率よく得ることができる。Ga面側はエッチングされない。   By the non-specularization treatment, it is possible to efficiently obtain a surface with large irregularities only on the N surface of the GaN substrate. The Ga surface side is not etched.

また、上記非鏡面処理が施された表面が、硫酸(H2SO4)水溶液、塩酸(HCl)水溶液、リン酸(H2PO4)水溶液、フッ酸(HF)水溶液およびその他の酸水溶液の少なくとも1つを用いて非鏡面化された表面であってもよい。 In addition, the surface subjected to the non-mirror surface treatment is a sulfuric acid (H 2 SO 4 ) aqueous solution, hydrochloric acid (HCl) aqueous solution, phosphoric acid (H 2 PO 4 ) aqueous solution, hydrofluoric acid (HF) aqueous solution or other acid aqueous solution. It may be a non-specularized surface using at least one.

また、上記の非鏡面処理が施された表面が、反応性イオンエッチング(Reactive Ion Etching:RIE)を用いて非鏡面化された表面であってもよい。これにより、ドライプロセスにより面積の寸法精度に優れた非鏡面を得ることができる。さらには、ドライエッチングのRIEおよびアルカリ水溶液による湿式エッチングのいずれによっても、フォトリソグラフィ技術と組み合わせることにより、所定の凹凸間隔を得ることができる。   In addition, the surface that has been subjected to the non-specular treatment may be a surface that has been made non-specular using reactive ion etching (RIE). Thereby, the non-mirror surface excellent in the dimensional accuracy of the area can be obtained by a dry process. Furthermore, a predetermined unevenness interval can be obtained by combining RIE with dry etching and wet etching with an alkaline aqueous solution in combination with a photolithography technique.

上記のp型窒化物半導体層に設けられる電極を、反射率0.5以上の反射率の材質で形成されるようにできる。   The electrode provided in the p-type nitride semiconductor layer can be formed of a material having a reflectance of 0.5 or more.

この構成により、実装面側での光の吸収を防ぎ、上記基板の第2の主面に向けて反射する光量を多くすることができる。この反射率はより高いほうが好ましく、0.7以上とするのがよい。   With this configuration, absorption of light on the mounting surface side can be prevented, and the amount of light reflected toward the second main surface of the substrate can be increased. The reflectance is preferably higher, and is preferably 0.7 or more.

上記の窒化物半導体基板の第2の主表面を覆うように蛍光体を配置してもよい。また、上記発光装置では、窒化物半導体基板から離れて窒化物半導体基板の第2の主表面に対面するように蛍光板が配置されていてもよい。さらに、蛍光板の窒化物半導体基板の第2の主表面に面する表面が凹凸化処理されていてもよい。また、窒化物半導体基板に蛍光を発する不純物および欠陥の少なくとも一方を含ませてもよい。   A phosphor may be arranged so as to cover the second main surface of the nitride semiconductor substrate. In the light emitting device, the fluorescent plate may be disposed so as to face the second main surface of the nitride semiconductor substrate away from the nitride semiconductor substrate. Furthermore, the surface facing the second main surface of the nitride semiconductor substrate of the fluorescent plate may be subjected to an uneven process. Further, the nitride semiconductor substrate may include at least one of impurities that emit fluorescence and defects.

上記の構成により、ともに白色LEDを形成することができる。   With the above configuration, both white LEDs can be formed.

本発明の発光素子は、上記に挙げたいずれかの発光素子を2つ以上含み、それらの発光素子が直列接続されていてもよい。   The light-emitting element of the present invention may include two or more of any of the light-emitting elements listed above, and these light-emitting elements may be connected in series.

上記の構成により、高電圧電源を用いて、上述の高効率の発光素子を複数、リードフレーム等に搭載した照明部品を得ることができる。たとえば、自動車用バッテリーは12V程度なので、本発明の発光素子を4段以上直列に接続して発光することができる。   With the above configuration, it is possible to obtain a lighting component in which a plurality of the high-efficiency light-emitting elements described above are mounted on a lead frame or the like using a high-voltage power supply. For example, since an automobile battery is about 12V, it can emit light by connecting four or more light emitting elements of the present invention in series.

また、本発明の別の発光素子は、上述の発光素子を2つ以上含み、それらの発光素子が並列接続されていてもよい。   Another light-emitting element of the present invention may include two or more of the above-described light-emitting elements, and the light-emitting elements may be connected in parallel.

上記の構成により、高電流電源を用いて、上述の高効率の発光素子から構成される照明部品を得ることができる。   With the above configuration, it is possible to obtain a lighting component including the above-described high-efficiency light-emitting element using a high-current power supply.

本発明のさらに別の発光素子と、それらの発光素子を発光させるための電源回路とを含み、電源回路において、発光素子が2つ以上並列に接続された2以上の並列部が直列に接続される構成をとってもよい。   Further including another light emitting element of the present invention and a power supply circuit for causing the light emitting elements to emit light, and in the power supply circuit, two or more parallel portions in which two or more light emitting elements are connected in parallel are connected in series. A configuration may be adopted.

この構成により、個々の発光素子の発光条件を満たしながら照明部品の容量と電源容量との整合をとることが可能になる。なお、上記の電源回路では、照明装置の容量を可変とする場合、並直切換部を備え、その並直切換部により、発光素子に印加される配線が切り換えられてもよい。   With this configuration, it is possible to match the illumination component capacity and the power supply capacity while satisfying the light emission conditions of the individual light emitting elements. Note that, in the above power supply circuit, when the capacity of the lighting device is variable, a parallel switching unit may be provided, and the wiring applied to the light emitting element may be switched by the parallel switching unit.

上記において、本発明の実施の形態および実施例について説明を行ったが、上記に開示された本発明の実施の形態および実施例は、あくまで例示であって、本発明の範囲はこれら発明の実施の形態に限定されない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Although the embodiments and examples of the present invention have been described above, the embodiments and examples of the present invention disclosed above are merely examples, and the scope of the present invention is the implementation of these inventions. It is not limited to the form. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

本発明の発光素子は、導電性の高い窒化物半導体基板を用い、また窒化物半導体基板におけるチップの分割に転位束が存在する部分を選択的に除去するエッチングを利用し、さらにpダウン実装した構造を用いた結果、(1)放熱性に優れ、複雑な電極構造を設ける必要がなく、大出力の発光を可能にし、(2)導電性に優れ、過渡電圧や静電放電から発光素子を保護するための保護回路を設ける必要がなく、大面積発光および静電耐圧に優れ、(3)発光層から基板にかけて屈折率の大から小への大きな不連続性がないため、発光層から放出面にいたる間で全反射が生じ難く、したがって全反射に起因する、効率低下や側面部の樹脂劣化がなく、(4)低電圧で発光するので、大容量の電源を必要とせず、とくに自動車用の照明装置用に適しており、(5)その構造が簡単なために、製造しやすく安価であり、メインテナンス性にも優れている。このため、今後、自動車の照明装置を含めて各種の照明製品に広範に利用されることが期待される。   The light-emitting element of the present invention uses a highly conductive nitride semiconductor substrate, uses etching that selectively removes a portion where dislocation bundles exist in the chip division in the nitride semiconductor substrate, and is further p-down mounted. As a result of using the structure, (1) excellent heat dissipation, no need to provide a complicated electrode structure, enabling high output light emission, (2) excellent electrical conductivity, light emitting element from transient voltage and electrostatic discharge There is no need to provide a protective circuit for protection, and it excels in large area light emission and electrostatic withstand voltage. Total reflection is unlikely to occur between the surfaces, and therefore there is no reduction in efficiency or resin degradation due to total reflection, and (4) light is emitted at a low voltage, so a large-capacity power supply is not required. Suitable for lighting equipment And, for (5) it is simple its structure, is inexpensive easy to manufacture, is excellent in maintainability. For this reason, it is expected that it will be widely used in various lighting products including automotive lighting devices in the future.

本発明によるLEDの実施の形態1を示す図である。It is a figure which shows Embodiment 1 of LED by this invention. 図1のLEDの発光層を含む積層構造を示す図である。It is a figure which shows the laminated structure containing the light emitting layer of LED of FIG. 図1のLEDの平面図である。It is a top view of LED of FIG. 図1に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 1 from the side in which the p electrode was formed. 図1に示したLEDを構成するチップをn電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 1 from the side in which the n electrode was formed. 図1〜図5に示したLEDの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of LED shown in FIGS. 図1〜図5に示したLEDのチップをウエハから採取するときのウエハの状態を示す平面模式図である。FIG. 6 is a schematic plan view showing a state of the wafer when the LED chip shown in FIGS. 1 to 5 is taken from the wafer. 図7の線分VIII−VIIIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment VIII-VIII of FIG. 図1〜図5に示した本発明によるLEDの実施の形態1の第1の変形例を示す平面図である。FIG. 6 is a plan view showing a first modification of the first embodiment of the LED according to the present invention shown in FIGS. 1 to 5. 図9に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 9 from the side in which the p electrode was formed. 図9に示したLEDを構成するチップをn電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 9 from the side in which the n electrode was formed. 図1〜図5に示した本発明によるLEDの実施の形態1の第2の変形例を示す平面図である。FIG. 6 is a plan view showing a second modification of the first embodiment of the LED according to the present invention shown in FIGS. 1 to 5. 図12に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 12 from the side in which the p electrode was formed. 図12に示したLEDを構成するチップをn電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 12 from the side in which the n electrode was formed. 図1〜図5に示した本発明によるLEDの実施の形態1の第3の変形例を示す平面図である。FIG. 6 is a plan view showing a third modification of the first embodiment of the LED according to the present invention shown in FIGS. 図15に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 15 from the side in which the p electrode was formed. 図15に示したLEDを構成するチップをn電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 15 from the side in which the n electrode was formed. 図1〜図5に示した本発明によるLEDの実施の形態1の第4の変形例を示す平面図である。FIG. 6 is a plan view showing a fourth modification of the first embodiment of the LED according to the present invention shown in FIGS. 1 to 5. 図18に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 18 from the side in which the p electrode was formed. 図18に示したLEDを構成するチップをn電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 18 from the side in which the n electrode was formed. 本発明に従った発光装置としてのLEDの実施の形態2を示す図である。It is a figure which shows Embodiment 2 of LED as a light-emitting device according to this invention. 図21に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 21 from the side in which the p electrode was formed. 図21に示したLEDを構成するチップをn電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 21 from the side in which the n electrode was formed. 図21〜図23に示したLEDの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of LED shown in FIGS. 図21〜図23に示したLEDのチップをウエハから採取するときのウエハの状態を示す平面模式図である。FIG. 24 is a schematic plan view showing a state of the wafer when the LED chips shown in FIGS. 21 to 23 are taken from the wafer. 図25の線分XXVI−XXVIにおける断面模式図である。It is a cross-sectional schematic diagram in line segment XXVI-XXVI of FIG. 図25に示したウエハにおける1つのチップに該当する領域を示す拡大模式図である。FIG. 26 is an enlarged schematic view showing a region corresponding to one chip in the wafer shown in FIG. 25. 本発明に従った発光装置としてのLEDの実施の形態3を示す図である。It is a figure which shows Embodiment 3 of LED as a light-emitting device according to this invention. 図28に示したLEDのチップをウエハから採取するときのウエハの状態を示す平面模式図である。It is a plane schematic diagram which shows the state of a wafer when the chip | tip of LED shown in FIG. 28 is extract | collected from a wafer. 本発明に従った発光装置としてのLEDの実施の形態4を示す平面図である。It is a top view which shows Embodiment 4 of LED as a light-emitting device according to this invention. 図30に示したLEDを構成するチップをp電極が形成された側から見た平面図である。It is the top view which looked at the chip | tip which comprises LED shown in FIG. 30 from the side in which the p electrode was formed. 図31の線分XXXII−XXXIIにおける断面模式図である。FIG. 32 is a schematic cross-sectional view taken along line XXXII-XXXII in FIG. 31. 比較例Bを示す図である。10 is a diagram showing a comparative example B. FIG. 比較例BのLEDの発光層を含む積層構造を示す図である。It is a figure which shows the laminated structure containing the light emitting layer of LED of the comparative example B. 比較例Bの積層構造のチップをウエハから採取するときのウエハの状態を示す図である。It is a figure which shows the state of a wafer when the chip | tip of the laminated structure of the comparative example B is extract | collected from a wafer. 図35における電極の配置を示す図である。It is a figure which shows arrangement | positioning of the electrode in FIG. 本発明例Aおよび比較例Bの印加電流と光出力との関係を示す図である。It is a figure which shows the relationship between the applied electric current of this invention example A and the comparative example B, and optical output. 本発明例Aおよび比較例Bの発光層での電流密度と光出力との関係を示す図である。It is a figure which shows the relationship between the current density in the light emitting layer of this invention example A and the comparative example B, and a light output. 本発明の実施例2における本発明例C1のLEDを示す図である。It is a figure which shows LED of this invention example C1 in Example 2 of this invention. 図39の発明例C1のLEDの平面図である。It is a top view of LED of invention example C1 of FIG. 比較例EのLEDを示す図である。It is a figure which shows LED of the comparative example E. 図41に示す比較例EのLEDの平面図である。It is a top view of LED of the comparative example E shown in FIG. 本発明の実施例3における本発明例FのLEDを示す図である。It is a figure which shows LED of the example F of this invention in Example 3 of this invention. 計算シミュレーションによるLEDチップ内の電流の流れを模式的に示す図である。It is a figure which shows typically the flow of the electric current in the LED chip by calculation simulation. 本発明の実施例3におけるLEDの発光層における電流密度比を示す図である。It is a figure which shows the current density ratio in the light emitting layer of LED in Example 3 of this invention. 本発明の実施例3におけるLED(蛍光材なし)の印加電流と光出力との関係を示す図である。It is a figure which shows the relationship between the applied current and light output of LED (without fluorescent material) in Example 3 of this invention. 本発明の実施例3におけるLED(蛍光材なし)の発光層での電流密度と光出力との関係を示す図である。It is a figure which shows the relationship between the current density and light output in the light emitting layer of LED (without fluorescent material) in Example 3 of this invention. 本発明の実施例3におけるLED(蛍光材あり:白色)の印加電流と光出力との関係を示す図である。It is a figure which shows the relationship between the applied electric current and light output of LED (with fluorescent material: white) in Example 3 of this invention. 本発明の実施例3におけるLED(蛍光材あり:白色)の発光層での電流密度と光出力との関係を示す図である。It is a figure which shows the relationship between the current density and light output in the light emitting layer of LED (with fluorescent material: white) in Example 3 of this invention. 本発明の実施例4におけるLEDの透過率測定試験の概要を示す図である。It is a figure which shows the outline | summary of the transmittance | permeability measurement test of LED in Example 4 of this invention. 図50に示す透過率測定試験において光が基板を透過する状況を示す図である。It is a figure which shows the condition where light permeate | transmits a board | substrate in the transmittance | permeability measurement test shown in FIG. 透過率に及ぼす基板の厚みの影響を示す図である。It is a figure which shows the influence of the thickness of the board | substrate which has on the transmittance | permeability. 本発明の実施例5において、本発明例LのLEDをウエハから採取するために素子分離のエッチングを行なった後の状態を示す図である。In Example 5 of this invention, it is a figure which shows the state after performing the isolation | separation etching in order to extract | collect LED of this invention example L from a wafer. 本発明の実施例5において、比較例MのLEDをウエハから採取するために素子分離のエッチングを行ない、n電極をエッチング溝の底部に形成しようとするときの状態を示す図である。In Example 5 of this invention, in order to extract | collect LED of the comparative example M from a wafer, it is a figure which shows the state when etching of element isolation is performed and it is going to form n electrode in the bottom part of an etching groove | channel. 本発明の実施例5において、比較例NのLEDをウエハから採取するために素子分離のエッチングを行ない、n電極をエッチング溝の底部に形成しようとするときの状態を示す図である。In Example 5 of this invention, it is a figure which shows a state when etching of element isolation is performed in order to extract | collect LED of the comparative example N from a wafer, and it is going to form n electrode in the bottom part of an etching groove | channel. 本発明の実施例7の本発明例QのLEDを示す図である。It is a figure which shows LED of this invention example Q of Example 7 of this invention. 本発明の実施例7の本発明例RのLEDを示す図である。It is a figure which shows LED of this invention example R of Example 7 of this invention. 本発明の実施例8の本発明例SおよびTのLEDを示す図である。It is a figure which shows LED of invention example S and T of Example 8 of this invention. 本発明の実施例8の本発明例UのLEDを示す図である。It is a figure which shows LED of the example U of this invention of Example 8 of this invention. 本発明の実施例8の本発明例WのLEDを示す図である。It is a figure which shows LED of this invention example W of Example 8 of this invention. 本発明の実施例9においてGaN基板の比抵抗に及ぼす酸素濃度の影響を示す図である。It is a figure which shows the influence of the oxygen concentration which acts on the specific resistance of a GaN board | substrate in Example 9 of this invention. 本発明の実施例9においてGaN基板の光(波長450nm)の透過率に及ぼす酸素濃度の影響を示す図である。It is a figure which shows the influence of the oxygen concentration which acts on the transmittance | permeability of the light (wavelength 450nm) of a GaN substrate in Example 9 of this invention. 厚みおよび酸素濃度を変化させたGaN基板から発光素子を作製したときのその発光素子の光出力および電流が均一に流れる平面サイズを示す図である。It is a figure which shows the plane size through which the light output of the light emitting element and an electric current flow uniformly, when producing a light emitting element from the GaN substrate which changed thickness and oxygen concentration. 本発明の実施例10において、20mm×20mmのGaN基板のc面からのオフ角度分布を示す図である。In Example 10 of this invention, it is a figure which shows off-angle distribution from c surface of a 20 mm x 20 mm GaN substrate. 本発明の実施例10における、GaN基板とAlGaNクラッド層との間にバッファ層を配置した構造を示す図である。It is a figure in Example 10 of this invention which shows the structure which has arrange | positioned the buffer layer between the GaN substrate and the AlGaN clad layer. 本発明の実施例10において、光出力8mW以上を得ることができるオフ角範囲を広げた結果を示す図である。In Example 10 of this invention, it is a figure which shows the result of having extended the off angle range which can obtain 8 mW or more of optical outputs. 孔状凹部となったエピタキシャル層に継承されたコアを示す図である。It is a figure which shows the core inherited by the epitaxial layer used as the hole-shaped recessed part. 本発明の実施例11におけるGaN基板中のコアがエピタキシャル層に継承された状態を示す図である。It is a figure which shows the state in which the core in the GaN substrate in Example 11 of this invention was inherited by the epitaxial layer. 本発明の実施例12における発光素子を示す図である。It is a figure which shows the light emitting element in Example 12 of this invention. 本発明の実施例13における発光素子のp電極に着目した断面図である。It is sectional drawing which paid its attention to the p electrode of the light emitting element in Example 13 of this invention. 図70の発光素子のp電極を透視した平面図である。FIG. 71 is a plan view seen through a p-electrode of the light emitting device of FIG. 70. 実施例13の本発明例S5における発光および反射を示す図である。It is a figure which shows light emission and reflection in this invention example S5 of Example 13. FIG. 実施例13の比較例T6における発光および反射を示す図である。It is a figure which shows light emission and reflection in comparative example T6 of Example 13. FIG. 実施例13の比較例として挙げられた本発明例Aにおける発光および反射を示す図である。It is a figure which shows the light emission and reflection in this invention example A quoted as a comparative example of Example 13. FIG. 本発明の実施例14において、板状結晶反射領域が格子状に現れているGaN基板の主面を示す図である。In Example 14 of this invention, it is a figure which shows the main surface of the GaN substrate in which the plate-shaped crystal reflective area | region has appeared in the grid | lattice form. 図75の板状結晶反射領域を示すGaN基板の断面図である。FIG. 76 is a cross-sectional view of a GaN substrate showing the plate-like crystal reflection region of FIG. 75. 本発明の実施例14の本発明例S6を示す断面図である。It is sectional drawing which shows this invention example S6 of Example 14 of this invention. 本発明の実施例14に含まれる、図75とは別の並列配置の板状結晶領域を示す平面図である。It is a top view which shows the plate-shaped crystal | crystallization area | region of the parallel arrangement different from FIG. 75 included in Example 14 of this invention. 図78の断面図である。FIG. 79 is a cross-sectional view of FIG. 78. 本発明の実施例15の本発明例S7における発光および反射を示す断面図である。It is sectional drawing which shows light emission and reflection in this invention example S7 of Example 15 of this invention. 本発明の実施例15における他の実施例である本発明例S8での発光および反射を示す断面図である。It is sectional drawing which shows light emission and reflection in this invention example S8 which is another Example in Example 15 of this invention. 比較例T7における発光および反射を示す断面図である。It is sectional drawing which shows light emission and reflection in comparative example T7. 本発明によるLEDの製造方法において用いられるエッチング装置を示す模式図である。It is a schematic diagram which shows the etching apparatus used in the manufacturing method of LED by this invention. 従来のLEDを示す図である。It is a figure which shows the conventional LED.

符号の説明Explanation of symbols

1 GaN基板、1a 光放出面(第2の主表面)、2 n型GaN層、3 n型AlxGa1-xN層、4 MQW(発光層)、5 p型AlxGa1-xN層、6 p型GaN層、11 n電極、12 p電極、12a 離散配置のNi/Auのp電極、13 ワイヤ、14 導電性接着剤、15 エポキシ系樹脂、21a リードフレームのマウント部、21b リードフレームのリード部、25 素子分離溝、25a 素子分離溝の底部、26 蛍光材、31 n型AlGaNバッファ層、32 p型InGaN層、33 Ag電極層、35 高反射膜、46 蛍光板、46a 蛍光板の凹凸面、50 チップ境界、51 板状結晶反転領域、52 トレンチ、61 コア(孔状凹部)、80 側面、82 境界線、84 架台、85 押え板、86 密閉容器蓋、87 密閉容器、88 エッチャント、89 押えボルト、90 ベース板、D n電極直径、L1 p電極辺長さ、L2 スクライブ線間隔(チップ辺長さ)、L3 素子分離溝幅、L4 エッチング溝辺長さ、R1 オフ角0.05°領域、R2 オフ角1.44°領域、r 発光層での中央からの距離、t n型GaN層の厚み。 1 GaN substrate, 1a light emission surface (second main surface), 2 n-type GaN layer, 3 n-type Al x Ga 1-x N layer, 4 MQW (light emitting layer), 5 p-type Al x Ga 1-x N layer, 6 p-type GaN layer, 11 n electrode, 12 p electrode, 12a discretely arranged Ni / Au p electrode, 13 wires, 14 conductive adhesive, 15 epoxy resin, 21a lead frame mount, 21b Lead part of lead frame, 25 element isolation groove, 25a bottom part of element isolation groove, 26 fluorescent material, 31 n-type AlGaN buffer layer, 32 p-type InGaN layer, 33 Ag electrode layer, 35 highly reflective film, 46 fluorescent plate, 46a fluorescent plate Surface, 50 chip boundary, 51 plate crystal inversion region, 52 trench, 61 core (hole recess), 80 side surface, 82 boundary line, 84 frame, 85 presser plate, 86 airtight container lid, 87 airtight container, 88 D Chant, 89 presser bolt, 90 base plate, Dn electrode diameter, L1 p electrode side length, L2 scribe line interval (chip side length), L3 element isolation groove width, L4 etching groove side length, R1 off angle 0. 05 ° region, R2 off-angle 1.44 ° region, distance from the center of the light emitting layer, and thickness of the tn-type GaN layer.

Claims (17)

窒化物半導体基板と、前記窒化物半導体基板の第1の主表面上に積層された窒化物半導体層と、前記窒化物半導体層上に形成された第1の電極と、前記窒化物半導体基板の前記第1の主表面と反対側の主表面である第2の主表面上に形成された第2の電極とを含む発光装置であって、
前記窒化物半導体基板は、
前記窒化物半導体基板の前記第1の主表面から前記第2の主表面まで厚み方向に沿って転位が集中化した転位束が存在する領域と、
前記転位束が存在する領域に囲まれた単結晶領域とを含み、
前記単結晶領域の比抵抗は0.5Ω・cm以下である、発光装置。
A nitride semiconductor substrate; a nitride semiconductor layer stacked on a first main surface of the nitride semiconductor substrate; a first electrode formed on the nitride semiconductor layer; and the nitride semiconductor substrate. A light emitting device including a second electrode formed on a second main surface which is a main surface opposite to the first main surface,
The nitride semiconductor substrate is
A region in which dislocation bundles in which dislocations are concentrated along the thickness direction from the first main surface to the second main surface of the nitride semiconductor substrate exist;
A single crystal region surrounded by a region where the dislocation bundle exists,
The light emitting device, wherein the single crystal region has a specific resistance of 0.5 Ω · cm or less.
前記単結晶領域における転位密度は5E6個/cm2以下である、請求項1に記載の発光装置。 The light-emitting device according to claim 1, wherein a dislocation density in the single crystal region is 5E6 / cm 2 or less. 前記窒化物半導体基板の前記第2の主表面において、前記転位束が存在する領域は、規則的な間隔を有するストライプパターンを形成する、請求項1または2に記載の発光装置。   3. The light emitting device according to claim 1, wherein a region where the dislocation bundle exists in the second main surface of the nitride semiconductor substrate forms a stripe pattern having a regular interval. 前記窒化物半導体基板の前記第2の主表面において、前記転位束が存在する領域は前記単結晶領域の平面形状が多角形状となるように前記単結晶領域を囲んでいる、請求項1または2に記載の発光装置。   The region where the dislocation bundle exists on the second main surface of the nitride semiconductor substrate surrounds the single crystal region so that a planar shape of the single crystal region is a polygonal shape. The light emitting device according to 1. 前記転位束が存在する領域が形成する多角形は、nを自然数としたときに、((60゜±3゜)×n)という角度の内角を有する、請求項4に記載の発光装置。   5. The light emitting device according to claim 4, wherein the polygon formed by the region where the dislocation bundle exists has an inner angle of ((60 ° ± 3 °) × n) where n is a natural number. 前記転位束が存在する領域が形成する多角形は、正三角形、菱形、平行四辺形、台形、および六角形からなる群から選択される1つである、請求項4または5に記載の発光装置。   The light emitting device according to claim 4 or 5, wherein the polygon formed by the region where the dislocation bundle is present is one selected from the group consisting of a regular triangle, a rhombus, a parallelogram, a trapezoid, and a hexagon. . 前記転位束が存在する領域において前記窒化物半導体基板が分割されている、請求項1〜6のいずれか1項に記載の発光装置。   The light emitting device according to claim 1, wherein the nitride semiconductor substrate is divided in a region where the dislocation bundle exists. 前記転位束が存在する領域のうち複数個おきの前記領域において前記窒化物半導体基板が分割されている、請求項7に記載の発光装置。   The light-emitting device according to claim 7, wherein the nitride semiconductor substrate is divided in every other region among the regions where the dislocation bundle exists. 前記窒化物半導体基板における前記第2の主表面の平面形状が多角形状である、請求項7または8に記載の発光装置。   The light-emitting device according to claim 7 or 8, wherein a planar shape of the second main surface of the nitride semiconductor substrate is a polygonal shape. 前記第2の主表面が形成する多角形は、nを自然数としたときに、((60゜±3゜)×n)という角度の内角を有する、請求項9に記載の発光装置。   10. The light emitting device according to claim 9, wherein the polygon formed by the second main surface has an interior angle of ((60 ° ± 3 °) × n) where n is a natural number. 前記第2の主表面が形成する多角形は、正三角形、菱形、平行四辺形、台形、および六角形からなる群から選択される1つである、請求項9または10に記載の発光装置。   The light emitting device according to claim 9 or 10, wherein the polygon formed by the second main surface is one selected from the group consisting of a regular triangle, a rhombus, a parallelogram, a trapezoid, and a hexagon. アルカリ溶液のエッチャントを用いて、前記転位束が存在する領域をエッチングする事により、前記転位束が存在する領域において前記窒化物半導体基板が分割されている、請求項7〜11のいずれか1項に記載の発光装置。   The nitride semiconductor substrate is divided in a region where the dislocation bundle exists by etching the region where the dislocation bundle exists using an etchant of an alkaline solution. The light emitting device according to 1. 前記転位束が存在する領域をエッチングするとき、前記アルカリ溶液のエッチャントの温度が80℃以上に設定されている、請求項12に記載の発光装置。   The light emitting device according to claim 12, wherein when etching the region where the dislocation bundle exists, the temperature of the etchant of the alkaline solution is set to 80 ° C. or higher. 前記転位束が存在する領域をエッチングするとき、前記アルカリ溶液のエッチャントの温度が250℃以下に設定されている、請求項12または13に記載の発光装置。   The light emitting device according to claim 12 or 13, wherein when etching the region where the dislocation bundle exists, the temperature of the etchant of the alkaline solution is set to 250 ° C or lower. 前記窒化物半導体基板の端面が前記第1の主表面に対して傾斜している、請求項7〜14のいずれか1項に記載の発光装置。   The light emitting device according to claim 7, wherein an end surface of the nitride semiconductor substrate is inclined with respect to the first main surface. 前記窒化物半導体基板の前記第2の主表面には非鏡面処理が施されている、請求項7〜15のいずれか1項に記載の発光装置。   The light-emitting device according to claim 7, wherein the second main surface of the nitride semiconductor substrate is subjected to non-mirror surface treatment. 請求項7または請求項8に記載の発光装置の製造方法であって、
アルカリ溶液のエッチャントに前記窒化物半導体基板を浸漬する工程と、
前記窒化物半導体基板が浸漬された前記エッチャントを密閉した状態で、前記窒化物半導体基板のエッチングを行なうことにより前記窒化物半導体基板を分割する分割工程とを備える、発光装置の製造方法。
A method of manufacturing a light emitting device according to claim 7 or claim 8,
Immersing the nitride semiconductor substrate in an etchant of an alkaline solution;
And a dividing step of dividing the nitride semiconductor substrate by etching the nitride semiconductor substrate in a state where the etchant in which the nitride semiconductor substrate is immersed is sealed.
JP2005014320A 2005-01-21 2005-01-21 Wafer and light emitting device manufacturing method Expired - Fee Related JP4367348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014320A JP4367348B2 (en) 2005-01-21 2005-01-21 Wafer and light emitting device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014320A JP4367348B2 (en) 2005-01-21 2005-01-21 Wafer and light emitting device manufacturing method

Publications (2)

Publication Number Publication Date
JP2006203058A true JP2006203058A (en) 2006-08-03
JP4367348B2 JP4367348B2 (en) 2009-11-18

Family

ID=36960759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014320A Expired - Fee Related JP4367348B2 (en) 2005-01-21 2005-01-21 Wafer and light emitting device manufacturing method

Country Status (1)

Country Link
JP (1) JP4367348B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143183A1 (en) * 2007-05-17 2008-11-27 Asahi Glass Co., Ltd. Glass coated light emitting element, illuminator and projector
JP2009043901A (en) * 2006-08-22 2009-02-26 Toyoda Gosei Co Ltd Method of manufacturing light emitting element
WO2009107567A1 (en) * 2008-02-27 2009-09-03 住友電気工業株式会社 Method for machining nitride semiconductor wafer, nitride semiconductor wafer, process for producing nitride semiconductor device, and nitride semiconductor device
WO2009131319A3 (en) * 2008-04-21 2010-01-14 엘지이노텍주식회사 Semiconductor light emitting device
JP2010010705A (en) * 2008-02-27 2010-01-14 Sumitomo Electric Ind Ltd Nitride semiconductor wafer, method of manufacturing nitride semiconductor device, and nitride semiconductor device
JP2010040697A (en) * 2008-08-04 2010-02-18 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method thereof
JP5023229B1 (en) * 2011-04-27 2012-09-12 株式会社東芝 Manufacturing method of semiconductor light emitting device
WO2013008367A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Nitride semiconductor light-emitting element
JPWO2011129246A1 (en) * 2010-04-13 2013-07-18 並木精密宝石株式会社 Single crystal substrate, single crystal substrate with crystalline film, crystalline film, method for manufacturing single crystal substrate with crystalline film, method for manufacturing crystalline substrate, and element manufacturing method
KR101305746B1 (en) 2010-02-09 2013-09-06 엘지이노텍 주식회사 Semiconductor light emitting device
JP2015041766A (en) * 2013-08-20 2015-03-02 正幸 安部 Optical semiconductor device
US9472735B2 (en) 2015-02-05 2016-10-18 Nichia Corporation Light-emitting device
EP3125311A1 (en) 2015-07-30 2017-02-01 Nichia Corporation Light emitting element and light emitting device having the same
KR20170015145A (en) 2015-07-30 2017-02-08 니치아 카가쿠 고교 가부시키가이샤 Light emitting element and light emitting device using the same
JP2017143305A (en) * 2017-05-10 2017-08-17 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US9761764B2 (en) 2015-02-05 2017-09-12 Nichia Corporation Light emitting device
US10074785B2 (en) 2016-11-18 2018-09-11 Nichia Corporation Light-emitting device
US11168865B2 (en) 2016-06-30 2021-11-09 Nichia Corporation Light-emitting device and backlight

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043901A (en) * 2006-08-22 2009-02-26 Toyoda Gosei Co Ltd Method of manufacturing light emitting element
WO2008143183A1 (en) * 2007-05-17 2008-11-27 Asahi Glass Co., Ltd. Glass coated light emitting element, illuminator and projector
US7872331B2 (en) 2008-02-27 2011-01-18 Sumitomo Electric Industries, Ltd. Nitride semiconductor wafer
WO2009107567A1 (en) * 2008-02-27 2009-09-03 住友電気工業株式会社 Method for machining nitride semiconductor wafer, nitride semiconductor wafer, process for producing nitride semiconductor device, and nitride semiconductor device
JP2009231814A (en) * 2008-02-27 2009-10-08 Sumitomo Electric Ind Ltd Method for machining nitride semiconductor wafer
JP2010010705A (en) * 2008-02-27 2010-01-14 Sumitomo Electric Ind Ltd Nitride semiconductor wafer, method of manufacturing nitride semiconductor device, and nitride semiconductor device
US8183669B2 (en) 2008-02-27 2012-05-22 Sumitomo Electric Industries, Ltd. Nitride semiconductor wafer having a chamfered edge
US8101523B2 (en) 2008-02-27 2012-01-24 Sumitomo Electric Industries, Ltd. Method of processing of nitride semiconductor wafer, nitride semiconductor wafer, method of producing nitride semiconductor device and nitride semiconductor device
WO2009131319A3 (en) * 2008-04-21 2010-01-14 엘지이노텍주식회사 Semiconductor light emitting device
US7947997B2 (en) 2008-04-21 2011-05-24 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8022428B2 (en) 2008-04-21 2011-09-20 Lg Innotek Co., Ltd. Semiconductor light emitting device
KR101007099B1 (en) 2008-04-21 2011-01-10 엘지이노텍 주식회사 Semiconductor light emitting device and fabrication method thereof
US8120053B2 (en) 2008-04-21 2012-02-21 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8466485B2 (en) 2008-04-21 2013-06-18 Lg Innotek Co., Ltd. Semiconductor light emitting device
US8319244B2 (en) 2008-04-21 2012-11-27 Lg Innotek Co., Ltd. Semiconductor light emitting device
JP2010040697A (en) * 2008-08-04 2010-02-18 Sumitomo Electric Ind Ltd Semiconductor device and manufacturing method thereof
KR101305746B1 (en) 2010-02-09 2013-09-06 엘지이노텍 주식회사 Semiconductor light emitting device
JP2016052984A (en) * 2010-04-13 2016-04-14 並木精密宝石株式会社 Single crystal substrate, single crystal substrate with crystalline film, crystalline film, method of manufacturing single crystal substrate with crystalline film, method of manufacturing crystalline substrate, and element manufacturing method
JPWO2011129246A1 (en) * 2010-04-13 2013-07-18 並木精密宝石株式会社 Single crystal substrate, single crystal substrate with crystalline film, crystalline film, method for manufacturing single crystal substrate with crystalline film, method for manufacturing crystalline substrate, and element manufacturing method
US9105472B2 (en) 2010-04-13 2015-08-11 Namiki Seimitsu Houseki Kabushiki Kaisha Single-crystal substrate,single-crystal substrate having crystalline film,crystalline film,method for producing single-crystal substrate having crystalline film,method for producing crystalline substrate,and method for producing element
JP5023229B1 (en) * 2011-04-27 2012-09-12 株式会社東芝 Manufacturing method of semiconductor light emitting device
WO2013008367A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Nitride semiconductor light-emitting element
US9117961B2 (en) 2011-07-14 2015-08-25 Panasonic Intellectual Property Management Co., Ltd. Nitride-based semiconductor light-emitting element
JP5134167B1 (en) * 2011-07-14 2013-01-30 パナソニック株式会社 Nitride semiconductor light emitting device
JP2015041766A (en) * 2013-08-20 2015-03-02 正幸 安部 Optical semiconductor device
US9761764B2 (en) 2015-02-05 2017-09-12 Nichia Corporation Light emitting device
US9472735B2 (en) 2015-02-05 2016-10-18 Nichia Corporation Light-emitting device
EP3125311A1 (en) 2015-07-30 2017-02-01 Nichia Corporation Light emitting element and light emitting device having the same
KR20170015145A (en) 2015-07-30 2017-02-08 니치아 카가쿠 고교 가부시키가이샤 Light emitting element and light emitting device using the same
US9786812B2 (en) 2015-07-30 2017-10-10 Nichia Corporation Light emitting element and light emitting device
US10361340B2 (en) 2015-07-30 2019-07-23 Nichia Corporation Light emitting element and light emitting device
US11168865B2 (en) 2016-06-30 2021-11-09 Nichia Corporation Light-emitting device and backlight
US10074785B2 (en) 2016-11-18 2018-09-11 Nichia Corporation Light-emitting device
JP2017143305A (en) * 2017-05-10 2017-08-17 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same

Also Published As

Publication number Publication date
JP4367348B2 (en) 2009-11-18

Similar Documents

Publication Publication Date Title
JP4367348B2 (en) Wafer and light emitting device manufacturing method
JP3841092B2 (en) Light emitting device
JP2006179511A (en) Light emitting device
KR101163783B1 (en) Head lamp
JP4805831B2 (en) Semiconductor light emitting device, lighting module, lighting device, surface mount component, and display device
JP2005191530A (en) Light emitting device
US9048385B2 (en) Nitride semiconductor light emitting diode
KR101978968B1 (en) Semiconductor light emitting device and light emitting apparatus
KR100945989B1 (en) Semiconductor light emitting device using surface plasmon resonance
KR100982988B1 (en) Vertical semiconductor light emitting device and manufacturing method of the same
JP2005260276A (en) Light-emitting device
KR100930187B1 (en) Vertical structure semiconductor light emitting device manufacturing method
JP2008227540A (en) Light-emitting device
KR100675268B1 (en) Flip chip Light-emitting device having arrayed cells and Method of manufacturing the same
KR20110132161A (en) Semiconductor light emitting diode and method of manufacturing thereof
KR100982983B1 (en) Vertical semiconductor light emitting device and manufacturing method of the same
KR20110091245A (en) Semiconductor light emitting device and manufacturing method of the same
KR20110111629A (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees