JP2006201603A - Electrophoresis light intensity adjusting element and imaging apparatus - Google Patents

Electrophoresis light intensity adjusting element and imaging apparatus Download PDF

Info

Publication number
JP2006201603A
JP2006201603A JP2005014512A JP2005014512A JP2006201603A JP 2006201603 A JP2006201603 A JP 2006201603A JP 2005014512 A JP2005014512 A JP 2005014512A JP 2005014512 A JP2005014512 A JP 2005014512A JP 2006201603 A JP2006201603 A JP 2006201603A
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrophoretic
adjusting element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005014512A
Other languages
Japanese (ja)
Inventor
Yoshinori Uno
喜徳 宇野
Hiroshi Matsuda
宏 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005014512A priority Critical patent/JP2006201603A/en
Publication of JP2006201603A publication Critical patent/JP2006201603A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16761Side-by-side arrangement of working electrodes and counter-electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16762Electrodes having three or more electrodes per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1685Operation of cells; Circuit arrangements affecting the entire cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Studio Devices (AREA)
  • Diaphragms For Cameras (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophoretic light intensity adjusting element making desired light intensity adjustment, and an imaging apparatus. <P>SOLUTION: Columnar translucent sections 9 which transmit light between a transparent substrate 1 and a transparent second substrate 2 arranged to face the first substrate are provided in such a manner that both ends come into contact with the first substrate 1 and the second substrate 2, and three or more electrodes are installed side by side to at least either of the first substrate 1 and the second substrate 2, and thereby, the movable area of the opaque electrophoretic particles 15 is limited, and the controllability of the opaque charged electrophoretic particles 15 is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光量を調整する電気泳動光量調整素子及び撮像装置に関し、特に電気泳動を利用して帯電泳動粒子を有効領域の外に移動することにより、光量調整を行うようにしたものに関する。   The present invention relates to an electrophoretic light amount adjusting element and an imaging apparatus that adjust light amount, and more particularly, to an apparatus that performs light amount adjustment by moving charged electrophoretic particles out of an effective region using electrophoresis.

従来、例えばデジタルカメラ等の撮像装置には、絞りとして電気泳動光量調整素子が設けられており、この電気泳動光量調整素子により撮像部に入射される光量を調整するようにしている。ここで、このような電気泳動光量調整素子としては、透明な第1基板と、第1基板に対向して配置される透明な第2基板と、第1基板及び第2基板の間に充填される絶縁性透明液体と、絶縁性透明液体中に分散される複数の不透明帯電泳動粒子とを備えている。   2. Description of the Related Art Conventionally, for example, an imaging apparatus such as a digital camera has been provided with an electrophoretic light amount adjusting element as a diaphragm, and the amount of light incident on the imaging unit is adjusted by the electrophoretic light amount adjusting element. Here, as such an electrophoretic light amount adjusting element, a transparent first substrate, a transparent second substrate disposed to face the first substrate, and a space between the first substrate and the second substrate are filled. Insulating transparent liquid, and a plurality of opaque charged electrophoretic particles dispersed in the insulating transparent liquid.

そして、この電気泳動光量調整素子は、電気泳動を利用して帯電泳動粒子を有効領域の外に移動して透過状態を、帯電泳動粒子を有効領域に分散させて減光状態を成すようにしている(例えば、特許文献1参照。)。   The electrophoretic light quantity adjusting element uses electrophoresis to move the charged electrophoretic particles out of the effective area so as to be in a transmitting state, and the charged electrophoretic particles are dispersed in the effective area so as to be in a dimmed state. (For example, refer to Patent Document 1).

特開2002−214666号公報JP 2002-214666 A

ところで、このような従来の電気泳動光量調整素子において、不透明帯電泳動粒子の移動可能な領域が広い場合には、不透明帯電泳動粒子の制御を良好に行うことができないことから分布がまばらになる。   By the way, in such a conventional electrophoretic light quantity adjusting element, when the region where the opaque charged electrophoretic particles can be moved is wide, the distribution of the opaque charged electrophoretic particles cannot be satisfactorily performed, resulting in a sparse distribution.

そして、このように不透明帯電泳動粒子の分布がまばらになると、入射された光が不透明帯電泳動粒子の隙間から透過して散乱するようになり、この結果、所望の光量調整を行うことができないという問題がある。   If the distribution of the opaque charged electrophoretic particles is sparse in this way, the incident light is transmitted through the gaps of the opaque charged electrophoretic particles and scattered, and as a result, the desired light amount adjustment cannot be performed. There's a problem.

そこで、本発明は、このような現状に鑑みて為されたものであり、所望の光量調整が可能な電気泳動光量調整素子及び撮像装置を提供することを目的とするものである。   Therefore, the present invention has been made in view of such a current situation, and an object thereof is to provide an electrophoretic light amount adjusting element and an imaging apparatus capable of adjusting a desired light amount.

本発明は、透明な第1基板と、前記第1基板に対向して配置される透明な第2基板と、前記第1基板及び前記第2基板の間に充填される絶縁性透明液体と、前記絶縁性透明液体中に分散される複数の不透明帯電泳動粒子とを備えた電気泳動光量調整素子において、前記第1基板及び前記第2基板に両端が接するように設けられると共に、光が透過する柱状の透光部と、前記第1基板及び前記第2基板の少なくとも一方に並設された3つ以上の電極と、を備えることを特徴とするものである。   The present invention includes a transparent first substrate, a transparent second substrate disposed opposite to the first substrate, an insulating transparent liquid filled between the first substrate and the second substrate, In an electrophoretic light amount adjusting element comprising a plurality of opaque charged electrophoretic particles dispersed in the insulating transparent liquid, the electrophoretic light amount adjusting element is provided so that both ends thereof are in contact with the first substrate and the second substrate, and light is transmitted therethrough. A columnar light-transmitting portion and three or more electrodes arranged in parallel on at least one of the first substrate and the second substrate are provided.

本発明のように、第1基板に対向して配置される透明な第2基板との間に光が透過する柱状の透光部を、両端が第1基板及び第2基板に接するように設けると共に、第1基板及び第2基板の少なくとも一方に3つ以上の電極を並設することにより、不透明帯電泳動粒子の移動可能な領域を制限すると共に、不透明帯電泳動粒子の制御性を向上させることにより、所望の光量調整が可能となる。   As in the present invention, columnar light-transmitting portions that transmit light are provided between a transparent second substrate disposed opposite to the first substrate so that both ends are in contact with the first substrate and the second substrate. At the same time, by arranging three or more electrodes on at least one of the first substrate and the second substrate, the region in which the opaque charged electrophoretic particles can be moved is restricted, and the controllability of the opaque charged electrophoretic particles is improved. Thus, a desired light amount adjustment is possible.

以下、本発明を実施するための最良の形態について図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の第1の実施の形態に係る電気泳動光量調整素子の概略構成を示す図であり、この電気泳動光量調整素子は、透明な第1基板1と、第1基板1と所定の間隙を設けて対向配置された第2基板2と、第1及び第2基板1,2の対向両側に、それぞれ配置された第1電極3、第2電極4、第3電極5、第4電極6、第5電極7、第6電極8を備えている。なお、本実施の形態においては、第1〜第6電極3〜8を覆うように絶縁層11が配置されている。   FIG. 1 is a diagram showing a schematic configuration of an electrophoretic light amount adjusting element according to a first embodiment of the present invention. The electrophoretic light amount adjusting element includes a transparent first substrate 1, a first substrate 1, and A second substrate 2 arranged opposite to the first substrate 2 with a predetermined gap, and a first electrode 3, a second electrode 4, a third electrode 5, and a second electrode arranged on opposite sides of the first and second substrates 1 and 2, respectively. A four electrode 6, a fifth electrode 7, and a sixth electrode 8 are provided. In the present embodiment, the insulating layer 11 is disposed so as to cover the first to sixth electrodes 3 to 8.

また、第1及び第2基板1,2の間には基板間の間隙を保つ間隙支持体13と、常に光を透過させる柱状の透光部(以下、常透光部という)9が配置されると共に、第1及び第2基板1,2と、間隙支持体13と、常透光部9とによって形成される空間には透明な絶縁性液体14が充填され、その絶縁性液体14中に不透明帯電泳動粒子15が分散されている。   Between the first and second substrates 1 and 2, a gap support 13 that keeps the gap between the substrates and a columnar light-transmitting portion (hereinafter referred to as a normal light-transmitting portion) 9 that always transmits light are disposed. In addition, a transparent insulating liquid 14 is filled in the space formed by the first and second substrates 1 and 2, the gap support 13, and the normally transparent portion 9, and the insulating liquid 14 is filled in the insulating liquid 14. The opaque charged electrophoretic particles 15 are dispersed.

なお、本実施の形態において、常透光部9は、略円柱状の形状を有すると共に、図2に示すように電気泳動光量調整素子の中央に配置され、第1〜第6電極3〜8は常透光部9の周辺に同心円状に配置されている。また、間隙支持体13は電気泳動光量調整素子周辺部に配置されている。   In the present embodiment, the normally transparent portion 9 has a substantially cylindrical shape, and is disposed at the center of the electrophoretic light amount adjusting element as shown in FIG. Are arranged concentrically around the normally transparent portion 9. Further, the gap support 13 is disposed in the periphery of the electrophoretic light amount adjusting element.

ここで、本実施の形態において、常透光部9の直径は1mmであり、透過光の波長(数100nm)に比べて非常に大きく、このような直径を有する常透光部9を通過する際、透過光の散乱は発生しない。   Here, in the present embodiment, the diameter of the normally transparent portion 9 is 1 mm, which is very large compared to the wavelength of transmitted light (several hundred nm), and passes through the normally transparent portion 9 having such a diameter. At this time, scattering of transmitted light does not occur.

また、このような常透光部9を設けることにより、透過する光量を最小にするため、不透明帯電泳動粒子15を第1基板1に沿って分散させた場合、不透明帯電泳動粒子15の移動範囲が常透光部9により制限されるため、図3に示すように、不透明帯電泳動粒子同士が密集するようになる。この結果、光が不透明帯電泳動粒子15の隙間から漏れ出ることはなくなり、良好な画像を得ることができる。   Further, when the opaque charged electrophoretic particles 15 are dispersed along the first substrate 1 in order to minimize the amount of light transmitted by providing such a normally transparent portion 9, the moving range of the opaque charged electrophoretic particles 15 is achieved. However, as shown in FIG. 3, the opaque charged electrophoretic particles are densely packed. As a result, light does not leak from the gaps between the opaque charged electrophoretic particles 15 and a good image can be obtained.

ここで、この常透光部9は所望の波長の光に対して実質的に透明であれば良く、その材料は特に限定しない。例えば材質はガラスの無機物、フォトレジストなどの有機物で構成された物で良く、形状は不透明帯電泳動粒子15の移動を禁止する形状であればよく、特に限定しない。また、形状は、図1に示すように第1基板1と第2基板2に両端を接する柱状であれば、円柱状、多角柱状としても良い。   Here, the normally transparent portion 9 only needs to be substantially transparent to light having a desired wavelength, and the material thereof is not particularly limited. For example, the material may be an inorganic material such as glass or an organic material such as a photoresist, and the shape may be any shape that prohibits the movement of the opaque charged electrophoretic particles 15, and is not particularly limited. Further, as shown in FIG. 1, the shape may be a columnar shape or a polygonal column shape as long as both ends of the first substrate 1 and the second substrate 2 are in contact with each other.

一方、電極は、図1及び後述する図9に示すように第1基板1と第2基板2の両方に配置されても、また後述する図7に示すように第1基板1と第2基板2の一方の対向面側に配置されても良い。また、図1に示すように第1基板1と第2基板2の対向する領域に同一の電極が配置されていても良く、図9に示すように、第1、第3及び第5電極3,5,7の間の間隙に臨むように第2、第4及び第6電極4,6,8を配置しても良い。   On the other hand, the electrodes are arranged on both the first substrate 1 and the second substrate 2 as shown in FIG. 1 and FIG. 9 described later, and the first substrate 1 and the second substrate as shown in FIG. 7 described later. 2 may be arranged on one facing surface side. Moreover, the same electrode may be arrange | positioned in the area | region which the 1st board | substrate 1 and the 2nd board | substrate 2 oppose as shown in FIG. 1, and the 1st, 3rd and 5th electrode 3 is shown in FIG. , 5 and 7 may be arranged so that the second, fourth and sixth electrodes 4, 6 and 8 face each other.

さらに、図1及び図2では6個の電極を配置した電気泳動光量調整素子の例を示したが、電極数に特に制限は無く、少なくとも3個以上を有し、駆動電圧により不透明帯電泳動粒子15を搬送可能であれば良い。   1 and 2 show an example of an electrophoretic light amount adjusting element in which six electrodes are arranged. However, the number of electrodes is not particularly limited, and there are at least three or more non-transparent charged electrophoretic particles depending on the driving voltage. It is sufficient if 15 can be conveyed.

なお、本実施の形態においては、第1〜第6電極3〜8は並行に配置されると共に等間隔で電気的に接続されており、例えば3電極周期で等間隔に位相がシフトした電圧を印加する場合、第1電極3と第4電極6、第2電極4と第5電極7、第3電極5と第6電極8を電気的に接続するようにしている。電極間隔本数は3電極間隔以上であれば良い。さらに望ましくは4本間隔で電気的に接続する。そして、複数の電極に同一の電位を印加する構成とすることで駆動信号が単純化される。   In the present embodiment, the first to sixth electrodes 3 to 8 are arranged in parallel and electrically connected at equal intervals. For example, a voltage whose phase is shifted at equal intervals in a three-electrode cycle is applied. When applied, the first electrode 3 and the fourth electrode 6, the second electrode 4 and the fifth electrode 7, and the third electrode 5 and the sixth electrode 8 are electrically connected. The number of electrode intervals may be three or more electrode intervals. More preferably, they are electrically connected at intervals of four. And a drive signal is simplified by setting it as the structure which applies the same electric potential to several electrodes.

一方、並行配置される複数の電極間の間隔は特に限定するものではなく、電極は接触しない程度に間隔を空けて配置すればよい。ただし、電極間の間隔が第1基板1と第2基板2の間隔の半分以上4倍以下である場合には、絶縁性液体14と不透明帯電泳動粒子15が注入された領域の電界強度の最大値と最小値の比が小さくなり不透明帯電泳動粒子15の応答が安定になる傾向がある。   On the other hand, the interval between the plurality of electrodes arranged in parallel is not particularly limited, and the electrodes may be arranged so as not to contact each other. However, when the distance between the electrodes is not less than half and not more than four times the distance between the first substrate 1 and the second substrate 2, the maximum electric field strength in the region into which the insulating liquid 14 and the opaque charged electrophoretic particles 15 are injected. The ratio between the value and the minimum value tends to be small, and the response of the opaque charged electrophoretic particles 15 tends to be stable.

なお、これら電極は、常透光部9が設けられている領域に設けられた場合には、常透光部9の透過率を低下させることから、常透光部9が設けられている領域に設けないことが好ましい。   In addition, when these electrodes are provided in the region where the normally transparent portion 9 is provided, the transmittance of the normally transparent portion 9 is reduced, so that the region where the normally transparent portion 9 is provided. It is preferable not to provide it.

ところで、このような構成の電極に図4に示す駆動波形を、例えばCh1に示す駆動波形を第1電極3に、Ch2に示す駆動波形を第2電極4に、Ch3に示す駆動波形を第3電極5に、Ch4に示す駆動波形を第4電極6に、Ch5に示す駆動波形を第5電極7に、Ch6に示す駆動波形を第6電極8にそれぞれ印加した。この結果、素子全体に分散していた不透明帯電泳動粒子15は素子周辺に搬送され、透光状態となった。   Incidentally, the drive waveform shown in FIG. 4 is applied to the electrode having such a configuration, for example, the drive waveform shown in Ch1 is the first electrode 3, the drive waveform shown in Ch2 is in the second electrode 4, and the drive waveform shown in Ch3 is the third. A drive waveform indicated by Ch4 was applied to the electrode 5, a drive waveform indicated by Ch5 was applied to the fifth electrode 7, and a drive waveform indicated by Ch6 was applied to the sixth electrode 8, respectively. As a result, the opaque charged electrophoretic particles 15 dispersed throughout the device were transported to the periphery of the device and became translucent.

また、第1電極3と第3電極5と第5電極7、第2電極4と第4電極6と第6電極7をそれぞれ同電位として、一方に20V、他方に−20Vを交互に印加したところ、不透明帯電泳動粒子15は均一に分散し、素子は遮光状態となった。さらに、駆動電圧を緩やかに小さくして全ての電極を0Vにしたところより均一に分散した。   Further, the first electrode 3, the third electrode 5, the fifth electrode 7, the second electrode 4, the fourth electrode 6, and the sixth electrode 7 were set to the same potential, and 20V was applied to one side and -20V was applied alternately to the other. However, the opaque charged electrophoretic particles 15 were uniformly dispersed, and the element was in a light shielding state. Further, when the drive voltage was gradually reduced to make all the electrodes 0 V, the dispersion was more uniform.

このように、常透光部9を、両端が第1基板1及び第2基板2に接するように設けると共に、第1基板1及び第2基板2の少なくとも一方に3つ以上の電極を並設することにより、本実施の形態においては、第1基板1及び第2基板2にそれぞれ6つの電極を並設することにより、不透明帯電泳動粒子15の移動可能な領域を制限することができると共に、不透明帯電泳動粒子15の制御性を向上させることができる。これにより、所望の光量調整が可能となり、この結果、入射された光が散乱されず、良好な像が得られるようになる。   As described above, the normally transparent portion 9 is provided so that both ends thereof are in contact with the first substrate 1 and the second substrate 2, and at least one of the first substrate 1 and the second substrate 2 is provided in parallel. Thus, in the present embodiment, by arranging six electrodes in parallel on the first substrate 1 and the second substrate 2, respectively, it is possible to limit the movable region of the opaque charged migrating particles 15, The controllability of the opaque charged electrophoretic particles 15 can be improved. As a result, a desired light amount can be adjusted. As a result, incident light is not scattered and a good image can be obtained.

なお、第1基板1及び第2基板2は所望の波長の光に対して実質的に透明であればよく、その材質・形状は特に限定しない。例えば材質はガラスの無機物、PETなどの有機物で構成された物でよく、形状は平面でよい。   The first substrate 1 and the second substrate 2 may be substantially transparent to light having a desired wavelength, and the material and shape thereof are not particularly limited. For example, the material may be a glass inorganic material or an organic material such as PET, and the shape may be flat.

間隙支持体13は基板間隔を一定に保てるものであれば良く、その形状は特に限定しない。また、第1基板1と第2基板2を複数の点で支持しても良く、図1及び図2に示すように電気泳動光量調整素子の外周部に配置され、絶縁性液体14の漏洩を防ぐ封止機能を有していても良い。   The gap support 13 is not particularly limited as long as the gap between the substrates can be kept constant. In addition, the first substrate 1 and the second substrate 2 may be supported at a plurality of points. As shown in FIGS. 1 and 2, the first substrate 1 and the second substrate 2 are arranged on the outer peripheral portion of the electrophoretic light amount adjusting element to prevent leakage of the insulating liquid 14. It may have a sealing function to prevent.

絶縁性液体14は所望の波長の光に対して実質的に透明な液体であれば良く、例えばシリコンオイル、イソパラフィンを用いても良い。また、不透明帯電泳動粒子15の帯電及び分散を維持するための添加剤が溶解されていても良い。   The insulating liquid 14 may be any liquid that is substantially transparent to light having a desired wavelength. For example, silicon oil or isoparaffin may be used. Further, an additive for maintaining charging and dispersion of the opaque charged electrophoretic particles 15 may be dissolved.

不透明帯電泳動粒子15は所望の波長の光に対して実質的に不透明な粒子で、絶縁性液体14中で帯電し、分散を維持するものであれば良い。また、形状も特に限定するものではなく、第1基板1と第2基板2間に充填される大きさであれば良い。   The opaque charged electrophoretic particles 15 may be any particles that are substantially opaque to light of a desired wavelength and that are charged in the insulating liquid 14 and maintain dispersion. Further, the shape is not particularly limited as long as the size is filled between the first substrate 1 and the second substrate 2.

ところで、図5は電気泳動光量調整素子を用いた撮像装置の構成を示すものであり、この撮像装置は、電気泳動光量調整素子21、レンズ16及び駆動信号発生装置19を備えたレンズ装置22と、撮像素子17及び画像処理装置18とを備えた撮像部23と、通信信号発生装置20を備えた通信装置24とから構成されている。   FIG. 5 shows the configuration of an image pickup apparatus using an electrophoretic light amount adjusting element. This image pickup apparatus includes an electrophoretic light amount adjusting element 21, a lens 16, and a lens device 22 including a drive signal generating device 19. The image pickup unit 23 includes the image pickup device 17 and the image processing device 18, and the communication device 24 includes the communication signal generation device 20.

そして、このような構成の撮像装置において、電気泳動光量調整素子21及びレンズ16を透過した光は撮像素子17に到達し、この撮像素子17においてA/D変換された後、画像処理装置18により画像処理されて撮像情報となる。そして、この撮像情報は通信装置24の通信信号発生装置20に入力され、不図示の遠隔部に送信される。なお、このように撮像部23と通信装置24とを一体にすることで即時に適切な条件により撮像情報を入手可能となる。   In the imaging apparatus having such a configuration, the light transmitted through the electrophoretic light amount adjusting element 21 and the lens 16 reaches the imaging element 17, and after being A / D converted by the imaging element 17, the image processing apparatus 18 performs the A / D conversion. Image processing is performed to obtain imaging information. The imaging information is input to the communication signal generator 20 of the communication device 24 and transmitted to a remote unit (not shown). It should be noted that imaging information can be obtained immediately under appropriate conditions by integrating the imaging unit 23 and the communication device 24 in this way.

ここで、電気泳動光量調整素子21をレンズ16の光軸上に設置した場合、適切な光学設計が必要となる。そこで、この撮像装置においては、撮像素子17および画像処理装置18を光量測定手段とし、この光量測定手段によって測定された光量に応じて、駆動信号発生装置19を駆動し、電気泳動光量調整素子21を制御するようにしている。   Here, when the electrophoretic light amount adjusting element 21 is installed on the optical axis of the lens 16, an appropriate optical design is required. Therefore, in this image pickup apparatus, the image pickup device 17 and the image processing device 18 are used as the light amount measuring means, and the drive signal generating device 19 is driven according to the light amount measured by the light amount measuring means, and the electrophoretic light amount adjusting element 21. To control.

即ち、本実施の形態においては、不透明帯電泳動粒子15を電気泳動光量調整素子21の一部に集め、もしくは、電気泳動光量調整素子21の常透光部9を除く領域に分散させ、透過する光量を調節するようにしている。なお、不透明帯電泳動粒子15を集める領域は素子の周辺部でもよいし、一部の電極上でも良い。   That is, in the present embodiment, the opaque charged electrophoretic particles 15 are collected in a part of the electrophoretic light amount adjusting element 21 or dispersed and transmitted in a region other than the normally light transmitting portion 9 of the electrophoretic light amount adjusting element 21. The amount of light is adjusted. Note that the region where the opaque charged electrophoretic particles 15 are collected may be in the peripheral portion of the element or on a part of the electrodes.

なお、本実施の形態においては、既述した図2に示すように素子中央に配置された常透光部9の周囲に半径の異なる円形の電極が同心に配置されているが、その他、図6に示すように略円柱状の常透光部9の接線方向と略垂直に電極を配置するようにしても良い。   In the present embodiment, circular electrodes having different radii are arranged concentrically around the normally transparent portion 9 arranged at the center of the element as shown in FIG. 2 described above. As shown in FIG. 6, the electrodes may be arranged substantially perpendicular to the tangential direction of the substantially columnar normally transparent portion 9.

そして、このように電極を配置した場合、不透明帯電泳動粒子15は電極3〜6と実質的に直交方向に泳動するため、不透明帯電泳動粒子15は素子の遠心方向だけでなく円周方向へも移動し、粒子分布の偏りを防ぐことができる。図6の構成では第1電極3、第2電極4、第3電極5、第4電極6からなる電極群が素子開口部の円周方向に繰り返し周期的に配置される。なお、この第1〜第4電極3〜6の常透光部9の接線方向とのなす角度は、70°〜110°が好ましく、さらに80°〜100°がより好ましい。   When the electrodes are arranged in this way, the opaque charged electrophoretic particles 15 migrate in a direction substantially perpendicular to the electrodes 3 to 6, so the opaque charged electrophoretic particles 15 are not only in the centrifugal direction of the element but also in the circumferential direction. It can move and the uneven distribution of particles can be prevented. In the configuration of FIG. 6, an electrode group including the first electrode 3, the second electrode 4, the third electrode 5, and the fourth electrode 6 is repeatedly and periodically arranged in the circumferential direction of the element opening. The angle formed by the tangential direction of the normally transparent portion 9 of the first to fourth electrodes 3 to 6 is preferably 70 ° to 110 °, and more preferably 80 ° to 100 °.

次に、本発明の第2の実施の形態について説明する。   Next, a second embodiment of the present invention will be described.

図7は、本実施の形態に係る電気泳動光量調整素子の概略構成を示す図である。なお、図7において、図1と同一符号は、同一又は相当部分を示している。   FIG. 7 is a diagram showing a schematic configuration of the electrophoretic light amount adjusting element according to the present embodiment. In FIG. 7, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.

本実施の形態では、図7に示すように、常透光部9と異なる領域の一部に遮光部10を設けている。そして、不透明帯電泳動粒子15をこの遮光部10に臨む位置に移動させて電気泳動光量調整素子21を透光状態とし、遮光部10以外の領域に不透明帯電泳動粒子15を移動させ電気泳動光量調整素子21を遮光状態にすることができる。   In the present embodiment, as shown in FIG. 7, a light shielding portion 10 is provided in a part of a region different from the normally light transmitting portion 9. Then, the opaque charged electrophoretic particles 15 are moved to a position facing the light shielding portion 10 to make the electrophoretic light amount adjusting element 21 transparent, and the opaque charged electrophoretic particles 15 are moved to a region other than the light shielding portion 10 to adjust the electrophoretic light amount. The element 21 can be put in a light shielding state.

つまり、透光状態とする場合には、図8の(a)に示すように不透明帯電泳動粒子15を遮光部10に集め、遮光状態とする場合には、図8の(b)に示すように不透明帯電泳動粒子15を遮光部10以外の常透光部9を除く部分に分散させて透過光量を調節するようにしている。   That is, when the light transmitting state is set, the opaque charged electrophoretic particles 15 are collected in the light blocking portion 10 as shown in FIG. 8A, and when the light blocking state is set, the state shown in FIG. Further, the opaque charged electrophoretic particles 15 are dispersed in a portion other than the light-transmitting portion 9 other than the light-shielding portion 10 to adjust the amount of transmitted light.

そして、このように構成することにより、透光状態と遮光状態の透過光量の差がより安定する。また、遮光部10と常透光部9と一定の間隔を空けて配置することにより、不透明帯電泳動粒子15の移動距離を一定にすることができ、この結果、電気泳動光量調整素子21の応答速度を安定にすることができる。   And by comprising in this way, the difference of the transmitted light amount of a light transmission state and a light-shielding state is stabilized more. Further, by disposing the light-shielding part 10 and the normally light-transmitting part 9 at a constant interval, the moving distance of the opaque charged electrophoretic particles 15 can be made constant. As a result, the response of the electrophoretic light quantity adjusting element 21 Speed can be stabilized.

なお、図9は、本実施の形態に係る電気泳動光量調整素子の他の構成を示す図であり、この電気泳動光量調整素子においては、第1〜第6電極3〜8が第1基板1と第2基板2の両方に、かつ交互に配置されている。即ち、第1基板1には第1電極3、第3電極5及び第5電極7が、また第2基板2には第2電極4、第4電極6及び第6電極8が、それぞれ配置されている。さらに、第1基板1に遮光部10が設けられている。なお、この遮光部10は、第1基板1及び第2基板2の両方に設けても良い。   FIG. 9 is a diagram showing another configuration of the electrophoretic light amount adjusting element according to the present embodiment. In this electrophoretic light amount adjusting element, the first to sixth electrodes 3 to 8 are the first substrate 1. And the second substrate 2 are alternately arranged. That is, the first electrode 3, the third electrode 5, and the fifth electrode 7 are arranged on the first substrate 1, and the second electrode 4, the fourth electrode 6, and the sixth electrode 8 are arranged on the second substrate 2, respectively. ing. Further, a light shielding unit 10 is provided on the first substrate 1. The light shielding unit 10 may be provided on both the first substrate 1 and the second substrate 2.

以下、実施例に従って本発明を説明する。   Hereinafter, the present invention will be described according to examples.

(実施例1)
本実施例では、図1に示す断面構成を有すると共に、図2に示すように配置された第1〜第6電極3〜8を備えた電気泳動光量調整素子を以下のように作製し、駆動を行った。なお、作製した素子の大きさは直径5mm、厚さ0.43mm、常透光部の直径は1mmである。
Example 1
In the present embodiment, an electrophoretic light amount adjusting element having the cross-sectional configuration shown in FIG. 1 and including the first to sixth electrodes 3 to 8 arranged as shown in FIG. 2 is manufactured and driven as follows. Went. The size of the manufactured element is 5 mm in diameter, 0.43 mm in thickness, and the diameter of the normally transparent part is 1 mm.

まず、第1基板1および第2基板2として厚さ0.2mmのガラスにITOを成膜し、フォトリソグラフィー及びエッチングにより図2に示す形状にパターニングして第1〜第6電極3〜8を形成し、この後、絶縁層11としてエポキシ樹脂を塗布した。   First, an ITO film is formed on glass having a thickness of 0.2 mm as the first substrate 1 and the second substrate 2, and is patterned into a shape shown in FIG. 2 by photolithography and etching to form the first to sixth electrodes 3-8. After that, an epoxy resin was applied as the insulating layer 11.

次に、第1基板1に間隙支持体13と常透光部9を形成した。なお、本実施例では、間隙支持体13と常透光部9は同じ材質で同様のプロセスにより同時に作製した。即ち、第1基板1に、光感光性エポキシ樹脂を塗布した後、露光及びウェット現像を行うことによって30μmの高さの間隙支持体13と常透光部9を形成した。   Next, the gap support 13 and the normally transparent portion 9 were formed on the first substrate 1. In this example, the gap support 13 and the normally transparent portion 9 were made of the same material and simultaneously by the same process. That is, after the photosensitive epoxy resin was applied to the first substrate 1, exposure and wet development were performed to form the gap support 13 and the normally transparent portion 9 having a height of 30 μm.

次に、このような第1基板1、間隙支持体13及び常透光部9により形成された空間内に絶縁性液体14及び不透明帯電泳動粒子15を充填した。なお、本実施例では、絶縁性液体14としてイソパラフィンを使用し、不透明帯電泳動粒子15としてポリスチレンとカーボンの混合物で、平均粒径4μm位のものを使用した。このとき、イソパラフィン中での不透明帯電泳動粒子15は正帯電極性を示した。   Next, an insulating liquid 14 and opaque charged electrophoretic particles 15 were filled in the space formed by the first substrate 1, the gap support 13, and the normally transparent portion 9. In this example, isoparaffin was used as the insulating liquid 14 and a mixture of polystyrene and carbon having an average particle diameter of about 4 μm was used as the opaque charged electrophoretic particles 15. At this time, the opaque charged electrophoretic particles 15 in isoparaffin showed a positively charged polarity.

次に、第2基板2を位置合わせを行ないながら第1基板1上に置き、素子周辺部を接着剤により張り合わせた。   Next, the second substrate 2 was placed on the first substrate 1 while being aligned, and the peripheral portion of the element was bonded with an adhesive.

そして、このように作成された電気泳動光量調整素子21に、図5に示す駆動信号発生装置19を接続し、この駆動信号発生装置19により図4に示す駆動波形を素子に繰り返し印加し、駆動させた。   Then, the drive signal generator 19 shown in FIG. 5 is connected to the electrophoretic light amount adjustment element 21 created in this way, and the drive waveform shown in FIG. I let you.

即ち、図4において、Ch1に示す駆動波形を第1電極3に、Ch2に示す駆動波形を第2電極4に、Ch3に示す駆動波形を第3電極5に、Ch4に示す駆動波形を第4電極6に、Ch5に示す駆動波形を第5電極7に、Ch6に示す駆動波形を第6電極8に印加した。この結果、素子全体に分散していた不透明帯電泳動粒子15は素子周辺に搬送され透光状態となった。   That is, in FIG. 4, the drive waveform indicated by Ch1 is the first electrode 3, the drive waveform indicated by Ch2 is the second electrode 4, the drive waveform indicated by Ch3 is the third electrode 5, and the drive waveform indicated by Ch4 is the fourth. The drive waveform shown as Ch5 was applied to the fifth electrode 7 and the drive waveform shown as Ch6 was applied to the sixth electrode 8. As a result, the opaque charged electrophoretic particles 15 dispersed throughout the device were transported to the periphery of the device and became translucent.

また、第1電極3と第3電極5と第5電極7、第2電極4と第4電極6と第6電極7をそれぞれ同電位として、一方に20V、他方に−20Vを交互に印加したところ、不透明帯電泳動粒子15は均一に分散し、素子は遮光状態となった。さらに、駆動電圧を緩やかに小さくして全ての電極を0Vにしたところ、より均一に分散した。   Further, the first electrode 3, the third electrode 5, the fifth electrode 7, the second electrode 4, the fourth electrode 6, and the sixth electrode 7 were set to the same potential, and 20V was applied to one side and -20V was applied alternately to the other. However, the opaque charged electrophoretic particles 15 were uniformly dispersed, and the element was in a light shielding state. Further, when the drive voltage was gradually reduced to set all the electrodes to 0 V, they were more uniformly dispersed.

さらに、本実施例に係る電気泳動光量調整素子に接続されている駆動信号発生装置19に不図示の光量測定装置(例えば、図5に示す撮像装置17と画像処理装置18)を接続し、その光量測定装置の出力に応じて駆動電圧を選択して印加したところ、電気泳動光量調整素子21を透過する光量に応じて光量を調整できた。   Further, a light amount measuring device (not shown) (for example, the imaging device 17 and the image processing device 18 shown in FIG. 5) is connected to the drive signal generating device 19 connected to the electrophoretic light amount adjusting element according to the present embodiment, When the drive voltage was selected and applied according to the output of the light quantity measuring device, the light quantity could be adjusted according to the light quantity transmitted through the electrophoretic light quantity adjusting element 21.

そして、この電気泳動光量調整素子21を撮像装置に取り付けて駆動させたところ、明所から暗所まで良好な画像を得ることができた。さらに、撮像部23に通信装置24を取り付けたところ、遠隔地から良好な画像を得ることができた。   When the electrophoretic light amount adjusting element 21 was attached to the imaging device and driven, a good image could be obtained from a bright place to a dark place. Furthermore, when the communication device 24 was attached to the imaging unit 23, a good image could be obtained from a remote place.

(実施例2)
本実施例では、図7に示す断面構成を有すると共に、略円柱状の常透光部9の接線方向と略垂直に電極を配置した(図6参照)電気泳動光量調整素子を以下のように作製し、駆動を行った。なお、作製した素子の大きさは直径5mm、厚さ0.43mm、遮光部10の内側の直径は3mm、常透光部9の直径は1mmである。
(Example 2)
In the present embodiment, the electrophoretic light amount adjusting element having the cross-sectional configuration shown in FIG. 7 and having electrodes arranged substantially perpendicular to the tangential direction of the substantially columnar normally transparent portion 9 (see FIG. 6) is as follows. Fabricated and driven. The size of the manufactured element is 5 mm in diameter, 0.43 mm in thickness, the inner diameter of the light shielding part 10 is 3 mm, and the diameter of the normally transparent part 9 is 1 mm.

まず、第1基板1として厚さ0.2mmのガラスにITOを成膜し、フォトリソグラフィー及びエッチングにより図に示す形状にパターニングして第1〜第6電極3〜8を形成し、この後、絶縁層11としてエポキシ樹脂を塗布した。   First, an ITO film is formed on glass having a thickness of 0.2 mm as the first substrate 1 and is patterned into a shape shown in the drawing by photolithography and etching to form first to sixth electrodes 3 to 8, and then An epoxy resin was applied as the insulating layer 11.

次に、この第1基板1に間隙支持体13と常透光部9を形成した。なお、本実施例では、間隙支持体13と常透光部9は同じ材質で同様のプロセスにより同時に作製した。即ち、第1基板1に、光感光性エポキシ樹脂を塗布した後、露光及びウェット現像を行うことによって30μmの高さの間隙支持体13と常透光部9を形成した。   Next, the gap support 13 and the normally transparent portion 9 were formed on the first substrate 1. In this example, the gap support 13 and the normally transparent portion 9 were made of the same material and simultaneously by the same process. That is, after the photosensitive epoxy resin was applied to the first substrate 1, exposure and wet development were performed to form the gap support 13 and the normally transparent portion 9 having a height of 30 μm.

次に、このような第1基板1、間隙支持体13及び常透光部9により形成された空間内に絶縁性液体14及び不透明帯電泳動粒子15を充填した。なお、本実施例では、絶縁性液体14としてイソパラフィンを使用し、不透明帯電泳動粒子15としてポリスチレンとカーボンの混合物で、平均粒径4μm位のものを使用した。このとき、イソパラフィン中での不透明帯電泳動粒子15は正帯電極性を示した。   Next, an insulating liquid 14 and opaque charged electrophoretic particles 15 were filled in the space formed by the first substrate 1, the gap support 13, and the normally transparent portion 9. In this example, isoparaffin was used as the insulating liquid 14 and a mixture of polystyrene and carbon having an average particle diameter of about 4 μm was used as the opaque charged electrophoretic particles 15. At this time, the opaque charged electrophoretic particles 15 in isoparaffin showed a positively charged polarity.

次に、第2基板2として厚さ0.2mmで遮光部10を着色したガラス基板を第1基板1上に置き、素子周辺部を接着剤により張り合わせた。   Next, a glass substrate having a thickness of 0.2 mm and colored light-shielding portion 10 as the second substrate 2 was placed on the first substrate 1, and the peripheral portion of the element was bonded with an adhesive.

そして、このように作成された電気泳動光量調整素子21に、図5に示す駆動信号発生装置19を接続し、この駆動信号発生装置19により図4に示す駆動波形を素子に繰り返し印加し、駆動させた。   Then, the drive signal generator 19 shown in FIG. 5 is connected to the electrophoretic light amount adjustment element 21 created in this way, and the drive waveform shown in FIG. I let you.

即ち、図4において、Ch1に示す駆動波形を第1電極3に、Ch2に示す駆動波形を第2電極4に、Ch3に示す駆動波形を第3電極5に、Ch4に示す駆動波形を第4電極6に、Ch5に示す駆動波形を第5電極7に、Ch6に示す駆動波形を第6電極に8印加した。この結果、素子全体に分散していた不透明帯電泳動粒子15は素子周辺の遮光部10に搬送され透光状態となった。   That is, in FIG. 4, the drive waveform indicated by Ch1 is the first electrode 3, the drive waveform indicated by Ch2 is the second electrode 4, the drive waveform indicated by Ch3 is the third electrode 5, and the drive waveform indicated by Ch4 is the fourth. The drive waveform shown as Ch5 was applied to the fifth electrode 7 and the drive waveform shown as Ch6 was applied to the sixth electrode 8 to the electrode 6. As a result, the non-transparent charged electrophoretic particles 15 dispersed throughout the device were transported to the light shielding portion 10 around the device and became translucent.

次に、図10に示す駆動波形を素子に繰り返し印加し、駆動させた。即ち、図10において、Ch1に示す駆動波形を第1電極3に、Ch2に示す駆動波形を第2電極4に、Ch3に示す駆動波形を第3電極5に、Ch4に示す駆動波形を第4電極6に、Ch5に示す駆動波形を第5電極7に、Ch6に示す駆動波形を第6電極8に印加した。この結果、遮光部に分布していた不透明帯電泳動粒子15は常透光部9周辺の、常透光部9と遮光部10を除く領域に搬送され遮光状態となった。   Next, the drive waveform shown in FIG. 10 was repeatedly applied to the element to drive it. That is, in FIG. 10, the drive waveform indicated by Ch1 is the first electrode 3, the drive waveform indicated by Ch2 is the second electrode 4, the drive waveform indicated by Ch3 is the third electrode 5, and the drive waveform indicated by Ch4 is the fourth. The drive waveform shown as Ch5 was applied to the fifth electrode 7 and the drive waveform shown as Ch6 was applied to the sixth electrode 8. As a result, the opaque charged electrophoretic particles 15 distributed in the light shielding portion were transported to a region around the normal light transmitting portion 9 excluding the normal light transmitting portion 9 and the light shielding portion 10 to be in a light shielding state.

さらに、本実施例に係る電気泳動光量調整素子に接続されている駆動信号発生装置19に不図示の光量測定装置(例えば、図5に示す撮像装置17と画像処理装置18)を接続し、その光量測定装置の出力に応じて駆動電圧を選択して印加したところ、電気泳動光量調整素子21を透過する光量に応じて光量を調整できた。また、透過光量の最大値と最小値の比は9倍であった。   Further, a light amount measuring device (not shown) (for example, the imaging device 17 and the image processing device 18 shown in FIG. 5) is connected to the drive signal generating device 19 connected to the electrophoretic light amount adjusting element according to the present embodiment, When the drive voltage was selected and applied according to the output of the light quantity measuring device, the light quantity could be adjusted according to the light quantity transmitted through the electrophoretic light quantity adjusting element 21. The ratio between the maximum value and the minimum value of the amount of transmitted light was 9 times.

また、この電気泳動光量調整素子21を撮像装置23に取り付けて駆動させたところ、明所から暗所まで良好な画像を得ることができた。さらに、撮像部23に通信装置24を取り付けたところ、遠隔地から良好な画像を得ることができた。   Further, when the electrophoretic light quantity adjusting element 21 was attached to the imaging device 23 and driven, a good image could be obtained from a bright place to a dark place. Furthermore, when the communication device 24 was attached to the imaging unit 23, a good image could be obtained from a remote place.

本発明の第1の実施の形態に係る電気泳動光量調整素子の概略構成を示す図。The figure which shows schematic structure of the electrophoretic light quantity adjustment element which concerns on the 1st Embodiment of this invention. 上記電気泳動光量調整素子の電極配置の一例を示す図。The figure which shows an example of electrode arrangement | positioning of the said electrophoretic light quantity adjustment element. 上記電気泳動光量調整素子における不透明帯電泳動粒子を第1基板に沿って分散させたときの状態を示す図。The figure which shows a state when the opaque charged electrophoretic particle in the said electrophoretic light quantity adjustment element is disperse | distributed along the 1st board | substrate. 上記電気泳動光量調整素子に印加する電圧波形を示す図。The figure which shows the voltage waveform applied to the said electrophoretic light quantity adjustment element. 上記電気泳動光量調整素子を備えた撮像装置の概略構成を示す図。The figure which shows schematic structure of the imaging device provided with the said electrophoretic light quantity adjustment element. 上記電気泳動光量調整素子の電極配置の他の例を示す図。The figure which shows the other example of electrode arrangement | positioning of the said electrophoretic light quantity adjustment element. 本発明の第2の実施の形態に係る電気泳動光量調整素子の概略構成を示す図。The figure which shows schematic structure of the electrophoretic light quantity adjustment element which concerns on the 2nd Embodiment of this invention. 上記電気泳動光量調整素子の光量調整動作を説明する図。The figure explaining the light quantity adjustment operation | movement of the said electrophoretic light quantity adjustment element. 上記電気泳動光量調整素子の他の構成を示す図。The figure which shows the other structure of the said electrophoretic light quantity adjustment element. 上記電気泳動光量調整素子に印加する電圧波形を示す図。The figure which shows the voltage waveform applied to the said electrophoretic light quantity adjustment element.

符号の説明Explanation of symbols

1 第1基板
2 第2基板
3 第1電極
4 第2電極
5 第3電極
6 第4電極
7 第5電極
8 第6電極
9 常透光部
10 遮光部
11 絶縁層
12 不透明層
13 間隙支持体
14 絶縁性液体
15 不透明帯電泳動粒子
16 レンズ
17 撮像素子
18 画像処理装置
19 駆動信号発生装置
20 通信信号発生装置
21 電気泳動光量調整素子
22 レンズ装置
23 撮像部
24 通信装置
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 2nd board | substrate 3 1st electrode 4 2nd electrode 5 3rd electrode 6 4th electrode 7 5th electrode 8 6th electrode 9 Normal light transmission part 10 Light-shielding part 11 Insulating layer 12 Opaque layer 13 Gap support body 14 Insulating liquid 15 Opaque charged electrophoretic particles 16 Lens 17 Image sensor 18 Image processing device 19 Drive signal generator 20 Communication signal generator 21 Electrophoretic light quantity adjustment element 22 Lens device 23 Image pickup unit 24 Communication device

Claims (7)

透明な第1基板と、前記第1基板に対向して配置される透明な第2基板と、前記第1基板及び前記第2基板の間に充填される絶縁性透明液体と、前記絶縁性透明液体中に分散される複数の不透明帯電泳動粒子とを備えた電気泳動光量調整素子において、
前記第1基板及び前記第2基板に両端が接するように設けられると共に、光が透過する柱状の透光部と、
前記第1基板及び前記第2基板の少なくとも一方に並設された3つ以上の電極と、
を備えることを特徴とする電気泳動光量調整素子。
A transparent first substrate, a transparent second substrate disposed opposite to the first substrate, an insulating transparent liquid filled between the first substrate and the second substrate, and the insulating transparent In an electrophoretic light amount adjusting element comprising a plurality of opaque charged electrophoretic particles dispersed in a liquid,
A columnar light-transmitting portion that is provided so that both ends thereof are in contact with the first substrate and the second substrate, and through which light passes,
Three or more electrodes juxtaposed on at least one of the first substrate and the second substrate;
An electrophoretic light amount adjusting element comprising:
前記電極が同心状に配置され、前記同心状に配置された電極の中心に前記透光部を配置したことを特徴とする請求項1記載の電気泳動光量調整素子   2. The electrophoretic light amount adjusting element according to claim 1, wherein the electrodes are arranged concentrically, and the translucent part is arranged at the center of the concentrically arranged electrodes. 前記透光部が略円柱状の形状を有し、前記電極が該透光部の接線方向に対して略垂直に配置されていることを特徴とする請求項1記載の電気泳動光量調整素子。   The electrophoretic light amount adjusting element according to claim 1, wherein the translucent portion has a substantially cylindrical shape, and the electrode is disposed substantially perpendicular to a tangential direction of the translucent portion. 前記電極間の間隔が前記第1基板及び第2基板の間隔の半分以上、4倍以下であることを特徴とする請求項1乃至3のいずれか1項に記載の電気泳動光量調整素子。   4. The electrophoretic light amount adjusting element according to claim 1, wherein an interval between the electrodes is not less than half and not more than four times an interval between the first substrate and the second substrate. 5. 前記第1基板及び第2基板の少なくとも一方の基板の前記透光部から所定距離離れた位置に遮光部を設け、前記不透明帯電泳動粒子を前記遮光部に臨む位置に移動させて透光状態とすることを特徴とする請求項1乃至4のいずれか1項に記載の電気泳動光量調整素子。   A light shielding portion is provided at a position away from the light transmitting portion of at least one of the first substrate and the second substrate by a predetermined distance, and the opaque charged electrophoretic particles are moved to a position facing the light shielding portion to obtain a light transmitting state. The electrophoretic light amount adjustment element according to claim 1, wherein 前記透光部が設けられている領域には前記電極を配置しないことを特徴とする請求項1乃至5のいずれか1項に記載の電気泳動光量調整素子。   The electrophoretic light amount adjusting element according to claim 1, wherein the electrode is not disposed in a region where the translucent portion is provided. レンズと、請求項1乃至6のいずれか1項に記載の電気泳動光量調整素子とを備えたことを特徴とする撮像装置。
An imaging apparatus comprising: a lens; and the electrophoretic light amount adjusting element according to claim 1.
JP2005014512A 2005-01-21 2005-01-21 Electrophoresis light intensity adjusting element and imaging apparatus Pending JP2006201603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005014512A JP2006201603A (en) 2005-01-21 2005-01-21 Electrophoresis light intensity adjusting element and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005014512A JP2006201603A (en) 2005-01-21 2005-01-21 Electrophoresis light intensity adjusting element and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2006201603A true JP2006201603A (en) 2006-08-03

Family

ID=36959634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005014512A Pending JP2006201603A (en) 2005-01-21 2005-01-21 Electrophoresis light intensity adjusting element and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2006201603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274473B2 (en) 2008-10-08 2012-09-25 Samsung Electronics Co., Ltd Electro-optic display
US9024933B2 (en) 2011-08-31 2015-05-05 Seiko Epson Corporation Electronic paper and electronic paper recording system using light receiving elements
CN113805400A (en) * 2020-05-29 2021-12-17 华为技术有限公司 Liquid diaphragm, electronic device, method and device for driving liquid diaphragm

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274473B2 (en) 2008-10-08 2012-09-25 Samsung Electronics Co., Ltd Electro-optic display
US9024933B2 (en) 2011-08-31 2015-05-05 Seiko Epson Corporation Electronic paper and electronic paper recording system using light receiving elements
CN113805400A (en) * 2020-05-29 2021-12-17 华为技术有限公司 Liquid diaphragm, electronic device, method and device for driving liquid diaphragm
CN113805400B (en) * 2020-05-29 2022-07-26 华为技术有限公司 Liquid diaphragm, electronic device, and method and device for driving liquid diaphragm

Similar Documents

Publication Publication Date Title
US9904080B2 (en) Optical element, and display device, electronic apparatus, lighting device using the same
JP2009163205A (en) Exposure apparatus and exposure method for photosensitive film
JP2005003964A (en) Image display medium, image display device, and image display method
CN101446654B (en) Optical element
US8421990B2 (en) Liquid crystal lens
KR20110059560A (en) Optical element, optical part with anti-reflective function, and master
JP2006201603A (en) Electrophoresis light intensity adjusting element and imaging apparatus
JP2009204685A (en) Liquid optical element
JP2009244669A (en) Display panel and manufacturing method thereof
JP2010127976A (en) Variable focus lens
TWI465835B (en) Aperture and camera module using same
JP2007041273A (en) Electrophoretic light quantity adjusting element and imaging device using the same
JP2004061831A (en) Electrophoretic light quantity adjusting element
JP2004061833A (en) Electrophoretic light quantity control element, its driving method and device using the element
KR20100048697A (en) Varifocal lens and imaging apparatus using the same
WO2012142845A1 (en) Mems light valve, display device and forming method thereof
WO2019041594A1 (en) Display substrate, display apparatus, method of controlling a display apparatus, and method of fabricating display substrate
JP2004061840A (en) Electrophoretic light adjusting device, its driving method and apparatus using same
JP2007047363A (en) Electrophoresis light quantity adjusting element, its driving method and imaging apparatus using the same
KR100738067B1 (en) Optical shutter and light scanning unit employing the same
JP2004012906A (en) Light control element, its driving method and image pickup device using the light control element
JP2001356314A (en) Exposure device
JP2005212185A (en) Exposure device and electrophotographic device using the exposure device
JP4425779B2 (en) Exposure equipment
JPH1069143A (en) Image forming device