JP2006202604A5 - - Google Patents

Download PDF

Info

Publication number
JP2006202604A5
JP2006202604A5 JP2005012779A JP2005012779A JP2006202604A5 JP 2006202604 A5 JP2006202604 A5 JP 2006202604A5 JP 2005012779 A JP2005012779 A JP 2005012779A JP 2005012779 A JP2005012779 A JP 2005012779A JP 2006202604 A5 JP2006202604 A5 JP 2006202604A5
Authority
JP
Japan
Prior art keywords
metal nanoparticles
particles
metal
storage stability
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005012779A
Other languages
Japanese (ja)
Other versions
JP4510649B2 (en
JP2006202604A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2005012779A priority Critical patent/JP4510649B2/en
Priority claimed from JP2005012779A external-priority patent/JP4510649B2/en
Publication of JP2006202604A publication Critical patent/JP2006202604A/en
Publication of JP2006202604A5 publication Critical patent/JP2006202604A5/ja
Application granted granted Critical
Publication of JP4510649B2 publication Critical patent/JP4510649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

ところで、回路形成用または配線層間用の導電性ペーストとして、ナノサイズの金属粒子(金属ナノ粒子とも言う)を液体中で分散させたものが知られている。金属ナノ粒子は、粒径のより大きな金属粒子に比べて活性が高く、常温で容易に凝集するため、保存安定性に関して問題がある。これを解決するため、金属ナノ粒子に配位結合する分散剤を添加して金属ナノ粒子を保護および安定化し、その後、分散剤を加熱により金属ナノ粒子から除去して酸無水物等の捕捉物質で捕捉することが提案されている(特許文献4を参照のこと)。 By the way, as a conductive paste for forming a circuit or a wiring layer, a paste in which nano-sized metal particles (also referred to as metal nanoparticles) are dispersed in a liquid is known. Metal nanoparticles have a higher activity than metal particles having a larger particle size, and easily aggregate at room temperature, so that there is a problem regarding storage stability. In order to solve this problem, a dispersing agent that coordinates and bonds to the metal nanoparticles is added to protect and stabilize the metal nanoparticles, and then the dispersant is removed from the metal nanoparticles by heating to trap a capturing material such as an acid anhydride. Has been proposed (see Patent Document 4).

しかしながら、比較例の導電性ペーストの保存安定性は2時間しか持続せず、非常に短かった。これは、ニッケル粒子を用いているために、有機化合物のチオール末端基がニッケル粒子表面に配位せずにフリーで存在し、その結果、保存の間にエポキシ樹脂と反応し、硬化が起こったためであると考えられる。
However, the storage stability of the conductive paste of Comparative Example 1 lasted only 2 hours and was very short. This is because nickel particles are used, so that the thiol end groups of the organic compound exist freely without being coordinated to the surface of the nickel particles, and as a result, they react with the epoxy resin during storage and curing occurs. It is thought that.

JP2005012779A 2005-01-20 2005-01-20 WIRING BOARD, MULTILAYER BOARD AND ELECTRONIC COMPONENT MOUNTING METHOD Expired - Fee Related JP4510649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005012779A JP4510649B2 (en) 2005-01-20 2005-01-20 WIRING BOARD, MULTILAYER BOARD AND ELECTRONIC COMPONENT MOUNTING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012779A JP4510649B2 (en) 2005-01-20 2005-01-20 WIRING BOARD, MULTILAYER BOARD AND ELECTRONIC COMPONENT MOUNTING METHOD

Publications (3)

Publication Number Publication Date
JP2006202604A JP2006202604A (en) 2006-08-03
JP2006202604A5 true JP2006202604A5 (en) 2008-01-24
JP4510649B2 JP4510649B2 (en) 2010-07-28

Family

ID=36960419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012779A Expired - Fee Related JP4510649B2 (en) 2005-01-20 2005-01-20 WIRING BOARD, MULTILAYER BOARD AND ELECTRONIC COMPONENT MOUNTING METHOD

Country Status (1)

Country Link
JP (1) JP4510649B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505825B2 (en) * 2006-09-15 2010-07-21 国立大学法人大阪大学 Method for sintering metal nanoparticles and method for forming wiring on a substrate using the sintering method
JP4979542B2 (en) * 2007-11-05 2012-07-18 パナソニック株式会社 Mounting structure and manufacturing method thereof
JP5169171B2 (en) * 2007-11-26 2013-03-27 パナソニック株式会社 Bonding method of electronic parts
JP2009134030A (en) * 2007-11-29 2009-06-18 Seiko Epson Corp Actuator, optical scanner and image forming apparatus
JP2009139600A (en) * 2007-12-05 2009-06-25 Seiko Epson Corp Actuator, optical scanner and image forming apparatus
JP5207281B2 (en) * 2008-01-17 2013-06-12 国立大学法人大阪大学 Conductive paste
JP2011054892A (en) * 2009-09-04 2011-03-17 Nihon Superior Co Ltd Solder bonding using conductive paste
KR20130125944A (en) 2012-05-10 2013-11-20 삼성전기주식회사 Conductive paste composition for internal electrode, laminated ceramic electronic parts and fabricating method thereof
EP3583151B1 (en) 2017-02-15 2021-06-09 3M Innovative Properties Company Epoxy stabilization using metal nanoparticles and nitrogen-containing catalysts, and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05274911A (en) * 1992-03-25 1993-10-22 Furukawa Electric Co Ltd:The Conductive resin paste
JP2001302881A (en) * 2000-04-18 2001-10-31 Three M Innovative Properties Co Stabilized cationic polymerizable composition and adhesive film and conductive circuit using the same
ATE525730T1 (en) * 2000-10-25 2011-10-15 Harima Chemicals Inc ELECTROCONDUCTIVE METAL PASTE AND METHOD FOR PRODUCING IT
JP2004189954A (en) * 2002-12-13 2004-07-08 Ricoh Co Ltd Thermoset electroconductive adhesive

Similar Documents

Publication Publication Date Title
JP2006202604A5 (en)
Shen et al. Highly thermally conductive composite films based on nanofibrillated cellulose in situ coated with a small amount of silver nanoparticles
TWI718560B (en) Hexagonal boron nitride powder and its manufacturing method, its composition and heat dissipation material
Yao et al. Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity
Yuan et al. Highly thermally conducting polymer-based films with magnetic field-assisted vertically aligned hexagonal boron nitride for flexible electronic encapsulation
Wei et al. In situ light-initiated ligands cross-linking enables efficient all-solution-processed perovskite light-emitting diodes
CN103172973B (en) High thermal-conductivity polymer composite material and preparation method thereof
JP4928639B2 (en) Bonding material and bonding method using the same
JP6303392B2 (en) Silver paste, semiconductor device using the same, and method for producing silver paste
Meng et al. Recent progress on fabrication and performance of polymer composites with highly thermal conductivity
JP6221490B2 (en) Easily deformable aggregate and method for producing the same, heat conductive resin composition, heat conductive member and method for producing the same, and heat conductive adhesive sheet
JP2008544522A5 (en)
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
JP2009518276A5 (en)
JP2007027767A5 (en)
KR20120107403A (en) Composition for radiating heat and product for radiating heat using the same
JP2012501941A5 (en)
JP2011054892A (en) Solder bonding using conductive paste
JP6826544B2 (en) Thermally conductive filler composition, its use and manufacturing method
JP2012526907A5 (en)
JP2017504177A (en) Thermally conductive electrically insulating particles and compositions
JP5791488B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module
JP2004128357A5 (en)
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
JP5653280B2 (en) Resin composition for heat conductive sheet, heat conductive sheet and power module