JP2004061833A - Electrophoretic light quantity control element, its driving method and device using the element - Google Patents

Electrophoretic light quantity control element, its driving method and device using the element Download PDF

Info

Publication number
JP2004061833A
JP2004061833A JP2002219704A JP2002219704A JP2004061833A JP 2004061833 A JP2004061833 A JP 2004061833A JP 2002219704 A JP2002219704 A JP 2002219704A JP 2002219704 A JP2002219704 A JP 2002219704A JP 2004061833 A JP2004061833 A JP 2004061833A
Authority
JP
Japan
Prior art keywords
substrate
electrophoretic
electrophoretic light
light quantity
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002219704A
Other languages
Japanese (ja)
Inventor
Tsutomu Ikeda
池田 勉
Yoshinori Uno
宇野 喜徳
Hiroshi Matsuda
松田 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002219704A priority Critical patent/JP2004061833A/en
Publication of JP2004061833A publication Critical patent/JP2004061833A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophoretic light quantity control element which is used for a light quantity control device of an image pickup device by obtaining a physical shutter instead of a mechanical shutter by using an electrophoretic element. <P>SOLUTION: The electrophoretic element including opaque electrophoretic particles is formed and put onto the optical axis of a lens or an imaging device, then a function for electrically controlling light quantity entering into the imaging device or the like is obtained by using the light shielding effect of the particles, thereby obtaining the image pickup device having large dynamic range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はレンズの光軸上に備え、光量に応じ透過率が変化する光量調整素子、電気泳動光量調整モジュール、その駆動方法及びこれを用いた装置に関するものである。特に撮像素子に利用して、入射光量を調整して前記撮像素子に入力する光量を調整することにより、撮像装置としてのダイナミックレンジを拡大するための光量調整装置に関する。
【0002】
【従来の技術】
透過率の異なるフィルタを選択的に光軸上に出し入れして、自動的に光量調整を行うビデオ、カメラ用交換レンズの光量調整装置が特開平05−040293に開示されている。係る発明は、透過率の異なる複数のフィルタを保持したフィルタ保持体を鏡筒内に設け、この鏡筒を組み付けたカメラ本体からの情報により前記フィルタ保持体を駆動して適正な光量が得られるように光軸上のフィルタを選択交換する駆動源とを備え、カメラ本体の電源が投入されて撮影待機状態になるときはフィルタ本体を駆動して光量調整動作を行い、カメラ本体が録画状態になったときは光量調整動作を規制する構成とした光量調整装置である。
【0003】
また、電気鍍金を利用して光量調節を行う電気化学的調光素子が、特開平10−274790、特開2001−051307、同2001−05108、同2001−059980に記載されている。係る発明は、光透過状態にある銀塩を含む電解液に透明電極を介して電圧を印加し、可視光域において均等な遮光が可能な銀を透明電極上に可逆的に析出・溶解せしめることにより光量調整を行う電気光学素子である。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平05−040293で開示された機械的な光量調整装置は、複数のフィルタとこれらを選択交換するためのアクチュエーターを保持することから小型化が困難である。特に近年のCCD(Charge Coupled Device)を用いた撮像装置は小型化が進み、従来の機械的光変調素子を利用すると、システム全体の小型化に限界が生ずる。また、フィルタによる透過率が不連続に変化するため、動画などの撮影中の切替が困難である。もしくは切り替えた場合に不自然な画像となる懸念がある。
【0005】
特開平10−274790等で開示された電気化学的調光素子は、上記機械的調光素子と異なり、アクチュエーターを必要としないので、小型化が可能である。しかし、鍍金量即ち光学変調量を制御するために、鍍金に直接関わる一対の電極(作用電極と対極)に加えて、これらの電位を正確に検知するための参照電極が必要となり、素子の構成が複雑になるとともに、その駆動方法も複雑になるという問題を有する。
【0006】
【課題を解決するための手段】
本発明者は、以上述べたように問題点を解析し、上記の問題は透過光量を無段階で変化できる素子を1つ備えることで改善できることを見出した。そこで、本発明の目的は、上記の従来技術の問題点を改善し、不透明帯電泳動粒子を電気信号で移動させて透過光量状態を変化させる電気泳動光量調整素子及びその駆動方法を提供することにある。
【0007】
本発明の第一は、実質的に透明な第一基板と、該第一基板に対向して配置される実質的に透明な第二基板と、該第一基板と該第二基板の間隙を所定量に保つための間隙支持体と、該第一基板及び該第二基板間に充填された透明絶縁性液体と、該透明絶縁性液体中に分散された複数の不透明帯電泳動粒子と、該第一基板と該第二基板の両方もしくはどちらか一方の対向面上にそれぞれ独立の電位を発生させることが可能な三つ以上の電極が形成されている電気泳動光量調整素子である。
【0008】
本発明の第2は、第1の発明の電気泳動光量素子と該電気泳動光量素子の駆動手段と光量検出手段と該検出手段の出力を駆動回路にフィードバックさせる回路を少なくとも備えた電気泳動光量調整モジュールである。
【0009】
本発明の第3は、実質的に透明な第一基板と、該第一基板に対向して配置される実質的に透明な第二基板と、該第一基板と該第二基板の間隙を所定量に保つための間隙支持体と、該第一基板及び該第二基板間に充填された透明絶縁性液体と、該透明絶縁性液体中に分散された複数の不透明帯電泳動粒子と、該第一基板と該第二基板の両方もしくはどちらか一方の対向面上にそれぞれ独立の電位を発生させることが可能な三つ以上の電極か形成された電気泳動光量調整素子であって、該電極に印加する電位を電極の並び方向に順次変化させることにより該不透明帯電泳動粒子を電極間の電位変化方向に移動させて透光状態を調節する電気泳動光量調整素子の駆動方法である。
【0010】
本発明の第4は、本発明の電気泳動光量調整素子、或いは電気泳動光量調整モジュールを用いたレンズ装置、撮像モジュール、および撮像装置である。
【0011】
【発明の実施の形態】
以下、本発明の実施態様について説明する。
【0012】
図1に本発明の代表的な断面構成図を、図2にその平面図を示す。
【0013】
第一基板1上には複数の独立に電位を変位可能な透明電極2が配置されており、間隙支持体3を挟んで第二基板4が配置されている。第一基板1と第二基板4間には透明な絶縁性液体5が充填され、その絶縁性液体5中に不透明帯電泳動粒子6が分散されている。
【0014】
透明電極2の平面形状は環状でその一部に引き出し配線が形成され、これらは同心円上に配置される。ここでは、ひき出し配線と電極を同一面内に形成したために環の一部が開いた状態となっているが、閉じた環に対してコンタクトホールを形成して引き出し配線を形成してもよい。
【0015】
ここで、図3を用いて駆動方法を説明する。帯電泳動粒子には、ここでは正に帯電したものを使用した例を示す。
【0016】
図3−aは、基板1周辺部の電極2に負の電圧を印加して、不透明帯電泳動粒子6を遮光部の下に配置された基板1周辺部に集め、中央部が光透過状態にある状態を示している。次にこの素子を光透過状態から遮光状態に移行させるには、最も周辺の電極2に正の電圧を印加して、その他の電極2に負の電圧を印加する。これにより、不透明帯電泳動粒子6は正の電圧を印加された最周辺電極上で、基板1中心方向へと弾かれる(図3−b)。次に、最周辺電極の隣に位置する電極2に正の電圧を印加して、不透明帯電泳動粒子6をさらに中心方向へと移動させる。この不透明帯電粒子6の分散量は、素子中央部の透明領域を遮光するのに十分な量を分散させておく。これを繰り返すことにより、不透明帯電泳動粒子6を中央部に移動することによって本素子を遮光状態に移行させることができる(図3−c)。
【0017】
遮光状態から透光状態へは、逆極性の電圧を同様に印加していけばよい。この電圧印加は、1回で行ってもよく、また繰り返し周期的に行ってもよい。駆動電圧は、高いほどもれなく粒子を移動させることができるが、低電圧での駆動であっても、繰り返し周期的に電圧を印加することにより確実に移動させることができる。また、電圧印加の電圧値或いは繰り返し回数によって粒子の移動を一部のみ行うことができ、光透過率を中間状態に制御することが可能となる。
【0018】
本発明の電気泳動光量調整素子の構成をさらに詳細に述べる。図4に他の本発明の断面構成図を示す。
【0019】
電極2は、第1基板1上又は第2基板4上、或いは両基板上に形成されていてもよい。電極数は3つ以上ならいくらでも良く、電極形状は、環状(図2)、帯状(図5)等、特に制限はない。
【0020】
第1基板1及び第2基板4の両面に電極2を形成する場合、同一形状でなくてもよい。また、図4−(a)に示したように一方の基板の電極位置と他方の電極位置をずらして光の入射軸に対して電極層の重なり或いは抜けをなくした構成をとることにより、透光時の電極による光吸収の面内不均一を防止できる。
【0021】
透明電極2の幅は不透明帯電泳動粒子6の搬送が可能であればいくらでもよいが、環状の場合図4−(b)に示したように素子中心部に向かって環状電極の太さを細くしていくほうが、より光透過率の制御が容易となり好ましい。
【0022】
電気泳動調光素子の一部に不透明な遮光部7を備えてもよい。遮光部7の構成は特に限定しない。一部が透明で一部が不透明な基板もしくは不透明な基板に穴をあけたものを第一基板1もしくは第二基板4の上に設けてもよいし、第一基板1もしくは第二基板4を不透明に着色しても良い。または一部が不透明な基板を第一基板1もしくは第二基板4に用いても良い。または、不透明の電極材料で電極を作成し遮光部7としても良い。遮光領域も特に限定しない。素子中央でもよいし、周辺部分でも良い。一部を不透明材料で作成した電極を遮光部分としても良い。
【0023】
第一基板1及び第二基板4用の材料は光透過性の透明物質が良く、ガラス、石英等の透明無機材料、或いはポリエチレンテレフタレート(PET)等の有機材料など透明性の高い材料を使用することができる。
【0024】
電極材料は、透明な電極材料を使用する。例えば液晶表示装置等で使用されているITO電極、或いは有機導電性材料も使用可能である。
【0025】
電極表面は透明絶縁層を形成しておくのが好ましい。材料としては、シリカ、アルミナ等の無機透明絶縁層、或いはアクリル樹脂等の透明有機膜を使用することが可能である。
【0026】
不透明耐電粒子を分散する透明絶縁性液体としては、透明性が高い絶縁性の液体を使用することができる。イソパラフィン、シリコーンオイル、トルエン、キシレン等を使用することができる。不透明帯電泳動粒子には、遮光可能で電気泳動可能な顔料或いは、染色された樹脂等を使用することができる。また粒子に安定した帯電を付与するために、絶縁性液体中に荷電制御剤を添加してもよい。
【0027】
上記電気泳動光量調整素子と素子の各電極に所望の電圧を印加する駆動回路と素子を通過する光量を測定する光量測定手段を少なくとも備えることにより電気泳動光量調整モジュールを得ることができる。光量測定手段はどのようなものでも良い。例えば電荷結合素子などの撮像素子を光量測定手段に用いて、その出力に依存して適切な透過率になるように駆動回路により電気泳動光量調整素子を制御すればよい。またこの電気泳動光量調整素子の適用方法は特に限定しないが、レンズ装置、撮像モジュール、および撮像装置などに適用するのは良い適用方法である。
【0028】
【実施例】
以下、実施例に従って本発明を説明する。
【0029】
(実施例1)
本実施例では、図1及び図2に示した構成の素子を作製した。作製した素子の大きさは直径1mm、厚さ0.53mmである。まず、第一基板1として厚さ0.2mmのガラス基板にITOを成膜し、フォトリソグラフィー及びエッチングにより図に示す形状に透明電極をパターニングした。続いて、絶縁層8としてSiOを200nm厚成膜した。この上に、間隙支持体3を形成した。間隙支持体3は、30μmの高さとした。形成された空間内に絶縁性液体5及び不透明帯電泳動粒子6を充填した。絶縁性液体5としては、イソパラフィンを使用した。不透明帯電泳動粒子6としては、ポリスチレンとカーボンの混合物で、平均粒径1μm程度のものを使用した。イソパラフィン中での不透明帯電泳動粒子6は正帯電極性を示した。次に、第2基板4として遮光層7を形成した厚さ0.2mmのガラス基板を第1基板1上に置き、素子周辺部を接着剤により張り合わせた。
【0030】
これに駆動回路を接続して駆動を行った。まず素子中心の電極に20Vの電圧を印加し、それ以外の電極を0Vとした。続いて、素子中心部の電極から周辺部に向かって順次電極に20Vの電圧を印加し、遮光層形成部以外の電極にすべて20Vを印加した。これにより、帯電泳動粒子は、素子周辺部の遮光層形成部に集められ、素子開口部は透光状態となった。
【0031】
次に、素子最周辺部の電極を0Vに、それ以外の電極には−20Vの電圧を印加した。続いて、素子周辺部の電極から中心部に向かって順次電極を0Vとしていき、泳動粒子を遮光層形成部から中心部へと移動させた。これにより、帯電粒子は電極と反発しあい、素子中央部に移動し、素子開口部を遮光状態とすることができた。
【0032】
次に、図6に示すように、この素子に光量測定手段を接続し、その光量測定手段の出力に依存して、上記駆動電圧を選択して印加したところ、電気泳動光量調整素子を透過する光量を制御することができた。この調整は、図7のようなレンズ光学系を有した撮像素子に応用したときには、周囲光の強度によって撮像中であっても光量を適宜可変できるために、機械式シャッターなどと異なり、画像に連続性が得られる。
【0033】
よって撮像素子に入射する光量を電気的に制御できて、明所から暗所まで良好な画像を得ることができた。
【0034】
(実施例2)
実施例1と同様な素子を作製し、これに駆動回路を接続して駆動を行った。
【0035】
まず素子中心の電極に10Vの電圧を印加し、それ以外の電極を0Vとした。
【0036】
続いて、素子中心部の電極から周辺部に向かって順次電極に10Vの電圧を印加し、遮光層形成部以外の電極にすべて10Vを印加した。次に、再度素子中心の電極に10Vの電圧を印加し、それ以外の電極を0Vとした。続いて、素子中心部の電極から周辺部に向かって順次電極に10Vの電圧を印加し、遮光層形成部以外の電極にすべて10Vを印加した。この操作を合計3回行った。
【0037】
これにより、帯電泳動粒子は、素子周辺部の遮光層形成部に集められた。これにより、素子中央部は透光状態となった。
【0038】
次に、素子最周辺部の電極を0Vにそれ以外の電極に−10Vの電圧を印加した。続いて、素子周辺部の電極から中心部に向かって順次電極を0Vとしていった。この操作も同様に合計3回行った。以上の操作により、泳動粒子を遮光層形成部から中心部へと移動させた。これにより、素子を遮光状態とすることができた。
【0039】
次に、図6にしめすようにこの素子61に光量測定手段62を接続し、その光量測定手段62の出力に依存して上記駆動電圧を選択して印加した。このような機構により、周囲光の強弱によって、電気泳動光量調整素子を透過する光量を制御することができる。
【0040】
また、本素子を図7に示すようなレンズ系を備えた撮像装置に取り付けて駆動させたところ、明所から暗所まで良好な画像を得ることができた。
【0041】
(実施例3)
本実施例では、図4−(a)、(b)に示す素子を実施例1と同様な方法で作製した。
【0042】
これらの素子に駆動回路23、光量測定手段22を接続し、その光量測定手段の出力に依存して上記駆動電圧を選択して印加したところ、電気泳動光量調整素子21を透過する光量を制御することができた。
【0043】
また、本素子を撮像モジュールに取り付けて駆動した。この様子を図7に示す。電気泳動光量調整素子はレンズなどの光学部品の光軸上に配置すれば配置に関して特に限定しないが、レンズ装置の絞り位置に対応した場所(図7−a)もしくはレンズの前面(図7−b)に配置する構成は好ましい構成例である。レンズ装置を構成するレンズの枚数は特に限定しない。複数枚で構成しても良いし、1枚でもよい。少なくとも撮像素子の前に置き、撮像素子の光量を調整できて、かつ結像面で所望の像が得られればよい。
【0044】
本発明の電気泳動光量調整素子を利用した撮像装置は、明所から暗所まで良好な画像を得ることができた。
【0045】
【発明の効果】
以上、詳細に述べたように、本発明によって次のような効果が得られた。
【0046】
第一に、一つの素子で透過率が変化する電気泳動光量調整素子を提供した。これによりこれまで小型化が困難であったレンズ装置、撮像モジュール、撮像装置を大幅に小型化できた。特に、極く薄型に作製できるので、携帯電話機用の超小型CCDカメラなどへの組み込みが可能となった。第二に、無段階で透過率を変化できることから動画の撮影中にも透過率を変えることができ、より良好な動画像の撮影が可能となった。
【図面の簡単な説明】
【図1】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図2】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図3】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図4】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図5】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図6】本発明の電気泳動光量調整素子の代表的な適用方法の一例を示す。
【図7】本発明の電気泳動光量調整装置の構成の一例を示す。
【符号の説明】
1 第一基板
2 電極
3 間隙支持体
4 第二基板
5 絶縁性液体
6 不透明帯電泳動粒子
7 遮光部
8 絶縁層
61 電気泳動光量調整素子
62 光量測定手段
63 駆動回路
73 レンズ装置
74 レンズ
75 電気泳動光量調整素子
76 撮像素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light amount adjusting element provided on the optical axis of a lens and having a transmittance that changes according to the light amount, an electrophoretic light amount adjusting module, a driving method thereof, and an apparatus using the same. In particular, the present invention relates to a light amount adjusting device for expanding a dynamic range as an image pickup device by adjusting an incident light amount and adjusting a light amount input to the image pickup device by using the image pickup device.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 05-040293 discloses an apparatus for adjusting the light amount of a video / camera interchangeable lens which automatically adjusts the light amount by selectively inserting and removing filters having different transmittances on the optical axis. According to the invention, a filter holder holding a plurality of filters having different transmittances is provided in a lens barrel, and the filter holder is driven by information from a camera body to which the lens barrel is assembled, so that an appropriate amount of light can be obtained. A drive source for selecting and replacing the filter on the optical axis as described above. When the camera body is turned on and enters the shooting standby state, the filter body is driven to perform the light amount adjustment operation, and the camera body enters the recording state. This is a light amount adjusting device configured to regulate the light amount adjusting operation when the light amount is changed.
[0003]
Further, electrochemical dimming elements that adjust the light amount by using electroplating are described in JP-A-10-274790, JP-A-2001-051307, JP-A-2001-05108, and JP-A-2001-059980. According to the invention, a voltage is applied to an electrolyte containing a silver salt in a light transmitting state via a transparent electrode, and silver capable of uniformly blocking light in a visible light region is reversibly deposited and dissolved on the transparent electrode. This is an electro-optical element that adjusts the light amount by using.
[0004]
[Problems to be solved by the invention]
However, the mechanical light amount adjusting device disclosed in Japanese Patent Laid-Open No. 05-040293 is difficult to miniaturize because it holds a plurality of filters and an actuator for selectively exchanging these filters. Particularly, in recent years, an image pickup apparatus using a CCD (Charge Coupled Device) has been reduced in size, and if a conventional mechanical light modulation element is used, there is a limit in reducing the size of the entire system. In addition, since the transmittance of the filter changes discontinuously, it is difficult to switch during shooting of a moving image or the like. Alternatively, there is a concern that an unnatural image will occur when switching is performed.
[0005]
The electrochemical light control device disclosed in Japanese Patent Application Laid-Open No. H10-274790 or the like does not require an actuator unlike the above-described mechanical light control device, and thus can be downsized. However, in order to control the amount of plating, that is, the amount of optical modulation, in addition to a pair of electrodes (working electrode and counter electrode) directly involved in plating, a reference electrode for accurately detecting these potentials is required. And its driving method becomes complicated.
[0006]
[Means for Solving the Problems]
The present inventor has analyzed the problems as described above, and found that the above problems can be improved by providing one element that can change the amount of transmitted light in a stepless manner. Accordingly, it is an object of the present invention to provide an electrophoretic light quantity adjusting element that changes the transmitted light quantity state by moving the opaque charged electrophoretic particles by an electric signal, and a method of driving the electrophoretic light quantity adjusting element. is there.
[0007]
A first aspect of the present invention is a substantially transparent first substrate, a substantially transparent second substrate disposed opposite the first substrate, and a gap between the first substrate and the second substrate. A gap support for maintaining a predetermined amount, a transparent insulating liquid filled between the first substrate and the second substrate, a plurality of opaque charged electrophoretic particles dispersed in the transparent insulating liquid, An electrophoretic light amount adjustment element in which three or more electrodes capable of generating independent potentials are formed on both or one of the opposing surfaces of the first substrate and the second substrate.
[0008]
According to a second aspect of the present invention, there is provided an electrophoretic light quantity adjusting device including at least the electrophoretic light quantity element according to the first invention, a driving means for the electrophoretic light quantity element, a light quantity detecting means, and a circuit for feeding back an output of the detecting means to a driving circuit. Module.
[0009]
A third aspect of the present invention provides a substantially transparent first substrate, a substantially transparent second substrate disposed opposite the first substrate, and a gap between the first substrate and the second substrate. A gap support for maintaining a predetermined amount, a transparent insulating liquid filled between the first substrate and the second substrate, a plurality of opaque charged electrophoretic particles dispersed in the transparent insulating liquid, An electrophoretic light amount adjustment element formed with three or more electrodes capable of generating independent potentials on both or one of the opposing surfaces of the first substrate and the second substrate, wherein the electrodes Is a method of driving an electrophoretic light quantity adjusting element in which the opaque charged electrophoretic particles are moved in the direction of potential change between the electrodes by sequentially changing the potential applied to the electrodes in the direction in which the electrodes are arranged, thereby adjusting the light transmission state.
[0010]
A fourth aspect of the present invention is a lens device, an imaging module, and an imaging apparatus using the electrophoretic light amount adjusting element or the electrophoretic light amount adjusting module of the present invention.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0012]
FIG. 1 is a typical sectional configuration view of the present invention, and FIG. 2 is a plan view thereof.
[0013]
On the first substrate 1, a plurality of transparent electrodes 2 capable of independently displacing potentials are arranged, and a second substrate 4 is arranged with a gap support 3 interposed therebetween. A transparent insulating liquid 5 is filled between the first substrate 1 and the second substrate 4, and opaque charged electrophoretic particles 6 are dispersed in the insulating liquid 5.
[0014]
The planar shape of the transparent electrode 2 is annular, and a lead wire is formed in a part thereof, and these are arranged concentrically. Here, a part of the ring is open because the extraction wiring and the electrode are formed in the same plane, but a contact hole may be formed in the closed ring to form an extraction wiring. .
[0015]
Here, the driving method will be described with reference to FIG. Here, an example is shown in which positively charged particles are used as the charged electrophoretic particles.
[0016]
FIG. 3A shows a state in which a negative voltage is applied to the electrode 2 in the peripheral portion of the substrate 1 to collect the opaque charged electrophoretic particles 6 in the peripheral portion of the substrate 1 disposed below the light shielding portion, and the central portion is in a light transmitting state. This shows a certain state. Next, in order to shift the element from the light transmitting state to the light shielding state, a positive voltage is applied to the electrode 2 closest to the element and a negative voltage is applied to the other electrodes 2. As a result, the opaque charged electrophoretic particles 6 are repelled toward the center of the substrate 1 on the outermost peripheral electrode to which a positive voltage is applied (FIG. 3B). Next, a positive voltage is applied to the electrode 2 located next to the outermost peripheral electrode to move the opaque charged electrophoretic particles 6 further toward the center. The opaque charged particles 6 are dispersed in an amount sufficient to shield the transparent region in the center of the device from light. By repeating this, the element can be shifted to the light-shielding state by moving the opaque charged electrophoretic particles 6 to the center (FIG. 3-C).
[0017]
From the light-shielded state to the light-transmitted state, a voltage of the opposite polarity may be applied in the same manner. This voltage application may be performed once or may be repeatedly performed periodically. The higher the driving voltage, the more the particles can be moved. However, even if the driving is performed at a low voltage, the particles can be reliably moved by repeatedly and periodically applying a voltage. Further, only a part of the movement of the particles can be performed by the voltage value of the voltage application or the number of repetitions, and the light transmittance can be controlled to an intermediate state.
[0018]
The configuration of the electrophoretic light quantity adjusting element of the present invention will be described in more detail. FIG. 4 shows another cross-sectional configuration diagram of the present invention.
[0019]
The electrode 2 may be formed on the first substrate 1 or the second substrate 4, or on both substrates. The number of electrodes is not particularly limited as long as it is three or more, and the shape of the electrodes is not particularly limited, such as a ring shape (FIG. 2) and a band shape (FIG. 5).
[0020]
When the electrodes 2 are formed on both surfaces of the first substrate 1 and the second substrate 4, they do not have to have the same shape. In addition, as shown in FIG. 4A, the electrode position of one substrate is shifted from the electrode position of the other substrate so that the electrode layer does not overlap or drop out with respect to the light incident axis, so that the transparency is improved. In-plane non-uniformity of light absorption by the electrodes during light can be prevented.
[0021]
The width of the transparent electrode 2 is not particularly limited as long as the opaque charged electrophoretic particles 6 can be transported. In the case of a ring shape, the thickness of the ring electrode is reduced toward the center of the element as shown in FIG. It is preferable that the light transmittance be more easily controlled.
[0022]
An opaque light shielding portion 7 may be provided in a part of the electrophoretic light control device. The configuration of the light shielding unit 7 is not particularly limited. A partly transparent and partly opaque substrate or an opaque substrate with perforations may be provided on the first substrate 1 or the second substrate 4, or the first substrate 1 or the second substrate 4 It may be opaquely colored. Alternatively, a partially opaque substrate may be used for the first substrate 1 or the second substrate 4. Alternatively, an electrode may be made of an opaque electrode material and used as the light shielding portion 7. The light shielding area is not particularly limited. It may be at the center of the element or at the periphery. An electrode partially made of an opaque material may be used as a light-shielding portion.
[0023]
The material for the first substrate 1 and the second substrate 4 is preferably a light-transmitting transparent material, and a material having high transparency such as a transparent inorganic material such as glass or quartz or an organic material such as polyethylene terephthalate (PET) is used. be able to.
[0024]
As the electrode material, a transparent electrode material is used. For example, an ITO electrode or an organic conductive material used in a liquid crystal display device or the like can be used.
[0025]
It is preferable to form a transparent insulating layer on the electrode surface. As a material, an inorganic transparent insulating layer such as silica or alumina, or a transparent organic film such as an acrylic resin can be used.
[0026]
As the transparent insulating liquid in which the opaque antistatic particles are dispersed, an insulating liquid having high transparency can be used. Isoparaffin, silicone oil, toluene, xylene and the like can be used. As the opaque charged electrophoretic particles, a light-shielding electrophoretic pigment, a dyed resin, or the like can be used. In order to impart stable charge to the particles, a charge control agent may be added to the insulating liquid.
[0027]
An electrophoretic light quantity adjusting module can be obtained by including at least the electrophoretic light quantity adjusting element, a driving circuit for applying a desired voltage to each electrode of the element, and a light quantity measuring means for measuring a light quantity passing through the element. The light amount measuring means may be of any type. For example, an image pickup device such as a charge-coupled device may be used as a light amount measuring means, and the electrophoretic light amount adjusting device may be controlled by a drive circuit so as to have an appropriate transmittance depending on the output. Although the method of applying the electrophoretic light amount adjusting element is not particularly limited, it is a good application method to be applied to a lens device, an imaging module, an imaging device, and the like.
[0028]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0029]
(Example 1)
In this example, an element having the configuration shown in FIGS. 1 and 2 was manufactured. The size of the manufactured element is 1 mm in diameter and 0.53 mm in thickness. First, an ITO film was formed on a glass substrate having a thickness of 0.2 mm as the first substrate 1, and the transparent electrode was patterned into the shape shown in the figure by photolithography and etching. Subsequently, a 200 nm thick SiO 2 film was formed as the insulating layer 8. The gap support 3 was formed thereon. The gap support 3 had a height of 30 μm. The space formed was filled with the insulating liquid 5 and the opaque charged electrophoretic particles 6. As the insulating liquid 5, isoparaffin was used. As the opaque charged electrophoretic particles 6, a mixture of polystyrene and carbon having an average particle diameter of about 1 μm was used. Opaquely charged electrophoretic particles 6 in isoparaffin showed a positively charged polarity. Next, a glass substrate having a thickness of 0.2 mm on which the light-shielding layer 7 was formed as the second substrate 4 was placed on the first substrate 1, and the peripheral portion of the element was bonded with an adhesive.
[0030]
A drive circuit was connected to this for driving. First, a voltage of 20 V was applied to the electrode at the center of the element, and the other electrodes were set to 0 V. Subsequently, a voltage of 20 V was sequentially applied to the electrodes from the electrode in the central portion of the device to the peripheral portion, and 20 V was applied to all of the electrodes except for the light-shielding layer forming portion. As a result, the charged electrophoretic particles were collected at the light-shielding layer forming portion around the element, and the element opening was in a light-transmitting state.
[0031]
Next, a voltage of 0 V was applied to the electrode at the outermost periphery of the element, and a voltage of -20 V was applied to the other electrodes. Subsequently, the voltage of the electrode was sequentially set to 0 V from the electrode at the peripheral portion of the element toward the central portion, and the migrating particles were moved from the light shielding layer forming portion to the central portion. As a result, the charged particles repelled the electrodes, moved to the central portion of the device, and allowed the device opening to be in a light-shielding state.
[0032]
Next, as shown in FIG. 6, a light quantity measuring means is connected to this element, and the drive voltage is selected and applied depending on the output of the light quantity measuring means. The amount of light could be controlled. When this adjustment is applied to an image pickup device having a lens optical system as shown in FIG. 7, the amount of light can be appropriately changed even during imaging depending on the intensity of ambient light. Continuity is obtained.
[0033]
Therefore, the amount of light incident on the image sensor could be electrically controlled, and a good image could be obtained from a bright place to a dark place.
[0034]
(Example 2)
A device similar to that of Example 1 was manufactured, and a driving circuit was connected to the device for driving.
[0035]
First, a voltage of 10 V was applied to the electrode at the center of the element, and the other electrodes were set to 0 V.
[0036]
Subsequently, a voltage of 10 V was sequentially applied to the electrodes from the electrode in the central part of the element toward the peripheral part, and 10 V was applied to all the electrodes except for the light-shielding layer forming part. Next, a voltage of 10 V was again applied to the electrode at the center of the element, and the other electrodes were set to 0 V. Subsequently, a voltage of 10 V was sequentially applied to the electrodes from the electrode in the central part of the element toward the peripheral part, and 10 V was applied to all the electrodes except for the light-shielding layer forming part. This operation was performed three times in total.
[0037]
As a result, the charged electrophoretic particles were collected in the light-shielding layer forming portion around the element. As a result, the central portion of the element was in a light transmitting state.
[0038]
Next, a voltage of 0 V was applied to the electrode at the outermost periphery of the element, and a voltage of -10 V was applied to the other electrodes. Subsequently, the voltage of the electrodes was sequentially set to 0 V from the peripheral electrodes of the element toward the central part. This operation was also performed a total of three times. By the above operation, the electrophoretic particles were moved from the light-shielding layer forming portion to the center. Thereby, the element was able to be in the light-shielding state.
[0039]
Next, as shown in FIG. 6, a light quantity measuring means 62 was connected to this element 61, and the above-mentioned driving voltage was selected and applied depending on the output of the light quantity measuring means 62. With such a mechanism, it is possible to control the amount of light transmitted through the electrophoretic light amount adjusting element according to the intensity of ambient light.
[0040]
Further, when this element was mounted on an image pickup apparatus having a lens system as shown in FIG. 7 and driven, a good image could be obtained from a bright place to a dark place.
[0041]
(Example 3)
In this example, the elements shown in FIGS. 4A and 4B were manufactured in the same manner as in Example 1.
[0042]
A drive circuit 23 and a light amount measuring unit 22 are connected to these elements, and when the drive voltage is selected and applied depending on the output of the light amount measuring unit, the light amount transmitted through the electrophoretic light amount adjusting element 21 is controlled. I was able to.
[0043]
The device was mounted on an imaging module and driven. This is shown in FIG. The arrangement of the electrophoretic light quantity adjusting element is not particularly limited as long as it is arranged on the optical axis of an optical component such as a lens, but the place corresponding to the stop position of the lens device (FIG. 7A) or the front surface of the lens (FIG. 7B) The configuration arranged in () is a preferred configuration example. The number of lenses constituting the lens device is not particularly limited. It may be composed of a plurality of sheets or one sheet. It suffices if it is placed at least in front of the image sensor so that the amount of light of the image sensor can be adjusted and a desired image can be obtained on the imaging surface.
[0044]
The imaging apparatus using the electrophoretic light amount adjusting element of the present invention was able to obtain a good image from a bright place to a dark place.
[0045]
【The invention's effect】
As described above, the following effects were obtained by the present invention.
[0046]
First, an electrophoretic light amount adjusting element in which the transmittance changes with one element was provided. As a result, the lens device, the imaging module, and the imaging device, which were difficult to miniaturize, can be significantly reduced in size. In particular, since it can be manufactured to be extremely thin, it can be incorporated into a micro CCD camera for a mobile phone. Second, since the transmittance can be changed in a stepless manner, the transmittance can be changed even during the shooting of a moving image, and a better moving image can be shot.
[Brief description of the drawings]
FIG. 1 shows an example of a typical cross-sectional view of an electrophoretic light quantity adjusting element of the present invention.
FIG. 2 shows an example of a typical plan view of an electrophoretic light quantity adjusting element of the present invention.
FIG. 3 shows an example of a typical cross-sectional view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 4 shows an example of a typical cross-sectional view of the electrophoretic light amount adjusting element of the present invention.
FIG. 5 shows an example of a typical plan view of the electrophoretic light amount adjusting element of the present invention.
FIG. 6 shows an example of a typical application method of the electrophoretic light quantity adjusting element of the present invention.
FIG. 7 shows an example of a configuration of an electrophoretic light amount adjusting device of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 first substrate 2 electrode 3 gap support 4 second substrate 5 insulating liquid 6 opaque charged migrating particles 7 light-shielding portion 8 insulating layer 61 electrophoretic light quantity adjusting element 62 light quantity measuring means 63 driving circuit 73 lens device 74 lens 75 electrophoresis Light intensity adjustment element 76 Image sensor

Claims (10)

実質的に透明な第一基板と、該第一基板に対向して配置される実質的に透明な第二基板と、該第一基板と該第二基板の間隙を所定量に保つための間隙支持体と、該第一基板及び該第二基板間に充填された透明絶縁性液体と、該透明絶縁性液体中に分散された複数の不透明帯電泳動粒子と, 該第一基板と該第二基板の少なくとも一方の対向面上にそれぞれ独立の電位を発生させることが可能な三つ以上の透明電極が形成されていることを特徴とする電気泳動光量調整素子。A substantially transparent first substrate, a substantially transparent second substrate disposed opposite the first substrate, and a gap for maintaining a predetermined amount of gap between the first substrate and the second substrate. A support, a transparent insulating liquid filled between the first substrate and the second substrate, a plurality of opaque electrophoretic particles dispersed in the transparent insulating liquid, {the first substrate and the second An electrophoretic light quantity adjusting element, wherein three or more transparent electrodes capable of generating independent potentials are formed on at least one opposing surface of a substrate. 前記透明電極が前記基板上に実質的に一定の間隔で配置されていることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting device according to claim 1, wherein the transparent electrodes are arranged on the substrate at substantially constant intervals. 前記透明電極の形状が半径の異なる環状であって、前記基板上に実質的に同心円状に配置されていることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting element according to claim 1, wherein the transparent electrodes have a ring shape with different radii and are arranged substantially concentrically on the substrate. 前記電気泳動調光素子の一部に遮光部分を備えていることを特徴とする請求項1記載の電気泳動光量調整素子。The electrophoretic light amount adjusting element according to claim 1, wherein a light-shielding portion is provided in a part of the electrophoretic light adjusting element. 請求項1記載の電気泳動光量素子と該電気泳動光量素子を駆動するための駆動回路、及び該素子の透過光量を検出する手段、該検出手段の出力を前記駆動回路にフィードバックさせる回路を備えた電気泳動光量調整モジュール。2. An electrophoretic light amount element according to claim 1, a driving circuit for driving the electrophoretic light amount element, a unit for detecting a transmitted light amount of the element, and a circuit for feeding back an output of the detecting unit to the driving circuit. Electrophoretic light intensity adjustment module. 実質的に透明な第一基板と、該第一基板に対向して配置される実質的に透明な第二基板と、該第一基板と該第二基板の間隙を所定量に保つための間隙支持体と、該第一基板及び該第二基板間に充填された透明絶縁性液体と、該透明絶縁性液体中に分散された複数の不透明帯電泳動粒子と、該第一基板と該第二基板の少なくとも一方の対向面上に独立の電位を発生させることが可能な三つ以上の電極が形成された電気泳動光量調整素子であって、該電極に印加する電位を電極の並び方向に順次変化させることにより、該不透明帯電泳動粒子を移動させて透光状態を調節することを特徴とする電気泳動光量調整素子の駆動方法。A substantially transparent first substrate, a substantially transparent second substrate disposed opposite the first substrate, and a gap for maintaining a predetermined amount of gap between the first substrate and the second substrate. A support, a transparent insulating liquid filled between the first substrate and the second substrate, a plurality of opaque charged electrophoretic particles dispersed in the transparent insulating liquid, the first substrate and the second An electrophoretic light amount adjustment element in which three or more electrodes capable of generating independent potentials are formed on at least one facing surface of a substrate, and the potentials applied to the electrodes are sequentially arranged in the direction in which the electrodes are arranged. A method for driving an electrophoretic light amount adjusting element, wherein the translucent state is adjusted by moving the opaque charged electrophoretic particles by changing. 前記電極間に異なる電位を順次印加する走査を周期的に行うことを特徴とする請求項6記載の電気泳動光量調整素子の駆動方法。7. The driving method for an electrophoretic light quantity adjusting element according to claim 6, wherein scanning for sequentially applying different potentials between the electrodes is performed periodically. 前記同心円状に配置された電極に対して、中心側から、或いは外側から順次電圧を変化させて前記泳動粒子を外側或いは中心側に移動させることを特徴とする請求項6記載の電気泳動光量調整素子の駆動方法。7. The electrophoretic light quantity adjustment according to claim 6, wherein the electrophoretic particles are moved to the outside or the center by sequentially changing the voltage from the center side or from the outside with respect to the concentrically arranged electrodes. Element driving method. 前記電気泳動光量調整素子の一部領域に前記不透明帯電泳動粒子を集合させて素子の透明状態を作り、該電気泳動光量調整素子の全体に該不透明帯電泳動粒子を分散させて半透明状態を形成することを特徴とする請求項6記載の電気泳動光量調整素子の駆動方法。The opaque charged electrophoretic particles are gathered in a partial area of the electrophoretic light quantity adjusting element to form a transparent state of the element, and the opaque charged electrophoretic particles are dispersed throughout the electrophoretic light quantity adjusting element to form a translucent state. 7. The method of driving an electrophoretic light quantity adjusting element according to claim 6, wherein 請求項1記載の電気泳動光量調整素子或いは請求項5記載の電気泳動光量調整モジュールを用いたことを特徴とするレンズ装置、撮像モジュールおよび撮像装置。A lens device, an imaging module, and an imaging device, wherein the electrophoretic light amount adjusting element according to claim 1 or the electrophoretic light amount adjusting module according to claim 5 is used.
JP2002219704A 2002-07-29 2002-07-29 Electrophoretic light quantity control element, its driving method and device using the element Withdrawn JP2004061833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219704A JP2004061833A (en) 2002-07-29 2002-07-29 Electrophoretic light quantity control element, its driving method and device using the element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219704A JP2004061833A (en) 2002-07-29 2002-07-29 Electrophoretic light quantity control element, its driving method and device using the element

Publications (1)

Publication Number Publication Date
JP2004061833A true JP2004061833A (en) 2004-02-26

Family

ID=31940540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219704A Withdrawn JP2004061833A (en) 2002-07-29 2002-07-29 Electrophoretic light quantity control element, its driving method and device using the element

Country Status (1)

Country Link
JP (1) JP2004061833A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830346A1 (en) * 2006-03-02 2007-09-05 Thomson Licensing Driving scheme of a variable electrophoretic optical iris diaphragm
EP2069856A1 (en) * 2006-10-04 2009-06-17 Motorola Inc. Camera iris apparatus and method
US20120306940A1 (en) * 2011-06-01 2012-12-06 Sony Corporation Display apparatus
KR20130111890A (en) * 2012-04-02 2013-10-11 삼성전자주식회사 Shutter assembly and photographing apparatus with the same
KR20140009761A (en) * 2012-07-13 2014-01-23 삼성전자주식회사 Driving system for shutter and camera device including the same, and driving method thereof
KR20140089852A (en) * 2013-01-07 2014-07-16 삼성전자주식회사 Method and apparatus for adjusting aperture
KR20170119149A (en) * 2016-04-18 2017-10-26 엘지이노텍 주식회사 Apparatus for electrically adjusting quantity of light, camera module including the apparatus, and the mobile device including the module
WO2021228907A1 (en) * 2020-05-15 2021-11-18 Universiteit Gent Smart windows based on electrophoresis of scattering particles

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830345A1 (en) * 2006-03-02 2007-09-05 THOMSON Licensing Driving scheme of a variable electrophoretic optical iris diaphragm
JP2007233390A (en) * 2006-03-02 2007-09-13 Thomson Licensing Variable iris using charged opaque particles
EP1830346A1 (en) * 2006-03-02 2007-09-05 Thomson Licensing Driving scheme of a variable electrophoretic optical iris diaphragm
EP2069856A1 (en) * 2006-10-04 2009-06-17 Motorola Inc. Camera iris apparatus and method
EP2069856A4 (en) * 2006-10-04 2009-12-16 Motorola Inc Camera iris apparatus and method
US20120306940A1 (en) * 2011-06-01 2012-12-06 Sony Corporation Display apparatus
US11656459B2 (en) 2011-06-01 2023-05-23 Sony Corporation Display apparatus with a glasses type frame and an image display device
KR101953307B1 (en) * 2012-04-02 2019-02-28 삼성전자주식회사 Shutter assembly and photographing apparatus with the same
KR20130111890A (en) * 2012-04-02 2013-10-11 삼성전자주식회사 Shutter assembly and photographing apparatus with the same
KR102034621B1 (en) * 2012-07-13 2019-10-21 삼성전자 주식회사 Driving System For Shutter and Camera Device including the same, and Driving Method thereof
KR20140009761A (en) * 2012-07-13 2014-01-23 삼성전자주식회사 Driving system for shutter and camera device including the same, and driving method thereof
KR101969849B1 (en) * 2013-01-07 2019-04-17 삼성전자주식회사 Method and apparatus for adjusting aperture
KR20140089852A (en) * 2013-01-07 2014-07-16 삼성전자주식회사 Method and apparatus for adjusting aperture
KR20170119149A (en) * 2016-04-18 2017-10-26 엘지이노텍 주식회사 Apparatus for electrically adjusting quantity of light, camera module including the apparatus, and the mobile device including the module
KR102526061B1 (en) * 2016-04-18 2023-04-26 엘지이노텍 주식회사 Apparatus for electrically adjusting quantity of light, camera module including the apparatus, and the mobile device including the module
WO2021228907A1 (en) * 2020-05-15 2021-11-18 Universiteit Gent Smart windows based on electrophoresis of scattering particles

Similar Documents

Publication Publication Date Title
US7859741B2 (en) Variable iris using charged opaque particles
US7450187B2 (en) Liquid crystal shutter device for a camera
US5745281A (en) Electrostatically-driven light modulator and display
KR960015003A (en) Video device
JP2012068607A (en) Liquid crystal lens
WO2021027375A1 (en) Image capturing module, and electronic apparatus
CN110928075B (en) Display device, manufacturing method, and display and camera shooting method
JP2004061833A (en) Electrophoretic light quantity control element, its driving method and device using the element
JP4164308B2 (en) Light amount adjusting element and imaging apparatus using the same
TW200912428A (en) Display device driven by electric field and method for manufacturing the same
JP2004061831A (en) Electrophoretic light quantity adjusting element
CN110383115A (en) Liquid lens, camera model and Optical devices
CN112835239B (en) Optical module and electronic device
CN112379560A (en) Diaphragm and diaphragm module
CN112822346B (en) Periscopic camera module and electronic equipment
JPWO2004046806A1 (en) Display device and driving method thereof
JP4033148B2 (en) Lens barrel and imaging device
JP2004061840A (en) Electrophoretic light adjusting device, its driving method and apparatus using same
TW201209513A (en) Aperture and camera module using same
JP2004061839A (en) Electrophoretic light adjusting device and its driving method
KR20100048697A (en) Varifocal lens and imaging apparatus using the same
KR102526061B1 (en) Apparatus for electrically adjusting quantity of light, camera module including the apparatus, and the mobile device including the module
JP2004012906A (en) Light control element, its driving method and image pickup device using the light control element
US20080317459A1 (en) Electrical Aperture and Shutter Device having a transparence Switching Element
CN1189787C (en) Display device of optical equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004