JP2006202610A - Self-luminescent light emitting panel and its manufacturing method - Google Patents

Self-luminescent light emitting panel and its manufacturing method Download PDF

Info

Publication number
JP2006202610A
JP2006202610A JP2005013177A JP2005013177A JP2006202610A JP 2006202610 A JP2006202610 A JP 2006202610A JP 2005013177 A JP2005013177 A JP 2005013177A JP 2005013177 A JP2005013177 A JP 2005013177A JP 2006202610 A JP2006202610 A JP 2006202610A
Authority
JP
Japan
Prior art keywords
self
light
sealing
pressure
luminous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005013177A
Other languages
Japanese (ja)
Inventor
Masaki Takahashi
正樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Pioneer Corp
Original Assignee
Tohoku Pioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Pioneer Corp filed Critical Tohoku Pioneer Corp
Priority to JP2005013177A priority Critical patent/JP2006202610A/en
Publication of JP2006202610A publication Critical patent/JP2006202610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a self-luminescent light panel causing no functional deterioration even if an environmental temperature changes, and its manufacturing method. <P>SOLUTION: In this self-luminescent panel 10, a self-luminescent element 15 formed by holding at least one or more light emitting functional layers between a pair of electrodes 12, 14 is formed on a substrate 11, a sealing member 16 to isolate the self-luminescent element 15 from the outside air, and the sealing member 16 is pasted to the substrate 11 with an adhesive layer 18 to form a sealed space M covering the self-luminescent element 15. The internal pressure P of the sealed space M in which the self-luminescent element 15 is sealed by the sealing member 16 at t°C satisfies a formula (1). In the formula, P<SB>max</SB>is the maximum outside atmospheric pressure assumed in a use environment, P<SB>min</SB>is the minimum outside atmospheric pressure assumed in the use environment, P<SB>d</SB>is cohesion breaking atmospheric pressure at the maximum preservation temperature, t<SB>max</SB>is the maximum preservation temperature, t<SB>min</SB>: the minimum preservation temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自発光パネル及びその製造方法に関するものである。   The present invention relates to a self-luminous panel and a method for manufacturing the same.

自発光パネルは、固体の発光層を有する自発光素子を基板上に形成したものであり、基板間に液晶層を封止して背面のバックライトをこの液晶層で制御する液晶表示パネルとは基本的な構造が異なる。すなわち、自発光パネルは、一般に、固体の発光層とこれを封止するための封止空間を備えており、固体層からなる部分と、その周辺に封止空間として形成される気体を充填した密閉空間を備えることが構造上の特徴になっている。   A self-luminous panel is a self-luminous element having a solid light-emitting layer formed on a substrate. What is a liquid crystal display panel in which a liquid crystal layer is sealed between substrates and a backlight on the back is controlled by this liquid crystal layer? The basic structure is different. That is, the self-luminous panel generally includes a solid light-emitting layer and a sealing space for sealing the solid light-emitting layer, and a portion formed of the solid layer and a gas formed as a sealing space around it are filled. A structural feature is to provide a sealed space.

そして、この自発光パネルは、このような固体層と気体を充填した密閉空間を備え、液体層を有さないものであるが故に、液晶層(液体層)の凝固(氷結)又は気化(沸騰)によって使用又は保存温度範囲が制限される液晶表示パネルと比較して、使用又は保存温度範囲を低温域から高温域に広げることができるという利点を有している。すなわち自発光パネルは、一般に、極低温又は高温での動作又は保存が可能であり、液晶表示パネルと比較して耐環境性の高い表示パネルを得ることができる。   The self-luminous panel has such a solid space and a sealed space filled with gas, and does not have a liquid layer. Therefore, the liquid crystal layer (liquid layer) is solidified (freezing) or vaporized (boiling). Compared with a liquid crystal display panel in which the use or storage temperature range is limited by (), the use or storage temperature range can be extended from a low temperature range to a high temperature range. That is, the self-luminous panel can generally be operated or stored at an extremely low temperature or high temperature, and a display panel having higher environmental resistance than a liquid crystal display panel can be obtained.

このような自発光パネルの一つである有機ELパネルは、ガラス基板上にITO等の透明電極からなる陽極を形成し、その上に有機化合物からなる発光層を含む有機膜を形成し、その上にAl等の金属電極からなる陰極を形成した有機EL素子を基本構成としており、この有機EL素子を単位面発光要素として平面基板上に配列させたものである。   An organic EL panel which is one of such self-luminous panels is formed by forming an anode made of a transparent electrode such as ITO on a glass substrate, and forming an organic film including a light-emitting layer made of an organic compound on the glass substrate. An organic EL element on which a cathode made of a metal electrode such as Al is formed is a basic configuration, and the organic EL element is arranged as a unit surface light emitting element on a flat substrate.

この有機EL表示パネルは、有機膜及び電極が外気に曝されると特性が劣化することが知られている。これは、有機膜と電極との界面に水分が浸入することにより、電子の注入が妨げられ、未発光領域としてのダークスポットが発生したり、電極が腐食する現象によるもので、有機EL素子の安定性及び耐久性を高めるためには、有機EL素子を外気から遮断する封止技術が不可欠となっている。この封止技術に関しては、各種の提案がなされているが、生産性及び耐久性の面で有効な手段として、電極及び有機膜が形成されたガラス基板上に、この電極及び有機膜を覆う封止部材を接着する方法が採用されている。   It is known that the characteristics of this organic EL display panel deteriorate when the organic film and the electrode are exposed to the outside air. This is due to the phenomenon that moisture intrudes into the interface between the organic film and the electrode, thereby preventing the injection of electrons, generating a dark spot as a non-light emitting region or corroding the electrode. In order to improve stability and durability, a sealing technique for blocking the organic EL element from the outside air is indispensable. Various proposals have been made regarding this sealing technique. As an effective means in terms of productivity and durability, a sealing method for covering the electrode and the organic film on a glass substrate on which the electrode and the organic film are formed is provided. A method of adhering the stop member is employed.

この従来技術に係る封止部材をガラス基板上に接着する工程について、図1(a),(b)を参照して説明する。電極及び有機膜の成膜工程を完了したガラス基板1に対して、封止部材4を接着するには、ガラス基板1上又は封止部材4の接着面上に有機EL層3の全周を囲うように接着剤層2を形成する。図1(a)は、封止部材4側に接着剤層2を形成した状態を示している。この接着剤層2は、エポキシ樹脂等の紫外線硬化性又は、熱硬化性樹脂が用いられ、ディスペンサによって封止部材4上に塗布される。   The process of adhering the sealing member according to this conventional technique on the glass substrate will be described with reference to FIGS. In order to bond the sealing member 4 to the glass substrate 1 that has completed the electrode and organic film forming steps, the entire circumference of the organic EL layer 3 is placed on the glass substrate 1 or the bonding surface of the sealing member 4. The adhesive layer 2 is formed so as to surround it. Fig.1 (a) has shown the state which formed the adhesive bond layer 2 in the sealing member 4 side. The adhesive layer 2 is made of an ultraviolet curable or thermosetting resin such as an epoxy resin, and is applied onto the sealing member 4 by a dispenser.

そして、図1(b)に示すように、ガラス基板1をO+Nガス雰囲気の封止装置5内へ移動し、封止部材4とガラス基板1とを貼り合わせた後、封止装置5の内部圧力を上昇させ、封止部材4内に生じる圧力との差を解消した後、紫外線を照射してエポキシ樹脂を硬化させ、封止部材4の周囲とガラス基板1とを接着させている。 Then, as shown in FIG. 1 (b), after the glass substrate 1 moves to the O 2 + N 2 gas atmosphere sealed device 5, bonding the sealing member 4 and the glass substrate 1, the sealing device The internal pressure of the sealing member 4 is increased to eliminate the difference between the pressure generated in the sealing member 4, and then the epoxy resin is cured by irradiating ultraviolet rays to bond the periphery of the sealing member 4 and the glass substrate 1. Yes.

ここで、前述したディスペンサを用いた接着剤層2の形成では、接着剤層2の塗布高さを正確に規制することができないので、塗布高さのむらを考慮して接着剤層2を100〜200μmと高めに設定する必要がある。このような高さの接着剤層に対して封止部材4を押し付けて接着した場合には、接着剤層2の高さが1/10程度まで押しつぶされることになり、接着剤層2が封止領域の全周を囲っているため、この接着剤層2を押しつぶす段階で封止部材の内部圧力が上昇して、封止空間内が1.2気圧以上の正圧状態になってしまう。この圧力差は、接着剤層2を形成する樹脂の塗布高さによって生じているため、塗布高さがばらつくことで発生する圧力にもばらつきが生じ、封止装置5内の圧力調整を行っていても封止工程終了後に封止不良を起こす原因になり、適切な状態であると言い難い。   Here, in the formation of the adhesive layer 2 using the above-mentioned dispenser, the application height of the adhesive layer 2 cannot be accurately regulated. It is necessary to set it as high as 200 μm. When the sealing member 4 is pressed against the adhesive layer having such a height and bonded, the height of the adhesive layer 2 is crushed to about 1/10, and the adhesive layer 2 is sealed. Since the entire circumference of the stop region is surrounded, the internal pressure of the sealing member rises when the adhesive layer 2 is crushed, and the inside of the sealing space becomes a positive pressure state of 1.2 atm or higher. Since this pressure difference is caused by the application height of the resin forming the adhesive layer 2, the pressure generated due to the variation in the application height also varies, and the pressure in the sealing device 5 is adjusted. However, it causes a sealing failure after the sealing process, and it is difficult to say that it is in an appropriate state.

そこで、下記特許文献1では、有機EL層3の全周を囲う接着剤層2を制度の高い薄層の接着剤層を形成することができるスクリーン印刷によって形成し、大気圧下で接着剤層2を介してガラス基板1と封止部材4とを接着させることを提案している。これによって、ガラス基板1上に封止部材4を接着する際に接着剤層の押し付け変位が少なくなり、大気圧下の作業によっても封止空間内に過度の正圧が生じることが無く、接着後の封止不良を回避することが可能になる。スクリーン印刷による接着剤層の印刷高さを20〜100μmとすることによって、封止空間内の圧力を1.2気圧未満に抑えることが可能になる。   Therefore, in Patent Document 1 below, the adhesive layer 2 that surrounds the entire periphery of the organic EL layer 3 is formed by screen printing that can form a thin adhesive layer with a high system, and the adhesive layer under atmospheric pressure. It is proposed that the glass substrate 1 and the sealing member 4 are bonded via 2. Accordingly, when the sealing member 4 is bonded onto the glass substrate 1, the pressing displacement of the adhesive layer is reduced, and an excessive positive pressure is not generated in the sealing space even when the operation is performed under atmospheric pressure. It becomes possible to avoid subsequent sealing failure. By setting the printing height of the adhesive layer by screen printing to 20 to 100 μm, the pressure in the sealed space can be suppressed to less than 1.2 atmospheres.

特開2002−352952号公報JP 2002-329552 A

しかしながら、封止作業を大気圧下で行い、封止部材の接着直後に封止空間内の圧力が大気圧に近い状態になっていたとしても、封止空間内の内圧は温度変化によって変動することになる。前述したように自発光パネルの使用又は保存温度の範囲は液晶表示パネルと比較して広いことが一つの利点になっているが、この利点を生かして、極低温又は高温の環境下に自発光パネルを置いた場合には、温度変化によって生じた封止空間内の圧力変動によって以下に示すような問題が生じる。   However, even if the sealing operation is performed under atmospheric pressure and the pressure in the sealed space is close to atmospheric pressure immediately after the sealing member is bonded, the internal pressure in the sealed space varies depending on the temperature change. It will be. As described above, the use or storage temperature range of the self-luminous panel is one advantage compared to the liquid crystal display panel. However, taking advantage of this advantage, the self-luminous panel is self-luminous in extremely low or high temperature environments. When the panel is placed, the following problems occur due to pressure fluctuations in the sealed space caused by temperature changes.

すなわち、例えば自発光パネルが−40℃(一般に有機ELパネルの保存最低温度とされている)の環境温度に長時間曝されると、その封止空間内の温度も−40℃に低下する場合がある。この際に、常温(例えば25℃),大気圧(1.0気圧)下で封止された封止空間の内圧は、−40℃になると、ボイル・シャルルの法則に従って、P=1.0×(273−40)/(273+25)=0.782気圧となり、外気圧が1.0気圧の場合で封止空間は0.218気圧の負圧になってしまう。外気圧が1.050hPa(1.050/1.013=1.037気圧)と高い場合には、0.265気圧と更に大きな負圧になってしまう。   That is, for example, when the self-luminous panel is exposed to an environmental temperature of −40 ° C. (generally the lowest storage temperature of the organic EL panel) for a long time, the temperature in the sealed space also decreases to −40 ° C. There is. At this time, when the internal pressure of the sealed space sealed at normal temperature (for example, 25 ° C.) and atmospheric pressure (1.0 atm) is −40 ° C., P = 1.0 according to Boyle-Charles' law. X (273-40) / (273 + 25) = 0.882 atm. When the outside air pressure is 1.0 atm, the sealed space becomes a negative pressure of 0.218 atm. When the external air pressure is as high as 1.050 hPa (1.050 / 1.013 = 1.037 atm), the negative pressure is further increased to 0.265 atm.

有機ELパネルの封止空間が負圧になれば、封止部材等に外力が加わった場合に変形しやすく、封止部材の内面に貼られた乾燥部材等が有機EL層に当接してしまい、有機EL層の機能劣化が生じるといった問題が生じる。   If the sealing space of the organic EL panel becomes negative pressure, it easily deforms when an external force is applied to the sealing member or the like, and the drying member or the like attached to the inner surface of the sealing member comes into contact with the organic EL layer. There arises a problem that the functional deterioration of the organic EL layer occurs.

また、自発光パネルが高温の環境温度に長時間曝された場合には、その封止空間内の温度も高温になり、封止空間内の気体が膨張して内圧が正圧に変動する(例えば、25℃,2.0気圧で封止された封止空間の内圧は、100℃になると、P=2.0×(273+100)/(273+25)=2.503気圧となり、外気圧が1.0気圧の場合には1.566気圧の正圧になる)。そして、封止空間の正圧分が封止に用いられている接着剤の凝集破壊気圧を超えると封止が破れて自発光パネルの機能低下が生じてしまうという問題が生じる。   When the self-luminous panel is exposed to a high environmental temperature for a long time, the temperature in the sealed space also becomes high, the gas in the sealed space expands, and the internal pressure changes to a positive pressure ( For example, when the internal pressure of the sealed space sealed at 25 ° C. and 2.0 atm is 100 ° C., P = 2.0 × (273 + 100) / (273 + 25) = 2.503 atm, and the external pressure is 1 In the case of 0.0 atm, the positive pressure is 1.566 atm). When the positive pressure in the sealing space exceeds the cohesive failure pressure of the adhesive used for sealing, there is a problem that the sealing is broken and the function of the self-luminous panel is deteriorated.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、環境温度の変化に対しても機能劣化を生じない自発光パネル及びその製造方法を提供することで、耐環境性の高い自発光パネルを提供すること等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, it is an object of the present invention to provide a self-luminous panel with high environmental resistance by providing a self-luminous panel that does not deteriorate in function even when the ambient temperature changes and a method for manufacturing the same.

このような目的を達成するために、本発明による自発光パネル及びその製造方法は、以下の各独立請求項に係る構成を少なくとも具備するものである。   In order to achieve such an object, the self-luminous panel and the manufacturing method thereof according to the present invention include at least the configurations according to the following independent claims.

[請求項1]一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルであって、前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最低温度になった場合に、前記封止空間の内圧が前記自発光パネルの使用環境の外気圧よりも大きくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネル。   [Claim 1] A self-light-emitting element in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member is provided to block the self-light-emitting element from outside air. When the temperature in the sealed space where the self-luminous element is sealed by the sealing member is the lowest storage temperature of the self-luminous element, the internal pressure of the sealed space is the self-luminous A self-luminous panel characterized in that an internal pressure of the sealing space at the time of sealing is set so as to be larger than an external atmospheric pressure of a panel use environment.

[請求項2]一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルであって、前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最高温度になった場合に、前記封止空間の内圧と前記自発光パネルの使用環境の気圧差が、前記保存最高温度における前記封止部材を接着する接着剤の凝集破壊気圧よりも小さくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネル。   [Claim 2] A self-light-emitting element in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member for blocking the self-light-emitting element from the outside air is provided. When the temperature in the sealed space where the self-luminous element is sealed by the sealing member is the maximum storage temperature of the self-luminous element, the internal pressure of the sealed space and the self-luminous The internal pressure of the sealing space at the time of sealing is set so that the pressure difference in the usage environment of the panel is smaller than the cohesive failure pressure of the adhesive that bonds the sealing member at the maximum storage temperature. Self-luminous panel.

[請求項3]一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルであって、温度t℃で前記封止部材によって前記自発光素子が封止される封止空間の内圧Pが、下記式(1)を満たすことを特徴とする自発光パネル。   [Claim 3] A self-light-emitting element in which a self-light-emitting element formed by sandwiching at least one light-emitting functional layer between a pair of electrodes is formed on a substrate, and a sealing member for blocking the self-light-emitting element from outside air is provided. A self-luminous panel, wherein the internal pressure P of a sealed space in which the self-luminous element is sealed by the sealing member at a temperature t ° C. satisfies the following formula (1).

Figure 2006202610
但し、
max:使用環境で想定される最大外気圧、
min:使用環境で想定される最小外気圧、
Pd:保存最高温度における接着剤の凝集破壊気圧、
max:保存最高温度(℃)、
min:保存最低温度(℃)
Figure 2006202610
However,
P max : Maximum external pressure assumed in the usage environment,
P min : Minimum external pressure assumed in the usage environment,
Pd: cohesive failure pressure of the adhesive at the maximum storage temperature,
t max : Maximum storage temperature (° C.),
t min : Minimum storage temperature (° C)

[請求項5]一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルの製造方法であって、前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最低温度になった場合に、前記封止空間の内圧が前記自発光パネルの使用環境の外気圧よりも大きくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネルの製造方法。   [5] A self-light-emitting element in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member for blocking the self-light-emitting element from outside air is provided. In the panel manufacturing method, when the temperature in the sealed space where the self-luminous element is sealed by the sealing member is the lowest storage temperature of the self-luminous element, the internal pressure of the sealed space is A method of manufacturing a self-luminous panel, wherein an internal pressure of the sealing space at the time of sealing is set so as to be larger than an external pressure of an environment in which the self-luminous panel is used.

[請求項6]一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルの製造方法であって、前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最高温度になった場合に、前記封止空間の内圧と前記自発光パネルの使用環境の気圧差が、前記保存最高温度における前記封止部材を接着する接着剤の凝集破壊気圧よりも小さくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネルの製造方法。   [Claim 6] A self-light-emitting element in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member is provided to block the self-light-emitting element from outside air. In the method for manufacturing a panel, when the temperature in the sealed space where the self-luminous element is sealed by the sealing member becomes the maximum storage temperature of the self-luminous element, the internal pressure of the sealed space and The internal pressure of the sealing space at the time of sealing was set so that the atmospheric pressure difference in the usage environment of the self-luminous panel was smaller than the cohesive failure pressure of the adhesive that bonds the sealing member at the maximum storage temperature. A method of manufacturing a self-luminous panel characterized by

[請求項7]一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルの製造方法であって、下記式(2)を満たすPfとtの環境下で封止を行う封止工程を有することを特徴とする自発光パネルの製造方法。   [Claim 7] A self-light-emitting element in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member is provided to block the self-light-emitting element from the outside air A method for manufacturing a self-luminous panel, comprising: a sealing step of sealing in an environment of Pf and t satisfying the following formula (2).

Figure 2006202610
但し、
max:使用環境で想定される最大外気圧、
min:使用環境で想定される最小外気圧、
Pd:保存最高温度における接着剤の凝集破壊気圧、
Pf:封止時の気圧、
max:保存最高温度(℃)、
min:保存最低温度(℃)、
r:接着剤の押圧による増圧係数(r=P/Pf)
Figure 2006202610
However,
P max : Maximum external pressure assumed in the usage environment,
P min : Minimum external pressure assumed in the usage environment,
Pd: cohesive failure pressure of the adhesive at the maximum storage temperature,
Pf: Pressure at the time of sealing,
t max : Maximum storage temperature (° C.),
t min : Minimum storage temperature (° C.),
r: coefficient of pressure increase due to pressing of adhesive (r = P / Pf)

以下、本発明の実施形態を図面を参照して説明する。図2は、本発明の実施形態に係る自発光パネルの構造を示す説明図である。この自発光パネル10は、一対の電極12,14間に少なくとも1層以上の発光機能層13を挟持してなる自発光素子15を基板11上に形成し、自発光素子15を外気から遮断する封止部材16を設けたものである。封止部材16は自発光素子15を覆う封止空間Mを形成するように、接着剤層18を介して基板11上に貼り付けられている。この自発光パネル10として、有機ELパネルを例にして、その構成例を説明すると、基板11をガラス基板で形成し、このガラス基板上にITOからなる第1の電極12が形成され、その上に有機発光材料層(有機層)からなる発光機能層13が形成され、更にその上に金属電極からなる第2の電極14が形成されて有機EL素子(自発光素子15)を形成している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is an explanatory view showing the structure of the self-luminous panel according to the embodiment of the present invention. The self-light-emitting panel 10 has a self-light-emitting element 15 formed by sandwiching at least one light-emitting functional layer 13 between a pair of electrodes 12 and 14 on a substrate 11 and blocks the self-light-emitting element 15 from the outside air. A sealing member 16 is provided. The sealing member 16 is affixed on the substrate 11 via an adhesive layer 18 so as to form a sealing space M that covers the self-luminous element 15. The organic EL panel is taken as an example of the self-luminous panel 10 to describe its configuration example. A substrate 11 is formed of a glass substrate, and a first electrode 12 made of ITO is formed on the glass substrate. A light-emitting functional layer 13 made of an organic light-emitting material layer (organic layer) is formed, and a second electrode 14 made of a metal electrode is formed thereon to form an organic EL element (self-light-emitting element 15). .

そして、封止部材16としてはガラス封止基板が用いられ、封止空間Mを形成するために凹状に内堀された内面に乾燥部材17が取り付けられている。乾燥部材17は、封止部材16の接着後に、その内に存在する初期水分及び経時的に放出又は浸入してきた水分を吸収除去するために設けられるものである。特に有機EL素子を形成する有機層は熱に弱く、封止前に加熱処理して水分を除去することができないことから、このような初期水分を完全に排除することができない。したがって、現状の有機EL材料を用いたパネルでは、このような乾燥部材17を封止部材内に配設することが一般に行われている。この封止空間M内には、自発光素子15に悪影響を及ぼさない気体(例えば、窒素(N)と酸素(O)の混合気体等)が封止時に充填される。 A glass sealing substrate is used as the sealing member 16, and a drying member 17 is attached to the inner surface that is recessed in a concave shape in order to form the sealing space M. The drying member 17 is provided to absorb and remove the initial moisture present therein and the moisture released or infiltrated with time after the sealing member 16 is bonded. In particular, since the organic layer forming the organic EL element is vulnerable to heat and cannot remove moisture by heat treatment before sealing, such initial moisture cannot be completely eliminated. Therefore, in the panel using the current organic EL material, such a drying member 17 is generally disposed in the sealing member. The sealed space M is filled with a gas (for example, a mixed gas of nitrogen (N 2 ) and oxygen (O 2 )) that does not adversely affect the self-light-emitting element 15 at the time of sealing.

そして、本発明の実施形態に係る自発光パネル10では、一つには、封止部材16によって自発光素子15が封止される封止空間M内の温度が自発光素子15の保存最低温度(tmin)になった場合に、封止空間Mの内圧が自発光パネル10の使用環境の外圧よりも大きくなるように、封止時の封止空間Mの内圧を設定している。 In the self light emitting panel 10 according to the embodiment of the present invention, first, the temperature in the sealed space M where the self light emitting element 15 is sealed by the sealing member 16 is the lowest storage temperature of the self light emitting element 15. When (t min ) is reached, the internal pressure of the sealing space M at the time of sealing is set so that the internal pressure of the sealing space M becomes larger than the external pressure of the environment in which the light-emitting panel 10 is used.

ここで保存最低温度(tmin)とは、自発光素子15が正常に機能することができる最低の保存温度のことであり、この保存最低温度より低温で保存しない限り、常温に戻せば自発光素子15は正常に機能することになる。有機EL素子を例にすると、一般に保存最低温度は−40℃程度であるとされており、このような極低温で保存したとしてもこの保存最低温度以上であれば有機EL素子に不具合が生じることはない。 Here, the minimum storage temperature (t min ) is the minimum storage temperature at which the light-emitting element 15 can function normally. Unless it is stored at a temperature lower than the minimum storage temperature, the self-luminous emission is obtained. Element 15 will function normally. Taking an organic EL element as an example, it is generally said that the minimum storage temperature is about −40 ° C. Even if stored at such an extremely low temperature, if the storage minimum temperature is exceeded, problems occur in the organic EL element. There is no.

すなわち、一般に封止時の封止装置内の温度は常温(25℃程度)であるから、封止後に封止空間M内の温度が25℃程度から−40℃程度に低下して、この温度変化に伴う圧力変化によって封止空間M内の圧力が低下した場合であっても、この封止空間M内の内圧が自発光パネル10の使用環境の外気圧よりも大きくなるように、封止時の封止空間Mの内圧を設定しているので、保存最低温度以上で保存していれば封止空間Mが負圧になることはなく、封止空間Mが負圧になることで生じるパネルの凹み等の問題を回避することができる。   That is, since the temperature in the sealing device at the time of sealing is generally room temperature (about 25 ° C.), the temperature in the sealing space M decreases from about 25 ° C. to about −40 ° C. after sealing, and this temperature Even when the pressure in the sealing space M is reduced due to the pressure change accompanying the change, the sealing is performed so that the internal pressure in the sealing space M becomes larger than the external pressure of the environment in which the light-emitting panel 10 is used. Since the internal pressure of the sealing space M at the time is set, if the storage space M is stored at a temperature higher than the minimum storage temperature, the sealing space M does not become negative pressure, and the sealing space M becomes negative pressure. Problems such as panel dents can be avoided.

また、本発明の実施形態に係る自発光パネル10の他の特徴としては、前述の封止空間M内の温度が自発光素子15の保存最高温度になった場合に、封止空間Mの内圧と自発光パネル10の使用環境の気圧差が、前記保存最高温度(tmax)における封止部材16を接着する接着剤の凝集破壊気圧よりも小さくなるように、封止時の封止空間Mの内圧を設定している。 Further, as another feature of the self-luminous panel 10 according to the embodiment of the present invention, when the temperature in the sealing space M reaches the maximum storage temperature of the self-luminous element 15, the internal pressure of the sealing space M is as follows. The sealing space M at the time of sealing is such that the pressure difference between the usage environment of the light-emitting panel 10 and the self-luminous panel 10 is smaller than the cohesive failure pressure of the adhesive that bonds the sealing member 16 at the maximum storage temperature (t max ). The internal pressure is set.

ここで保存最高温度(tmax)とは、自発光素子15が正常に機能することができる最高の保存温度のことであり、この保存最高温度より高温で保存しない限り、常温に戻せば自発光素子15は正常に機能することになる。有機EL素子を例にすると、一般に保存最高温度は100℃程度であるとされており、このような高温で保存したとしてもこの保存最高温度以下であれば有機EL素子に不具合が生じることはない。 Here, the maximum storage temperature (t max ) is the maximum storage temperature at which the light-emitting element 15 can function normally. Unless it is stored at a temperature higher than the maximum storage temperature, the self-light-emitting element 15 is self-luminous. Element 15 will function normally. Taking an organic EL element as an example, it is generally said that the maximum storage temperature is about 100 ° C. Even if stored at such a high temperature, there is no problem with the organic EL element as long as it is below this maximum storage temperature. .

すなわち、一般に封止時の封止装置内の温度は常温(25℃程度)であるから、封止後に封止空間M内の温度が25℃程度から100℃に上昇して、この温度変化に伴う圧力変化によって封止空間内の圧力が上昇した場合であっても、この封止空間M内の内圧と自発光パネル10の使用環境の気圧差が、保存最高温度における封止部材16を接着する接着剤の凝集破壊気圧よりも小さくなるように、封止時の封止空間Mの内圧を設定しているので、保存最高温度以下で保存していれば接着剤層18が破断して封止が破れるといった不具合は生じない。   That is, since the temperature in the sealing device at the time of sealing is generally room temperature (about 25 ° C.), the temperature in the sealing space M rises from about 25 ° C. to 100 ° C. after the sealing, and this temperature change occurs. Even when the pressure in the sealed space rises due to the accompanying pressure change, the pressure difference between the internal pressure in the sealed space M and the use environment of the self-luminous panel 10 bonds the sealing member 16 at the maximum storage temperature. Since the internal pressure of the sealing space M at the time of sealing is set so as to be smaller than the cohesive failure pressure of the adhesive to be bonded, the adhesive layer 18 breaks and seals if stored at the maximum storage temperature or lower. There is no problem that the stop is broken.

この際の接着剤の凝集破壊気圧は、接着剤の仕様にも記載されているものであるが、実際は封止部材16の材質や形状などで大きく異なる値になる。そこで、この値は実験的に求め、統計的に充分なマージンを持って設定されるべきである。   The cohesive failure pressure of the adhesive at this time is also described in the adhesive specifications, but actually varies greatly depending on the material and shape of the sealing member 16. Therefore, this value should be obtained experimentally and set with a sufficient statistical margin.

また、本発明の実施形態に係る自発光パネル10の他の特徴としては、温度t℃で封止部材16によって自発光素子15が封止される封止空間Mの内圧Pが、下記式(1)を満たすことを特徴としている。   Further, as another feature of the self light emitting panel 10 according to the embodiment of the present invention, the internal pressure P of the sealing space M in which the self light emitting element 15 is sealed by the sealing member 16 at a temperature t ° C. is expressed by the following formula ( It is characterized by satisfying 1).

Figure 2006202610

但し、
max:使用環境で想定される最大外気圧、
min:使用環境で想定される最小外気圧、
Pd:保存最高温度における接着剤の凝集破壊気圧、
max:保存最高温度(℃)、
min:保存最低温度(℃)
Figure 2006202610

However,
P max : Maximum external pressure assumed in the usage environment,
P min : Minimum external pressure assumed in the usage environment,
Pd: cohesive failure pressure of the adhesive at the maximum storage temperature,
t max : Maximum storage temperature (° C.),
t min : Minimum storage temperature (° C)

ここで、使用環境で想定される最大外気圧(Pmax)は、通常、1.050hPa(1.050/1.013=1.037気圧)程度に設定することができる。また、使用環境で想定される最小外気圧は、一般に0.950hPa(0.950/1.013=0.938気圧)程度に設定することができる。但し、高地などではこの最小外気圧はもっと小さな値になる場合がある。保存最高温度における接着剤の凝集破壊気圧は、前述したように、実験的に求め、統計的に充分なマージンを持って設定されるべき値である。 Here, the maximum external atmospheric pressure (P max ) assumed in the use environment can be normally set to about 1.050 hPa (1.050 / 1.013 = 1.037 atm). Further, the minimum external air pressure assumed in the use environment can be generally set to about 0.950 hPa (0.950 / 1.013 = 0.938 atmospheres). However, this minimum external air pressure may be even smaller in highlands. As described above, the cohesive failure pressure of the adhesive at the maximum storage temperature is obtained experimentally and should be set with a statistically sufficient margin.

この実施形態によると、温度t℃で封止部材16によって自発光素子15が封止される封止空間Mの内圧Pが式(1)を満たす場合には、封止後の封止空間Mの温度がtnim〜tmaxまで変化したとしても、封止空間Mの内圧は使用環境の外気圧に対して負圧になることはなく、また、封止空間Mの内圧と使用環境の外気圧との気圧差が接着剤の凝集破壊気圧を超えることがない。したがって、自発光パネル10の凹み等の問題や封止の破断等の問題が生じることがない。 According to this embodiment, when the internal pressure P of the sealing space M in which the self-luminous element 15 is sealed by the sealing member 16 at the temperature t ° C. satisfies the formula (1), the sealed space M after sealing. The internal pressure of the sealed space M does not become negative with respect to the external air pressure of the use environment even if the temperature of t nim to t max changes. The pressure difference from the atmospheric pressure does not exceed the cohesive failure pressure of the adhesive. Therefore, problems such as dents in the self-luminous panel 10 and problems such as sealing breakage do not occur.

以下、本発明の実施形態に係る自発光パネル10の製造方法について説明する。   Hereinafter, a method for manufacturing the self-luminous panel 10 according to the embodiment of the present invention will be described.

この自発光パネル10の製造方法は、一対の電極12,15間に少なくとも1層以上の発光機能層13を挟持してなる自発光素子15を基板11上に形成し、自発光素子15を外気から遮断する封止部材16を設けるための各工程を有する。有機ELパネルを例にすると、図3に示すように、基板11上に有機EL素子(自発光素子15)を形成する素子形成工程S1Aと封止部材16の内面に乾燥部材17を取り付ける乾燥部材取付工程S1Bが平行して行われ、基板11と封止部材16とを接着剤層18を介して貼り合わせる封止工程S2がなされ、その後に必要に応じて検査工程S3等が行われる。   In the method for manufacturing the self-light-emitting panel 10, a self-light-emitting element 15 formed by sandwiching at least one light-emitting functional layer 13 between a pair of electrodes 12 and 15 is formed on a substrate 11. Each process for providing the sealing member 16 which shields from is included. Taking an organic EL panel as an example, as shown in FIG. 3, an element forming step S <b> 1 </ b> A for forming an organic EL element (self-luminous element 15) on a substrate 11 and a drying member for attaching a drying member 17 to the inner surface of the sealing member 16. The attachment step S1B is performed in parallel, a sealing step S2 is performed in which the substrate 11 and the sealing member 16 are bonded together via the adhesive layer 18, and then an inspection step S3 or the like is performed as necessary.

ここで、本発明の実施形態に係る自発光パネル10の製造方法では、封止工程S2における封止空間Mの内圧設定に際して、前述したように、一つには、封止部材16によって自発光素子15が封止される封止空間M内の温度が自発光素子15の保存最低温度(tmin)になった場合に、封止空間Mの内圧が自発光パネル10の使用環境の外気圧よりも大きくなるように、内圧設定がなされる。また一つには、封止部材16によって自発光素子15が封止される封止空間M内の温度が自発光素子15の保存最高温度(tmax)になった場合に、封止空間Mの内圧と自発光パネル10の使用環境の気圧差が、保存最高温度(tmax)における封止部材16を接着する接着剤の凝集破壊気圧(Pd)よりも小さくなるように、内圧設定がなされる。 Here, in the method for manufacturing the self-luminous panel 10 according to the embodiment of the present invention, when setting the internal pressure of the sealing space M in the sealing step S2, as described above, the self-light-emitting panel 10 is self-luminous by the sealing member 16. When the temperature in the sealing space M in which the element 15 is sealed becomes the minimum storage temperature (t min ) of the self-light-emitting element 15, the internal pressure of the sealing space M is the external pressure of the environment in which the self-light-emitting panel 10 is used. The internal pressure is set so as to be larger. For example, when the temperature in the sealed space M in which the light emitting element 15 is sealed by the sealing member 16 reaches the maximum storage temperature (t max ) of the light emitting element 15, the sealed space M The internal pressure is set so that the pressure difference between the internal pressure of the self-luminous panel 10 and the use environment of the self-luminous panel 10 is smaller than the cohesive failure pressure (Pd) of the adhesive that bonds the sealing member 16 at the maximum storage temperature (t max ). The

このような内圧設定によると、前述したように、封止後に封止空間M内の温度が封止時の常温から保存最低温度に低下して、この温度変化に伴う圧力変化によって封止空間M内の圧力が低下した場合であっても、保存最低温度以上で保存している限り封止空間Mが負圧になることはなく、封止空間Mが負圧になることで生じるパネルの凹み等の問題を回避することができる。また、封止後に封止空間M内の温度が封止時の常温から保存最高温度に上昇して、この温度変化に伴う圧力変化によって封止空間内の圧力が上昇した場合であっても、保存最高温度以下で保存している限り接着剤層18が破断して封止が破れるといった不具合は生じない。   According to such an internal pressure setting, as described above, the temperature in the sealing space M decreases from the normal temperature at the time of sealing to the lowest storage temperature after sealing, and the sealing space M is changed by the pressure change accompanying this temperature change. Even if the internal pressure drops, the sealed space M does not become negative as long as it is stored above the minimum storage temperature, and the dent of the panel caused by the negative pressure in the sealed space M Etc. can be avoided. Further, even when the temperature in the sealed space M rises from the normal temperature at the time of sealing to the maximum storage temperature after sealing, and the pressure in the sealed space increases due to the pressure change accompanying this temperature change, As long as it is stored at the maximum storage temperature or lower, there is no problem that the adhesive layer 18 is broken and the sealing is broken.

そして、実際上の封止工程は、図1(b)に示したような封止装置5によって行われ、封止装置5内の温度と圧力によって封止工程の圧力Ptと温度tの環境設定がなされる。封止装置5内には自発光素子15に悪影響を及ぼさない所望の気体(好ましくは、少なくとも一種類以上の支燃性ガス、例えば、窒素(N)と支燃性ガスとして酸素(O)との混合気体)が充填される。ここで、本発明の一つの実施形態に係る自発光パネル10の製造方法では、下記式(2)を満たす圧力Pfと温度tの設定がなされた環境下で封止工程が行われる。 Then, the actual sealing step is performed by the sealing device 5 as shown in FIG. 1B, and the environment setting of the pressure Pt and the temperature t in the sealing step is performed by the temperature and pressure in the sealing device 5. Is made. In the sealing device 5, a desired gas that does not adversely affect the self-luminous element 15 (preferably at least one or more types of combustion-supporting gas, for example, nitrogen (N 2 ) and oxygen (O 2 as a combustion-supporting gas). )). Here, in the manufacturing method of the self-luminous panel 10 according to one embodiment of the present invention, the sealing step is performed in an environment in which the pressure Pf and the temperature t satisfying the following formula (2) are set.

Figure 2006202610
但し、
max:使用環境で想定される最大外気圧、
min:使用環境で想定される最小外気圧、
Pd:保存最高温度における接着剤の凝集破壊気圧、
Pf:封止時の気圧、
max:保存最高温度(℃)、
min:保存最低温度(℃)、
r:接着剤の押圧による増圧係数(r=P/Pf)
Figure 2006202610
However,
P max : Maximum external pressure assumed in the usage environment,
P min : Minimum external pressure assumed in the usage environment,
Pd: cohesive failure pressure of the adhesive at the maximum storage temperature,
Pf: Pressure at the time of sealing,
t max : Maximum storage temperature (° C.),
t min : Minimum storage temperature (° C.),
r: coefficient of pressure increase due to pressing of adhesive (r = P / Pf)

ここで、rは、基板11と封止部材16の貼り合わせ時に、接着剤層18を押圧することによって生じる封止空間M内の内圧増加を示す係数(増圧係数)であって、r=P/Pf(P:封止直後の内圧、Pf:封止時の環境下圧力)で設定される値である。貼り合わせ前の接着剤層18の高さにばらつきがあって、押圧幅を大きくする必要がある場合にはrが大きくなる。一般的には、このrは1.1〜1.2の範囲で設定される。   Here, r is a coefficient (pressure increase coefficient) indicating an increase in internal pressure in the sealing space M caused by pressing the adhesive layer 18 when the substrate 11 and the sealing member 16 are bonded, and r = It is a value set by P / Pf (P: internal pressure immediately after sealing, Pf: environmental pressure at the time of sealing). When there is a variation in the height of the adhesive layer 18 before bonding and it is necessary to increase the pressing width, r increases. Generally, r is set in the range of 1.1 to 1.2.

このような圧力Pfと温度tの環境下で封止工程を行うことで、封止後の封止空間Mの温度がtnim〜tmaxまで変化したとしても、封止空間Mの内圧は使用環境の外気圧に対して負圧になることはなく、また、封止空間Mの内圧と使用環境の外気圧との気圧差が接着剤の凝集破壊気圧を超えることがない。したがって、自発光パネル10の凹み等の問題や封止の破断等の問題が生じることがない。 Even if the temperature of the sealed space M after sealing changes from t nim to t max by performing the sealing process in an environment of such pressure Pf and temperature t, the internal pressure of the sealed space M is used. There is no negative pressure relative to the external atmospheric pressure, and the pressure difference between the internal pressure of the sealed space M and the external pressure of the use environment does not exceed the cohesive failure pressure of the adhesive. Therefore, problems such as dents in the self-luminous panel 10 and problems such as sealing breakage do not occur.

そして、更に具体的には、前記Pfの範囲のうち中央値を設定値とした封止工程を行うことを特徴とする。これによると、保存温度の変化が高温側・低温側に同等に振れる環境で保存をする場合に、広範囲の温度変化に対して対応することが可能になる。   More specifically, a sealing step is performed in which the median value in the range of Pf is set as a set value. According to this, it is possible to cope with a wide range of temperature changes when storing in an environment in which changes in the storage temperature are equally shifted to the high temperature side and the low temperature side.

また、本発明の一つの実施形態では、前記の封止工程は、発光機能層13の全周を囲う接着剤層18をスクリーン印刷によって形成する工程と、Pf/r気圧下で接着剤層18を介して基板11と封止部材16の貼り合わせを行う工程を含む。これによると、スクリーン印刷によって接着剤層18の高さを均一にすることができるので、前述のrの値を小さくすることが可能になり、設定したPfに近い封止空間内の内圧を設定することができ、正確な内圧設定が可能になる。   In one embodiment of the present invention, the sealing step includes the step of forming an adhesive layer 18 that surrounds the entire circumference of the light emitting functional layer 13 by screen printing, and the adhesive layer 18 under Pf / r atmospheric pressure. The process of bonding the board | substrate 11 and the sealing member 16 through this is included. According to this, since the height of the adhesive layer 18 can be made uniform by screen printing, the value of r described above can be reduced, and the internal pressure in the sealing space close to the set Pf is set. It is possible to set the internal pressure accurately.

具体的な数値を当てはめて、前述した実施形態における封止工程での環境圧力Pfの設定例を示すと以下のとおりになる。   Applying specific numerical values, an example of setting the environmental pressure Pf in the sealing process in the above-described embodiment is shown as follows.

[設定例1]Pmax:1.037気圧、Pmin:0.938気圧、Pd:1.0気圧、tmax:100℃、tmin:−40℃、t:25℃、r:1.10として、1.205<Pf<1.407(気圧)、及び1.326<P<1.548(気圧)となる。より具体的には、Pfの中央値をとって、封止装置5内の設定圧力を1.306気圧に設定する。 [Setting Example 1] P max : 1.037 atm, P min : 0.938 atm, Pd: 1.0 atm, t max : 100 ° C, tmin: -40 ° C, t: 25 ° C, r: 1.10 1.205 <Pf <1.407 (atmospheric pressure) and 1.326 <P <1.548 (atmospheric pressure). More specifically, taking the median value of Pf, the set pressure in the sealing device 5 is set to 1.306 atm.

[設定例2]高地で封止工程が実施される場合には、Pmin:0.8気圧となる場合がある。この場合には、他の条件を設定例1と同様にすると、封止層値5内の設定圧力は1.205<Pf<1.308(気圧)となり、その際の封止空間内圧は、1.326<P<1.438となる。 [Setting Example 2] When the sealing process is performed at high altitude, P min may be 0.8 atm. In this case, if the other conditions are the same as in setting example 1, the setting pressure in the sealing layer value 5 is 1.205 <Pf <1.308 (atmospheric pressure), and the internal pressure in the sealing space at that time is 1.326 <P <1.438.

以下に、前述した実施形態の構成部材に関する具体例を示して、本発明の実施例とする。   Below, the specific example regarding the structural member of embodiment mentioned above is shown, and it is set as the Example of this invention.

[有機EL素子]基板11上に、第一電極12,有機層(発光機能層13),第二電極14を積層した有機EL素子(自発光素子15)の具体的構造及び材料例を示すと以下のとおりである。   [Organic EL element] A specific structure and material examples of an organic EL element (self-emitting element 15) in which a first electrode 12, an organic layer (light emitting functional layer 13), and a second electrode 14 are laminated on a substrate 11 are shown. It is as follows.

(a)基板;
基板11としては、透明性を有する平板状、フィルム状のものが好ましく、材質としてはガラス又はプラスチックを用いることができる。
(A) substrate;
The substrate 11 is preferably a flat plate or film having transparency, and glass or plastic can be used as the material.

(b)電極;
基板11側から光を取り出す方式(ボトム・エミッション方式)を前提とする場合には、第一電極12を透明電極からなる陽極、第二電極14を金属電極からなる陰極にする。適用される陽極材料としては、ITO,ZnO等を用いて、蒸着,スパッタリング等の成膜方法で形成することができる。陰極としては、仕事関数の小さい金属、金属酸化物、金属フッ化物、合金等、具体的には、Al,In,Mg等の単層構造、LiO/Al等の積層構造を用いて、蒸着,スパッタリング等の成膜方法で形成することができる。
(B) an electrode;
When assuming a method of taking out light from the substrate 11 side (bottom emission method), the first electrode 12 is an anode made of a transparent electrode, and the second electrode 14 is a cathode made of a metal electrode. As an anode material to be applied, ITO, ZnO or the like can be used and formed by a film formation method such as vapor deposition or sputtering. As the cathode, metal having a low work function, metal oxide, metal fluoride, alloy, etc., specifically, a single layer structure such as Al, In, Mg, etc., and a laminated structure such as LiO 2 / Al are used for vapor deposition. The film can be formed by a film forming method such as sputtering.

(c)有機層;
有機層(発光機能層13)は、第一電極12を陽極、第二電極14を陰極とした場合には、正孔輸送層/発光層/電子輸送層の積層構成が一般的であるが、発光層,正孔輸送層,電子輸送層はそれぞれ1層だけでなく複数層積層して設けてもよく、正孔輸送層,電子輸送層についてはどちらかの層を省略しても、両方の層を省略して発光層のみにしても構わない。また、有機層としては、正孔注入層,電子注入層,正孔障壁層,電子障壁層等の有機機能層を用途に応じて挿入することができる。
(C) an organic layer;
When the first electrode 12 is an anode and the second electrode 14 is a cathode, the organic layer (light emitting functional layer 13) is generally a layered structure of a hole transport layer / light emitting layer / electron transport layer, The light emitting layer, the hole transport layer, and the electron transport layer may be provided by laminating not only one layer but also a plurality of layers, and either of the hole transport layer and the electron transport layer may be omitted. The layer may be omitted and only the light emitting layer may be used. Moreover, as an organic layer, organic functional layers, such as a hole injection layer, an electron injection layer, a hole barrier layer, and an electron barrier layer, can be inserted according to a use.

有機層の材料は、有機EL素子の用途に合わせて適宜選択可能である。以下に例を示すがこれらに限定されるものではない。   The material of the organic layer can be appropriately selected according to the use of the organic EL element. Examples are shown below, but are not limited thereto.

正孔輸送層としては、正孔移動度が高い機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。具体例としては、銅フタロシアニン等のポルフィリン化合物、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]−ビフェニル(NPB)等の芳香族第三アミン、4−(ジ−p−トリルアミノ)−4’−[4−(ジ−p−トリルアミノ)スチリル]スチルベンゼン等のスチルベン化合物や、トリアゾール誘導体、スチリルアミン化合物等の有機材料が用いられる。また、ポリカーボネート等の高分子中に低分子の正孔輸送用の有機材料を分散させた、高分子分散系の材料も使用できる。   The hole transport layer only needs to have a function of high hole mobility, and any material can be selected and used from conventionally known compounds. Specific examples include porphyrin compounds such as copper phthalocyanine, aromatic tertiary amines such as 4,4′-bis [N- (1-naphthyl) -N-phenylamino] -biphenyl (NPB), 4- (di- Organic materials such as stilbene compounds such as p-tolylamino) -4 ′-[4- (di-p-tolylamino) styryl] stilbenzene, triazole derivatives and styrylamine compounds are used. In addition, a polymer-dispersed material in which a low-molecular organic material for hole transport is dispersed in a polymer such as polycarbonate can also be used.

発光層は、公知の発光材料が使用可能であり、具体例としては、4,4’−ビス(2,2’−ジフェニルビニル)−ビフェニル(DPVBi)等の芳香族ジメチリディン化合物、1,4−ビス(2−メチルスチリル)ベンゼン等のスチリルベンゼン化合物、3−(4−ビフェニル)−4−フェニル−5−t−ブチルフェニル−1,2,4−トリアゾール(TAZ)等のトリアゾール誘導体、アントラキノン誘導体、フルオレノン誘導体等の蛍光性有機材料、(8−ヒドロキシキノリナト)アルミニウム錯体(Alq)等の蛍光性有機金属化合物、ポリパラフェニレンビニレン(PPV)系、ポリフルオレン系、ポリビニルカルバゾール(PVK)系等の高分子材料、白金錯体やイリジウム錯体等の三重項励起子からのりん光を発光に利用できる有機材料(特表2001−520450)を使用できる。上述したような発光材料のみから構成したものでもよいし、正孔輸送材料、電子輸送材料、添加剤(ドナー、アクセプター等)または発光性ドーパント等が含有されてもよい。また、これらが高分子材料又は無機材料中に分散されてもよい。 A known light emitting material can be used for the light emitting layer. Specific examples include aromatic dimethylidin compounds such as 4,4′-bis (2,2′-diphenylvinyl) -biphenyl (DPVBi), 1,4- Styrylbenzene compounds such as bis (2-methylstyryl) benzene, triazole derivatives such as 3- (4-biphenyl) -4-phenyl-5-t-butylphenyl-1,2,4-triazole (TAZ), anthraquinone derivatives , Fluorescent organic materials such as fluorenone derivatives, fluorescent organic metal compounds such as (8-hydroxyquinolinato) aluminum complex (Alq 3 ), polyparaphenylene vinylene (PPV), polyfluorene, polyvinylcarbazole (PVK) The phosphorescence from triplet excitons such as platinum complexes and iridium complexes can be used for light emission. The organic material (special table 2001-520450) can be used. It may be composed only of the light emitting material as described above, or may contain a hole transport material, an electron transport material, an additive (donor, acceptor, etc.) or a light emitting dopant. These may be dispersed in a polymer material or an inorganic material.

電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。具体例としては、ニトロ置換フルオレノン誘導体、アントラキノジメタン誘導体等の有機材料、8−キノリノール誘導体の金属錯体、メタルフタロシアニン等が使用できる。   The electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. Specific examples include organic materials such as nitro-substituted fluorenone derivatives and anthraquinodimethane derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, and the like.

上記の正孔輸送層、発光層、電子輸送層は、スピンコーティング法、ディッピング法等の塗布法、インクジェット法、スクリーン印刷法等の印刷法等のウェットプロセス、又は、蒸着法、レーザ転写法等のドライプロセスで形成することができる。   The hole transport layer, the light emitting layer, and the electron transport layer are applied by a wet process such as a coating method such as a spin coating method and a dipping method, a printing method such as an inkjet method and a screen printing method, or a vapor deposition method and a laser transfer method. The dry process can be used.

[封止部材]封止部材16の材質は特に拘らないが、好ましくは、ガラス又金属で形成される。   [Sealing member] The material of the sealing member 16 is not particularly limited, but is preferably made of glass or metal.

[接着剤]接着剤層18に用いられる接着剤は、熱硬化型、化学硬化型(ニ液混合)、光(紫外線)硬化型等の接着剤を使用し、材料としてアクリル樹脂、エポキシ樹脂、ポリエステル、ポリオレフィン等を用いることができる。特に、紫外線硬化型のエポキシ樹脂の使用が好ましい。このような接着剤に、1〜100μmの粒径のスペーサ(ガラスやプラスチックのスペーサが好ましい)を適量混合(0.1〜0.5重量%ほど)し、ディスペンサ等を使用して塗布する。   [Adhesive] The adhesive used for the adhesive layer 18 is an adhesive such as a thermosetting type, a chemical curing type (two-component mixing), a light (ultraviolet) curing type, and an acrylic resin, an epoxy resin, Polyester, polyolefin and the like can be used. In particular, it is preferable to use an ultraviolet curable epoxy resin. A suitable amount of spacers (preferably glass or plastic spacers) having a particle diameter of 1 to 100 μm is mixed (about 0.1 to 0.5% by weight) with such an adhesive and applied using a dispenser or the like.

[乾燥部材]乾燥部材17を形成する乾燥剤としては、例えば、吸湿剤と樹脂成分を含有する成形体を剥離シート上に積層するか或いは単独でシート状にしたもの等を使用することができる。   [Drying member] As a desiccant for forming the drying member 17, for example, a molded article containing a hygroscopic agent and a resin component may be laminated on a release sheet or may be used alone. .

吸湿剤としては、少なくとも水分を吸着できる機能を有するものであれば良いが、特に化学的に水分を吸着するとともに吸湿しても固体状態を維持する化合物が好ましい。このような化合物としては、例えば金属酸化物、金属の無機酸塩・有機酸塩等が挙げられるが、特にアルカリ土類金属酸化物及び硫酸塩の少なくとも1種を用いることが好ましい。アルカリ土類金属酸化物としては、例えば酸化カルシウム(CaO)、酸化バリウム(BaO)、酸化マグネシウム(MgO)等が挙げられる。硫酸塩としては、例えば硫酸リチウム(LiSO)、硫酸ナトリウム(NaSO)、硫酸カルシウム(CaSO)、硫酸マグネシウム(MgSO)、硫酸コバルト(CoSO)、硫酸ガリウム(Ga(SO)、硫酸チタン(Ti(SO)、硫酸ニッケル(NiSO)等を挙げることができる。その他にも、吸湿剤として吸湿性を有する有機材料を使用することもできる。 The hygroscopic agent is not particularly limited as long as it has a function capable of adsorbing at least water, but is preferably a compound that chemically adsorbs water and maintains a solid state even when moisture is absorbed. Examples of such compounds include metal oxides, metal inorganic acid salts and organic acid salts, and it is particularly preferable to use at least one of alkaline earth metal oxides and sulfates. Examples of the alkaline earth metal oxide include calcium oxide (CaO), barium oxide (BaO), magnesium oxide (MgO), and the like. Examples of the sulfate include lithium sulfate (Li 2 SO 4 ), sodium sulfate (Na 2 SO 4 ), calcium sulfate (CaSO 4 ), magnesium sulfate (MgSO 4 ), cobalt sulfate (CoSO 4 ), and gallium sulfate (Ga 2 ). (SO 4 ) 3 ), titanium sulfate (Ti (SO 4 ) 2 ), nickel sulfate (NiSO 4 ), and the like. In addition, an organic material having a hygroscopic property can be used as the hygroscopic agent.

一方、樹脂成分としては、吸湿剤の水分除去作用を妨げないものであれば特に限定されるものではなく、好ましくは気体透過性の高い材料(すなわち、バリアー性の低い材料、特に気体透過性樹脂)を用いることができる。このような材料としては、例えばポリオレフィン系、ポリアクリル系、ポリアクリロニトリル系、ポリアミド系、ポリエステル系、エポキシ系、ポリカーボネート系等の高分子材料が挙げられる。この中でも、本発明ではポリオレフィン系のものが好ましい。具体的には、ポリエチレン、ポリプロピレン、ポリブタジエン、ポリイソプレン等のほか、これらの共重合体等を挙げることができる。
吸湿剤及び樹脂成分の含有量はこれらの種類等に応じて適宜設定すれば良いが、通常は吸湿剤及び樹脂成分の合計量を100重量%として吸湿剤30〜85重量%程度及び樹脂成分70〜15重量%程度にすれば良い。好ましくは吸湿剤40〜80重量%程度及び樹脂成分60〜20重量%、最も好ましくは吸湿剤50〜70重量%程度及び樹脂成分50〜30重量%とすれば良い。
On the other hand, the resin component is not particularly limited as long as it does not interfere with the moisture removing action of the hygroscopic agent, and is preferably a material having a high gas permeability (that is, a material having a low barrier property, particularly a gas permeable resin). ) Can be used. Examples of such materials include polymer materials such as polyolefin, polyacryl, polyacrylonitrile, polyamide, polyester, epoxy, and polycarbonate. Of these, polyolefin-based ones are preferred in the present invention. Specific examples include polyethylene, polypropylene, polybutadiene, polyisoprene, and copolymers thereof.
The content of the hygroscopic agent and the resin component may be set as appropriate according to these types and the like. Usually, the total amount of the hygroscopic agent and the resin component is 100% by weight, and the hygroscopic agent is about 30 to 85% by weight and the resin component 70. It may be about ˜15% by weight. Preferably, the hygroscopic agent is about 40 to 80% by weight and the resin component is 60 to 20% by weight, and most preferably the hygroscopic agent is about 50 to 70% by weight and the resin component is 50 to 30% by weight.

吸湿性成形体は、これらの各成分を均一に混合し、所望の形状に成形することによって得られる。この場合、吸湿剤、ガス吸着剤等は予め十分乾燥させてから配合することが好ましい。また、樹脂成分との混合に際しては、必要に応じて加熱して溶融状態としても良い。   The hygroscopic molded body can be obtained by uniformly mixing these components and molding them into a desired shape. In this case, it is preferable to mix the moisture absorbent, the gas adsorbent and the like after sufficiently drying them in advance. Further, when mixing with the resin component, it may be heated to a molten state as necessary.

[有機ELパネルの各種方式について]有機EL素子(自発光素子15)は、単一の有機EL素子を形成するものであってもよいし、所望のパターン構造を有して複数の画素を構成するものであってもよい。 [Various types of organic EL panels] The organic EL element (self-emitting element 15) may form a single organic EL element or may have a desired pattern structure and constitute a plurality of pixels. You may do.

そして、後者の場合には、その表示方式は、単色発光でも2色以上の複数色発光でもよく、特に複数色発光の有機ELパネルを実現するためには、RGBに対応した3種類の発光機能層を形成する方式を含む2色以上の発光機能層を形成する方式(塗り分け方式)、白色や青色等の単色の発光機能層にカラーフィルタや蛍光材料による色変換層を組み合わせた方式(CF方式、CCM方式)、単色の発光機能層の発光エリアに電磁波を照射する等して複数発光を実現する方式(フォトブリーチング方式)、異なる発光色の低分子有機材料を予め異なるフィルム上に成膜してレーザによる熱転写で一つの基板上に転写するレーザ転写方式等によって行うことができる。また、有機EL素子の駆動方式は、パッシブ駆動方式又はアクティブ駆動方式のいずれでもよい。   In the latter case, the display method may be single-color light emission or multi-color light emission of two or more colors. In particular, in order to realize a multi-color light emission organic EL panel, three types of light emission functions corresponding to RGB are used. A method of forming a light emitting functional layer of two or more colors including a method of forming a layer (coloring method), a method of combining a color conversion layer using a color filter or a fluorescent material with a monochromatic light emitting functional layer such as white or blue (CF Method, CCM method), a method that realizes multiple light emission by irradiating electromagnetic wave to the light emitting area of the monochromatic light emitting functional layer (photo bleaching method), low molecular organic materials of different luminescent colors are formed on different films in advance. It can be performed by a laser transfer system in which a film is transferred onto a single substrate by laser thermal transfer. Further, the driving method of the organic EL element may be either a passive driving method or an active driving method.

前述した本発明の実施形態或いは実施例に係る自発光パネル及びその製造方法によると、環境温度の変化に対しても機能劣化を生じない自発光パネル及びその製造方法を提供することができ、また、耐環境性の高い自発光パネルを得ることができる。   According to the self-luminous panel and the manufacturing method thereof according to the embodiment or the example of the present invention described above, it is possible to provide the self-luminous panel and the manufacturing method thereof that do not cause functional deterioration even when the environmental temperature changes. A self-luminous panel with high environmental resistance can be obtained.

従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の実施形態に係る自発光パネルを示す説明図である。It is explanatory drawing which shows the self-light emission panel which concerns on embodiment of this invention. 本発明の実施形態に係る自発光パネルの製造方法を説明する説明図である。It is explanatory drawing explaining the manufacturing method of the self-light-emitting panel which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 自発光パネル
11 基板
12,14 電極(第一電極,第二電極)
13 発光機能層
15 自発光素子(有機EL素子)
16 封止基板
17 乾燥部材
18 接着剤層
10 Self-luminous panel 11 Substrate 12, 14 Electrode (first electrode, second electrode)
13 Light-Emitting Functional Layer 15 Self-Emitting Element (Organic EL Element)
16 Sealing substrate 17 Drying member 18 Adhesive layer

Claims (10)

一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルであって、
前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最低温度になった場合に、前記封止空間の内圧が前記自発光パネルの使用環境の外気圧よりも大きくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネル。
A self-light-emitting panel in which a self-light-emitting element formed by sandwiching at least one light-emitting functional layer between a pair of electrodes is formed on a substrate, and a sealing member for shielding the self-light-emitting element from the outside air is provided,
When the temperature in the sealed space where the self-luminous element is sealed by the sealing member becomes the minimum storage temperature of the self-luminous element, the internal pressure of the sealed space is the usage environment of the self-luminous panel. A self-luminous panel, wherein an internal pressure of the sealing space at the time of sealing is set so as to be larger than an external pressure.
一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルであって、
前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最高温度になった場合に、前記封止空間の内圧と前記自発光パネルの使用環境の気圧差が、前記保存最高温度における前記封止部材を接着する接着剤の凝集破壊気圧よりも小さくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネル。
A self-light-emitting panel in which a self-light-emitting element formed by sandwiching at least one light-emitting functional layer between a pair of electrodes is formed on a substrate, and a sealing member for shielding the self-light-emitting element from the outside air is provided,
When the temperature in the sealed space where the self-luminous element is sealed by the sealing member reaches the maximum storage temperature of the self-luminous element, the internal pressure of the sealed space and the usage environment of the self-luminous panel The self-luminous panel, wherein the internal pressure of the sealing space at the time of sealing is set so that the pressure difference becomes smaller than the cohesive failure pressure of the adhesive that bonds the sealing member at the maximum storage temperature.
一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルであって、
温度t℃で前記封止部材によって前記自発光素子が封止される封止空間の内圧Pが、下記式(1)を満たすことを特徴とする自発光パネル。
Figure 2006202610
但し、
max:使用環境で想定される最大外気圧、
min:使用環境で想定される最小外気圧、
Pd:保存最高温度における接着剤の凝集破壊気圧、
max:保存最高温度(℃)、
min:保存最低温度(℃)
A self-light-emitting panel in which a self-light-emitting element formed by sandwiching at least one light-emitting functional layer between a pair of electrodes is formed on a substrate, and a sealing member for shielding the self-light-emitting element from the outside air is provided,
A self-luminous panel, wherein an internal pressure P of a sealed space in which the self-luminous element is sealed by the sealing member at a temperature t ° C satisfies the following formula (1).
Figure 2006202610
However,
P max : Maximum external pressure assumed in the usage environment,
P min : Minimum external pressure assumed in the usage environment,
Pd: cohesive failure pressure of the adhesive at the maximum storage temperature,
t max : Maximum storage temperature (° C.),
t min : Minimum storage temperature (° C)
前記封止空間内には、窒素(N)と酸素(O)とが充填されていることを特徴とする請求項1〜3のいずれかに記載された自発光パネル。 The self-luminous panel according to claim 1, wherein the sealed space is filled with nitrogen (N 2 ) and oxygen (O 2 ). 一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルの製造方法であって、
前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最低温度になった場合に、前記封止空間の内圧が前記自発光パネルの使用環境の外気圧よりも大きくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネルの製造方法。
A method of manufacturing a self-light-emitting panel in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member is provided to block the self-light-emitting element from outside air. There,
When the temperature in the sealed space where the self-luminous element is sealed by the sealing member becomes the minimum storage temperature of the self-luminous element, the internal pressure of the sealed space is the usage environment of the self-luminous panel. A method for manufacturing a self-luminous panel, wherein an internal pressure of the sealing space at the time of sealing is set so as to be larger than an external pressure.
一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルの製造方法であって、
前記封止部材によって前記自発光素子が封止される封止空間内の温度が前記自発光素子の保存最高温度になった場合に、前記封止空間の内圧と前記自発光パネルの使用環境の気圧差が、前記保存最高温度における前記封止部材を接着する接着剤の凝集破壊気圧よりも小さくなるように、封止時の前記封止空間の内圧を設定したことを特徴する自発光パネルの製造方法。
A method of manufacturing a self-light-emitting panel in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member is provided to block the self-light-emitting element from outside air. There,
When the temperature in the sealed space where the self-luminous element is sealed by the sealing member reaches the maximum storage temperature of the self-luminous element, the internal pressure of the sealed space and the usage environment of the self-luminous panel A self-luminous panel characterized in that the internal pressure of the sealing space at the time of sealing is set so that the pressure difference is smaller than the cohesive failure pressure of the adhesive that bonds the sealing member at the maximum storage temperature. Production method.
一対の電極間に少なくとも1層以上の発光機能層を挟持してなる自発光素子を基板上に形成し、該自発光素子を外気から遮断する封止部材を設けた自発光パネルの製造方法であって、
下記式(2)を満たすPfとtの環境下で封止を行う封止工程を有することを特徴とする自発光パネルの製造方法。
Figure 2006202610
但し、
max:使用環境で想定される最大外気圧、
min:使用環境で想定される最小外気圧、
Pd:保存最高温度における接着剤の凝集破壊気圧、
Pf:封止時の気圧、
max:保存最高温度(℃)、
min:保存最低温度(℃)、
r:接着剤の押圧による増圧係数(r=P/Pf)
A method of manufacturing a self-light-emitting panel in which a self-light-emitting element having at least one light-emitting functional layer sandwiched between a pair of electrodes is formed on a substrate, and a sealing member is provided to block the self-light-emitting element from outside air. There,
The manufacturing method of the self-light-emitting panel characterized by having the sealing process which seals in the environment of Pf and t which satisfy | fills following formula (2).
Figure 2006202610
However,
P max : Maximum external pressure assumed in the usage environment,
P min : Minimum external pressure assumed in the usage environment,
Pd: cohesive failure pressure of the adhesive at the maximum storage temperature,
Pf: Pressure at the time of sealing,
t max : Maximum storage temperature (° C.),
t min : Minimum storage temperature (° C.),
r: coefficient of pressure increase due to pressing of adhesive (r = P / Pf)
前記Pfの範囲のうち中央値を設定値とした封止工程を行うことを特徴とする請求項7に記載された自発光パネルの製造方法。   The method for manufacturing a self-luminous panel according to claim 7, wherein a sealing step is performed with a median value in the range of Pf as a set value. 前記封止空間内には、少なくとも一種類以上の支燃性ガスが充填されていることを特徴とする請求項5〜8のいずれかに記載された自発光パネルの製造方法。   The method for manufacturing a self-luminous panel according to any one of claims 5 to 8, wherein the sealed space is filled with at least one kind of combustion-supporting gas. 前記封止工程は、前記発光機能層の全周を囲う接着剤層をスクリーン印刷によって形成する工程と、Pf/r気圧下で前記接着剤層を介して前記基板と前記封止部材の貼り合わせを行う工程を含むことを特徴とする請求項7〜9のいずれかに記載された自発光パネルの製造方法。   The sealing step includes a step of forming an adhesive layer that surrounds the entire circumference of the light emitting functional layer by screen printing, and bonding the substrate and the sealing member through the adhesive layer under Pf / r atmospheric pressure. The manufacturing method of the self-luminous panel described in any one of Claims 7-9 characterized by including the process of performing.
JP2005013177A 2005-01-20 2005-01-20 Self-luminescent light emitting panel and its manufacturing method Pending JP2006202610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005013177A JP2006202610A (en) 2005-01-20 2005-01-20 Self-luminescent light emitting panel and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005013177A JP2006202610A (en) 2005-01-20 2005-01-20 Self-luminescent light emitting panel and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006202610A true JP2006202610A (en) 2006-08-03

Family

ID=36960425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005013177A Pending JP2006202610A (en) 2005-01-20 2005-01-20 Self-luminescent light emitting panel and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006202610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103247A1 (en) * 2007-02-21 2008-08-28 Corning Incorporated Method for reducing interference fringes in a display device
JP2011082167A (en) * 2009-10-08 2011-04-21 Samsung Mobile Display Co Ltd Substrate bonding apparatus and substrate bonding method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215982A (en) * 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd Display device
JP2001217069A (en) * 2000-02-04 2001-08-10 Nec Corp Sealing device and its manufacturing method
JP2004303741A (en) * 2004-07-29 2004-10-28 Pioneer Electronic Corp Organic electroluminescent display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215982A (en) * 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd Display device
JP2001217069A (en) * 2000-02-04 2001-08-10 Nec Corp Sealing device and its manufacturing method
JP2004303741A (en) * 2004-07-29 2004-10-28 Pioneer Electronic Corp Organic electroluminescent display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103247A1 (en) * 2007-02-21 2008-08-28 Corning Incorporated Method for reducing interference fringes in a display device
JP2011082167A (en) * 2009-10-08 2011-04-21 Samsung Mobile Display Co Ltd Substrate bonding apparatus and substrate bonding method

Similar Documents

Publication Publication Date Title
US20070013292A1 (en) Organic electroluminescent device and method for manufacturing same
US6717052B2 (en) Housing structure with multiple sealing layers
KR101086881B1 (en) Organic light emitting display device having light transmissive getter layer and method of fabricating the same
KR102157996B1 (en) Organic electroluminescent light emitting device and method for manufacturing same
KR20010039723A (en) Organic electroluminescent device and method for fabricating same
US20010013756A1 (en) Hermetic encapsulation package and method of fabrication thereof
KR20010050684A (en) Sealing structure of electro luminescence device
US20060214569A1 (en) Organic EL panel and method of manufacturing the same
JP2006278139A (en) Spontaneous light emitting panel and manufacturing method of the same
JP5114215B2 (en) Optical device and method for manufacturing optical device
US20190067631A1 (en) Organic light emitting diode package structure, electronic device and packaging method
JP2000100558A (en) Luminescent device
JP6160107B2 (en) Organic electroluminescence light emitting device, organic EL display device, and organic EL lighting
US8624490B2 (en) Organic light-emitting device and method of manufacturing the same
US20040189191A1 (en) Organic EL display panel and method of manufacturing the same
US20060138952A1 (en) Sheet-like desiccating member, organic El panel, and organic El panel manufacturing method
WO2004008812A1 (en) Flexible organic electroluminescence element and production method therefor and information display unit and lighting device
JP2002050471A (en) Organic electroluminescence element and its manufacturing method
JP2004311246A (en) Organic el panel and its manufacturing method
JP2006202610A (en) Self-luminescent light emitting panel and its manufacturing method
KR100666551B1 (en) Organic Electro Luminescence Display
JP2007250251A (en) Optical device and manufacturing method of optical device
KR20040071438A (en) Oeld panel with passive film and protection capsule
GB2383683A (en) Sealed housing for a display device comprising two sealing layers
JP2000100561A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207