WO2021027375A1 - Image capturing module, and electronic apparatus - Google Patents

Image capturing module, and electronic apparatus Download PDF

Info

Publication number
WO2021027375A1
WO2021027375A1 PCT/CN2020/095050 CN2020095050W WO2021027375A1 WO 2021027375 A1 WO2021027375 A1 WO 2021027375A1 CN 2020095050 W CN2020095050 W CN 2020095050W WO 2021027375 A1 WO2021027375 A1 WO 2021027375A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
transparent electrode
electrode layer
layer
dimming
Prior art date
Application number
PCT/CN2020/095050
Other languages
French (fr)
Chinese (zh)
Inventor
王庆平
李瑞华
郑士胜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021027375A1 publication Critical patent/WO2021027375A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/02Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Studio Devices (AREA)
  • Lenses (AREA)

Abstract

Embodiments of the present application provide an image capturing module and an electronic apparatus, pertaining to the technical field of optical imaging, and used to address the problem in which variable iris diaphragms composed of mechanical blades and having a large number of modes have an excessive thickness. A lens assembly in the image capturing module comprises a first lens and a second lens. A diaphragm structure is located between the first lens and the second lens. The diaphragm structure comprises a first transparent electrode layer, a second transparent electrode layer, and a light adjustment layer located between the first transparent electrode layer and the second transparent electrode layer. The first transparent electrode layer and the second transparent electrode layer are used to form, in a pre-determined operation state, multiple light adjustment regions on the light adjustment layer. The multiple light adjustment regions comprise a central light adjustment region and at least one peripheral light adjustment region located at a periphery of the central light adjustment region.

Description

一种摄像模组、电子设备Camera module and electronic equipment
本申请要求于2019年08月15日提交国家知识产权局、申请号为201910755250.9、申请名称为“一种摄像模组、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims the priority of a Chinese patent application filed with the State Intellectual Property Office on August 15, 2019, the application number is 201910755250.9, and the application name is "a camera module, electronic equipment", the entire content of which is incorporated herein by reference Applying.
技术领域Technical field
本申请涉及光学成像技术领域,尤其涉及一种摄像模组、电子设备。This application relates to the field of optical imaging technology, and in particular to a camera module and electronic equipment.
背景技术Background technique
随着科技的进步,现今电子设备朝向多功能、小尺寸的方向发展。为了满足拍照需求,电子设备内设置有摄像头。该摄像头内通常设置有可变光圈,以适应不同的拍照环境。With the advancement of science and technology, electronic devices nowadays are developing in the direction of multi-function and small size. In order to meet the photographing demand, a camera is provided in the electronic device. The camera is usually equipped with a variable aperture to adapt to different photographing environments.
目前上述可变光圈包括如图1a所示的多个叶片100。该多个叶片100通过机械连接能够相对转动,从而改变叶片100围绕的通光孔101的孔口口径的大小,来实现光圈的改变。例如图1a中,通光孔101的孔口口径小于图1b中通光孔101的孔口口径。因此,可变光圈处于图1a所示的状态时的光圈,小于图1b所示的状态时的光圈。At present, the aforementioned variable aperture includes a plurality of blades 100 as shown in FIG. 1a. The plurality of blades 100 can be relatively rotated through mechanical connection, thereby changing the size of the aperture of the light-passing hole 101 surrounded by the blades 100 to realize the change of the aperture. For example, in FIG. 1a, the aperture diameter of the light-through hole 101 is smaller than the aperture diameter of the light-through hole 101 in FIG. 1b. Therefore, the aperture when the variable aperture is in the state shown in FIG. 1a is smaller than the aperture when the variable aperture is in the state shown in FIG. 1b.
可变光圈中叶片100的数量与可变光圈能够获得的可调光圈的档位成正比。即可变光圈中叶片100的数量越多,通光孔101的孔口口径的可调范围越多,可调光圈的档位越多。然而,当可调光圈档位越多时,叶片100的数量会越多,该可变光圈的整体厚度会越大。从而使得摄像头在电子设备中占据的尺寸较大,不利于电子设备的小型化。The number of blades 100 in the iris diaphragm is proportional to the gear position of the iris diaphragm that the iris diaphragm can obtain. That is, the more the number of blades 100 in the iris diaphragm, the more the adjustable range of the aperture diameter of the light-passing hole 101, and the more the gear positions of the iris diaphragm. However, when there are more adjustable iris gears, the more the number of blades 100 will be, and the larger the overall thickness of the iris will be. As a result, the size of the camera in the electronic device is relatively large, which is not conducive to the miniaturization of the electronic device.
发明内容Summary of the invention
本申请实施例提供一种摄像模组、电子设备,用于解决采用机械叶片构成的可变光圈,且当可调光圈的档位较多时,可变光圈的厚度较大的问题。The embodiments of the present application provide a camera module and electronic equipment, which are used to solve the problem of a variable aperture composed of mechanical blades, and when the adjustable aperture has more gears, the thickness of the variable aperture is larger.
为达到上述目的,本申请实施例采用如下技术方案:In order to achieve the foregoing objectives, the following technical solutions are adopted in the embodiments of this application:
本申请实施例的第一方面,提供一种摄像模组。该摄像模组包括镜头组件、光阑结构。其中,上述镜头组件包括位于同一光轴上的第一透镜和第二透镜。光阑结构位于第一透镜和第二透镜之间。光阑结构包括第一透明电极层、第二透明电极层以及位于第一透明电极层和第二透明电极层之间的调光层。第一透明电极层和第二透明电极层用于在预设工作状态下,在调光层上形成多个调光区。多个调光区包括中心调光区,以及位于中心调光区外围的至少一个周边调光区。上述调光区的透过率可以通过分别施加至位于调光层两侧的第一透明电极层和第二透明电极层的电压,使得在第一透明电极层和第二透明电极层之间的电场作用改变调光区所在位置处调光层的光透过率。这样一来,当需要获得多个可调光圈的档位时,只需要增大第一透明电极层和第二透明电极层形成的电场的作用面积,即可以达到增加上述调光区中周边调光区数量的目的。由上述可知,本申请实施例可以实现多个可调光圈的档位。由于第二透明电极层中位于调光层的同一侧,因此当第一透明电极层和第二透明电极层形成的电场的作用 面积增大时,不会对光阑结构的厚度产生影响。从而可以解决目前采用机械叶片构成的可变光圈,且当可调光圈的档位较多时,可变光圈的厚度较大的问题。The first aspect of the embodiments of the present application provides a camera module. The camera module includes a lens assembly and a diaphragm structure. Wherein, the aforementioned lens assembly includes a first lens and a second lens located on the same optical axis. The diaphragm structure is located between the first lens and the second lens. The aperture structure includes a first transparent electrode layer, a second transparent electrode layer, and a dimming layer located between the first transparent electrode layer and the second transparent electrode layer. The first transparent electrode layer and the second transparent electrode layer are used for forming a plurality of dimming regions on the dimming layer in a preset working state. The plurality of dimming zones includes a central dimming zone, and at least one peripheral dimming zone located on the periphery of the central dimming zone. The transmittance of the above-mentioned dimming zone can be achieved by applying voltages to the first transparent electrode layer and the second transparent electrode layer located on both sides of the dimming layer, so that the voltage between the first transparent electrode layer and the second transparent electrode layer The electric field changes the light transmittance of the dimming layer at the position of the dimming zone. In this way, when it is necessary to obtain multiple adjustable iris gears, it is only necessary to increase the active area of the electric field formed by the first transparent electrode layer and the second transparent electrode layer, which can increase the peripheral adjustment in the above-mentioned dimming zone. The purpose of the number of light zones. It can be seen from the foregoing that the embodiment of the present application can realize multiple adjustable aperture gear positions. Since the second transparent electrode layer is located on the same side of the light-adjusting layer, when the action area of the electric field formed by the first transparent electrode layer and the second transparent electrode layer increases, the thickness of the diaphragm structure will not be affected. This can solve the problem that the current iris diaphragm composed of mechanical blades is used, and the thickness of the iris diaphragm is relatively large when the adjustable diaphragm has more gears.
根据第一方面,在一种可能的设计中,第一透明电极层覆盖所有调光层。此外,第二透明电极层包括多个间隔设置的第二电极。任意一个第二电极为圆环结构。多个第二电极由内向外依次排布。这样一来,可以第二透明电极层中的各个第二电极的电压均可以单独控制,从而使得每个第二电极与第一透明电极层在预设工作状态下,在调光层上形成透过率可以调节的上述周边调光区。According to the first aspect, in a possible design, the first transparent electrode layer covers all the dimming layers. In addition, the second transparent electrode layer includes a plurality of second electrodes arranged at intervals. Any second electrode has a ring structure. The multiple second electrodes are sequentially arranged from the inside to the outside. In this way, the voltage of each second electrode in the second transparent electrode layer can be individually controlled, so that each second electrode and the first transparent electrode layer can form a transparent layer on the dimming layer in a preset working state. The above-mentioned peripheral dimming zone with adjustable overrate.
结合第一方面中的一种可能的设计,多个第二电极共圆心。第二电极的圆心在第一透镜和第二透镜的光轴上。从而使得整个光阑结构的中心能够位于第一透镜和第二透镜的光轴上。有利于提高拍摄过程中对焦的准确性。In combination with a possible design in the first aspect, a plurality of second electrodes have a common center. The center of the second electrode is on the optical axis of the first lens and the second lens. Thus, the center of the entire diaphragm structure can be located on the optical axis of the first lens and the second lens. Helps improve the accuracy of focusing during shooting.
根据第一方面,在另一种可能的设计中,所述第一透明电极层覆盖调光层。第二透明电极层包括多个电极组。任意一个电极组中包括多个具有预设间隔的块状的第二电极。上述多个块状的第二电极呈环状分布,且不同的电极组由内向外分布。这样一来,同一电极组中各个第二电极可以施加相同的电压,或者同一电极组中各个第二电极可以施加不同的电压。从而使得每个第二电极与第一透明电极层在预设工作状态下,在调光层上形成透过率可以调节的上述周边调光区。According to the first aspect, in another possible design, the first transparent electrode layer covers the dimming layer. The second transparent electrode layer includes a plurality of electrode groups. Any electrode group includes a plurality of block-shaped second electrodes with preset intervals. The plurality of block-shaped second electrodes are distributed in a ring shape, and different electrode groups are distributed from the inside to the outside. In this way, each second electrode in the same electrode group can be applied with the same voltage, or each second electrode in the same electrode group can be applied with a different voltage. As a result, the peripheral dimming area with adjustable transmittance is formed on the dimming layer under the preset working state of each second electrode and the first transparent electrode layer.
结合第一方面中的至少一种可能的设计,调光层为液晶层。摄像模组还包括绕调光层外围一周设置的第一挡墙。第一挡墙与第一透镜和第二透镜形成用于容纳调光层的容纳腔。在此情况下,可以通过各个调光区中的第二电极与第一透明电极层之间的电场,以达到控制上述各个调光区的液晶分子偏转角度的目的。从而改变各个调光区的光线透过率。In combination with at least one possible design in the first aspect, the dimming layer is a liquid crystal layer. The camera module also includes a first retaining wall arranged around the periphery of the dimming layer. The first retaining wall, the first lens and the second lens form an accommodating cavity for accommodating the dimming layer. In this case, the electric field between the second electrode and the first transparent electrode layer in each dimming zone can be used to achieve the purpose of controlling the deflection angle of the liquid crystal molecules in each dimming zone. Thereby changing the light transmittance of each dimming zone.
结合第一方面中的至少一种可能的设计,调光层为聚合物分散液晶薄膜。该聚合物分散液晶薄膜中,液晶以微米量级的小微滴分散在有机固态聚合物基体内。在上述第一透明电极层和第二透明电极层中的各个第二电极之间产生的电场作用下,可以对液晶微滴的光轴取向进行调节,使得能够呈现透明或者不透明的状态。In combination with at least one possible design in the first aspect, the light-adjusting layer is a polymer dispersed liquid crystal film. In the polymer dispersed liquid crystal film, the liquid crystal is dispersed in the organic solid polymer matrix in micron-sized droplets. Under the action of the electric field generated between the respective second electrodes in the first transparent electrode layer and the second transparent electrode layer, the optical axis orientation of the liquid crystal droplets can be adjusted to make it possible to present a transparent or opaque state.
结合第一方面中的一种可能的设计,摄像模组还包括多个圆环结构的第二挡墙。每个第二挡墙位于相邻两个第二电极之间,且第二挡墙与第一透明电极层相接触。调光层包括位于第一透明电极层和第二电极之间的电致变色层和电解质层。在上述第一透明电极层和第二透明电极层中的各个第二电极之间产生的电场作用下,可以控制电解质层能够将自由离子从第二电极与第一透明电极层中注入至电致变色层,使得电致变色层由透明变为不透明的状态,调光区的光线透过率接近或等于0。或者,控制电解质层能够将自由离子从电致变色层抽取,并传输至第二电极与第一透明电极层中,使得电致变色层由不透明变为透明的状态,使得调光区呈透明状。In combination with a possible design in the first aspect, the camera module further includes a plurality of second retaining walls with a circular ring structure. Each second retaining wall is located between two adjacent second electrodes, and the second retaining wall is in contact with the first transparent electrode layer. The dimming layer includes an electrochromic layer and an electrolyte layer located between the first transparent electrode layer and the second electrode. Under the action of the electric field generated between the respective second electrodes in the first transparent electrode layer and the second transparent electrode layer, the electrolyte layer can be controlled to inject free ions from the second electrode and the first transparent electrode layer to the electro The color changing layer makes the electrochromic layer change from transparent to opaque, and the light transmittance of the dimming zone is close to or equal to zero. Alternatively, the control electrolyte layer can extract free ions from the electrochromic layer and transport them to the second electrode and the first transparent electrode layer, so that the electrochromic layer changes from opaque to transparent, so that the dimming area is transparent .
结合第一方面中的一种可能的设计,摄像模组还包括多个为圆环结构的第二挡墙。每个第二挡墙位于相邻两个电极组之间,且第二挡墙与第一透明电极层相接触。调光层包括位于第一透明电极层和第二电极之间的电致变色层和电解质层。电致变色层和电解质层的技术效果同上所述,此处不再赘述。In combination with a possible design in the first aspect, the camera module further includes a plurality of second retaining walls in a ring structure. Each second retaining wall is located between two adjacent electrode groups, and the second retaining wall is in contact with the first transparent electrode layer. The dimming layer includes an electrochromic layer and an electrolyte layer located between the first transparent electrode layer and the second electrode. The technical effects of the electrochromic layer and the electrolyte layer are the same as those described above, and will not be repeated here.
根据第一方面,在另一种可能的设计中,第一透明电极层、第二透明电极层均覆盖调光层。第一透明电极层和第二透明电极层均为圆形。通过改变施加至第一透明电 极层和第二透明电极层的电压,使得第一透明电极层和第二透明电极层之间的电场发生改变,从而达到调节形成于调光层上的周边调光区透过率的目的。According to the first aspect, in another possible design, both the first transparent electrode layer and the second transparent electrode layer cover the dimming layer. Both the first transparent electrode layer and the second transparent electrode layer are circular. By changing the voltage applied to the first transparent electrode layer and the second transparent electrode layer, the electric field between the first transparent electrode layer and the second transparent electrode layer is changed, so as to adjust the peripheral dimming formed on the dimming layer The purpose of zone transmittance.
结合第一方面中的至少一种可能的设计,调光层包括有色油墨层和电解质层。摄像模组还包括绕调光层一周设置的第一挡墙。第一挡墙与第一透镜和第二透镜形成用于容纳调光层的容纳腔。在上述第一透明电极层和第二透明电极层中的各个第二电极之间产生的电场作用下,可以控制电解质层与有色油墨层的表面张力,从而推动有色油墨层中的油墨在第一透镜、第二透镜之间运动。从而使得具有油墨的调光区的光线透过率接近或等于0,没有油墨的调光区呈透明状。In combination with at least one possible design in the first aspect, the dimming layer includes a colored ink layer and an electrolyte layer. The camera module also includes a first retaining wall arranged around the dimming layer. The first retaining wall, the first lens and the second lens form an accommodating cavity for accommodating the dimming layer. Under the action of the electric field generated between the respective second electrodes in the first transparent electrode layer and the second transparent electrode layer, the surface tension of the electrolyte layer and the colored ink layer can be controlled, thereby promoting the ink in the colored ink layer in the first Movement between the lens and the second lens. As a result, the light transmittance of the dimming zone with ink is close to or equal to 0, and the dimming zone without ink is transparent.
结合第一方面中的至少一种可能的设计,摄像模组还包括第一电控引脚和第二电控引脚。其中,第一电控引脚设置于第一透镜朝向第二透镜的一侧表面,第一电控引脚与第一透明电极层电连接。从而通过第一电控引脚向第一透明电极层提供电压。多个第二电控引脚设置于第二透镜朝向第一透镜的一侧表面。每个第二电控引脚与第二电极电连接。从而可以通过一个第二电控引脚向一个调光区内的至少一个第二电极提供电压。In combination with at least one possible design in the first aspect, the camera module further includes a first electronic control pin and a second electronic control pin. Wherein, the first electric control pin is arranged on the side surface of the first lens facing the second lens, and the first electric control pin is electrically connected with the first transparent electrode layer. Thus, a voltage is provided to the first transparent electrode layer through the first electronic control pin. A plurality of second electronic control pins are arranged on a side surface of the second lens facing the first lens. Each second electronic control pin is electrically connected with the second electrode. Therefore, a voltage can be provided to at least one second electrode in a dimming area through a second electronic control pin.
结合第一方面中的至少一种可能的设计,摄像模组还包括镜筒、镜头马达、模组线路板。其中,镜头组件安装于镜筒上;镜筒包括内嵌金属线路。第一电控引脚、第二电控引脚与内嵌金属线路电连接。镜头马达,与镜筒的内嵌金属线路电连接,用于驱动镜头组件中的透镜运动。模组线路板包括供电电路。该供电电路与镜头马达电连接,用于向镜头马达供电。在此情况下,上述供电电路可以通过镜头马达、镜筒的内嵌金属线路向上述第一电控引脚提供电压,从而通过第一供电引脚向第一透明电极层进行充电。并且,上述供电电路还可以通过镜头马达、镜筒的内嵌金属线路向上述第二电控引脚提供电压,从而通过不同的第二供电引脚向各个第二电极进行充电。In combination with at least one possible design in the first aspect, the camera module further includes a lens barrel, a lens motor, and a module circuit board. Among them, the lens assembly is installed on the lens barrel; the lens barrel includes an embedded metal circuit. The first electric control pin and the second electric control pin are electrically connected with the embedded metal circuit. The lens motor is electrically connected with the embedded metal circuit of the lens barrel and is used to drive the lens in the lens assembly. The module circuit board includes a power supply circuit. The power supply circuit is electrically connected to the lens motor, and is used to supply power to the lens motor. In this case, the power supply circuit can provide a voltage to the first electronic control pin through the embedded metal circuit of the lens motor and the lens barrel, so as to charge the first transparent electrode layer through the first power supply pin. In addition, the power supply circuit can also provide voltage to the second electronic control pin through the embedded metal circuit of the lens motor and the lens barrel, so as to charge each second electrode through different second power supply pins.
结合第一方面中的至少一种可能的设计,模组线路板还包括图像处理电路。摄像模组还包括感光元件。该感光元件与图像处理电路电连接。感光元件用于将透过镜头组件的光线转换成图像数据,并传输至图像处理电路,以通过图像处理电路对图像数据进行处理或者拍摄的图像。In combination with at least one possible design in the first aspect, the module circuit board further includes an image processing circuit. The camera module also includes a photosensitive element. The photosensitive element is electrically connected with the image processing circuit. The photosensitive element is used to convert the light passing through the lens assembly into image data and transmit it to the image processing circuit to process the image data or take the image through the image processing circuit.
结合第一方面中的至少一种可能的设计,摄像模组还包括滤光片、模组底座。其中,滤光片位于镜头组件的像侧。此外,模组底座位于镜头组件与感光元件之间;模组底座将马达与模组线路板上的供电电路电连接。其中,模组底座在对应镜头组件的位置设置有通孔。该滤光片位于通孔内。该滤光片可以对穿过镜头组件中的部分对成像不利的光线,例如红外光进行滤除。该模组底座内设置有电路埋线。从而使得供电电路与马达通过上述电路埋线电连接。In combination with at least one possible design in the first aspect, the camera module further includes a filter and a module base. Among them, the filter is located on the image side of the lens assembly. In addition, the module base is located between the lens assembly and the photosensitive element; the module base electrically connects the motor and the power supply circuit on the module circuit board. Wherein, the module base is provided with a through hole at a position corresponding to the lens assembly. The filter is located in the through hole. The filter can filter out the part of the light that passes through the lens assembly that is unfavorable for imaging, such as infrared light. Circuit buried wires are arranged in the module base. Therefore, the power supply circuit and the motor are electrically connected through the above-mentioned circuit buried wire.
根据第一方面,在另一种可能的设计中,第一透镜和第二透镜之间的光轴上的间距为D12,D12≤0.2mm。在此情况下,位于第一透镜和第二透镜之间的光阑结构的厚度(第一透明电极层、第二透明电极层以及调光层的厚度之和)可以小于或等于0.2mm。从而能够进一步减小摄像模组的尺寸,缩短光路总长。According to the first aspect, in another possible design, the distance on the optical axis between the first lens and the second lens is D12, and D12≤0.2 mm. In this case, the thickness (the sum of the thickness of the first transparent electrode layer, the second transparent electrode layer, and the dimming layer) of the diaphragm structure located between the first lens and the second lens may be less than or equal to 0.2 mm. Therefore, the size of the camera module can be further reduced, and the total optical path length can be shortened.
根据第一方面,在另一种可能的设计中,第一透镜具有正屈折力,第一透镜的物侧表面为凸面,靠近所述光阑结构(即像侧)的表面为平面。从而可以使得整个透镜组件在物侧具有较好的光线汇聚能力,可以减小透镜组件的光路总长。第二透镜具有 负屈折力,第二透镜的靠近所述光阑结构(即物侧)的表面为平面。从而可以补偿一部分由第一透镜的正屈折力带来的像差,达到提高摄像模组成像品质的目的。According to the first aspect, in another possible design, the first lens has positive refractive power, the object side surface of the first lens is convex, and the surface close to the diaphragm structure (ie, the image side) is flat. Therefore, the entire lens assembly can have a better light converging ability on the object side, and the total optical path length of the lens assembly can be reduced. The second lens has a negative refractive power, and the surface of the second lens close to the diaphragm structure (i.e., the object side) is a plane. In this way, a part of the aberration caused by the positive refractive power of the first lens can be compensated to achieve the purpose of improving the imaging quality of the camera module.
结合第一方面中的一种可能的设计,在光阑结构与第一透镜和第二透镜为独立的结构时,第一透镜靠近光阑结构的表面、第二透镜靠近光阑结构的表面均与光阑结构所在的表面平行。从而可以使得第一透镜、第二透镜与光阑结构的贴合更加的紧密。或者,当光阑结构中的第一透明电极层、第二透明电极层承载于第一透镜上、第二透镜上时,该第一透镜靠近光阑结构的表面、第二透镜靠近光阑结构的表面均与调光层所在的表面平行。In combination with a possible design in the first aspect, when the diaphragm structure and the first lens and the second lens are independent structures, the surface of the first lens close to the diaphragm structure and the surface of the second lens close to the diaphragm structure are both Parallel to the surface where the diaphragm structure is located. Thereby, the adhesion of the first lens, the second lens and the diaphragm structure can be made closer. Or, when the first transparent electrode layer and the second transparent electrode layer in the diaphragm structure are carried on the first lens and the second lens, the first lens is close to the surface of the diaphragm structure, and the second lens is close to the diaphragm structure The surfaces are parallel to the surface where the dimming layer is located.
结合第一方面中的一种可能的设计,第一透镜的像侧表面、第二透镜的物侧表面具有纳米光束调制结构。这样一来,进入衍射光学元件以及超透镜内部的光线,可以通过上述纳米光束调制结构的光波调制作用改变光路,从而将不同波长范围的光线汇聚到相同的交点上,从而可以分担电子设备对消除色差的负担,达到优化成像质量、提升光圈或者缩短光路总长的目的。In combination with a possible design in the first aspect, the image side surface of the first lens and the object side surface of the second lens have a nano-beam modulation structure. In this way, the light entering the diffractive optical element and the inside of the super lens can change the optical path through the light wave modulation effect of the above-mentioned nano beam modulation structure, so as to converge the light of different wavelength ranges to the same intersection point, so that the electronic equipment can be shared. The burden of chromatic aberration can achieve the purpose of optimizing the image quality, increasing the aperture or shortening the total length of the optical path.
根据第一方面,在另一种可能的设计中,镜头组件还包括依次远离第二透镜像侧,且与第二透镜位于同一光轴上的第三透镜、第四透镜、第五透镜、第六透镜、第七透镜。第三透镜具有负屈折力,从而有助于校正镜头组件的场曲,以使得镜头组件的成像面更平坦。第四透镜具有正屈折力,从而可以分散光线在第四透镜的物侧端的汇聚能力,以避免第一透镜屈折力过大,而使得镜头组件产生过多像差。第五透镜具有屈折力,其物侧表面为凹面,像侧表面为凸面,从而有助于增加镜头组件的对称性,以降低其敏感度、提升成像品质。第六透镜具有屈折力,其物侧表面以及像侧表面均为非球面。该非球面可以使得透镜容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减所需使用透镜的数目,因此可以有效降低光学总长度。此外,且第六透镜的物侧表面、像侧表面中的至少一个面具有至少一个反曲点,该反曲点有助于进一步修正镜头组件的离轴像差。第七透镜具有屈折力,其物侧表面以及像侧表面均为非球面,且第七透镜的物侧表面、像侧表面中的至少一个面具有至少一个反曲点。非球面以及反曲点的技术效果同上所述,此处不再赘述。此外,镜头组件满足以下条件:0.6<|f1/f|<1.2;|f6/f|>1.0;|f7/f|>1.0。其中,f为镜头组件的焦距;f1为第一透镜的焦距,f6为第六透镜的焦距,f7为第七透镜的焦距。这样一来,通过将第一透镜的焦距f1与镜头组件的焦距f比值设置为满足0.6<|f1/f|<1.2,第六透镜的焦距f6与镜头组件的焦距f比值设置为满足|f6/f|>1.0,将第七透镜的焦距f7与镜头组件的焦距f比值设置为满足|f7/f|>1.0,有助于控制镜头组件的主要屈折力位于第一透镜,并远离第六透镜以及第七透镜,可以使得镜头组件在其物侧端足够的光线汇聚能力,有助于缩短总长度而维持镜头组件的小型化。According to the first aspect, in another possible design, the lens assembly further includes a third lens, a fourth lens, a fifth lens, and a third lens that are sequentially away from the image side of the second lens and are located on the same optical axis as the second lens. Six lens, seventh lens. The third lens has a negative refractive power, thereby helping to correct the curvature of field of the lens assembly, so that the imaging surface of the lens assembly is flatter. The fourth lens has a positive refractive power, so that the converging ability of the light at the object side end of the fourth lens can be dispersed, so as to avoid excessive refractive power of the first lens, which may cause excessive aberration of the lens assembly. The fifth lens has refractive power, the object side surface is concave, and the image side surface is convex, which helps increase the symmetry of the lens assembly, reduce its sensitivity, and improve imaging quality. The sixth lens has refractive power, and its object-side surface and image-side surface are both aspherical. The aspheric surface can make the lens easy to fabricate into a shape other than a spherical surface, and obtain more control variables to reduce aberrations, thereby reducing the number of lenses required, and thus can effectively reduce the total optical length. In addition, at least one of the object side surface and the image side surface of the sixth lens has at least one inflection point, which helps to further correct the off-axis aberration of the lens assembly. The seventh lens has refractive power, the object side surface and the image side surface are both aspherical, and at least one of the object side surface and the image side surface of the seventh lens has at least one inflection point. The technical effects of the aspheric surface and the inflection point are the same as described above, and will not be repeated here. In addition, the lens assembly satisfies the following conditions: 0.6<|f1/f|<1.2; |f6/f|>1.0; |f7/f|>1.0. Among them, f is the focal length of the lens assembly; f1 is the focal length of the first lens, f6 is the focal length of the sixth lens, and f7 is the focal length of the seventh lens. In this way, by setting the ratio of the focal length f1 of the first lens to the focal length f of the lens assembly to satisfy 0.6<|f1/f|<1.2, the ratio of the focal length f6 of the sixth lens to the focal length f of the lens assembly is set to satisfy |f6 /f|>1.0, set the ratio of the focal length f7 of the seventh lens to the focal length f of the lens assembly to satisfy |f7/f|>1.0, which helps to control the main refractive power of the lens assembly at the first lens and away from the sixth The lens and the seventh lens can make the lens assembly have sufficient light converging ability at the object side end, which helps to shorten the total length and maintain the miniaturization of the lens assembly.
根据第一方面,在另一种可能的设计中,镜头组件还包括依次远离第二透镜像侧,且与第二透镜位于同一光轴上的第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜。第三透镜具有负屈折力。第四透镜具有正屈折力。第五透镜具有屈折力,其物侧表面为凹面,像侧表面为凸面。第三镜头、第四镜头以及第五镜头的设置方式以及技术效果同行所述,此处不再赘述。第六透镜具有负屈折力,其物侧表面为凹面,像侧表面为凸面。这样一来,有助于增加镜头组件的对称性,以降低敏感度、 提升成像品质。第七透镜具有正屈折力,其物侧表面以及像侧表面均为非球面。这样一来,第七透镜具有正屈折力,从而可以配合第六镜头使用,以进一步降低镜头组件的像差。第八透镜具有屈折力,其物侧表面以及像侧表面均为非球面,且第八透镜至少一表面具有至少一个反曲点。非球面以及反曲点的技术效果与示例四相同,此处不再赘述。镜头组件满足以下条件:0.7<|f1/f|<1.3;0.6<|f7/f|<1.0;0.5<|f8/f|<0.9。其中,f为镜头组件的焦距;f1为第一透镜的焦距;f7为第七透镜的焦距,f8为第八透镜的焦距。这样一来,通过将第一透镜的焦距f1与镜头组件的焦距f比值设置为满足0.7<|f1/f|<1.3,有助于保证透镜组件中位于该透镜组件物侧的第一个透镜,即第一透镜有足够的屈折力,可以使得透镜组件的物侧端足够的光线汇聚能力,有助于缩短透镜组件的系统总长度,使得该透镜组件实现小型化的设置。此外,第七透镜的焦距f7与镜头组件的焦距f比值设置为满足0.6<|f7/f|<1.0,将第八透镜的焦距f8与镜头组件的焦距f比值设置为满足0.5<|f8/f|<0.9,也有利于缩短透镜组件的系统总长。According to the first aspect, in another possible design, the lens assembly further includes a third lens, a fourth lens, a fifth lens, and a third lens that are sequentially away from the image side of the second lens and are located on the same optical axis as the second lens. Six lens, seventh lens, eighth lens. The third lens has negative refractive power. The fourth lens has positive refractive power. The fifth lens has refractive power, the object side surface is concave, and the image side surface is convex. The setting methods and technical effects of the third lens, the fourth lens, and the fifth lens are described in the same industry, and will not be repeated here. The sixth lens has negative refractive power, its object side surface is concave, and the image side surface is convex. In this way, it helps to increase the symmetry of the lens assembly to reduce sensitivity and improve imaging quality. The seventh lens has positive refractive power, and its object side surface and image side surface are both aspherical. In this way, the seventh lens has a positive refractive power, which can be used with the sixth lens to further reduce the aberration of the lens assembly. The eighth lens has refractive power, the object side surface and the image side surface are both aspherical, and at least one surface of the eighth lens has at least one inflection point. The technical effects of the aspheric surface and the inflection point are the same as in Example 4, and will not be repeated here. The lens assembly meets the following conditions: 0.7<|f1/f|<1.3; 0.6<|f7/f|<1.0; 0.5<|f8/f|<0.9. Among them, f is the focal length of the lens assembly; f1 is the focal length of the first lens; f7 is the focal length of the seventh lens, and f8 is the focal length of the eighth lens. In this way, by setting the ratio of the focal length f1 of the first lens to the focal length f of the lens assembly to satisfy 0.7<|f1/f|<1.3, it helps to ensure that the first lens in the lens assembly located on the object side of the lens assembly That is, the first lens has sufficient refractive power, which can make the object side end of the lens assembly have sufficient light condensing ability, which helps to shorten the total system length of the lens assembly, so that the lens assembly can be miniaturized. In addition, the ratio of the focal length f7 of the seventh lens to the focal length f of the lens assembly is set to satisfy 0.6<|f7/f|<1.0, and the ratio of the focal length f8 of the eighth lens to the focal length f of the lens assembly is set to satisfy 0.5<|f8/ f|<0.9, which also helps to shorten the total system length of the lens assembly.
结合第一方面中的一种可能的设计,镜头组件满足以下条件:D23≤0.15mm;0<D12/D34<0.3;0<D23/D34<0.3。其中,D12为第一透镜和第二透镜之间的光轴上的间距;D23为第二透镜和第三透镜之间的光轴上的间距;D34为第三透镜和第四透镜之间的光轴上的间距。这样一来,通过限制镜头组件中的前三个透镜,即上述第一透镜、第二透镜以及第三透镜的空气间隔(即两个透镜在光轴上的间距),将有利于使得镜头组件中提供主要屈折力的透镜靠近光阑结构,从而有利于像差校正和缩短镜头组件的系统总长。In combination with a possible design in the first aspect, the lens assembly satisfies the following conditions: D23≤0.15mm; 0<D12/D34<0.3; 0<D23/D34<0.3. Among them, D12 is the distance on the optical axis between the first lens and the second lens; D23 is the distance on the optical axis between the second lens and the third lens; D34 is the distance between the third lens and the fourth lens The spacing on the optical axis. In this way, by limiting the air gap between the first three lenses in the lens assembly, that is, the above-mentioned first lens, second lens, and third lens (that is, the distance between the two lenses on the optical axis), it will help make the lens assembly The lens that provides the main refractive power is close to the diaphragm structure, which facilitates aberration correction and shortens the overall length of the lens assembly.
本申请的第二方面,提供一种电子设备,包括显示屏,以及上所述的任意一种摄像模组。该显示屏具有显示面以及远离显示屏的背面。摄像模组位于显示屏的背面。或者,显示屏上开设有安装孔,摄像模组位于安装孔内。上述电子设备具有与前述实施例提供的摄像模组相同的技术效果,此处不再赘述。A second aspect of the present application provides an electronic device including a display screen and any one of the above-mentioned camera modules. The display screen has a display surface and a back surface away from the display screen. The camera module is located on the back of the display screen. Alternatively, a mounting hole is provided on the display screen, and the camera module is located in the mounting hole. The above-mentioned electronic device has the same technical effect as the camera module provided in the foregoing embodiment, and will not be repeated here.
根据第二方面,在一种可能的设计中,显示屏还包括中框和后壳。中框远离后壳的一侧表面与显示屏相连接。中框朝向后壳的表面设置有主板。摄像模组包括模组线路板,模组线路板与主板电连接。从而可以使得主板对模组线路板拍摄到的图像数据进行处理,并传输至显示屏进行显示。According to the second aspect, in a possible design, the display screen also includes a middle frame and a rear shell. The side surface of the middle frame away from the rear case is connected with the display screen. A main board is arranged on the surface of the middle frame facing the rear shell. The camera module includes a module circuit board, and the module circuit board is electrically connected to the main board. Therefore, the main board can process the image data captured by the module circuit board and transmit it to the display screen for display.
应理解,在不违背自然规律的前提下,上述可能的实现方案可以进行任意组合。It should be understood that the above possible implementation schemes can be combined arbitrarily without violating the laws of nature.
附图说明Description of the drawings
图1a为本申请实施例提供的一种可变光圈的结构示意图;FIG. 1a is a schematic structural diagram of a variable aperture provided by an embodiment of the application;
图1b为本申请实施例提供的另一种可变光圈的结构示意图;FIG. 1b is a schematic structural diagram of another variable aperture provided by an embodiment of the application;
图2a为本申请实施例提供的一种电子设备的结构示意图;2a is a schematic structural diagram of an electronic device provided by an embodiment of this application;
图2b为图2a中显示屏的一种结构示意图;FIG. 2b is a schematic diagram of a structure of the display screen in FIG. 2a;
图3a为本申请实施例提供的一种摄像模组的设置方式示意图;FIG. 3a is a schematic diagram of a setting method of a camera module provided by an embodiment of the application;
图3b为本申请实施例提供的另一种摄像模组的设置方式示意图;FIG. 3b is a schematic diagram of another setting method of a camera module provided by an embodiment of the application;
图3c为本申请实施例提供的摄像模组在显示屏上的一种设置位置示意图;FIG. 3c is a schematic diagram of an arrangement position of the camera module on the display screen provided by an embodiment of the application;
图3d为本申请实施例提供的另一种摄像模组的设置方式示意图;FIG. 3d is a schematic diagram of another setting method of a camera module provided by an embodiment of the application;
图4为本申请实施例提供的一种摄像模组的结构示意图;4 is a schematic structural diagram of a camera module provided by an embodiment of the application;
图5a为本申请实施例提供的一种光阑结构的示意图;FIG. 5a is a schematic diagram of an aperture structure provided by an embodiment of the application;
图5b为图5a所示的光阑结构的中心调光区和周边调光区的一种示意图;5b is a schematic diagram of the central dimming area and the peripheral dimming area of the diaphragm structure shown in FIG. 5a;
图5c为图5a所示的光阑结构的中心调光区和周边调光区的另一种示意图;5c is another schematic diagram of the central dimming area and the peripheral dimming area of the diaphragm structure shown in FIG. 5a;
图5d为本申请实施例提供的另一种光阑结构的示意图;5d is a schematic diagram of another diaphragm structure provided by an embodiment of the application;
图6a为本申请实施例提供的光阑结构中第二透明电极层的一种设置方式示意图;FIG. 6a is a schematic diagram of an arrangement of the second transparent electrode layer in the aperture structure provided by an embodiment of the application;
图6b为沿图6a中的虚线D-D进行剖切得到的一种剖视图;Figure 6b is a cross-sectional view taken along the broken line D-D in Figure 6a;
图6c为本申请实施例提供的光阑结构中第二透明电极层的另一种设置方式示意图;6c is a schematic diagram of another arrangement of the second transparent electrode layer in the aperture structure provided by the embodiment of the application;
图6d为沿图6c中的虚线F-F进行剖切得到的一种剖视图;Figure 6d is a cross-sectional view taken along the dashed line F-F in Figure 6c;
图7a为沿图6a中的虚线D-D进行剖切得到的另一种剖视图;Figure 7a is another cross-sectional view taken along the broken line D-D in Figure 6a;
图7b为本申请实施例提供的光阑结构的一种光圈大小设置示意图;FIG. 7b is a schematic diagram of an aperture size setting of the aperture structure provided by an embodiment of the application;
图7c为沿图6a中虚线D-D进行另一种剖切得到的剖视图;Figure 7c is a cross-sectional view obtained by performing another cut along the dotted line D-D in Figure 6a;
图7d为本申请实施例提供的光阑结构的另一种光圈大小设置示意图;FIG. 7d is a schematic diagram of another setting of the aperture size of the aperture structure provided by the embodiment of the application;
图7e为本申请实施例提供的光阑结构的另一种光圈大小设置示意图;FIG. 7e is a schematic diagram of another aperture size setting of the aperture structure provided by an embodiment of the application;
图8a为本申请实施例提供的光阑结构中调光层的一种设置方式示意图;FIG. 8a is a schematic diagram of an arrangement of the dimming layer in the diaphragm structure provided by an embodiment of the application;
图8b为本申请实施例提供的光阑结构中调光层的另一种设置方式示意图;8b is a schematic diagram of another setting method of the dimming layer in the diaphragm structure provided by the embodiment of the application;
图8c为图8b所示的光阑结构的一种光圈大小示意图;Fig. 8c is a schematic diagram of an aperture size of the diaphragm structure shown in Fig. 8b;
图8d为图8b所示的光阑结构的另一种光圈大小示意图;8d is a schematic diagram of another aperture size of the aperture structure shown in FIG. 8b;
图8e为图8a中第二挡墙的结构示意图;Figure 8e is a schematic structural diagram of the second retaining wall in Figure 8a;
图9为本申请实施例提供的光阑结构第二透明电极层的另一种设置方式示意图;9 is a schematic diagram of another arrangement of the second transparent electrode layer of the aperture structure provided by an embodiment of the application;
图10为本申请实施例提供的光阑结构中调光层的另一种设置方式示意图;10 is a schematic diagram of another setting method of the dimming layer in the diaphragm structure provided by the embodiment of the application;
图11为本申请实施例提供的另一种摄像模组的结构示意图;11 is a schematic structural diagram of another camera module provided by an embodiment of the application;
图12a为本申请实施例提供的一种电控引脚的示意图;FIG. 12a is a schematic diagram of an electronic control pin provided by an embodiment of the application;
图12b为本申请实施例提供的另一种电控引脚的示意图;FIG. 12b is a schematic diagram of another electronic control pin provided by an embodiment of the application;
图13为图10中的模组线路板的结构示意图;FIG. 13 is a schematic diagram of the structure of the module circuit board in FIG. 10;
图14a为本申请实施例提供的一种镜头组件的示意图;FIG. 14a is a schematic diagram of a lens assembly provided by an embodiment of the application;
图14b为图14a所示的镜头组件在较大光圈下的成像示意图;Fig. 14b is a schematic diagram of imaging of the lens assembly shown in Fig. 14a under a larger aperture;
图14c为图14a所示的镜头组件在较小光圈下的成像示意图;Fig. 14c is a schematic diagram of imaging of the lens assembly shown in Fig. 14a at a smaller aperture;
图15为本申请实施例提供的另一种镜头组件的示意图。FIG. 15 is a schematic diagram of another lens assembly provided by an embodiment of the application.
附图标记:Reference signs:
100-叶片;101-通光孔;01-电子设备;10-显示屏;11-中框;12-壳体;13-BLU;20-摄像模组;103-透光区;104-安装区;21-镜头组件;211-第一透镜;212-第二透镜;22-光阑结构;200-中心调光区;201-周边调光区;30-调光层;31-第一透明电极层;32-第二透明电极层;320-第二电极;321-辅助电极;322-电极组;33-第一挡墙;301-液晶分子;3022-电解质层;3023-有色油墨层;3021-电致变色层;34-第二挡墙;41-镜筒;410-金属线路;42-镜头马达;43-模组线路板;44-感光元件;45-滤光片;46-模组底座;460-通孔;51-第一电控引脚;52-第二电控引脚;430-供电电路;431-图像处理电路;213-第三透镜;214-第四透镜;215-第五透镜;216-第六透镜;217-第七透镜;220-成像面;218-第八透镜。100-blade; 101-light hole; 01-electronic equipment; 10-display screen; 11-middle frame; 12-shell; 13-BLU; 20-camera module; 103-transparent area; 104-installation area 21-lens assembly; 211-first lens; 212-second lens; 22-aperture structure; 200-central dimming zone; 201-peripheral dimming zone; 30-dimming layer; 31-first transparent electrode 32-second transparent electrode layer; 320-second electrode; 321-auxiliary electrode; 322-electrode group; 33-first retaining wall; 301-liquid crystal molecules; 3022-electrolyte layer; 3023-colored ink layer; 3021 -Electrochromic layer; 34-second retaining wall; 41-lens barrel; 410-metal circuit; 42-lens motor; 43-module circuit board; 44-photosensitive element; 45-filter; 46-module Base; 460-through hole; 51-first electric control pin; 52-second electric control pin; 430-power supply circuit; 431-image processing circuit; 213-third lens; 214-fourth lens; 215- Fifth lens; 216-sixth lens; 217-seventh lens; 220-imaging surface; 218-eighth lens.
具体实施方式detailed description
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present application will be described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments.
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义可以是两个或两个以上。Hereinafter, the terms "first", "second", etc. are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with "first", "second", etc. may explicitly or implicitly include one or more of these features. In the description of this application, unless otherwise specified, the meaning of "plurality" may be two or more.
此外,本申请中,“上”、“下”、“左”、“右”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。In addition, in this application, the azimuth terms such as “upper”, “lower”, “left”, and “right” may include but are not limited to the directions defined relative to the schematic placement of the components in the drawings. It should be understood that these directions Sexual terms can be relative concepts, and they are used for relative description and clarification, which can change accordingly according to the changes in the orientation of the components in the drawings.
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。In this application, unless expressly stipulated and limited otherwise, the term "connected" should be understood in a broad sense. For example, "connected" can be a fixed connection, a detachable connection, or a whole; it can be directly connected or Can be indirectly connected through an intermediary.
本申请实施例提供一种电子设备。该电子设备包括例如手机、平板电脑、个人数字助理(personal digital assistant,PDA)、车载电脑等。本申请实施例对上述电子设备的具体形式不做特殊限制。以下为了方便说明,是以电子设备为手机为例进行的说明。The embodiment of the application provides an electronic device. The electronic device includes, for example, a mobile phone, a tablet computer, a personal digital assistant (PDA), a vehicle-mounted computer, and the like. The embodiments of the present application do not impose special restrictions on the specific form of the above electronic equipment. For the convenience of description, the following description takes the electronic device as a mobile phone as an example.
在此情况下,如图2a所示,上述电子设备01包括但不限于显示屏10、中框11以及壳体12。显示屏10安装于中框11远离后壳12的一侧表面上,中框11与壳体12相连接。其中,显示屏10具有用于显示图像的显示面A1以及远离显示面A1的背面A2。当显示屏10安装于中框11,并通过中框11与壳体12相连接时,壳体12设置于显示屏10的背面A2。In this case, as shown in FIG. 2a, the aforementioned electronic device 01 includes but is not limited to a display screen 10, a middle frame 11, and a housing 12. The display screen 10 is installed on a side surface of the middle frame 11 away from the rear housing 12, and the middle frame 11 is connected with the housing 12. Among them, the display screen 10 has a display surface A1 for displaying images and a back surface A2 away from the display surface A1. When the display screen 10 is installed on the middle frame 11 and connected to the casing 12 through the middle frame 11, the casing 12 is arranged on the back A2 of the display screen 10.
在本申请的一些实施例中,如图2b所示,上述显示屏10可以包括但不限于是液晶显示屏(liquid crystal display,LCD)。在此情况下,上述电子设备01还可以包括用于向该液晶显示屏提供光源的背光模组(back light unit,BLU)13。In some embodiments of the present application, as shown in FIG. 2b, the aforementioned display screen 10 may include, but is not limited to, a liquid crystal display (LCD). In this case, the aforementioned electronic device 01 may further include a backlight unit (BLU) 13 for providing a light source to the liquid crystal display.
可选的,在本申请的另一些实施例中,上述显示屏10可以包括但不限于是有机发光二极管(organic light emitting diode,OLED)显示屏,该OLED显示屏能够实现自发光,因此电子设备01中无需设置上述BLU。Optionally, in some other embodiments of the present application, the above-mentioned display screen 10 may include, but is not limited to, an organic light emitting diode (OLED) display screen. The OLED display screen can realize self-luminescence, so the electronic device No need to set the above BLU in 01.
此外,上述电子设备01还包括用于实现图像拍摄的摄像模组。在本申请的一些实施例中,上述摄像模组可以作为后置摄像头。在此情况下,如图3a所示,摄像模组20可以位于显示屏10的背面A2。并且,该摄像模组20的受光面(用于接收光线的表面)可以远离显示屏10的背面A2。In addition, the above-mentioned electronic device 01 further includes a camera module for realizing image shooting. In some embodiments of the present application, the aforementioned camera module may be used as a rear camera. In this case, as shown in FIG. 3a, the camera module 20 may be located on the back A2 of the display screen 10. In addition, the light-receiving surface (the surface for receiving light) of the camera module 20 can be far away from the back surface A2 of the display screen 10.
或者,在本申请的另一些实施例中,上述摄像模组20可以作为前置摄像头。在此情况下,如图3b所示,摄像模组20可以位于显示屏10的背面A2。并且,摄像模组20的受光面可以朝向显示屏10的背面A2。基于此,为了使得光线能够入射至摄像模组20的受光面,该显示屏10在对应摄像模组20的位置可以具有透光区103。该透光区103可以设置于如图3c所示的有效显示区(ative area,AA)中。Alternatively, in other embodiments of the present application, the aforementioned camera module 20 may be used as a front camera. In this case, as shown in FIG. 3b, the camera module 20 may be located on the back A2 of the display screen 10. In addition, the light-receiving surface of the camera module 20 may face the back A2 of the display screen 10. Based on this, in order to enable light to be incident on the light-receiving surface of the camera module 20, the display screen 10 may have a light-transmitting area 103 at a position corresponding to the camera module 20. The light-transmitting area 103 may be arranged in an effective display area (AA) as shown in FIG. 3c.
其中,上述透光区103的光线透过率,大于AA区中除了透光区103以外区域的 光线透过率。Wherein, the light transmittance of the light-transmitting area 103 is greater than the light transmittance of the area except the light-transmitting area 103 in the AA area.
可选的,在本申请的另一些实施例中,上述摄像模组20可以作为前置摄像头。在此情况下,如图3d所示,可以显示屏10上设置安装区104,摄像模组20位于安装区104内。并且,摄像模组20的受光面可以与显示屏10的显示面A1位于同一侧。其中,图3d中,安装区104周围的斜线填充部分均表示显示屏10。Optionally, in other embodiments of the present application, the aforementioned camera module 20 may be used as a front camera. In this case, as shown in FIG. 3d, an installation area 104 may be provided on the display screen 10, and the camera module 20 is located in the installation area 104. In addition, the light-receiving surface of the camera module 20 may be located on the same side as the display surface A1 of the display screen 10. Wherein, in FIG. 3d, the diagonally filled parts around the installation area 104 all represent the display screen 10.
以下对上述摄像模组20的结构进行举例说明。The structure of the above-mentioned camera module 20 is described below with an example.
如图4所示,摄像模组20可以但不限于包括镜头组件21。其中,镜头组件21可以但不限于包括位于同一光轴O-O上的第一透镜211和第二透镜212。在本申请的一些实施例中,上述第一透镜211可以为镜头组件21中更靠近物侧(即更靠近拍摄物体的一侧,图中为左侧)的一个透镜。该第二透镜212可以为与第一透镜211相邻的透镜。As shown in FIG. 4, the camera module 20 may include, but is not limited to, a lens assembly 21. The lens assembly 21 may, but is not limited to, include a first lens 211 and a second lens 212 located on the same optical axis O-O. In some embodiments of the present application, the above-mentioned first lens 211 may be a lens in the lens assembly 21 that is closer to the object side (ie, the side closer to the shooting object, the left side in the figure). The second lens 212 may be a lens adjacent to the first lens 211.
如图4所示,第一透镜211可以具有正屈折力,或可以理解为该第一透镜211为凸透镜。这样一来可以使得整个透镜组件21在物侧具有较好的光线汇聚能力,可以减小透镜组件21的光路总长。在本申请的一些实施例中,第一透镜211的物侧(左侧)表面为凸面。As shown in FIG. 4, the first lens 211 may have a positive refractive power, or it may be understood that the first lens 211 is a convex lens. In this way, the entire lens assembly 21 can have a better light converging ability on the object side, and the total optical path length of the lens assembly 21 can be reduced. In some embodiments of the present application, the object side (left side) surface of the first lens 211 is convex.
此外,第二透镜212可以具有负屈折力,即该第二透镜212为凹透镜。这样一来可以补偿一部分由第一透镜211的正屈折力带来的像差,达到提高摄像模组20成像品质的目的。In addition, the second lens 212 may have a negative refractive power, that is, the second lens 212 is a concave lens. In this way, a part of the aberration caused by the positive refractive power of the first lens 211 can be compensated, and the imaging quality of the camera module 20 can be improved.
在此基础上,如图4所示,摄像模组20还可以包括光阑结构22。该光阑结构22可以位于第一透镜211和第二透镜212之间。为了使得光阑结构22能够更好的与第一透镜211和第二透镜212相接触。该第一透镜211像侧(用于成像的一侧,图中为右侧)表面,即靠近光阑结构22的一侧表面可以为平面。第二透镜212的物侧(图中为左侧)表面,即靠近光阑结构22的一侧表面可以为平面。On this basis, as shown in FIG. 4, the camera module 20 may further include an aperture structure 22. The diaphragm structure 22 may be located between the first lens 211 and the second lens 212. In order to enable the diaphragm structure 22 to better contact the first lens 211 and the second lens 212. The image side (the side used for imaging, the right side in the figure) surface of the first lens 211, that is, the side surface close to the diaphragm structure 22 may be flat. The object side (left side in the figure) surface of the second lens 212, that is, the side surface close to the diaphragm structure 22 may be flat.
在本申请的一些实施例中,第一透镜211像侧表面、第二透镜212的物侧表面可以与光阑结构22所在的平面平行。从而可以使得第一透镜211与光阑结构22之间,以及第二透镜212与光阑结构22之间能够更好的贴合。In some embodiments of the present application, the image side surface of the first lens 211 and the object side surface of the second lens 212 may be parallel to the plane where the diaphragm structure 22 is located. In this way, the first lens 211 and the aperture structure 22 and the second lens 212 and the aperture structure 22 can be better attached.
在此基础上,第一透镜211像侧(图中为右侧)表面、第二透镜212的物侧(图中为左侧)表面可以具有纳米光束调制结构。在本申请的一些实施例中,具有上述纳米光束调制结构的第一透镜211或者第二透镜212可以作为衍射光学元件(diffractive optical elements,DOE)或者超透镜(meta lens)。On this basis, the image side (right side in the figure) surface of the first lens 211 and the object side (left side in the figure) surface of the second lens 212 may have a nano-beam modulation structure. In some embodiments of the present application, the first lens 211 or the second lens 212 having the above-mentioned nano-beam modulation structure may be used as diffractive optical elements (DOE) or meta-lens.
这样一来,进入DOE以及超透镜内部的光线,可以通过上述纳米光束调制结构的光波调制作用改变光路,从而将不同波长范围的光线汇聚到相同的交点上,从而可以分担电子设备01对消除色差的负担,达到优化成像质量、提升光圈或者缩短光路总长的目的。In this way, the light entering the DOE and the inside of the super lens can change the optical path through the light wave modulation effect of the above-mentioned nanobeam modulation structure, thereby converging light of different wavelength ranges to the same intersection point, thereby sharing the electronic device 01 to eliminate chromatic aberration The burden of optimizing the image quality, increasing the aperture or shortening the total length of the optical path.
在此基础上,上述光阑结构22可以但不限于包括如图5a所示的第一透明电极层31和第二透明电极层32,以及位于第一透明电极层31和第二透明电极层32之间的调光层30。On this basis, the above-mentioned aperture structure 22 may include, but is not limited to, the first transparent electrode layer 31 and the second transparent electrode layer 32 as shown in FIG. 5a, as well as the first transparent electrode layer 31 and the second transparent electrode layer 32. Between the dimming layer 30.
第一透明电极层31和第二透明电极层32用于在预设工作状态下,在调光层30上形成如图5b所示的多个调光区。该多个调光区可以包括中心调光区200,以及位于 该中心调光区200外围的至少一个周边调光区201。The first transparent electrode layer 31 and the second transparent electrode layer 32 are used to form a plurality of dimming areas on the dimming layer 30 as shown in FIG. 5b in a preset working state. The plurality of dimming zones may include a central dimming zone 200 and at least one peripheral dimming zone 201 located at the periphery of the central dimming zone 200.
需要说明的是,上述预设工作状态可以包括但不限于是指,向第一透明电极层31和第二透明电极层32分别输入电压,使得第一透明电极层31和第二透明电极层32之间产生电场,从而能够在调光层30上形成调光区的状态。当改变向第一透明电极层31和第二透明电极层32输入的电压时,第一透明电极层31和第二透明电极层32之间产生的电场也会发生变化,从而在该电场的作用下,使得在调光层30上形成的调光区的光线透过率发生改变。It should be noted that the foregoing preset working state may include, but is not limited to, inputting voltages to the first transparent electrode layer 31 and the second transparent electrode layer 32, respectively, so that the first transparent electrode layer 31 and the second transparent electrode layer 32 An electric field is generated therebetween, so that the state of the dimming area can be formed on the dimming layer 30. When the voltage input to the first transparent electrode layer 31 and the second transparent electrode layer 32 is changed, the electric field generated between the first transparent electrode layer 31 and the second transparent electrode layer 32 will also change. Below, the light transmittance of the dimming area formed on the dimming layer 30 is changed.
因此,一种预设工作状态,与向第一透明电极层31和第二透明电极层32分别提供的一组电压、第一透明电极层31和第二透明电极层32形成的电场,以及在调光层30上形成的调光区的光线透过率相匹配。Therefore, a preset working state is associated with a set of voltages provided to the first transparent electrode layer 31 and the second transparent electrode layer 32, the electric field formed by the first transparent electrode layer 31 and the second transparent electrode layer 32, and the The light transmittance of the dimming zone formed on the dimming layer 30 matches.
需要说明的是,图5b是以光阑结构22包括一个调光区201为例进行的说明。图5c是以光阑结构22包括三个调光区,分别为由内向外依次排布的调光区201a、调光区201b以及调光区201c为例进行的说明。It should be noted that FIG. 5b is an example in which the diaphragm structure 22 includes a dimming area 201. 5c is an example in which the aperture structure 22 includes three dimming zones, which are respectively the dimming zone 201a, the dimming zone 201b, and the dimming zone 201c arranged in order from the inside to the outside.
其中,调光区的标号“201”后面的字母“a”、“b”以及“c”是为方便对多个调光区进行举例说明,而加以标注区分。Among them, the letters "a", "b" and "c" after the label "201" of the dimming zone are used to illustrate and distinguish multiple dimming zones.
本申请是以中心调光区200可以包括但不限于是圆形,周边调光区201可以包括但不限于是圆环形。为了使得摄像模组20的成像效果更好,且为了方便举例说明,以下实施例均是以中心调光区200为圆形,周边调光区201为圆环形为例。In the present application, the central dimming area 200 may include but is not limited to a circle, and the peripheral dimming area 201 may include, but is not limited to, a circular ring. In order to make the imaging effect of the camera module 20 better, and for the convenience of illustration, the following embodiments all take the central dimming area 200 as a circle and the peripheral dimming area 201 as an example.
此外,在本申请的一些实施例中,如图5a所示,第一透明电极层31可以设置于第一透镜211朝向或靠近第二透镜212的一侧表面。在本申请的实施例中,该第一透明电极层31可以为覆盖调光层30的一整层薄膜层。该第一透明电极层31可以为圆形薄膜。In addition, in some embodiments of the present application, as shown in FIG. 5 a, the first transparent electrode layer 31 may be disposed on a side surface of the first lens 211 facing or close to the second lens 212. In the embodiment of the present application, the first transparent electrode layer 31 may be a whole film layer covering the dimming layer 30. The first transparent electrode layer 31 may be a circular film.
第二透明电极层32如图5a所示,可以设置于第二透镜212朝向或靠近第一透镜211的一侧表面。As shown in FIG. 5 a, the second transparent electrode layer 32 may be disposed on a side surface of the second lens 212 facing or close to the first lens 211.
或者,在本申请的另一些实施例中,如图5d所示,第二透明电极层32设置于第一透镜211朝向或靠近第二透镜212的一侧表面。第一透明电极层31设置于第二透镜212朝向或靠近第一透镜211的一侧表面。Alternatively, in some other embodiments of the present application, as shown in FIG. 5d, the second transparent electrode layer 32 is disposed on a side surface of the first lens 211 facing or close to the second lens 212. The first transparent electrode layer 31 is disposed on a side surface of the second lens 212 facing or close to the first lens 211.
上述是以将第一透明电极层31(或第二透明电极层32)设置于第一透镜211上,第二透明电极层32(或第一透明电极层31)设置于第二透镜212上为例,对位于第一透镜211和第二透镜212之间的光阑结构22中的第一透明电极层31和第二透明电极层32的设置方式的举例说明。在此情况下,第一透镜211和第二透镜212作为了该光阑结构22中第一透明电极层31和第二透明电极层32的载体。The above is that the first transparent electrode layer 31 (or the second transparent electrode layer 32) is disposed on the first lens 211, and the second transparent electrode layer 32 (or the first transparent electrode layer 31) is disposed on the second lens 212. For example, the arrangement of the first transparent electrode layer 31 and the second transparent electrode layer 32 in the diaphragm structure 22 located between the first lens 211 and the second lens 212 is illustrated. In this case, the first lens 211 and the second lens 212 serve as the carrier of the first transparent electrode layer 31 and the second transparent electrode layer 32 in the diaphragm structure 22.
在本申请的另一种可能的实现方式中,光阑结构22可以独立于第一透镜211和第二透镜212。例如,该光阑结构22可以具有靠近第一透镜211的上基板、靠近第二透镜212的下基板。第一透明电极层31和第二透明电极层32可以分别制作于上述上基板和下基板上。其他用于将光阑结构22设置于第一透镜211和第二透镜212中间的方式在此不再一一赘述。In another possible implementation manner of the present application, the diaphragm structure 22 may be independent of the first lens 211 and the second lens 212. For example, the diaphragm structure 22 may have an upper substrate close to the first lens 211 and a lower substrate close to the second lens 212. The first transparent electrode layer 31 and the second transparent electrode layer 32 may be fabricated on the above-mentioned upper substrate and lower substrate, respectively. Other methods for arranging the diaphragm structure 22 between the first lens 211 and the second lens 212 will not be repeated here.
以下结合不同的示例,对调光层30的结构,以及第一透明电极层31和第二透明电极层32在预设工作状态下,在调光层30上形成多个调光区的方式进行举例说明。The following describes the structure of the light-adjusting layer 30 and the manner in which multiple light-adjusting areas are formed on the light-adjusting layer 30 under the preset working state of the first transparent electrode layer 31 and the second transparent electrode layer 32 in combination with different examples. for example.
示例一Example one
在本示例的一些实施例中,上述第一透明电极层31由上述可知,可以为覆盖调光层30的圆形薄膜。In some embodiments of this example, the above-mentioned first transparent electrode layer 31 can be known from the above, and may be a circular film covering the dimming layer 30.
此外,图5a中的第二透明电极层32可以包括图6a中多个间隔设置的第二电极320。其中,第二透明电极层32包括多个间隔设置的第二电极320可以包括但不限于是指,第二透明电极层32包括多个第二电极320,且相邻两个第二电极320之间如图6b(沿图6a中的虚线D-D进行剖切得到的剖视图)所示具有间隙H。该间隙H用于将相邻两个第二电极320之间间隔开,从而避免向相邻两个第二电极320输入电压后,出现电场干扰的现象。In addition, the second transparent electrode layer 32 in FIG. 5a may include a plurality of second electrodes 320 arranged at intervals in FIG. 6a. Wherein, the second transparent electrode layer 32 includes a plurality of second electrodes 320 arranged at intervals may include, but is not limited to, the second transparent electrode layer 32 includes a plurality of second electrodes 320, and one of two adjacent second electrodes 320 The space has a gap H as shown in FIG. 6b (a cross-sectional view cut along the dashed line DD in FIG. 6a). The gap H is used to separate two adjacent second electrodes 320, so as to avoid the phenomenon of electric field interference after voltage is input to two adjacent second electrodes 320.
本申请对上述相邻两个第二电极320之间的间隙H的大小不做限定,只要保证该间隙H能够防止相邻两个第二电极320之间出现电场干扰即可。The present application does not limit the size of the gap H between two adjacent second electrodes 320, as long as the gap H can prevent electric field interference between two adjacent second electrodes 320.
在此基础上,如图6a所示,任意一个第二电极320可以为圆环结构。多个第二电极320由内向外依次排布。在本申请的一些实施例中,上述多个第二电极320可以共圆心。基于此,该第二电极320的圆心可以在上述第一透镜211和第二透镜212的光轴O-O(如图4所示)。On this basis, as shown in FIG. 6a, any one of the second electrodes 320 may have a ring structure. The plurality of second electrodes 320 are sequentially arranged from the inside to the outside. In some embodiments of the present application, the multiple second electrodes 320 may have a common center. Based on this, the center of the second electrode 320 may be on the optical axis O-O of the first lens 211 and the second lens 212 (as shown in FIG. 4).
在此情况下,每个第二电极320和第一透明电极层31用于在预设工作状态下,在调光层30上形成一个周边调光区。例如,图6a中,由内向外依次排布的三个第二电极320,与第一透明电极层31在预设工作状态下,分别形成如图5c所示的,由内向外依次排布的周边调光区201a、周边调光区201b以及周边调光区201c。In this case, each of the second electrode 320 and the first transparent electrode layer 31 is used to form a peripheral dimming area on the dimming layer 30 in a preset working state. For example, in FIG. 6a, the three second electrodes 320 arranged in order from the inside to the outside and the first transparent electrode layer 31 in the preset working state respectively form as shown in FIG. 5c, which are arranged in order from the inside to the outside. The peripheral dimming area 201a, the peripheral dimming area 201b, and the peripheral dimming area 201c.
其中,第二电极320在第二透镜212上的正投影与该第二电极320在调光层30上形成的周边调光区201在该第二透镜212上的正投影重叠。即第二电极320的宽度可以决定该第二电极320和第一透明电极层31在预设工作状态下,在调光层30上形成一个周边调光区的宽度。Wherein, the orthographic projection of the second electrode 320 on the second lens 212 overlaps the orthographic projection of the peripheral dimming area 201 formed on the dimming layer 30 by the second electrode 320 on the second lens 212. That is, the width of the second electrode 320 can determine the width of a peripheral dimming area formed on the dimming layer 30 by the second electrode 320 and the first transparent electrode layer 31 in the preset working state.
因此,当第二电极320的宽度较大时,可以得到宽度较大的周边调光区,反之得到宽度较小的周边调光区。本申请对第二电极320的宽度不做限定,本领域技术人员可以根据光阑结构22在一定光圈数值下需要的孔径大小,对第二电极320的宽度进行调节。Therefore, when the width of the second electrode 320 is larger, a peripheral dimming area with a larger width can be obtained, and vice versa. The present application does not limit the width of the second electrode 320, and those skilled in the art can adjust the width of the second electrode 320 according to the aperture size required by the diaphragm structure 22 at a certain aperture value.
需要说明的是,在本申请的一些实施例中,上述中心调光区200可以在第一透明电极层31通电和未通电的情况下,均处于透明状态。在此情况下,如图6b所示,第二透明电极层32可以在中心调光区200内可以为镂空,即没有电极图案。It should be noted that, in some embodiments of the present application, the aforementioned central dimming area 200 may be in a transparent state when the first transparent electrode layer 31 is energized or not. In this case, as shown in FIG. 6b, the second transparent electrode layer 32 may be hollowed out in the central dimming area 200, that is, there is no electrode pattern.
或者,在本申请的另一些实施例中,第二透明电极层32还可以包括设置在中心调光区200中的,如图6c所示的圆形辅助电极321。如图6d(沿图6c中的虚线F-F进行剖切得到的剖视图)所示,上述辅助电极321与该辅助电极321相邻的第二电极320之间可以具有间隙L。Alternatively, in other embodiments of the present application, the second transparent electrode layer 32 may further include a circular auxiliary electrode 321 arranged in the central dimming area 200, as shown in FIG. 6c. As shown in FIG. 6d (a cross-sectional view taken along the dashed line F-F in FIG. 6c), there may be a gap L between the auxiliary electrode 321 and the second electrode 320 adjacent to the auxiliary electrode 321.
本申请对该间隙L的大小不做限定,只要能够保证辅助电极321与该辅助电极321相邻的第二电极320之间不会产生电场干扰即可。这样一来,在光阑结构22正常工作时,可以通过控制输入至第一透明电极层31和辅助电极321之间的电压,使得中心调光区200处于透明状态。The present application does not limit the size of the gap L, as long as it can ensure that no electric field interference occurs between the auxiliary electrode 321 and the second electrode 320 adjacent to the auxiliary electrode 321. In this way, when the diaphragm structure 22 is working normally, the voltage input between the first transparent electrode layer 31 and the auxiliary electrode 321 can be controlled to make the central dimming area 200 in a transparent state.
以下为了方便说明,均是以中心调光区200在光阑结构22正常工作时和非工作状态下,均处于透明状态为例进行的说明。For the convenience of description, the following descriptions are all based on an example in which the central dimming area 200 is in a transparent state when the aperture structure 22 is in a normal working state and in a non-working state.
其中,构成第一透明电极层31和第二透明电极层32中的各个第二电极320以及上述辅助电极321的材料可以为透明导电材料。例如,氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)。Wherein, the material constituting each second electrode 320 in the first transparent electrode layer 31 and the second transparent electrode layer 32 and the auxiliary electrode 321 may be a transparent conductive material. For example, indium tin oxide (Indium Tin Oxide, ITO), indium zinc oxide (Indium Zinc Oxide, IZO).
在本申请实施例中,任意两个第二电极320的材料可以相同,也可以不同。为了制作简单,可选的,第一透明电极层31和第二透明电极层32中的各个第二电极320以及上述辅助电极321的材料可以相同,例如可以均可以为上述ITO。In the embodiment of the present application, the materials of any two second electrodes 320 may be the same or different. For the sake of simplicity, optionally, the materials of each second electrode 320 in the first transparent electrode layer 31 and the second transparent electrode layer 32 and the auxiliary electrode 321 may be the same, for example, both may be the above ITO.
在此情况下,当向上述第一透明电极层31和第二透明电极层32中各个第二电极320提供电压时,可以控制每个周边调光区201位置处的调光层30的透过率。例如,可以控制第一透明电极层31与各个第二电极320之间的电压差,以使得光阑结构22具有多个可调光圈的档位。以下对光阑结构22实现多档位光圈调节的过程进行举例说明。In this case, when a voltage is applied to each of the second electrodes 320 of the first transparent electrode layer 31 and the second transparent electrode layer 32, the transmission of the dimming layer 30 at the position of each peripheral dimming area 201 can be controlled. rate. For example, the voltage difference between the first transparent electrode layer 31 and each second electrode 320 can be controlled, so that the diaphragm structure 22 has a plurality of adjustable diaphragm gears. In the following, the process of the diaphragm structure 22 to realize the multi-level aperture adjustment is described as an example.
例如,在本申请的一些实施例中,如图7a所示,调光层30可以为液晶层,该液晶层内设置有液晶分子301。由于液晶层为液体,因此该液晶层可以填充于相邻两个第二电极320之间的间隙内。For example, in some embodiments of the present application, as shown in FIG. 7a, the dimming layer 30 may be a liquid crystal layer, and liquid crystal molecules 301 are disposed in the liquid crystal layer. Since the liquid crystal layer is liquid, the liquid crystal layer can be filled in the gap between two adjacent second electrodes 320.
为了对液晶层中的液晶分子301进行密封。如图7b所示,上述摄像模组20还可以包括绕液晶层外围一周设置的第一挡墙33。该第一挡墙33与第一透镜211和第二透镜212可以形成用于容纳液晶层的液晶盒。In order to seal the liquid crystal molecules 301 in the liquid crystal layer. As shown in FIG. 7b, the aforementioned camera module 20 may further include a first retaining wall 33 arranged around the periphery of the liquid crystal layer. The first retaining wall 33 and the first lens 211 and the second lens 212 may form a liquid crystal cell for containing the liquid crystal layer.
在中心调光区200的光线透过率最大,该中心调光区200呈透明状态情况下,例如,向第一透明电极层31,以及所有第二电极320(图6a所示)提供电压,以使得第一透明电极层31与各个第二电极320之间的电压差均可以为第一电压V1。示例的,该第一电压V1=0V。When the light transmittance of the central dimming zone 200 is the largest and the central dimming zone 200 is in a transparent state, for example, voltage is provided to the first transparent electrode layer 31 and all the second electrodes 320 (shown in FIG. 6a), In this way, the voltage difference between the first transparent electrode layer 31 and each of the second electrodes 320 can all be the first voltage V1. For example, the first voltage V1=0V.
在此情况下,可以使得在上述各个周边调光区(包括周边调光区201a、周边调光区201b以及周边调光区201c)中的第二电极320与第一透明电极层31的控制下,如图7a所述,上述各个周边调光区的液晶分子301的角度未发生偏转,光线能够透过上述各个周边调光区。此时,上述各个周边调光区位置处的调光层30的光线透过率与中心调光区200的光线透过率可以接近,或者相同。In this case, the second electrode 320 and the first transparent electrode layer 31 in the above-mentioned peripheral dimming regions (including the peripheral dimming region 201a, the peripheral dimming region 201b, and the peripheral dimming region 201c) can be controlled As shown in FIG. 7a, the angles of the liquid crystal molecules 301 in each peripheral dimming zone are not deflected, and light can pass through the peripheral dimming zones. At this time, the light transmittance of the dimming layer 30 and the light transmittance of the central dimming area 200 at the positions of the peripheral dimming regions may be close to or the same.
这样一来,入射至摄像模组20的光线,可以通过周边调光区201a、周边调光区201b、周边调光区201c以及中心调光区200进入第二透镜212实现成像。此时,上述摄像模组20的光圈可以为如图7b所示的最大光圈,例如Fno=1.4。在此情况下,可以利用该大光圈去拍摄比较昏暗的场景,从而使得更多的光线能够进入到摄像模组20内,减少噪点。In this way, the light incident to the camera module 20 can enter the second lens 212 through the peripheral dimming area 201a, the peripheral dimming area 201b, the peripheral dimming area 201c, and the central dimming area 200 to achieve imaging. At this time, the aperture of the aforementioned camera module 20 may be the maximum aperture as shown in FIG. 7b, for example, Fno=1.4. In this case, the large aperture can be used to shoot a relatively dim scene, so that more light can enter the camera module 20 and reduce noise.
或者,又例如,向第一透明电极层31,以及各个第二电极320提供电压,以使得第一透明电极层31与各个第二电极320之间的电压差均可以为第二电压V2。示例的,该|V2|<30V,第二电压V2为非零值。例如,第二电压V2=30V。Or, for another example, a voltage is provided to the first transparent electrode layer 31 and each second electrode 320, so that the voltage difference between the first transparent electrode layer 31 and each second electrode 320 can be the second voltage V2. For example, if |V2|<30V, the second voltage V2 is a non-zero value. For example, the second voltage V2=30V.
在此情况下,可以使得在各个周边调光区(包括周边调光区201a、周边调光区201b以及周边调光区201c)中的第二电极320与第一透明电极层31之间的电场的控制下,上述各个周边调光区的液晶分子301的角度发生偏转,光线无法透过上述各个周边调 光区。In this case, the electric field between the second electrode 320 and the first transparent electrode layer 31 in each peripheral dimming area (including the peripheral dimming area 201a, the peripheral dimming area 201b, and the peripheral dimming area 201c) can be made Under the control of, the angles of the liquid crystal molecules 301 in each peripheral dimming area are deflected, and light cannot pass through the peripheral dimming areas.
此时,上述各个周边调光区位置处的调光层30的光线透过率接近或等于零。从而使得入射至摄像模组20的光线,只能够通过中心调光区200进入第二透镜212实现成像,而无法穿过上述各个中心调光区进入到第二透镜212。At this time, the light transmittance of the dimming layer 30 at each peripheral dimming zone position is close to or equal to zero. As a result, the light incident to the camera module 20 can only enter the second lens 212 through the central dimming area 200 to achieve imaging, but cannot enter the second lens 212 through the aforementioned central dimming areas.
在此情况下,上述摄像模组20的光圈可以为如图7d所示的最小光圈,例如Fno=6。这样一来,可以利用上述小光圈去拍摄烟火的轨迹、流星的轨迹、雾化的流水等。In this case, the aperture of the aforementioned camera module 20 may be the smallest aperture as shown in FIG. 7d, for example, Fno=6. In this way, the above-mentioned small aperture can be used to photograph the trajectory of fireworks, the trajectory of meteors, and the atomized flowing water.
或者,又例如,通过控制用于生成周边调光区201c的第二电极320的电压,以使得第一透明电极层31与该第二电极320的电压差均可以为上述第二电压V2。由上述可知,周边调光区201c位置处的调光层30的透过率接近或等于零。Or, for another example, by controlling the voltage of the second electrode 320 used to generate the peripheral dimming region 201c, so that the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the aforementioned second voltage V2. It can be seen from the above that the transmittance of the dimming layer 30 at the position of the peripheral dimming region 201c is close to or equal to zero.
此外,控制其余各个第二电极320的电压,以使得第一透明电极层31与其余各个第二电极320的电压差均可以为第一电压V1=0,以使得如图7e所示周边调光区201a、周边调光区201b的透过率与中心调光区200的透过率相同。In addition, the voltages of the remaining second electrodes 320 are controlled so that the voltage difference between the first transparent electrode layer 31 and the remaining second electrodes 320 can be the first voltage V1=0, so that the peripheral dimming as shown in FIG. 7e The transmittance of the area 201a and the peripheral dimming area 201b is the same as the transmittance of the central dimming area 200.
这样一来,入射至摄像模组20的光线,如图7e所示,可以通过周边调光区201a、周边调光区201b,以及中心调光区200进入第二透镜212实现成像,而无法穿过上述各个周边调光区201c进入到第二透镜212。此时,上述摄像模组20的光圈相对于图7d所示的结构而言,光圈有所增大,例如可以为Fno=3.4。In this way, the light incident on the camera module 20, as shown in FIG. 7e, can enter the second lens 212 through the peripheral dimming area 201a, the peripheral dimming area 201b, and the central dimming area 200 to achieve imaging, and cannot pass through. It enters the second lens 212 through the above-mentioned peripheral dimming regions 201c. At this time, compared to the structure shown in FIG. 7d, the aperture of the aforementioned camera module 20 has an aperture that is increased, for example, Fno=3.4.
此外,上述是以第一透明电极层31与第二电极320的电压差可以为第一电压V1=0时,在调光层30上形成的各个周边调光区201的透过率最大。第一透明电极层31与第二电极320的电压差均可以为第二电压V2,例如V2=30V的非零值时,在调光层30上形成的各个周边调光区201的透过率接近或等于零为例进行的说明。In addition, when the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the first voltage V1=0, the transmittance of each peripheral dimming area 201 formed on the dimming layer 30 is the largest. The voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the second voltage V2, for example, when V2=30V, the transmittance of each peripheral dimming area 201 formed on the dimming layer 30 It is close to or equal to zero as an example.
在本申请的另一些可能实现的方案中,还可以当第一透明电极层31与第二电极320的电压差可以为第一电压V1=0时,在调光层30上形成的各个周边调光区201的透过率接近或等于零。当第一透明电极层31与第二电极320的电压差均可以为第二电压V2,例如V2=30V的非零值时,在调光层30上形成的各个周边调光区201的透过率最大。In some other possible implementation solutions of the present application, when the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the first voltage V1=0, the peripheral adjustments formed on the dimming layer 30 The transmittance of the light zone 201 is close to or equal to zero. When the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the second voltage V2, for example, when V2=30V, the non-zero value of each peripheral dimming area 201 formed on the dimming layer 30 is transparent. The rate is the largest.
由上述可知,当第一透明电极层31与各个第二电极320的电压差均可以为第二电压V2=30V时,第一透明电极层31与各个第二电极320在该预设工作状态下,在调光层30上形成的各个周边调光区201的透过率可以为零。在本申请的另一些可能实现的方案中,第一透明电极层31与第二电极320的电压差可以不相同,从而对各个周边调光区201透过率的百分比进行调节。It can be seen from the above that when the voltage difference between the first transparent electrode layer 31 and each second electrode 320 can be the second voltage V2=30V, the first transparent electrode layer 31 and each second electrode 320 are in the preset working state The transmittance of each peripheral dimming area 201 formed on the dimming layer 30 may be zero. In some other possible implementation solutions of the present application, the voltage difference between the first transparent electrode layer 31 and the second electrode 320 may be different, so that the percentage of transmittance of each peripheral dimming area 201 can be adjusted.
例如,控制用于生成周边调光区201a的第二电极320的电压,以使得第一透明电极层31与该第二电极320的电压差可以为10V,周边调光区201a位置处的调光层30的透过率可以为60%。控制用于生成周边调光区201b的第二电极320的电压,以使得第一透明电极层31与该第二电极320的电压差可以为20V,周边调光区201b位置处的调光层30的透过率可以为30%。控制用于生成周边调光区201c的第二电极320的电压,以使得第一透明电极层31与该第二电极320的电压差可以为30V,周边调光区201c位置处的调光层30的透过率可以接近零。For example, the voltage of the second electrode 320 used to generate the peripheral dimming area 201a is controlled so that the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be 10V, and the dimming at the position of the peripheral dimming area 201a The transmittance of layer 30 may be 60%. The voltage of the second electrode 320 used to generate the peripheral dimming area 201b is controlled so that the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be 20V, and the dimming layer 30 at the position of the peripheral dimming area 201b The transmittance can be 30%. The voltage of the second electrode 320 used to generate the peripheral dimming area 201c is controlled so that the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be 30V. The dimming layer 30 at the position of the peripheral dimming area 201c The transmittance can be close to zero.
此时,光阑结构22的光圈会小于图7e对应的光圈Fno=3.4,且大于图7d对应的光圈Fno=6。At this time, the aperture of the diaphragm structure 22 will be smaller than the aperture Fno=3.4 corresponding to FIG. 7e, and greater than the aperture Fno=6 corresponding to FIG. 7d.
需要说明的是,上述仅仅是对第一透明电极层31与第二电极320的预设工作状态,即设置第一透明电极层31与第二电极320电压差的方式进行的举例说明。其他电压差的设置方式同理可得,此处不再赘述。It should be noted that the foregoing is only an example of the preset working state of the first transparent electrode layer 31 and the second electrode 320, that is, the manner of setting the voltage difference between the first transparent electrode layer 31 and the second electrode 320. The setting methods of other voltage differences are available in the same way, so I won't repeat them here.
综上所述,本申请实施例提供的摄像模组20的光阑结构22中,具有多个光线透过率可调的调光区(可以包括中心调光区200以及多个周边调光区201)。并且,上述调光区的透过率可以通过分别施加至位于调光层30两侧的第一透明电极层31和第二透明电极层32的电压进行调节。这样一来,当需要获得多个可调光圈的档位时,只需要增加用于构成第二透明电极层32中的第二电极320的数量,即可以达到增加上述调光区中周边调光区201数量的目的。在此情况下,上述摄像模组20能够对拍摄物体进行光学成像,并在拍摄动作触发后,根据系统算法自动优化计算的光圈数值来调整光阑结构22的光圈,以实现光圈Fno=1.4~Fno=6之间的多个可调光圈的档位。In summary, the diaphragm structure 22 of the camera module 20 provided by the embodiment of the present application has a plurality of dimming zones with adjustable light transmittance (which may include a central dimming zone 200 and a plurality of peripheral dimming zones 201). In addition, the transmittance of the aforementioned dimming zone can be adjusted by voltages respectively applied to the first transparent electrode layer 31 and the second transparent electrode layer 32 located on both sides of the dimming layer 30. In this way, when it is necessary to obtain multiple adjustable iris gears, it is only necessary to increase the number of the second electrodes 320 used to form the second transparent electrode layer 32, which can increase the peripheral dimming in the dimming zone. The purpose of the area 201 number. In this case, the above-mentioned camera module 20 can perform optical imaging of the photographed object, and after the shooting action is triggered, automatically optimize the calculated aperture value according to the system algorithm to adjust the aperture of the diaphragm structure 22 to realize the aperture Fno=1.4~ Fno=6 gears of multiple adjustable apertures.
由于第二透明电极层32中的第二电极320均位于调光层30的同一侧,因此当第二电极320的数量增加时,不会对光阑结构22的厚度产生影响。从而可以解决目前采用机械叶片构成的可变光圈,且当可调光圈的档位较多时,可变光圈的厚度较大的问题。Since the second electrodes 320 in the second transparent electrode layer 32 are all located on the same side of the dimming layer 30, when the number of the second electrodes 320 increases, the thickness of the aperture structure 22 will not be affected. This can solve the problem that the current iris diaphragm composed of mechanical blades is used, and the thickness of the iris diaphragm is relatively large when the adjustable diaphragm has more gears.
需要说明的是,本申请对光阑结构22的外观轮廓形状不进行限定,例如,图6a是以光阑结构22的外观轮廓形状为矩形为例进行的说明。在本申请的另一些实施例中,该光阑结构22还可以为圆形、三角形、菱形等其他可能的形状。It should be noted that the present application does not limit the appearance contour shape of the aperture structure 22. For example, FIG. 6a illustrates an example in which the appearance contour shape of the aperture structure 22 is a rectangle. In some other embodiments of the present application, the aperture structure 22 may also have other possible shapes such as a circle, a triangle, a diamond, and so on.
可选的,在本示例的另一些实施例中,上述调光层30还可以为聚合物分散液晶薄膜(polymer dispersed liquid crystal,PDLC)。该PDLC中,液晶以微米量级的小微滴分散在有机固态聚合物基体内。在上述第一透明电极层31和第二透明电极层32中的各个第二电极320之间产生的电场作用下,可以对液晶微滴的光轴取向进行调节,使得PDLC能够呈现透明或者不透明的状态。Optionally, in other embodiments of this example, the dimming layer 30 may also be a polymer dispersed liquid crystal (PDLC). In this PDLC, liquid crystals are dispersed in an organic solid polymer matrix in micron-sized droplets. Under the action of the electric field generated between the respective second electrodes 320 in the first transparent electrode layer 31 and the second transparent electrode layer 32, the optical axis orientation of the liquid crystal droplets can be adjusted, so that the PDLC can be transparent or opaque. status.
在此情况下,上述第二透明电极层32中各个第二电极320的设置方式同上所述,此处不再赘述。In this case, the arrangement of each second electrode 320 in the second transparent electrode layer 32 is the same as that described above, and will not be repeated here.
可选的,在本申请的另一些实施例中,摄像模组还包括如图8a所示多个第二挡墙34。任意一个第二挡墙34如图8e所示为圆环结构。如图8a所示,每个第二挡墙34位于相邻两个第二电极320之间。并且,第二挡墙34与该第一透明电极层31相接触。此外,调光层30包括位于第一透明电极层31和第二电极320之间的电致变色层3021和电解质层3022。Optionally, in other embodiments of the present application, the camera module further includes a plurality of second retaining walls 34 as shown in FIG. 8a. Any second retaining wall 34 is a circular ring structure as shown in FIG. 8e. As shown in FIG. 8a, each second retaining wall 34 is located between two adjacent second electrodes 320. In addition, the second barrier wall 34 is in contact with the first transparent electrode layer 31. In addition, the dimming layer 30 includes an electrochromic layer 3021 and an electrolyte layer 3022 located between the first transparent electrode layer 31 and the second electrode 320.
需要说明的是,图8a是以电致变色层3021可以设置于第一透明电极层31上,电解质层3022可以设置于第二电极320上为例进行的说明。在本申请的另一些实施例中,电致变色层3021可以设置于第二电极320上,电解质层3022可以设置于第一透明电极层31上。It should be noted that FIG. 8a is an example in which the electrochromic layer 3021 can be disposed on the first transparent electrode layer 31 and the electrolyte layer 3022 can be disposed on the second electrode 320 as an example. In other embodiments of the present application, the electrochromic layer 3021 may be disposed on the second electrode 320, and the electrolyte layer 3022 may be disposed on the first transparent electrode layer 31.
示例的,以在中心调光区200的光线透过率最大,该中心调光区200呈透明状态的情况下,例如,当向如图8a所示的第一透明电极层31和各个第二电极320提供电压,以使得第一透明电极层31与各个第二电极320之间的电压差均可以为上述第一电压V1=0V。此时,在上述各个周边调光区中的第二电极320与第一透明电极层31之间的电场的控制下,电解质层3022能够将自由离子从第二电极320与第一透明电极层 31中注入至电致变色层3021,使得电致变色层3021由透明变为不透明的状态。For example, in the case where the light transmittance of the central dimming area 200 is the largest and the central dimming area 200 is in a transparent state, for example, when the first transparent electrode layer 31 and each second transparent electrode layer 31 as shown in FIG. The electrode 320 provides a voltage, so that the voltage difference between the first transparent electrode layer 31 and each second electrode 320 can be the above-mentioned first voltage V1=0V. At this time, under the control of the electric field between the second electrode 320 and the first transparent electrode layer 31 in the respective peripheral dimming regions, the electrolyte layer 3022 can remove free ions from the second electrode 320 and the first transparent electrode layer 31. It is injected into the electrochromic layer 3021 so that the electrochromic layer 3021 changes from transparent to opaque.
此时,上述各个周边调光区(包括周边调光区201a、周边调光区201b以及周边调光区201c)位置处的调光层30的光线透过率接近或等于零。从而使得入射至摄像模组20的光线,只能够通过中心调光区200进入第二透镜212实现成像,而无法穿过上述各个中心调光区进入到第二透镜212。在此情况下,上述摄像模组20的光圈可以为最小光圈,例如Fno=6。At this time, the light transmittance of the dimming layer 30 at the positions of the above-mentioned peripheral dimming areas (including the peripheral dimming area 201a, the peripheral dimming area 201b, and the peripheral dimming area 201c) is close to or equal to zero. As a result, the light incident to the camera module 20 can only enter the second lens 212 through the central dimming area 200 to achieve imaging, but cannot enter the second lens 212 through the aforementioned central dimming areas. In this case, the aperture of the camera module 20 may be the smallest aperture, for example, Fno=6.
或者,又例如,当向如图8a所示的第一透明电极层31和各个第二电极320提供电压,以使得第一透明电极层31与各个第二电极320之间的电压差均可以为第二电压V2。例如,V2=30V。此时,在上述各个周边调光区中的第二电极320与第一透明电极层31之间的电场的控制下,电解质层3022能够将自由离子从电致变色层3021抽取,并传输至第二电极320与第一透明电极层31中,使得电致变色层3021由不透明变为透明的状态。Or, for another example, when a voltage is provided to the first transparent electrode layer 31 and each second electrode 320 as shown in FIG. 8a, so that the voltage difference between the first transparent electrode layer 31 and each second electrode 320 can be The second voltage V2. For example, V2=30V. At this time, under the control of the electric field between the second electrode 320 and the first transparent electrode layer 31 in the respective peripheral dimming regions, the electrolyte layer 3022 can extract free ions from the electrochromic layer 3021 and transfer them to the first transparent electrode layer. In the second electrode 320 and the first transparent electrode layer 31, the electrochromic layer 3021 changes from opaque to transparent.
此时,上述各个周边调光区(包括周边调光区201a、周边调光区201b以及周边调光区201c)位置处的调光层30的光线透过率与中心调光区200接近。从而使得入射至摄像模组20的光线,能够通过各个周边调光区201和中心调光区200,并进入第二透镜212实现成像。在此情况下,上述摄像模组20的光圈可以为最大光圈,例如Fno=1.4。At this time, the light transmittance of the dimming layer 30 at the positions of the peripheral dimming regions (including the peripheral dimming region 201a, the peripheral dimming region 201b, and the peripheral dimming region 201c) is close to that of the central dimming region 200. Thus, the light incident to the camera module 20 can pass through the peripheral dimming areas 201 and the central dimming area 200, and enter the second lens 212 to achieve imaging. In this case, the aperture of the aforementioned camera module 20 may be the maximum aperture, for example, Fno=1.4.
需要说明的是,上述是以当第一透明电极层31与第二电极320的电压差可以为第一电压V1=0时,在调光层30上形成的各个周边调光区201的透过率接近或等于零。当第一透明电极层31与第二电极320的电压差均可以为第二电压V2,例如V2=30V的非零值时,在调光层30上形成的各个周边调光区201的透过率最大为例进行的说明。It should be noted that when the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the first voltage V1=0, the transmission of the peripheral dimming regions 201 formed on the dimming layer 30 The rate is close to or equal to zero. When the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the second voltage V2, for example, when V2=30V, the non-zero value of each peripheral dimming area 201 formed on the dimming layer 30 is transparent. Take the maximum rate as an example.
在本申请的另一些可能实现的方案中,还可以当第一透明电极层31与第二电极320的电压差可以为第一电压V1=0时,在调光层30上形成的各个周边调光区201的透过率最大。第一透明电极层31与第二电极320的电压差均可以为第二电压V2,例如V2=30V的非零值时,在调光层30上形成的各个周边调光区201的透过率接近或等于零。In some other possible implementation solutions of the present application, when the voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the first voltage V1=0, the peripheral adjustments formed on the dimming layer 30 The transmittance of the light zone 201 is the largest. The voltage difference between the first transparent electrode layer 31 and the second electrode 320 can be the second voltage V2, for example, when V2=30V, the transmittance of each peripheral dimming area 201 formed on the dimming layer 30 Close to or equal to zero.
此外,还可以控制用于生成不同周边调光区201的第二电极320的电压,以使得第一透明电极层31与不同的第二电极320的电压差,在|V2|<30V,且为非零值的范围内选取不同的数值,从而对各个周边调光区201透过率的百分比进行调节。具体调节过程同行所述,此处不再赘述。In addition, the voltages of the second electrodes 320 used to generate different peripheral dimming regions 201 can be controlled, so that the voltage difference between the first transparent electrode layer 31 and the different second electrodes 320 is at |V2|<30V, and is Different values are selected in the range of non-zero values, so as to adjust the transmittance percentage of each peripheral dimming area 201. The specific adjustment process is described in the same industry and will not be repeated here.
可选的,在本申请的另一些实施例中,如图8b所示,上述调光层30可以包括有色油墨层3023和电解质层3022。有色油墨层3023和电解质层3022可以为一整层薄膜层。该有色油墨层3023和电解质层3022可以被密封于由第一挡墙33与第一透镜211、第二透镜212形成的容纳腔内。Optionally, in other embodiments of the present application, as shown in FIG. 8b, the above-mentioned dimming layer 30 may include a colored ink layer 3023 and an electrolyte layer 3022. The colored ink layer 3023 and the electrolyte layer 3022 may be a whole film layer. The colored ink layer 3023 and the electrolyte layer 3022 can be sealed in the containing cavity formed by the first retaining wall 33 and the first lens 211 and the second lens 212.
在此情况下,在上述第一透明电极层31和第二透明电极层32中的各个第二电极320的作用下,可以控制电解质层3022与有色油墨层3023的表面张力,从而推动有色油墨层3023中的油墨在第一透镜211、第二透镜212之间运动。In this case, under the action of each of the second electrodes 320 in the first transparent electrode layer 31 and the second transparent electrode layer 32, the surface tension of the electrolyte layer 3022 and the colored ink layer 3023 can be controlled, thereby pushing the colored ink layer The ink in 3023 moves between the first lens 211 and the second lens 212.
这样一来,当向第一透明电极层31和第二透明电极层32施加电压,以使得第一透明电极层31和第二透明电极层32之间的压差可以为上述第一电压V1=0V时,有色 油墨层3023中的油墨被推到光阑结构22的边缘。如图8c所示,中心调光区200的面积远大于周边调光区201的面积。且该中心调光区200内由于没有油墨覆盖而呈透明状态,其光线透过率最大。此时,该光阑结构22可以具有大光圈,例如Fno=1.4。In this way, when a voltage is applied to the first transparent electrode layer 31 and the second transparent electrode layer 32, the voltage difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the aforementioned first voltage V1= At 0V, the ink in the colored ink layer 3023 is pushed to the edge of the diaphragm structure 22. As shown in FIG. 8c, the area of the central dimming zone 200 is much larger than the area of the peripheral dimming zone 201. Moreover, the central dimming area 200 is transparent because it is not covered by ink, and its light transmittance is the largest. At this time, the diaphragm structure 22 may have a large aperture, for example, Fno=1.4.
当调节施加至第一透明电极层31和第二透明电极层32的施加电压,以使得第一透明电极层31和第二透明电极层32之间的压差可以为上述第二电压V2,例如V2=30V时,位于光阑结构22的边缘的油墨逐渐向光阑结构22的中心位置移动,从而使得中心调光区200的面积如图8d所示有所减小,而周边调光区201的面积增大。此时,该光阑结构22可以具有小光圈,例如Fno=6。When the applied voltage applied to the first transparent electrode layer 31 and the second transparent electrode layer 32 is adjusted so that the voltage difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned second voltage V2, for example When V2=30V, the ink at the edge of the diaphragm structure 22 gradually moves to the center of the diaphragm structure 22, so that the area of the central dimming area 200 is reduced as shown in FIG. 8d, and the peripheral dimming area 201 The area increases. At this time, the diaphragm structure 22 may have a small aperture, for example, Fno=6.
需要说明的是,上述是以当第一透明电极层31和第二透明电极层32之间的压差可以为上述第一电压V1=0V时,有色油墨层3023中的油墨被推到光阑结构22的边缘。当第一透明电极层31和第二透明电极层32之间的压差可以为上述第二电压V2时,有色油墨层3023中的油墨渐向光阑结构22的中心位置移动,从而使得中心调光区200的面积有所减小为例进行的说明。It should be noted that when the pressure difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned first voltage V1=0V, the ink in the colored ink layer 3023 is pushed to the diaphragm. Edge of structure 22. When the pressure difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned second voltage V2, the ink in the colored ink layer 3023 gradually moves to the center of the diaphragm structure 22, thereby making the center adjustment The area of the light zone 200 is reduced as an example.
在本申请的另一些可能的实现方式中,还可以当第一透明电极层31和第二透明电极层32之间的压差可以为上述第一电压V1=0V时,例如,当向第一透明电极层31和第二透明电极层32不施加电压时,由于有色油墨层3023中的油墨没有发生移动,从而均匀分散于各个调光区,使得整个光阑结构22的光线透过率接近或等于0,达到省电的目的。当第一透明电极层31和第二透明电极层32之间的压差可以为上述第二电压V2时,有色油墨层3023中的油墨被推到光阑结构22的边缘,光阑结构22的光圈变大。In some other possible implementation manners of the present application, it is also possible when the voltage difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 may be the above-mentioned first voltage V1=0V, for example, when When no voltage is applied to the transparent electrode layer 31 and the second transparent electrode layer 32, because the ink in the colored ink layer 3023 does not move, it is evenly dispersed in each dimming zone, so that the light transmittance of the entire diaphragm structure 22 is close to or Equal to 0 to achieve the purpose of power saving. When the pressure difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the aforementioned second voltage V2, the ink in the colored ink layer 3023 is pushed to the edge of the diaphragm structure 22, and the diaphragm structure 22 The aperture becomes larger.
需要说明的是,图8b是以有色油墨层3023靠近第一透明电极层31设置,电解质层3022靠近第二电极320设置为例进行的说明。在本申请的另一些实施例中,有色油墨层3023可以靠近第二电极320设置,电解质层3022可以靠近第一透明电极层31设置。It should be noted that FIG. 8b is an example in which the colored ink layer 3023 is disposed close to the first transparent electrode layer 31, and the electrolyte layer 3022 is disposed close to the second electrode 320. In other embodiments of the present application, the colored ink layer 3023 may be disposed close to the second electrode 320, and the electrolyte layer 3022 may be disposed close to the first transparent electrode layer 31.
此外,本申请实施例中,上述有色油墨层3023中油墨的颜色可以为遮光性能较好的黑色、灰色等,本申请实施例对该有色油墨层3023中油墨的颜色不做限定。In addition, in the embodiment of the present application, the color of the ink in the colored ink layer 3023 may be black, gray, etc. with good light-shielding performance, and the embodiment of the present application does not limit the color of the ink in the colored ink layer 3023.
由上述可知,构成第一透明电极层31和第二透明电极层32的材料可以为采用透明导电材料形成的薄膜层。因此第一透明电极层31和第二透明电极层32的厚度可以制作的很小。此外,对于上述任意一种调光层30而言,该调光层30的厚度可以由第一透镜211和第二透镜212之间的光轴O-O上的间距决定。It can be seen from the above that the material constituting the first transparent electrode layer 31 and the second transparent electrode layer 32 may be a thin film layer formed of a transparent conductive material. Therefore, the thickness of the first transparent electrode layer 31 and the second transparent electrode layer 32 can be made small. In addition, for any of the above-mentioned dimming layers 30, the thickness of the dimming layer 30 may be determined by the distance between the first lens 211 and the second lens 212 on the optical axis O-O.
在本申请的一些实施例中,如图4所示,第一透镜211和第二透镜212之间的光轴O-O上的间距为D12,D12可以≤0.2mm。在此情况下,位于第一透镜211和第二透镜212之间的光阑结构22的厚度(第一透明电极层31、第二透明电极层32以及调光层30的厚度之和)可以小于或等于0.2mm。从而能够进一步减小摄像模组20的尺寸,缩短光路总长。In some embodiments of the present application, as shown in FIG. 4, the distance on the optical axis O-O between the first lens 211 and the second lens 212 is D12, and D12 may be ≤0.2 mm. In this case, the thickness of the diaphragm structure 22 (the sum of the thicknesses of the first transparent electrode layer 31, the second transparent electrode layer 32, and the dimming layer 30) between the first lens 211 and the second lens 212 may be less than Or equal to 0.2mm. Therefore, the size of the camera module 20 can be further reduced, and the total optical path length can be shortened.
示例的,上述光阑结构22的厚度可以为0.01mm、0.02mm、0.03mm、0.04mm、0.05mm、0.06mm、0.07mm、0.08mm、0.09mm或者0.2mm。For example, the thickness of the diaphragm structure 22 may be 0.01 mm, 0.02 mm, 0.03 mm, 0.04 mm, 0.05 mm, 0.06 mm, 0.07 mm, 0.08 mm, 0.09 mm, or 0.2 mm.
示例二Example two
在本示例的一些实施例中,上述第一透明电极层31由上述可知,可以为覆盖调光层30的圆形薄膜。In some embodiments of this example, the above-mentioned first transparent electrode layer 31 can be known from the above, and may be a circular film covering the dimming layer 30.
此外,图5a中的第二透明电极层32可以包括如图9所示的多个电极组322。不同的电极组322由内向外分布。其中图9中圆形的实线并不是实体结构,该实线用于界定出相邻的两个电极组322。In addition, the second transparent electrode layer 32 in FIG. 5a may include a plurality of electrode groups 322 as shown in FIG. 9. The different electrode groups 322 are distributed from the inside to the outside. The circular solid line in FIG. 9 is not a physical structure, and the solid line is used to define two adjacent electrode groups 322.
在此基础上,任意一个电极组322中包括多个具有预设间隔的块状的第二电极320。并且,上述多个块状的第二电极320呈环状分布。每个电极组322和第一透明电极层31用于在上述预设的工作状态下,在调光层30上形成一个周边调光区。On this basis, any one electrode group 322 includes a plurality of block-shaped second electrodes 320 with preset intervals. In addition, the plurality of block-shaped second electrodes 320 are distributed in a ring shape. Each electrode group 322 and the first transparent electrode layer 31 are used to form a peripheral dimming area on the dimming layer 30 in the above preset working state.
例如,图9中,由内向外依次排布的三个电极组322,与第一透明电极层31上述预设的工作状态下下,分别形成如图5c所示的,由内向外依次排布的周边调光区201a、周边调光区201b以及周边调光区201c。For example, in FIG. 9, the three electrode groups 322 arranged in order from the inside to the outside, and the first transparent electrode layer 31 in the above preset working state, respectively form as shown in FIG. 5c, and are arranged in order from the inside to the outside. The peripheral dimming area 201a, the peripheral dimming area 201b, and the peripheral dimming area 201c.
在此情况下,为了使得不同周边调光区的透过率能够单独调节,分别位于相邻的电极组322的两个第二电极320之间需要具有一定的间隙。本申请对该间隙的大小不做限定,只要能够保证不同电极组322的第二电极320之间能够避免电场干扰即可。In this case, in order to enable the transmittance of different peripheral dimming regions to be individually adjusted, a certain gap is required between the two second electrodes 320 respectively located in the adjacent electrode groups 322. This application does not limit the size of the gap, as long as it can ensure that the electric field interference can be avoided between the second electrodes 320 of different electrode groups 322.
此外,由于一个电极组322和第一透明电极层31用于预设工作状态下,在调光层30上形成一个周边调光区,因此同一电极组322中各个第二电极320的电压可以相同。所以本申请对同一电极组322中相邻两个第二电极320之间的间距,即上述预设间隔不做限定。In addition, since one electrode group 322 and the first transparent electrode layer 31 are used in the preset working state to form a peripheral dimming area on the dimming layer 30, the voltage of each second electrode 320 in the same electrode group 322 can be the same . Therefore, the present application does not limit the distance between two adjacent second electrodes 320 in the same electrode group 322, that is, the aforementioned predetermined distance.
在本申请实施例中,由内向外依次排布的,多个位于不同电极组322中的第二电极320可以位于同一直线上,或者也可以不再同一直线上。本申请对此不作限定。In the embodiment of the present application, a plurality of second electrodes 320 in different electrode groups 322 arranged in order from the inside to the outside may be located on the same straight line, or may not be on the same straight line. This application does not limit this.
需要说明的是,本示例中,当同一电极组322中的多个第二电极320彼此相连接时,便可以形成示例一中,如图6a所示的一个环形的第二电极320。It should be noted that in this example, when multiple second electrodes 320 in the same electrode group 322 are connected to each other, a ring-shaped second electrode 320 as shown in FIG. 6a can be formed in Example 1.
基于此,上述调光层30可以为上述液晶层。在此情况下,只有位于第二电极320和第一透明电极层31之间的液晶层中的液晶分子,才能够在第二电极320和第一透明电极层31的控制下,进行翻转以实现透过率的调节。因此,同一电极组322中第二电极320的密度越大,该电极组322和第一透明电极层31在预设工作状态下,在调光层30上形成的周边调光区的面积越大。Based on this, the dimming layer 30 may be the liquid crystal layer. In this case, only the liquid crystal molecules in the liquid crystal layer located between the second electrode 320 and the first transparent electrode layer 31 can be flipped under the control of the second electrode 320 and the first transparent electrode layer 31 to achieve Adjustment of transmittance. Therefore, the greater the density of the second electrode 320 in the same electrode group 322, the larger the area of the peripheral dimming area formed on the dimming layer 30 under the preset working state of the electrode group 322 and the first transparent electrode layer 31 .
此外,上述调光层30还可以包括有色油墨层3023和电解质层3022。或者上述调光层30还可以为PDLC。In addition, the above-mentioned dimming layer 30 may further include a colored ink layer 3023 and an electrolyte layer 3022. Alternatively, the above-mentioned dimming layer 30 may also be PDLC.
在此情况下,在向同一电极组322中的第二电极320施加电压时,在本申请的一些可能的实现方式中,可以向同一电极组322中的第二电极320施加相同的电压,以使得第一透明电极层31与同一电极组322中每个第二电极320的电压差可以为上述第二电压V2,例如V2=30V。In this case, when a voltage is applied to the second electrode 320 in the same electrode group 322, in some possible implementations of the present application, the same voltage may be applied to the second electrode 320 in the same electrode group 322 to The voltage difference between the first transparent electrode layer 31 and each second electrode 320 in the same electrode group 322 can be the above-mentioned second voltage V2, for example, V2=30V.
或者,在本申请的另一些可能的实现方式中,还可以单独控制同一电极组322中各个第二电极320的电压,以使得第一透明电极层31与同一电极组322中不同的第二电极320的电压差,在|V2|<30V,且为非零值的范围内选取不同的数值,从而对各个周边调光区201透过率的百分比进行调节。具体调节过程同行所述,此处不再赘述。Alternatively, in other possible implementations of the present application, the voltage of each second electrode 320 in the same electrode group 322 can also be individually controlled, so that the first transparent electrode layer 31 is different from the second electrode in the same electrode group 322. For the voltage difference of 320, different values are selected within the range of |V2|<30V and are non-zero values, so as to adjust the transmittance percentage of each peripheral dimming area 201. The specific adjustment process is described in the same industry and will not be repeated here.
示例三Example three
本示例中,第一透明电极层31、第二透明电极层32如图10所示,均可以为覆盖调光层30的一整层薄膜层。该第一透明电极层31、第二透明电极层32均可以为圆形。In this example, as shown in FIG. 10, the first transparent electrode layer 31 and the second transparent electrode layer 32 may be a whole thin film layer covering the dimming layer 30. Both the first transparent electrode layer 31 and the second transparent electrode layer 32 may be circular.
在此情况下,上述调光层30包括有色油墨层3023和电解质层3022。该有色油墨层3023和电解质层3022可以被密封于由第一挡墙33与第一透镜211、第二透镜212形成的容纳腔内。In this case, the above-mentioned dimming layer 30 includes a colored ink layer 3023 and an electrolyte layer 3022. The colored ink layer 3023 and the electrolyte layer 3022 can be sealed in the containing cavity formed by the first retaining wall 33 and the first lens 211 and the second lens 212.
基于此,当向第二透明电极层32施加不同的电压时,第一透明电极层31和第二透明电极层32之间产生的电场,在推动有色油墨层3023中的油墨在第一透镜211、第二透镜212之间运动的过程中,可以使得有色油墨层3023具有不同的透光面积,从而达到调节光圈的目的。Based on this, when different voltages are applied to the second transparent electrode layer 32, the electric field generated between the first transparent electrode layer 31 and the second transparent electrode layer 32 pushes the ink in the colored ink layer 3023 to the first lens 211. During the movement between the second lenses 212, the colored ink layer 3023 can have different light transmission areas, so as to achieve the purpose of adjusting the aperture.
例如,当向第一透明电极层31和第二透明电极层32施加电压,以使得第一透明电极层31和第二透明电极层32之间的压差第一电压V1=0时,有色油墨层3023中的油墨被推到光阑结构22的边缘。如图8c所示,中心调光区200的面积远大于周边调光区201的面积。且该中心调光区200内由于没有油墨覆盖而呈透明状态,其光线透过率最大。此时,该光阑结构22可以具有大光圈。For example, when a voltage is applied to the first transparent electrode layer 31 and the second transparent electrode layer 32 so that the voltage difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 is the first voltage V1=0, the colored ink The ink in the layer 3023 is pushed to the edge of the diaphragm structure 22. As shown in FIG. 8c, the area of the central dimming zone 200 is much larger than the area of the peripheral dimming zone 201. Moreover, the central dimming area 200 is transparent because it is not covered by ink, and its light transmittance is the largest. At this time, the diaphragm structure 22 may have a large aperture.
当调节施加至第一透明电极层31和第二透明电极层32的电压时,以使得第一透明电极层31和第二透明电极层32之间的压差可以为上述第二电压V2,例如V2=30V,位于光阑结构22的边缘的油墨逐渐向光阑结构22的中心位置移动,从而使得中心调光区200的面积如图8d所示有所减小,而周边调光区201的面积增大。此时,该光阑结构22可以具有小光圈。When the voltage applied to the first transparent electrode layer 31 and the second transparent electrode layer 32 is adjusted so that the voltage difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned second voltage V2, for example V2=30V, the ink at the edge of the diaphragm structure 22 gradually moves to the center of the diaphragm structure 22, so that the area of the central dimming area 200 is reduced as shown in FIG. 8d, while the peripheral dimming area 201 The area increases. At this time, the diaphragm structure 22 may have a small aperture.
需要说明的是,上述是以当第一透明电极层31和第二透明电极层32之间的压差可以为上述第一电压V1=0V时,有色油墨层3023中的油墨被推到光阑结构22的边缘。当第一透明电极层31和第二透明电极层32之间的压差可以为上述第二电压V2时,有色油墨层3023中的油墨渐向光阑结构22的中心位置移动,从而使得中心调光区200的面积有所减小为例进行的说明。It should be noted that when the pressure difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned first voltage V1=0V, the ink in the colored ink layer 3023 is pushed to the diaphragm. Edge of structure 22. When the pressure difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned second voltage V2, the ink in the colored ink layer 3023 gradually moves to the center of the diaphragm structure 22, thereby making the center adjustment The area of the light zone 200 is reduced as an example.
在本申请的另一些可能的实现方式中,还可以当第一透明电极层31和第二透明电极层32之间的压差可以为上述第一电压V1=0V时,有色油墨层3023均匀分散于各个调光区。当第一透明电极层31和第二透明电极层32之间的压差可以为上述第二电压V2时,有色油墨层3023中的油墨被推到光阑结构22的边缘,光阑结构22的光圈变大。In some other possible implementations of the present application, when the voltage difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the above-mentioned first voltage V1=0V, the colored ink layer 3023 is evenly dispersed In each dimming zone. When the pressure difference between the first transparent electrode layer 31 and the second transparent electrode layer 32 can be the aforementioned second voltage V2, the ink in the colored ink layer 3023 is pushed to the edge of the diaphragm structure 22, and the diaphragm structure 22 The aperture becomes larger.
基于此,对于具有示例一、示例二以及示例三所述的任意一种光阑结构22的摄像模组20而言,该摄像模组20如图11所示还包括镜筒41、镜头马达42以及模组线路板43。此外,为了对光阑结构22中的第一透明电极层31和第二透明电极层32中的各个第二电极320提供电压。上述摄像模组20还可以包括如图12a所示的第一电控引脚51和如图12b所示的第二电控引脚52。Based on this, for the camera module 20 having any one of the diaphragm structures 22 described in Example 1, Example 2, and Example 3, the camera module 20 further includes a lens barrel 41 and a lens motor 42 as shown in FIG. And module circuit board 43. In addition, in order to provide voltage to the respective second electrodes 320 in the first transparent electrode layer 31 and the second transparent electrode layer 32 in the diaphragm structure 22. The aforementioned camera module 20 may further include a first electronic control pin 51 as shown in FIG. 12a and a second electronic control pin 52 as shown in FIG. 12b.
第一电控引脚51可以设置于第一透镜211朝向第二透镜212的一侧表面。该第一电控引脚51与第一透明电极层31电连接。从而通过第一电控引脚51向第一透明电极层31提供电压。多个第二电控引脚52设置于第二透镜212朝向第一透镜211的一侧表面。每个第二电控引脚52与第二电极320电连接。从而可以通过一个第二电控引脚 52向一个调光区内的至少一个第二电极320提供电压。The first electronic control pin 51 may be disposed on a surface of the first lens 211 facing the second lens 212. The first electrical control pin 51 is electrically connected to the first transparent electrode layer 31. Therefore, a voltage is provided to the first transparent electrode layer 31 through the first electronic control pin 51. A plurality of second electronic control pins 52 are arranged on a side surface of the second lens 212 facing the first lens 211. Each second electronic control pin 52 is electrically connected to the second electrode 320. Therefore, a voltage can be provided to at least one second electrode 320 in a dimming area through a second electronic control pin 52.
此外,上述镜头组件21可以安装于镜筒41上。镜筒41包括镜筒本体,该镜筒本体用于对镜头组件21中的透镜进行支撑。此外,镜筒41还可以包括内嵌于镜筒本体内的,如图11所示的内嵌金属线路410。上述第一电控引脚51、第二电控引脚52与该镜筒41中的内嵌金属线路410电连接。In addition, the aforementioned lens assembly 21 may be mounted on the lens barrel 41. The lens barrel 41 includes a lens barrel body for supporting the lens in the lens assembly 21. In addition, the lens barrel 41 may also include an embedded metal circuit 410 embedded in the lens barrel body, as shown in FIG. 11. The above-mentioned first electric control pin 51 and the second electric control pin 52 are electrically connected to the embedded metal circuit 410 in the lens barrel 41.
在此基础上,图11中的镜头马达42与镜筒41的内嵌金属线路410可以电连接。当上述镜头组件21还包括设置于第二镜头212像侧的多个镜头时,该镜头马达42可以用于驱动镜头组件21中的透镜,例如设置于第二透镜212像侧的其余镜头相对于第二镜头212运动。On this basis, the lens motor 42 in FIG. 11 and the embedded metal circuit 410 of the lens barrel 41 can be electrically connected. When the aforementioned lens assembly 21 further includes a plurality of lenses arranged on the image side of the second lens 212, the lens motor 42 can be used to drive the lenses in the lens assembly 21. For example, the remaining lenses arranged on the image side of the second lens 212 are relatively The second lens 212 moves.
在申请的一些实施例中,上述镜头马达42可以具有自动对焦(auto focus,AF)、光学防抖(optical image stabilization,OIS)中的任意一种功能。In some embodiments of the application, the aforementioned lens motor 42 may have any one of functions of auto focus (AF) and optical image stabilization (OIS).
此外,上述模组线路板43可以包括如图13所示的供电电路430。该供电电路430可以与镜头马达42电连接,用于向镜头马达42供电。在此情况下,上述供电电路430还可以通过镜头马达42、镜筒41的内嵌金属线路410向上述第一电控引脚51提供电压,从而通过第一供电引脚51向第一透明电极层31进行充电。并且,上述供电电路430还可以通过镜头马达42、镜筒41的内嵌金属线路410向上述第二电控引脚52提供电压,从而通过不同的第二供电引脚52向各个第二电极320进行充电。In addition, the above-mentioned module circuit board 43 may include a power supply circuit 430 as shown in FIG. 13. The power supply circuit 430 can be electrically connected to the lens motor 42 for supplying power to the lens motor 42. In this case, the power supply circuit 430 can also provide a voltage to the first electronic control pin 51 through the lens motor 42 and the embedded metal circuit 410 of the lens barrel 41, so as to provide a voltage to the first transparent electrode through the first power supply pin 51. Layer 31 is charged. In addition, the power supply circuit 430 can also provide voltage to the second electronic control pin 52 through the lens motor 42 and the embedded metal circuit 410 of the lens barrel 41, so as to provide the second electrode 320 through different second power supply pins 52. Charge it.
此外为了对穿过镜头组件21的光线进行采集,以实现成像。该模组线路板43还包括如图11所示的感光元件44(也可以称为图像芯片),以及如图13所示的图像处理电路431。该感光元件44与图像处理电路431电连接,感光元件44可以用于将透过镜头组件21的光线进行光电转换,以生成数字图像(也可以称为图像数据),并传输至图像处理电路431,以通过图像处理电路431对图像数据进行处理或者拍摄的图像。In addition, in order to collect the light passing through the lens assembly 21 to realize imaging. The module circuit board 43 also includes a photosensitive element 44 (also called an image chip) as shown in FIG. 11 and an image processing circuit 431 as shown in FIG. 13. The photosensitive element 44 is electrically connected to the image processing circuit 431. The photosensitive element 44 can be used to photoelectrically convert the light transmitted through the lens assembly 21 to generate a digital image (also called image data), and transmit it to the image processing circuit 431 , In order to process the image data or take the image by the image processing circuit 431.
需要说明的是,上述感光元件44可以为电荷耦合器件(charge coupled device,CCD),或者互补金属氧化物半导体器件(complementary metal oxide semiconductor,CMOS)。It should be noted that the above-mentioned photosensitive element 44 may be a charge coupled device (CCD) or a complementary metal oxide semiconductor device (CMOS).
基于此,如图2a所示,中框11朝向后壳12的表面设置有主板,例如印刷电路板(printed circuit board,PCB)时,上述模组线路板43可以与主板电连接。显示屏10中的驱动电路可以通过柔性电路板(flexible printed circuit,FPC)穿过中框11后,与中框11上的主板电连接,从而可以使得摄像模组20拍摄的画面能够传输至显示屏10进行显示。Based on this, as shown in FIG. 2a, when the surface of the middle frame 11 facing the rear housing 12 is provided with a motherboard, such as a printed circuit board (PCB), the module circuit board 43 can be electrically connected to the motherboard. The driving circuit in the display screen 10 may pass through the middle frame 11 through a flexible printed circuit (FPC), and then be electrically connected to the main board on the middle frame 11, so that the picture taken by the camera module 20 can be transmitted to the display Screen 10 displays.
此外,为了对感光元件44进行保护,并且使得感光元件44与镜头组件21之间具有一定的距离用于成像,上述摄像模组20还包括如图11所示的,位于镜头组件21与感光元件44之间模组底座46。In addition, in order to protect the photosensitive element 44 and enable a certain distance between the photosensitive element 44 and the lens assembly 21 for imaging, the aforementioned camera module 20 further includes as shown in FIG. 11, which is located between the lens assembly 21 and the photosensitive element. 44 between the module base 46.
在此情况下,为了使得模组线路板43上的供电电路430与马达42电连接,该模组底座46内设置有电路埋线(图中未示出)。从而使得供电电路430与马达42通过上述电路埋线电连接。In this case, in order to electrically connect the power supply circuit 430 on the module circuit board 43 and the motor 42, the module base 46 is provided with a buried circuit (not shown in the figure). Thus, the power supply circuit 430 and the motor 42 are electrically connected through the above-mentioned circuit buried wire.
此外,为了对穿过镜头组件21中的部分对成像不利的光线,例如红外光进行滤除。该摄像模组20还包括位于镜头组件21像侧的,如图11所示的滤光片45。为了对该 滤光片45进行固定,上述模组底座46在对应镜头组件21的位置设置有通孔460,上述滤光片45固定于通孔460内。In addition, in order to filter out the part of the light passing through the lens assembly 21 that is unfavorable for imaging, such as infrared light. The camera module 20 also includes a filter 45 on the image side of the lens assembly 21 as shown in FIG. 11. In order to fix the filter 45, the module base 46 is provided with a through hole 460 at a position corresponding to the lens assembly 21, and the filter 45 is fixed in the through hole 460.
以下对镜头组件21的设置方式进行举例说明。The following is an example of how the lens assembly 21 is set.
示例四Example four
本示例中,如图14a所示,镜头组件21包括七个镜头,即该镜头组件21除了包括上述第一镜头211和第二镜头212以外,还包括如图14a所示的依次远离第二透镜212像侧,且与第二透镜212位于同一光轴上的第三透镜213、第四透镜214、第五透镜215、第六透镜216、第七透镜217。In this example, as shown in FIG. 14a, the lens assembly 21 includes seven lenses, that is, in addition to the first lens 211 and the second lens 212, the lens assembly 21 also includes the second lens as shown in FIG. 14a. The third lens 213, the fourth lens 214, the fifth lens 215, the sixth lens 216, and the seventh lens 217 are located on the same optical axis as the second lens 212 on the image side.
其中,第三透镜213可以具有负屈折力,从而有助于校正镜头组件21的场曲,以使得镜头组件21的成像面更平坦。第四透镜214可以具有正屈折力,从而可以分散光线在第四透镜214的物侧端的汇聚能力,以避免第一透镜211屈折力过大,而使得镜头组件21产生过多像差。Wherein, the third lens 213 may have a negative refractive power, thereby helping to correct the curvature of field of the lens assembly 21, so that the imaging surface of the lens assembly 21 is flatter. The fourth lens 214 may have a positive refractive power, so as to disperse the light converging ability at the object side end of the fourth lens 214, so as to avoid excessive refractive power of the first lens 211, which may cause excessive aberrations in the lens assembly 21.
此外,第五透镜215可以具有屈折力,其物侧(左侧)表面可以为凹面,像侧(右侧)表面可以为凸面,从而有助于增加镜头组件21的对称性,以降低其敏感度、提升成像品质。In addition, the fifth lens 215 may have refractive power, the object side (left) surface may be concave, and the image side (right) surface may be convex, thereby helping to increase the symmetry of the lens assembly 21 and reduce its sensitivity. Enhance the imaging quality.
第六透镜216可以具有屈折力,其物侧(左侧)表面以及像侧(右侧)表面可以均为非球面(aspheric,ASP)。该非球面可以使得透镜容易制作成球面以外的形状,获得较多的控制变数,用以消减像差,进而缩减所需使用透镜的数目,因此可以有效降低光学总长度。此外,第六透镜216的物侧(左侧)表面、像侧(右侧)表面中的至少一个面可以具有至少一个反曲点。该反曲点有助于进一步修正镜头组件21的离轴像差。The sixth lens 216 may have refractive power, and its object side (left side) surface and image side (right side) surface may both be aspheric (ASP). The aspheric surface can make the lens easy to fabricate into a shape other than a spherical surface, and obtain more control variables to reduce aberrations, thereby reducing the number of lenses required, and thus can effectively reduce the total optical length. In addition, at least one of the object side (left side) surface and the image side (right side) surface of the sixth lens 216 may have at least one inflection point. This inflection point helps to further correct the off-axis aberration of the lens assembly 21.
第七透镜217可以具有屈折力,其物侧(左侧)表面以及像侧(右侧)表面可以均为非球面,且第七透镜217的物侧(左侧)表面、像侧(右侧)表面中的至少一个面可以具有至少一个反曲点。非球面以及反曲点的技术效果同上所述,此处不再赘述。The seventh lens 217 may have refractive power, and its object side (left side) surface and image side (right side) surface may both be aspherical, and the object side (left side) surface and image side (right side) surface of the seventh lens 217 ) At least one of the surfaces may have at least one inflection point. The technical effects of the aspheric surface and the inflection point are the same as described above, and will not be repeated here.
此外,上述镜头组件21可以满足以下条件:0.6<|f1/f|<1.2;|f6/f|>1.0;|f7/f|>1.0。其中,f为镜头组件21的焦距。f1为第一透镜211的焦距,f6为第六透镜216的焦距,f7为第七透镜217的焦距。其中,焦距的单位为毫米(mm)。In addition, the aforementioned lens assembly 21 may satisfy the following conditions: 0.6<|f1/f|<1.2; |f6/f|>1.0; |f7/f|>1.0. Among them, f is the focal length of the lens assembly 21. f1 is the focal length of the first lens 211, f6 is the focal length of the sixth lens 216, and f7 is the focal length of the seventh lens 217. Among them, the unit of focal length is millimeter (mm).
这样一来,通过将第一透镜211的焦距f1与镜头组件的焦距f比值设置为满足0.6<|f1/f|<1.2,第六透镜216的焦距f6与镜头组件的焦距f比值设置为满足|f6/f|>1.0,将第七透镜217的焦距f7与镜头组件的焦距f比值设置为满足|f7/f|>1.0,有助于控制镜头组件21的主要屈折力位于第一透镜211,并远离第六透镜216以及第七透镜217,可以使得镜头组件21在其物侧端足够的光线汇聚能力,有助于缩短总长度而维持镜头组件21的小型化。In this way, by setting the ratio of the focal length f1 of the first lens 211 to the focal length f of the lens assembly to satisfy 0.6<|f1/f|<1.2, the ratio of the focal length f6 of the sixth lens 216 to the focal length f of the lens assembly is set to satisfy |f6/f|>1.0, set the ratio of the focal length f7 of the seventh lens 217 to the focal length f of the lens assembly to satisfy |f7/f|>1.0, which helps to control the main refractive power of the lens assembly 21 at the first lens 211 , And far away from the sixth lens 216 and the seventh lens 217, can make the lens assembly 21 have sufficient light converging ability at the object side end, which helps to shorten the total length and maintain the miniaturization of the lens assembly 21.
此外,镜头组件21满足以下条件:D23≤0.15mm;0<D12/D34<0.3;0<D23/D34<0.3。In addition, the lens assembly 21 satisfies the following conditions: D23≤0.15mm; 0<D12/D34<0.3; 0<D23/D34<0.3.
其中,D12为第一透镜211和第二透镜212之间的光轴O-O上的间距。D23为第二透镜212和第三透镜213之间的光轴O-O上的间距。D34为第三透镜213和第四透镜214之间的光轴O-O上的间距。这样一来,通过限制镜头组件21中的前三个透镜,即上述第一透镜211、第二透镜212以及第三透镜213的空气间隔(即两个透镜在光 轴O-O上的间距),将有利于使得镜头组件21中提供主要屈折力的透镜靠近光阑结构22,从而有利于像差校正和缩短镜头组件21的系统总长。Among them, D12 is the distance between the first lens 211 and the second lens 212 on the optical axis O-O. D23 is the distance on the optical axis O-O between the second lens 212 and the third lens 213. D34 is the distance between the third lens 213 and the fourth lens 214 on the optical axis O-O. In this way, by limiting the air gap between the first three lenses in the lens assembly 21, namely the first lens 211, the second lens 212, and the third lens 213 (that is, the distance between the two lenses on the optical axis OO), the It is advantageous to make the lens that provides the main refractive power in the lens assembly 21 close to the diaphragm structure 22, thereby facilitating aberration correction and shortening the total system length of the lens assembly 21.
由上述可知,当光阑结构22如图7b所示,中心调光区200呈透明状态,且周边调光区201a、周边调光区201b以及周边调光区201c中的光线透过率与中心调光区200的光线透过率接近,或者相同时,该摄像模组20的光圈可以为最大光圈,例如Fno=1.4。在此情况下,如图14b所示,外界较多的光线可以进入到镜头组件21中,并经过该镜头组件21中的各个镜头,在成像面220上进行成像。It can be seen from the above that when the diaphragm structure 22 is shown in FIG. 7b, the central dimming area 200 is in a transparent state, and the light transmittance in the peripheral dimming area 201a, the peripheral dimming area 201b, and the peripheral dimming area 201c is relative to the center When the light transmittance of the dimming zone 200 is close to or the same, the aperture of the camera module 20 may be the maximum aperture, for example, Fno=1.4. In this case, as shown in FIG. 14b, more light from outside can enter the lens assembly 21 and pass through each lens in the lens assembly 21 to form an image on the imaging surface 220.
或者,当光阑结构22如图7c所示,中心调光区200呈透明状态,且周边调光区201a、周边调光区201b以及周边调光区201c中的光线透过率接近或者等于0时,该摄像模组20的光圈可以为最小光圈,例如Fno=6。在此情况下,如图14c所示,外界较少的光线可以进入到镜头组件21中,并经过该镜头组件21中的各个镜头,在成像面220上进行成像。Or, when the diaphragm structure 22 is shown in FIG. 7c, the central dimming area 200 is in a transparent state, and the light transmittance in the peripheral dimming area 201a, the peripheral dimming area 201b, and the peripheral dimming area 201c is close to or equal to 0 At this time, the aperture of the camera module 20 may be the smallest aperture, for example, Fno=6. In this case, as shown in FIG. 14c, light from the outside world can enter the lens assembly 21 and pass through each lens in the lens assembly 21 to form an image on the imaging surface 220.
以下对图14a中所示的镜头组件21中各个透镜的参数进行举例说明,详细参数设置如表1和表2所示。The parameters of each lens in the lens assembly 21 shown in FIG. 14a are described below with examples. The detailed parameter settings are shown in Table 1 and Table 2.
表1Table 1
Figure PCTCN2020095050-appb-000001
Figure PCTCN2020095050-appb-000001
其中,上述表1为镜头组件21的结构数据,其中曲率半径、厚度、焦距的单位为毫米(mm)。表1中透镜的表面代号如图14a所示。Among them, the above Table 1 is the structure data of the lens assembly 21, wherein the units of the radius of curvature, thickness, and focal length are millimeters (mm). The surface code of the lens in Table 1 is shown in Figure 14a.
需要说明的是,图14a中仅对表1中该镜头组件21中的各个透镜的表面进行了标注,其余表面,例如被摄物体表面S0、光阑结构所在表面S3以及滤光片所在表面S15,以及成像表面S17和S18未在图14a中进行标注。It should be noted that in FIG. 14a, only the surface of each lens in the lens assembly 21 in Table 1 is marked, and the remaining surfaces, such as the surface S0 of the object, the surface S3 where the diaphragm structure is located, and the surface S15 where the filter is located. , And the imaging surfaces S17 and S18 are not labeled in Fig. 14a.
表2Table 2
Figure PCTCN2020095050-appb-000002
Figure PCTCN2020095050-appb-000002
其中,表2为镜头组件21中各个表面的非球面数据,其中k为锥面系数,A4到A16为第4到第16阶非球面系数。Among them, Table 2 is the aspheric surface data of each surface in the lens assembly 21, where k is the conical surface coefficient, and A4 to A16 are the 4th to 16th order aspheric surface coefficients.
示例五Example 5
本示例中,如图15所示,镜头组件21包括八个镜头,即该镜头组件21除了包括上述第一镜头211和第二镜头212以外,还包括依次远离第二透镜212像侧(右侧),且与第二透镜212位于同一光轴O-O上的第三透镜213、第四透镜214、第五透镜215、第六透镜216、第七透镜217以及第八透镜218。In this example, as shown in FIG. 15, the lens assembly 21 includes eight lenses, that is, in addition to the first lens 211 and the second lens 212, the lens assembly 21 also includes the image side of the second lens 212 (right side). ), and the third lens 213, the fourth lens 214, the fifth lens 215, the sixth lens 216, the seventh lens 217, and the eighth lens 218 are located on the same optical axis OO as the second lens 212.
其中,第三透镜213可以具有负屈折力。第四透镜214可以具有正屈折力。第五透镜215具有屈折力,其物侧(左侧)表面可以为凹面,像侧(右侧)表面可以为凸面。第三镜头213、第四镜头214以及第五镜头215的设置方式以及技术效果与示例四相同,此处不再赘述。Wherein, the third lens 213 may have a negative refractive power. The fourth lens 214 may have positive refractive power. The fifth lens 215 has refractive power, and its object side (left side) surface may be a concave surface, and the image side (right side) surface may be a convex surface. The setting methods and technical effects of the third lens 213, the fourth lens 214, and the fifth lens 215 are the same as those in Example 4, and will not be repeated here.
此外,第六透镜216可以具有负屈折力,其物侧(左侧)表面可以为凹面,像侧(右侧)表面可以为凸面。这样一来,有助于增加镜头组件21的对称性,以降低敏感度、提升成像品质。In addition, the sixth lens element 216 may have a negative refractive power, and its object side (left side) surface may be a concave surface, and the image side (right side) surface may be a convex surface. In this way, it helps to increase the symmetry of the lens assembly 21 to reduce sensitivity and improve imaging quality.
第七透镜217可以具有正屈折力,其物侧(左侧)表面以及像侧(右侧)表面均 可以为非球面。这样一来,第七透镜217具有正屈折力是可以配合第六镜头216使用,以进一步降低镜头组件21的像差。The seventh lens 217 may have positive refractive power, and its object side (left side) surface and image side (right side) surface may both be aspherical. In this way, the seventh lens 217 has a positive refractive power and can be used with the sixth lens 216 to further reduce the aberration of the lens assembly 21.
第八透镜218可以具有屈折力,其物侧(左侧)表面以及像侧(右侧)表面均可以为非球面,且第八透镜218至少一表面具有至少一个反曲点。非球面以及反曲点的技术效果与示例四相同,此处不再赘述。The eighth lens 218 may have refractive power, both the object side (left side) surface and the image side (right side) surface thereof may be aspherical, and at least one surface of the eighth lens 218 has at least one inflection point. The technical effects of the aspheric surface and the inflection point are the same as in Example 4, and will not be repeated here.
此外,上述镜头组件21可以满足以下条件:0.7<|f1/f|<1.3;0.6<|f7/f|<1.0;0.5<|f8/f|<0.9。其中,f为镜头组件21的焦距。f1为第一透镜211的焦距,f7为第七透镜217的焦距。f8为第八透镜218的焦距。其中,焦距的单位为毫米(mm)。In addition, the aforementioned lens assembly 21 may satisfy the following conditions: 0.7<|f1/f|<1.3; 0.6<|f7/f|<1.0; 0.5<|f8/f|<0.9. Among them, f is the focal length of the lens assembly 21. f1 is the focal length of the first lens 211, and f7 is the focal length of the seventh lens 217. f8 is the focal length of the eighth lens 218. Among them, the unit of focal length is millimeter (mm).
这样一来,通过将第一透镜211的焦距f1与镜头组件的焦距f比值设置为满足0.7<|f1/f|<1.3,有助于保证透镜组件21中位于该透镜组件21物侧的第一个透镜,即第一透镜211有足够的屈折力,可以使得透镜组件21的物侧端足够的光线汇聚能力,有助于缩短透镜组件21的系统总长度,使得该透镜组件21实现小型化的设置。此外,第七透镜217的焦距f7与镜头组件的焦距f比值设置为满足0.6<|f7/f|<1.0,将第八透镜218的焦距f8与镜头组件的焦距f比值设置为满足0.5<|f8/f|<0.9,也有利于缩短透镜组件21的系统总长。In this way, by setting the ratio of the focal length f1 of the first lens 211 to the focal length f of the lens assembly to satisfy 0.7<|f1/f|<1.3, it helps to ensure that the lens assembly 21 is located on the object side of the lens assembly 21. One lens, that is, the first lens 211 has sufficient refractive power, which can make the object side end of the lens assembly 21 have sufficient light converging ability, which helps to shorten the total system length of the lens assembly 21, so that the lens assembly 21 can be miniaturized. setting. In addition, the ratio of the focal length f7 of the seventh lens 217 to the focal length f of the lens assembly is set to satisfy 0.6<|f7/f|<1.0, and the ratio of the focal length f8 of the eighth lens 218 to the focal length f of the lens assembly is set to satisfy 0.5<| f8/f|<0.9, which is also conducive to shortening the total system length of the lens assembly 21.
此外,本示例中镜头组件21满足以下条件:D23≤0.15mm;0<D12/D34<0.3;0<D23/D34<0.3。镜头组件21满足上述条件的技术效果同上所述,此处不再赘述。In addition, the lens assembly 21 in this example satisfies the following conditions: D23≤0.15mm; 0<D12/D34<0.3; 0<D23/D34<0.3. The technical effects of the lens assembly 21 meeting the above conditions are the same as those described above, and will not be repeated here.
以下对图15中所示的镜头组件21中各个透镜的参数进行举例说明,详细参数设置如表3和表4所示。The parameters of each lens in the lens assembly 21 shown in FIG. 15 are described below with examples. The detailed parameter settings are shown in Table 3 and Table 4.
表3table 3
Figure PCTCN2020095050-appb-000003
Figure PCTCN2020095050-appb-000003
Figure PCTCN2020095050-appb-000004
Figure PCTCN2020095050-appb-000004
其中,上述表3为镜头组件21的结构数据,其中曲率半径、厚度、焦距的单位为毫米(mm)。表3中透镜的表面代号如图15所示。Among them, the above Table 3 is the structure data of the lens assembly 21, in which the units of the radius of curvature, thickness, and focal length are millimeters (mm). The surface code of the lens in Table 3 is shown in Figure 15.
需要说明的是,图15中仅对表3中该镜头组件21中的各个透镜的表面进行了标注,其余表面,例如被摄物体表面S0、光阑结构所在表面S3以及滤光片所在表面S18,以及成像表面S19和S20未在图15中进行标注。It should be noted that only the surface of each lens in the lens assembly 21 in Table 3 is marked in FIG. 15, and the remaining surfaces, such as the surface S0 of the object, the surface S3 where the diaphragm structure is located, and the surface S18 where the filter is located , And the imaging surfaces S19 and S20 are not labeled in FIG. 15.
表4Table 4
Figure PCTCN2020095050-appb-000005
Figure PCTCN2020095050-appb-000005
Figure PCTCN2020095050-appb-000006
Figure PCTCN2020095050-appb-000006
其中,表4为镜头组件21中各个表面的非球面数据,其中k为锥面系数,A4到A16为第4到第16阶非球面系数。Among them, Table 4 is the aspheric surface data of each surface in the lens assembly 21, where k is the conical surface coefficient, and A4 to A16 are the 4th to 16th order aspheric surface coefficients.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。The above are only specific implementations of this application, but the protection scope of this application is not limited to this. Any change or replacement within the technical scope disclosed in this application shall be covered by the protection scope of this application . Therefore, the protection scope of this application should be subject to the protection scope of the claims.

Claims (17)

  1. 一种摄像模组,其特征在于,包括:A camera module, characterized by comprising:
    镜头组件,包括位于同一光轴上的第一透镜和第二透镜;The lens assembly includes a first lens and a second lens located on the same optical axis;
    光阑结构,位于所述第一透镜和所述第二透镜之间;所述光阑结构包括:第一透明电极层、第二透明电极层以及位于所述第一透明电极层和所述第二透明电极层之间的调光层;The diaphragm structure is located between the first lens and the second lens; the diaphragm structure includes: a first transparent electrode layer, a second transparent electrode layer, and a first transparent electrode layer and a second transparent electrode layer; The dimming layer between the two transparent electrode layers;
    所述第一透明电极层和所述第二透明电极层用于在预设工作状态下,在所述调光层上形成多个调光区;所述多个调光区包括中心调光区,以及位于所述中心调光区外围的至少一个周边调光区。The first transparent electrode layer and the second transparent electrode layer are used for forming a plurality of dimming areas on the dimming layer in a preset working state; the plurality of dimming areas includes a central dimming area , And at least one peripheral dimming zone located outside the central dimming zone.
  2. 根据权利要求1所述的摄像模组,其特征在于,The camera module according to claim 1, wherein:
    所述第一透明电极层覆盖所述调光层;The first transparent electrode layer covers the dimming layer;
    所述第二透明电极层包括间隔设置的多个第二电极;任意一个第二电极为圆环结构;所述多个第二电极由内向外依次排布。The second transparent electrode layer includes a plurality of second electrodes arranged at intervals; any one of the second electrodes has a ring structure; and the plurality of second electrodes are arranged sequentially from the inside to the outside.
  3. 根据权利要求2所述的摄像模组,其特征在于,所述多个第二电极共圆心;所述第二电极的圆心在所述第一透镜和所述第二透镜的光轴上。4. The camera module of claim 2, wherein the plurality of second electrodes have a common center; the center of the second electrode is on the optical axis of the first lens and the second lens.
  4. 根据权利要求1所述的摄像模组,其特征在于,The camera module according to claim 1, wherein:
    所述第一透明电极层覆盖所述调光层;The first transparent electrode layer covers the dimming layer;
    所述第二透明电极层包括多个电极组;任意一个电极组中包括具有预设间隔的多个块状的第二电极,所述多个块状的第二电极呈环状分布;且不同的电极组由内向外分布。The second transparent electrode layer includes a plurality of electrode groups; any one electrode group includes a plurality of block-shaped second electrodes with a preset interval, and the plurality of block-shaped second electrodes are distributed in a ring shape; The electrode group is distributed from the inside to the outside.
  5. 根据权利要求2-4任一项所述的摄像模组,其特征在于,The camera module according to any one of claims 2-4, wherein:
    所述调光层为液晶层;The dimming layer is a liquid crystal layer;
    所述摄像模组还包括绕所述调光层外围一周设置的第一挡墙;所述第一挡墙与所述第一透镜和所述第二透镜形成用于容纳所述调光层的容纳腔。The camera module further includes a first retaining wall arranged around the periphery of the dimming layer; the first retaining wall, the first lens and the second lens are formed to accommodate the dimming layer Containing cavity.
  6. 根据权利要求2所述的摄像模组,其特征在于,The camera module according to claim 2, wherein:
    所述摄像模组还包括多个圆环结构的第二挡墙;每个所述第二挡墙位于相邻两个第二电极之间,且所述第二挡墙与所述第一透明电极层相接触;The camera module further includes a plurality of second retaining walls with a circular ring structure; each of the second retaining walls is located between two adjacent second electrodes, and the second retaining wall is connected to the first transparent The electrode layers are in contact;
    所述调光层包括位于所述第一透明电极层和所述第二电极之间的电致变色层和电解质层。The dimming layer includes an electrochromic layer and an electrolyte layer located between the first transparent electrode layer and the second electrode.
  7. 根据权利要求1所述的摄像模组,其特征在于,所述第一透明电极层、所述第二透明电极层均覆盖所述调光层;所述第一透明电极层和所述第二透明电极层均为圆形。4. The camera module of claim 1, wherein the first transparent electrode layer and the second transparent electrode layer both cover the dimming layer; the first transparent electrode layer and the second transparent electrode layer The transparent electrode layers are all round.
  8. 根据权利要求2、3、4或7所述的摄像模组,其特征在于,所述调光层包括有色油墨层和电解质层;The camera module of claim 2, 3, 4 or 7, wherein the dimming layer comprises a colored ink layer and an electrolyte layer;
    所述摄像模组还包括绕所述调光层一周设置的第一挡墙;所述第一挡墙与所述第一透镜和所述第二透镜形成用于容纳所述调光层的容纳腔。The camera module further includes a first retaining wall arranged around the dimming layer; the first retaining wall, the first lens and the second lens form a receiving wall for accommodating the dimming layer Cavity.
  9. 根据权利要求2-4任一项所述的摄像模组,其特征在于,摄像模组还包括:The camera module according to any one of claims 2-4, wherein the camera module further comprises:
    第一电控引脚,设置于所述第一透镜朝向所述第二透镜的一侧表面;所述第一电控引脚与所述第一透明电极层电连接;The first electronic control pin is arranged on the side surface of the first lens facing the second lens; the first electronic control pin is electrically connected to the first transparent electrode layer;
    多个第二电控引脚;设置于所述第二透镜朝向所述第一透镜的一侧表面;每个所述第二电控引脚与一个所述第二电极电连接。A plurality of second electric control pins; arranged on a side surface of the second lens facing the first lens; each of the second electric control pins is electrically connected to one of the second electrodes.
  10. 根据权利要求9所述的摄像模组,其特征在于,所述摄像模组还包括:The camera module of claim 9, wherein the camera module further comprises:
    镜筒;所述镜头组件安装于所述镜筒上;所述镜筒包括内嵌金属线路;所述第一电控引脚、所述第二电控引脚与所述内嵌金属线路电连接;The lens barrel; the lens assembly is mounted on the lens barrel; the lens barrel includes an embedded metal circuit; the first electronic control pin, the second electronic control pin and the embedded metal circuit connection;
    镜头马达,与所述镜筒的所述内嵌金属线路电连接,用于驱动所述镜头组件中的透镜运动;A lens motor, electrically connected to the embedded metal circuit of the lens barrel, for driving the lens in the lens assembly to move;
    模组线路板,包括供电电路;所述供电电路与所述镜头马达电连接,用于向所述镜头马达供电。The module circuit board includes a power supply circuit; the power supply circuit is electrically connected with the lens motor, and is used for supplying power to the lens motor.
  11. 根据权利要求1所述的摄像模组,其特征在于,所述第一透镜和所述第二透镜之间的光轴上的间距为D12,D12≤0.2mm。The camera module of claim 1, wherein the distance on the optical axis between the first lens and the second lens is D12, D12≤0.2 mm.
  12. 根据权利要求1所述的摄像模组,其特征在于,The camera module according to claim 1, wherein:
    所述第一透镜具有正屈折力,所述第一透镜的物侧表面为凸面,靠近所述光阑结构的表面为平面;The first lens has a positive refractive power, the object side surface of the first lens is a convex surface, and the surface close to the diaphragm structure is a flat surface;
    所述第二透镜具有负屈折力,所述第二透镜的靠近所述光阑结构的表面为平面。The second lens has a negative refractive power, and the surface of the second lens close to the diaphragm structure is a plane.
  13. 根据权利要求12所述的摄像模组,其特征在于,所述镜头组件还包括依次远离所述第二透镜像侧,且与所述第二透镜位于同一光轴上的第三透镜、第四透镜、第五透镜、第六透镜、第七透镜;The camera module according to claim 12, wherein the lens assembly further comprises a third lens, a fourth lens, and a third lens that are sequentially away from the image side of the second lens and are located on the same optical axis as the second lens. Lens, fifth lens, sixth lens, seventh lens;
    所述第三透镜具有负屈折力;The third lens has a negative refractive power;
    所述第四透镜具有正屈折力;The fourth lens has a positive refractive power;
    所述第五透镜具有屈折力,其物侧表面为凹面,像侧表面为凸面;The fifth lens has refractive power, the object side surface is concave, and the image side surface is convex;
    所述第六透镜具有屈折力,其物侧表面以及像侧表面均为非球面,且所述第六透镜的物侧表面、像侧表面中的至少一个面具有至少一个反曲点;The sixth lens element has refractive power, the object side surface and the image side surface thereof are both aspherical, and at least one of the object side surface and the image side surface of the sixth lens element has at least one inflection point;
    所述第七透镜具有屈折力,其物侧表面以及像侧表面均为非球面,且所述第七透镜的物侧表面、像侧表面中的至少一个面具有至少一个反曲点;The seventh lens has refractive power, the object side surface and the image side surface thereof are both aspherical, and at least one of the object side surface and the image side surface of the seventh lens has at least one inflection point;
    所述镜头组件满足以下条件:The lens assembly meets the following conditions:
    0.6<|f1/f|<1.2;|f6/f|>1.0;|f7/f|>1.0;0.6<|f1/f|<1.2; |f6/f|>1.0; |f7/f|>1.0;
    其中,f为所述镜头组件的焦距;f1为所述第一透镜的焦距,f6为所述第六透镜的焦距,f7为所述第七透镜的焦距。Wherein, f is the focal length of the lens assembly; f1 is the focal length of the first lens, f6 is the focal length of the sixth lens, and f7 is the focal length of the seventh lens.
  14. 根据权利要求12所述的摄像模组,其特征在于,所述镜头组件还包括依次远离所述第二透镜像侧,且与所述第二透镜位于同一光轴上的第三透镜、第四透镜、第五透镜、第六透镜、第七透镜、第八透镜;The camera module according to claim 12, wherein the lens assembly further comprises a third lens, a fourth lens, and a third lens that are sequentially away from the image side of the second lens and are located on the same optical axis as the second lens. Lens, fifth lens, sixth lens, seventh lens, eighth lens;
    所述第三透镜具有负屈折力;The third lens has a negative refractive power;
    所述第四透镜具有正屈折力;The fourth lens has a positive refractive power;
    所述第五透镜具有屈折力,其物侧表面为凹面,像侧表面为凸面;The fifth lens has refractive power, the object side surface is concave, and the image side surface is convex;
    所述第六透镜具有负屈折力,其物侧表面为凹面,像侧表面为凸面;The sixth lens has a negative refractive power, the object side surface is concave, and the image side surface is convex;
    所述第七透镜具有正屈折力,其物侧表面以及像侧表面均为非球面;The seventh lens has a positive refractive power, and its object side surface and image side surface are both aspherical;
    所述第八透镜具有屈折力,其物侧表面以及像侧表面均为非球面,且所述第八透镜至少一表面具有至少一个反曲点;The eighth lens has refractive power, the object side surface and the image side surface are aspherical, and at least one surface of the eighth lens has at least one inflection point;
    所述镜头组件满足以下条件:The lens assembly meets the following conditions:
    0.7<|f1/f|<1.3;0.6<|f7/f|<1.0;0.5<|f8/f|<0.9;0.7<|f1/f|<1.3; 0.6<|f7/f|<1.0; 0.5<|f8/f|<0.9;
    其中,f为所述镜头组件的焦距;f1为所述第一透镜的焦距;f7为所述第七透镜的焦距,f8为所述第八透镜的焦距。Wherein, f is the focal length of the lens assembly; f1 is the focal length of the first lens; f7 is the focal length of the seventh lens, and f8 is the focal length of the eighth lens.
  15. 根据权利要求13或14所述的摄像模组,其特征在于,所述镜头组件满足以下条件:The camera module according to claim 13 or 14, wherein the lens assembly meets the following conditions:
    D23≤0.15mm;0<D12/D34<0.3;0<D23/D34<0.3;D23≤0.15mm; 0<D12/D34<0.3; 0<D23/D34<0.3;
    其中,D12为所述第一透镜和所述第二透镜之间的光轴上的间距;D23为所述第二透镜和所述第三透镜之间的光轴上的间距;D34为所述第三透镜和所述第四透镜之间的光轴上的间距。Wherein, D12 is the distance on the optical axis between the first lens and the second lens; D23 is the distance on the optical axis between the second lens and the third lens; D34 is the distance on the optical axis between the The distance on the optical axis between the third lens and the fourth lens.
  16. 一种电子设备,其特征在于,包括显示屏,以及如权利要求1-15任一项所述的摄像模组;An electronic device, characterized by comprising a display screen, and the camera module according to any one of claims 1-15;
    所述显示屏具有显示面以及远离所述显示屏的背面;所述摄像模组位于所述显示屏的背面;The display screen has a display surface and a back surface away from the display screen; the camera module is located on the back of the display screen;
    或者,所述显示屏上开设有安装孔,所述摄像模组位于所述安装孔内。Alternatively, a mounting hole is opened on the display screen, and the camera module is located in the mounting hole.
  17. 根据权利要求16所述的电子设备,其特征在于,所述显示屏还包括中框和后壳;The electronic device of claim 16, wherein the display screen further comprises a middle frame and a rear shell;
    所述中框远离所述后壳的一侧表面与所述显示屏相连接;所述中框朝向所述后壳的表面设置有主板;A surface of the middle frame away from the rear case is connected to the display screen; the surface of the middle frame facing the rear case is provided with a main board;
    所述摄像模组包括模组线路板,所述模组线路板与所述主板电连接。The camera module includes a module circuit board, and the module circuit board is electrically connected to the main board.
PCT/CN2020/095050 2019-08-15 2020-06-09 Image capturing module, and electronic apparatus WO2021027375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910755250.9A CN112394576B (en) 2019-08-15 2019-08-15 Camera module and electronic equipment
CN201910755250.9 2019-08-15

Publications (1)

Publication Number Publication Date
WO2021027375A1 true WO2021027375A1 (en) 2021-02-18

Family

ID=74570887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095050 WO2021027375A1 (en) 2019-08-15 2020-06-09 Image capturing module, and electronic apparatus

Country Status (2)

Country Link
CN (1) CN112394576B (en)
WO (1) WO2021027375A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297240A (en) * 2022-08-02 2022-11-04 西安紫光展锐科技有限公司 Camera assembly and electronic equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113376929A (en) * 2021-06-07 2021-09-10 维沃移动通信(杭州)有限公司 Lens and electronic device
CN113359365A (en) * 2021-07-02 2021-09-07 业成科技(成都)有限公司 Optical lens, manufacturing method thereof, imaging device and electronic device
CN113791511B (en) * 2021-09-01 2023-09-15 维沃移动通信有限公司 Electronic equipment
CN114189620B (en) * 2022-02-16 2022-07-08 荣耀终端有限公司 Camera module and electronic equipment
TWI826163B (en) * 2022-12-05 2023-12-11 宏碁股份有限公司 Under display camera and aperture element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100205A (en) * 1993-03-19 1995-03-15 索尼公司 Diaphragm device
JP2002214666A (en) * 2001-01-15 2002-07-31 Sanyo Electric Co Ltd Dimmer element and image pickup device
JP2004012906A (en) * 2002-06-07 2004-01-15 Sanyo Electric Co Ltd Light control element, its driving method and image pickup device using the light control element
JP2004061839A (en) * 2002-07-29 2004-02-26 Canon Inc Electrophoretic light adjusting device and its driving method
CN1782845A (en) * 2004-11-30 2006-06-07 三星电机株式会社 Image pick up module with optical element
CN203965708U (en) * 2013-09-11 2014-11-26 康达智株式会社 Pick-up lens
CN207424361U (en) * 2017-11-22 2018-05-29 浙江舜宇光学有限公司 Optical imaging lens
CN208521053U (en) * 2018-07-09 2019-02-19 浙江舜宇光学有限公司 Optical imaging system
CN110161769A (en) * 2019-05-20 2019-08-23 Oppo广东移动通信有限公司 Iris diaphragm structure, camera and electronic device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2612306A1 (en) * 1987-03-13 1988-09-16 Asselineau Marc Iris diaphragm
CN2139271Y (en) * 1992-07-02 1993-07-28 王念庆 Liquid crystal shutter
JPH0862642A (en) * 1994-08-23 1996-03-08 Sony Corp Diaphragm unit
JP2000338528A (en) * 1999-05-31 2000-12-08 Sony Corp Optical device and its production
CN101341606A (en) * 2005-12-20 2009-01-07 皇家飞利浦电子股份有限公司 Camera diaphragm and lens positioning system employing a dielectrical polymer actuator
EP1830345A1 (en) * 2006-03-02 2007-09-05 THOMSON Licensing Driving scheme of a variable electrophoretic optical iris diaphragm
JP4996114B2 (en) * 2006-03-14 2012-08-08 スタンレー電気株式会社 Aperture optical element for camera and manufacturing method thereof
CN101169571A (en) * 2006-10-27 2008-04-30 鸿富锦精密工业(深圳)有限公司 Shutter device and camera module group
CN104243782B (en) * 2014-09-29 2019-02-05 联想(北京)有限公司 Optics module and electronic equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100205A (en) * 1993-03-19 1995-03-15 索尼公司 Diaphragm device
JP2002214666A (en) * 2001-01-15 2002-07-31 Sanyo Electric Co Ltd Dimmer element and image pickup device
JP2004012906A (en) * 2002-06-07 2004-01-15 Sanyo Electric Co Ltd Light control element, its driving method and image pickup device using the light control element
JP2004061839A (en) * 2002-07-29 2004-02-26 Canon Inc Electrophoretic light adjusting device and its driving method
CN1782845A (en) * 2004-11-30 2006-06-07 三星电机株式会社 Image pick up module with optical element
CN203965708U (en) * 2013-09-11 2014-11-26 康达智株式会社 Pick-up lens
CN207424361U (en) * 2017-11-22 2018-05-29 浙江舜宇光学有限公司 Optical imaging lens
CN208521053U (en) * 2018-07-09 2019-02-19 浙江舜宇光学有限公司 Optical imaging system
CN110161769A (en) * 2019-05-20 2019-08-23 Oppo广东移动通信有限公司 Iris diaphragm structure, camera and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115297240A (en) * 2022-08-02 2022-11-04 西安紫光展锐科技有限公司 Camera assembly and electronic equipment

Also Published As

Publication number Publication date
CN112394576B (en) 2023-01-06
CN112394576A (en) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021027375A1 (en) Image capturing module, and electronic apparatus
US20210116610A1 (en) Camera module including liquid lens, optical device including the same, and method of manufacturing camera module including liquid lens
TWI592690B (en) Camera lens system with five lens components
EP1626301B1 (en) Optical system and imaging device
US7609954B2 (en) Lens module and camera module using the lens module
CN111726502B (en) Electronic device and display device
CN110213465B (en) Display module and terminal
KR20140003216A (en) Camera module
WO2018112883A1 (en) Optical lens, camera module and terminal
EP2720084B1 (en) Method of integrating circuits for a camera and a liquid crystal lens in a liquid crystal display panel and the liquid crystal display panel
US11287553B2 (en) Liquid lens
JP7375157B2 (en) Lens assemblies, cameras and electronic equipment
KR20200085674A (en) Imaging lens
CN110716369B (en) Aperture, camera and electronic device
CN107357130B (en) Mask plate, lens array, preparation method of lens array and display panel
US11579342B2 (en) Liquid lens, camera module, and optical device
WO2022194057A1 (en) Optical assembly and electronic device
KR20180088235A (en) Camera module including liquid lens and optical device including the same
WO2021043156A1 (en) Photographing module and terminal device
KR20180092358A (en) Camera module and optical device including the same
KR20180081876A (en) Liquid Lens, Camera Module, And Optical Device
TWI465835B (en) Aperture and camera module using same
KR102349228B1 (en) Camera module
WO2021258921A1 (en) Under-display screen camera device
KR20180099148A (en) Camera module and optical device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852727

Country of ref document: EP

Kind code of ref document: A1