JP2004061834A - Electrophoretic light adjusting device, its driving method and apparatus using same - Google Patents

Electrophoretic light adjusting device, its driving method and apparatus using same Download PDF

Info

Publication number
JP2004061834A
JP2004061834A JP2002219705A JP2002219705A JP2004061834A JP 2004061834 A JP2004061834 A JP 2004061834A JP 2002219705 A JP2002219705 A JP 2002219705A JP 2002219705 A JP2002219705 A JP 2002219705A JP 2004061834 A JP2004061834 A JP 2004061834A
Authority
JP
Japan
Prior art keywords
electrode
electrophoretic
light amount
adjusting element
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002219705A
Other languages
Japanese (ja)
Other versions
JP4164308B2 (en
Inventor
Yoshinori Uno
宇野 喜徳
Tsutomu Ikeda
池田 勉
Hiroshi Matsuda
松田 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002219705A priority Critical patent/JP4164308B2/en
Publication of JP2004061834A publication Critical patent/JP2004061834A/en
Application granted granted Critical
Publication of JP4164308B2 publication Critical patent/JP4164308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diaphragms For Cameras (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrophoretic light adjusting device for adjusting light quantity made incident on an imaging device by moving opaque electrostatic charge floating particles according to an electrical signal. <P>SOLUTION: The electrophoretic light adjusting device constituted by filling space between two transparent substrates with an electrophoretic liquid including the opaque electrostatic charge floating particles is a light adjusting device formed by arranging at least one or more electrode groups consisting of a plurality of electrodes on at least one substrate or cyclically arranging the electrode groups if a plurality of electrode groups are arranged and then driving them, thereby moving the electrostatic charge floating particles so that the transmitted light quantity of the device is properly changed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はレンズの光軸上に備え、光量に応じ透過率が変化する光量調整素子とその駆動方法、駆動装置およびこれを用いた装置に関するものである。
【0002】
【従来の技術】
透過率の異なるフィルタを選択的に光軸上に出し入れして、自動的に光量調整を行うビデオ、カメラ用交換レンズの光量調整装置が特開平05−040293に開示されている。係る発明は、透過率の異なる複数のフィルタを保持したフィルタ保持体を鏡筒内に設け、この鏡筒を組み付けたカメラ本体からの情報により前記フィルタ保持体を駆動して適正な光量がえられるように光軸上のフィルタを選択交換する駆動源とを備え、カメラ本体の電源が投入されて撮影待機状態になるときはフィルタ本体を駆動して光量調整動作を行い、カメラ本体が録画状態になったときは光量調整動作を規制する構成とした光量調整装置である。
【0003】
【発明が解決しようとする課題】
しかしながら、特開平05−040293で開示された光量調整装置は
・複数のフィルタとアクチュエーターを保持することから小型化が困難である。・フィルタによる透過率が不連続に変化するため、動画などの撮影中の切替が困難である。もしくは切り替えた場合に不自然な画像となる懸念がある。
といった問題点を抱えている。
【0004】
【課題を解決するための手段】
本発明者は、以上述べたように問題点を解析し、上記の問題は透過光量を無段階で変化できる素子を1つ備えることで改善できることを見出した。そこで、本発明の目的は、上記の従来技術の問題点を改善し、不透明帯電泳動粒子を電気信号で移動させて透過光量状態を変化させる電気泳動光量調整素子を提供することにある。
【0005】
本発明の第1は、実質的に透明な第一基板と、該第一基板に間隙支持体を介して対向して配置された実質的に透明な第二基板と、前記両基板の少なくとも一方の対向面側に形成された複数の電極と、前記両基板間に充填された透明絶縁性液体と複数の不透明帯電泳動粒子からなる電気泳動液とを含む電気泳動光量調整素子であって、
前記電極のうち3以上の電極で一電極群を形成した少なくとも1つ以上の電極群を備えたことを特徴とする電気泳動光量調整素子である。
【0006】
また、本発明の第2は該素子の駆動方法として、
請求項1記載の電気泳動光量調整素子の駆動方法であって、駆動用の電気信号を前記一電極群を形成している電極中の、第1電極、第2電極、・・第n電極(nは整数)の順に時系列に順次印加して、前記不透明帯電泳動粒子を移動させることにより素子の透過光量を調節することを特徴とする電気泳動光量調整素子の駆動方法である。
【0007】
また本発明の第3は、前記電気泳動調光素子が非透光性領域と透光性領域からなり、前記非透光性領域に前記不透明帯電泳動粒子を集合させたときは前記透光性領域が透過状態となり、前記透光性領域に前記不透明帯電泳動粒子を分散させたときに非透過状態になることを特徴とする電気泳動光量調整素子である。
【0008】
【発明の実施の形態】
以下、本発明の実施態様について順に説明する。
【0009】
図1に本発明の代表的な断面構成図を、図7に本発明の代表的な平面図を示す。第一基板1上には第1電極7と第3電極9が配置されており、絶縁部3を挟んで第2電極8と第4電極10が配置されている。この場合、第1、第2、第3及び第4電極の4電極によって1つの電極群が構成されており、図7に示すように2つの電極群が存在し、各電極が周期的に配列している。さらにその上に間隙支持体4を挟んで第二基板2が配置されている。
【0010】
第一基板1と第二基板2と間隙支持体4によって作られる空間には透明な絶縁性液体6が充填され、その絶縁性液体6中に電界印加によって泳動する不透明帯電泳動粒子5が分散されている。第1電極7、第2電極8、第3電極9、第4電極10の平面パターンは環状であり、それを同心円状に配置している。図中にそれぞれ4本ずつ配置された第1電極7、第2電極8、第3電極9、第4電極10は、それぞれの電極同士が外部で結線され、電気的に接続されている。
【0011】
第一基板、第二基板は、実質的に光学的に透明である。なお、本発明において、実質的に透明であるとは、光透過率が可視光域(波長400−700nm)或は変調しようとする波長領域において、70%以上、好ましくは80%以上、より好ましくは90%以上であることを意味する。
【0012】
透明な電極のうち1つの電極群を形成する電極数は、3つ以上ならいくらでも良い。また上記電極群が1つであり、その中の電極数が3の場合を図2に示す。さらにこの電極数は、3電極以上あれば良く、かつ電極群数が複数あり、その電極パターンが周期的に配置されている場合が好ましい。この場合電極上に浮遊する不透明帯電泳動粒子を、一方の電極から他方の電極へ搬送することが可能であり、電極数が3を下回ると動作が不完全となる。
【0013】
ここで云う周期的とはこの電極群数をNとすると、第1電極7の平面方向の隣に第2電極8を配置し、その第2電極8の平面方向の隣に第3電極9を配置し、・・・、順次に第n電極の平面方向の隣に再度第1電極7を配置する構成を指す。ただし、電極群数が1つの場合は、第1電極7の平面方向の隣に第2電極8を配置し、その第2電極8の平面方向の隣に第3電極9を配置する構成に従って第n電極までを配置すればよい。また、各電極群に含まれる電極数はすべて等しくなくても良い。nを2以上の整数とすると、1電極群の最後の第n電極の隣に、次の電極群に属する第1電極が配置されていれば良い。
【0014】
電極は一方の基板のみに配置しても良いが両方の基板に配置しても良い。すくなくとも各電極は基板の対向面側に配置し平面方向にずらした位置に配置すればよい。電極は全面を覆うようにに配置するのが好ましいが(図1、図4)、その限りではない。全面を覆ってもいいし覆わなくても良い。つまり電極間に隙間があってよい(図2、図5)。さらには電極同士が一部重複していて配置されても良い(図3)。電極に透明電極を用いるのは好ましい構成だが、電極が全面を覆わない場合は透明電極でなくても良い。電極が全面を覆う場合には少なくとも一部の電極が透明であれば良い。
【0015】
不透明帯電泳動粒子5は電極に印加された電圧により発生する電場に依存して泳動する。例えば不透明帯電泳動粒子5が正に帯電している場合、不透明帯電泳動粒子5は最も低い電圧が印加された電極近傍に集まる。最も低い電圧を印加する電極を第1電極7、第2電極8・・・と替えると不透明帯電泳動粒子5は第1電極7に集まった後、第2電極8に集まる。これを繰り返すことで不透明帯電泳同粒子5を電気泳動光量調整素子21内で移動可能となり、不透明帯電泳同粒子5を凝集分散させ電気泳動光量調整素子21の透過光量を調整できる。また、不透明帯電泳動粒子5を逆方向へ移動させる場合には図12に示すように印加電圧の位相を逆にすればよい。
【0016】
駆動電圧の波形は特に限定しない。矩形波(図10)、正弦波、三角波などどのようの駆動波形でも良い。各電極に印加する駆動波形の位相差も特に限定しないが、均等な位相差をもって入力するのが好ましい(図11)。例えば電極群数がn個の場合、各電極間の位相差は2π/nとなる。
【0017】
不透明帯電泳動粒子5の駆動方法として、実効的な電界強度を徐々に増減させることは良い駆動方法の一つである(図13)。各電極に印加する電圧の入力波形は正弦波、矩形波などを位相をずらして入力すればよいが、それよりも低い周波数で電圧を増減させて入力しても良い。本素子は第1電極7から第2電極8、第2電極8から第3電極9、第3電極9から・・・と不透明帯電泳動粒子5を移動させて駆動するが、その第1電極7から第2電極8へ移動させる電圧と第2電極8から第3電極9へ移動させる電圧を僅かに変えることで粒子の搬送量を変化させ、粒子を均一に分散可能となる。例えば電圧を以下の式で与えられる値にして入力する駆動方法は1つの例である。
【0018】
【外1】

Figure 2004061834
【0019】
(但しf:周波数、t:時間、n:電極群の番号、N:電極群数、α:−1以上1以下の実数)
または図13に示すように駆動電圧の高さを徐々に低下もしくは増加させるサイクルを繰り返しても良い。
【0020】
電気泳動調光素子21の一部に不透明帯電泳動粒子5を集合させて透光状態をなし(図1),電気泳動調光素子21全体に不透明帯電泳動粒子5を分散させて半透光状態を成す(図2)のは良い駆動方法の1つである。透光状態をなす際に不透明帯電泳動粒子5を集合させる場所は素子内であればどこでも良い。素子中央に集めても良いし、素子周辺部に集めても良い(図1)。または1つ以上の電極群上に集めても良い。
【0021】
電気泳動調光素子21の一部に不透明な遮光部11を備える構成は好ましい構成の1つである(図4、図5、図8、図9)。遮光部11の構成は特に限定しない。一部が透明で一部が不透明な基板(図3)もしくは不透明な基板に穴をあけたもの(図4、図5)を第一基板1もしくは第二基板2の上に設けてもよいし、第一基板1もしくは第二基板2を不透明に着色しても良い。または一部が不透明な基板を第一基板1もしくは第二基板2に用いても良い。または、不透明の電極材料で電極を作成し遮光部11としても良い。
【0022】
遮光領域も特に限定しない。素子中央でもよいし、周辺部分(図8、図9)でも良い。一部を不透明材料で作成した電極を遮光部分としても良い。
【0023】
遮光部1に不透明帯電泳動粒子5を搬送して透光状態をなし、開口部12の一部もしくは全部に粒子を搬送して、半透光状態を成す方法は好ましい駆動方法の1つである。遮光部11に不透明帯電泳動粒子5を集めることで透光状態の透過率が一定になる。また不透明帯電泳動粒子5を開口部12の全部に分散して半透光状態をなしてもよいし(図8)、開口部12の一部に移動させて一部透光部分を残して半透光状態にする(図9)のも良い駆動方法である。不透明な電極と一部の透明な電極上に粒子を移動させて半透光状態をなすのも良い駆動方法である。
【0024】
絶縁部3を介して配置される電極層を2電極層以上備え、2つ以上でかつ全電極群数の半数以下の電極群を1つの電極層に配置することは好ましい構成の1つである。図2に示すように、電極間には絶縁部3もしくは電極間に隙間を作るなど、少なくとも絶縁を保つ部分が必要である。電極を全面に配置する場合、電極層を2つ以上備えかつ全電極群数の半数以下の電極群を1つの電極層に配置することで電極間の隙間の無い構成が可能となる(図1)。また、1つの電極層に2つ以上の電極群を配置することで電極層数を減少でき、製造が容易となる。好ましい構成としては2電極群を備えた電極層を第一基板1および第二基板2に1電極層ずつ(図3)もしくは2電極層ずつ(図4)を備える構成である。
【0025】
図7は、電極の形状が径の異なる環状で、それぞれの電極を同心に配置する構成は好ましい構成の1つである。電極の太さは特に限定しない。全ての電極で同じでもよいし、例えば電極の径に依存して変化しても良い。また、電極は完全な環でなくても良く、配線をするために環の一部を切断して配線を配置しても良い。環状の電極の最内部に配置される電極は必ずしも環状でなくても良く、例えば円の様に、その電極の内部を電極領域として含んでも良い。
【0026】
図6は、帯状の電極を配置し、その一部もしくは全部を素子の遠心方向に対して0度でない角度を持って配置する構成は好ましい構成の一つである。電極が遠心方向に対して0度でない角度で配置されることで不透明帯電泳動粒子5を遠心方向と円周方向に同時に搬送することができ、素子内の不透明帯電泳動粒子5の分布濃度を均一化できる。電極と遠心方向の成す角度は特に限定しない。一定でもよいし、素子中心からの距離に依存して変化しても良い。また電極の幅も特に限定しない。一定でもよいし、図6のように素子中心からの距離に依存して変化しても良い。
【0027】
不透明帯電泳動粒子5を所望の領域に移動させた後に、異なる2つの電圧をそれぞれ1つ以上の電極群に印加し、かつ電圧を交互に入れ替える方法は良い駆動方法の一つである。さらに、不透明帯電泳動粒子5にかかる実効的な電界強度を徐々に低下させて、電極の印加電圧を同じにする駆動方法も好ましい駆動方法である。これらの駆動方法により不透明帯電泳動粒子の分布が均一になり、透過率制御が容易となる。
【0028】
本素子を用いた好ましい撮像素子の例を図14に示す。各電極群に所望の電圧を印加する駆動回路23と素子を通過する光量を測定する光量測定手段22を備えている。光量測定手段22はどのようなものでも良い。例えば電荷結合素子などの撮像素子36を光量測定手段22に用いて、その出力に依存して適切な透過率になるように駆動回路23により電気泳動光量調整素子21を制御すればよい。
【0029】
またこの電気泳動光量調整素子35の適用方法は特に限定しないが、レンズ装置33、撮像モジュール32、および撮像装置31などに適用するのは良い適用方法である。一例を図15に示す。
【0030】
また本発明の電気泳動光量調整素子は、レンズと撮像素子などの光学部品の光軸上に配置すればその配置方法について特に限定しない。この一例を図16に示すが、本発明の電気泳動光量調整素子165をレンズ装置164の絞り位置に対応した場所に配置した例(図16−a)、もしくはレンズ164の前面に配置する構成(図16−b)は好ましい構成例である。
【0031】
レンズ装置を構成するレンズの枚数は特に限定しない。複数枚で構成しても良いし、1枚でもよい。少なくとも撮像素子に入射する光量を変化させることが出来て、かつ結像面で所望の像が得られればよく、どの位置に配置してもよい。これによってよって結像面に撮像素子166を配置することによって、入射光の光量を調節することが可能になる。
【0032】
【実施例】
以下、実施例に従って本発明を説明する。
【0033】
(実施例1)
本実施例では、図1に示す断面構成で、図7に示す平面構成の素子を作製し駆動を行った。
【0034】
作製した素子の大きさは直径1mm、厚さ0.53mmである。まず、第一基板1として厚さ0.2mmのガラスにITOを低温成膜し、フォトリソグラフィー及びエッチングにより図に示す形状にパターニングした。続いて、絶縁部としてSiOを製膜し、その上にITOを低温成膜し、フォトリソグラフィー及びエッチングにより図に示す形状にパターニングした。また、同様に絶縁部としてSiOを製膜した。この上に、間隙支持体4を形成した。間隙支持体4は、光感光性エポキシ樹脂を塗布した後、露光及びウエット現像を行うことによって形成し、30μmの高さとした。形成された空間内に絶縁性液体6及び不透明帯電泳動粒子5を充填した。絶縁性液体6としては、イソパラフィンを使用した。不透明帯電泳動粒子5としては、ポリスチレンとカーボンの混合物で、平均粒径2μm位のものを使用した。イソパラフィン中での不透明帯電泳動粒子5は正帯電極性を示した。次に、第2基板2として厚さ0.2mmのガラスを位置合わせを行ないながら第一基板1上に置き、素子周辺部を接着剤により張り合わせた。
【0035】
これに駆動装置23を接続して駆動を行った。まず、図11に示す波形により素子を駆動させたところ、素子全体に分散していた不透明帯電泳動粒子5は素子中央に搬送され透光状態となった。駆動電圧は10Vである。また、図12に示す波形により素子を駆動させたところ、素子中央に分散していた不透明帯電泳動粒子5は素子周辺に搬送され透光状態となった。駆動電圧は同様に10Vである。
【0036】
また、図13に示す波形により素子を駆動させたところ、素子周辺に分散していた不透明帯電泳動粒子5は素子全体に分散され半透光光状態となった。駆動電圧は最高10Vである。また第1電極7と第3電極9、第2電極8と第4電極10をそれぞれ同電位として、一方に5V他方に−5Vを交互に印加したところ不透明帯電泳動粒子5は均一に分散した。さらに、電圧を緩やかに小さくして全ての電極を0Vにしたところより均一に分散した。
【0037】
この駆動装置に光量測定手段22を接続し、その光量測定手段22の出力に依存して上記駆動電圧を選択して印加したところ、電気泳動光量調整素子21を透過する光量を一定に保つことができた。また、本素子を撮像装置31に取り付けて駆動させたところ、明所から暗所まで良好な画像を得ることができた。
【0038】
(実施例2)
本実施例では、図5に示す断面構成で、図6に示す平面構成の素子を作製し駆動を行った。
【0039】
作製した素子の大きさは直径1mm、厚さ0.53mmである。まず、第一基板1として厚さ0.2mmのガラスにITOを低温成膜し、フォトリソグラフィー及びエッチングにより図に示す形状にパターニングした。続いて、絶縁部としてSiOを製膜した。この上に、間隙支持体4を形成した。間隙支持体4は、光感光性エポキシ樹脂を塗布した後、露光及びウエット現像を行うことによって形成し、30μmの高さとした。形成された空間内に絶縁性液体6及び不透明帯電泳動粒子5を充填した。絶縁性液体6としては、イソパラフィンを使用した。不透明帯電泳動粒子5としては、ポリスチレンとカーボンの混合物で、平均粒径2μm位のものを使用した。イソパラフィン中での不透明帯電泳動粒子5は正帯電極性を示した。次に、第2基板2として厚さ0.2mmのガラスを位置合わせを行ないながら第一基板1上に置き、素子周辺部を接着剤により張り合わせた。その上に直径0.7mmの穴をあけた不透明な基板を配置して遮光部とした。
【0040】
これに駆動装置23を接続して駆動を行った。まず、図12に示す波形により素子を駆動させたところ、素子全体に分散していた不透明帯電泳動粒子5は素子周辺に搬送され透光状態となった。駆動電圧は10Vである。また、図13に示す波形により素子を駆動させたところ、素子周辺に分散していた不透明帯電泳動粒子5は素子全体に分散され半透光光状態となった(図8)。駆動電圧は最高10Vである。また、図11に示す波形により素子を駆動させたところ、素子全体に分散していた不透明帯電泳動粒子5は素子中央に搬送され半透光状態となった(図9)。駆動電圧は同様に10Vである。また第1電極7と第3電極9、第2電極8と第4電極10をそれぞれ同電位として、一方に5V他方に−5Vを交互に印加したところ不透明帯電泳動粒子5は均一に分散した。さらに、電圧を緩やかに小さくして全ての電極を0Vにしたところより均一に分散した。
【0041】
この駆動装置に光量測定手段22を接続し、その光量測定手段22の出力に依存して上記駆動電圧を選択して印加したところ、電気泳動光量調整素子21を透過する光量を一定に保つことができた。また、本素子を撮像モジュール32に取り付けて駆動させたところ、明所から暗所まで良好な画像を得ることができた。
【0042】
【発明の効果】
以上、詳細に述べたように、本発明によって次のような効果が得られた。
第一に、1つの素子で透過率が変化する電気泳動光量調整素子を提供した。これによりこれまで小型化が困難であったレンズ装置、撮像モジュール、撮像装置を大幅に小型化できた。
【0043】
第二に、無段階で透過率を変化できることから動画の撮影中にも透過率を変えることができ、より良好な動画像の撮影が可能となった。
【図面の簡単な説明】
【図1】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図2】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図3】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図4】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図5】本発明の電気泳動光量調整素子の代表的な断面図の一例を示す。
【図6】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図7】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図8】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図9】本発明の電気泳動光量調整素子の代表的な平面図の一例を示す。
【図10】本発明の電気泳動光量調整素子の代表的な駆動方法の一例を示す。
【図11】本発明の電気泳動光量調整素子の代表的な駆動方法の一例を示す。
【図12】本発明の電気泳動光量調整素子の代表的な駆動方法の一例を示す。
【図13】本発明の電気泳動光量調整素子の代表的な駆動方法の一例を示す。
【図14】本発明の電気泳動光量調整素子の代表的な適用方法の一例を示す。
【図15】本発明の電気泳動光量調整素子の代表的な適用方法の一例を示す。
【図16】本発明の電気泳動光量調整素子を用いた撮像装置の一例を示す図である。
【符号の説明】
1 第一基板
2 第二基板
3 絶縁部
4 間隙支持体
5 不透明帯電泳動粒子
6 絶縁性液体
7 第1電極
8 第2電極
9 第3電極
10 第4電極
11 遮光部
12 開口部
21 電気泳動光量調整素子
22 光量測定手段
23 駆動装置
31 撮像装置
32 撮像モジュール
33 レンズ装置
34 レンズ
35 電気泳動光量調整素子
36 撮像素子
37 撮像素子駆動装置
38 駆動装置
39 記憶装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light amount adjusting element provided on the optical axis of a lens and having a transmittance that changes according to the light amount, a driving method thereof, a driving device, and an apparatus using the same.
[0002]
[Prior art]
Japanese Patent Application Laid-Open No. 05-040293 discloses an apparatus for adjusting the light amount of a video / camera interchangeable lens which automatically adjusts the light amount by selectively inserting and removing filters having different transmittances on the optical axis. According to the invention, a filter holder holding a plurality of filters having different transmittances is provided in a lens barrel, and the filter holder is driven by information from a camera body to which the lens barrel is assembled, so that an appropriate amount of light can be obtained. A drive source for selecting and replacing the filter on the optical axis as described above. When the camera body is turned on and enters the shooting standby state, the filter body is driven to perform the light amount adjustment operation, and the camera body enters the recording state. This is a light amount adjusting device configured to regulate the light amount adjusting operation when the light amount is changed.
[0003]
[Problems to be solved by the invention]
However, the light amount adjusting device disclosed in Japanese Patent Laid-Open No. 05-040293 has difficulty in downsizing because it holds a plurality of filters and actuators. -Since the transmittance of the filter changes discontinuously, it is difficult to switch during shooting of a moving image or the like. Alternatively, there is a concern that an unnatural image will occur when switching is performed.
There is a problem such as.
[0004]
[Means for Solving the Problems]
The present inventor has analyzed the problems as described above, and found that the above problems can be improved by providing one element that can change the amount of transmitted light in a stepless manner. SUMMARY OF THE INVENTION It is an object of the present invention to provide an electrophoretic light quantity adjusting element which solves the above-mentioned problems of the prior art and moves an opaque charged electrophoretic particle by an electric signal to change a transmitted light quantity state.
[0005]
A first aspect of the present invention is a substantially transparent first substrate, a substantially transparent second substrate disposed opposite to the first substrate via a gap support, and at least one of the two substrates. A plurality of electrodes formed on the opposite surface side of, an electrophoretic light amount adjusting element including an electrophoretic liquid composed of a plurality of opaque charged electrophoretic particles and a transparent insulating liquid filled between the two substrates,
An electrophoretic light amount adjusting element comprising at least one electrode group in which one electrode group is formed by three or more electrodes among the electrodes.
[0006]
A second aspect of the present invention is a method for driving the element,
2. The driving method of an electrophoretic light amount adjusting element according to claim 1, wherein a driving electric signal is applied to a first electrode, a second electrode,..., An n-th electrode among the electrodes forming the one electrode group. (n is an integer) in a time series manner, and the opaque charged electrophoretic particles are moved to adjust the transmitted light amount of the element, thereby driving the electrophoretic light amount adjusting element.
[0007]
A third aspect of the present invention is that the electrophoretic light control device comprises a non-light-transmitting region and a light-transmitting region, and when the opaque charged electrophoretic particles are aggregated in the non-light-transmitting region, the light-transmitting An electrophoretic light amount adjusting element, wherein an area is in a transmissive state, and is in a non-transmissive state when the opaque charged electrophoretic particles are dispersed in the translucent area.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in order.
[0009]
FIG. 1 is a typical sectional view of the present invention, and FIG. 7 is a typical plan view of the present invention. The first electrode 7 and the third electrode 9 are arranged on the first substrate 1, and the second electrode 8 and the fourth electrode 10 are arranged with the insulating portion 3 interposed therebetween. In this case, one electrode group is constituted by four electrodes of the first, second, third, and fourth electrodes. As shown in FIG. 7, there are two electrode groups, and each electrode is periodically arranged. are doing. Further, the second substrate 2 is disposed thereon with the gap support 4 interposed therebetween.
[0010]
A space formed by the first substrate 1, the second substrate 2, and the gap support 4 is filled with a transparent insulating liquid 6, and opaque electrophoretic particles 5 that migrate by an electric field are dispersed in the insulating liquid 6. ing. The plane pattern of the first electrode 7, the second electrode 8, the third electrode 9, and the fourth electrode 10 is annular, and is arranged concentrically. The first electrode 7, the second electrode 8, the third electrode 9, and the fourth electrode 10, which are respectively arranged four in the figure, are electrically connected to each other outside and electrically connected.
[0011]
The first substrate and the second substrate are substantially optically transparent. In the present invention, “substantially transparent” means that the light transmittance is 70% or more, preferably 80% or more, more preferably 80% or more in a visible light region (wavelength 400 to 700 nm) or a wavelength region to be modulated. Means 90% or more.
[0012]
The number of electrodes forming one electrode group among the transparent electrodes may be any number as long as it is three or more. FIG. 2 shows a case where the number of the electrode groups is one and the number of the electrodes is three. Further, the number of electrodes may be three or more, and the number of electrode groups is plural, and it is preferable that the electrode patterns are periodically arranged. In this case, the opaque charged electrophoretic particles floating on the electrodes can be transported from one electrode to the other electrode. If the number of electrodes is less than 3, the operation becomes incomplete.
[0013]
The term “periodic” means that the number of electrode groups is N, the second electrode 8 is arranged next to the first electrode 7 in the plane direction, and the third electrode 9 is arranged next to the second electrode 8 in the plane direction. ... Refers to a configuration in which the first electrode 7 is sequentially arranged again next to the n-th electrode in the planar direction. However, when the number of electrode groups is one, the second electrode 8 is arranged next to the first electrode 7 in the plane direction, and the third electrode 9 is arranged next to the second electrode 8 in the plane direction. What is necessary is just to arrange | position to an n electrode. Further, the number of electrodes included in each electrode group may not be all equal. Assuming that n is an integer of 2 or more, the first electrode belonging to the next electrode group may be arranged next to the last n-th electrode in one electrode group.
[0014]
The electrodes may be arranged on only one substrate or may be arranged on both substrates. At least each electrode may be arranged on the opposite surface side of the substrate and arranged at a position shifted in the plane direction. The electrodes are preferably arranged so as to cover the entire surface (FIGS. 1 and 4), but are not limited thereto. The entire surface may or may not be covered. That is, there may be a gap between the electrodes (FIGS. 2 and 5). Further, the electrodes may be partially overlapped and arranged (FIG. 3). Although it is preferable to use a transparent electrode as the electrode, the transparent electrode may not be used when the electrode does not cover the entire surface. When the electrodes cover the entire surface, at least some of the electrodes need only be transparent.
[0015]
The opaque charged electrophoretic particles 5 migrate depending on an electric field generated by a voltage applied to the electrode. For example, when the opaque charged electrophoretic particles 5 are positively charged, the opaque charged electrophoretic particles 5 gather near the electrode to which the lowest voltage is applied. If the electrode to which the lowest voltage is applied is changed to the first electrode 7, the second electrode 8,..., The opaque charged electrophoretic particles 5 gather at the first electrode 7 and then gather at the second electrode 8. By repeating this, the opaque charged swimming particles 5 can be moved in the electrophoretic light amount adjusting element 21, and the opaque charged swimming particles 5 can be aggregated and dispersed to adjust the transmitted light amount of the electrophoretic light amount adjusting element 21. When the opaque charged electrophoretic particles 5 are moved in the opposite direction, the phase of the applied voltage may be reversed as shown in FIG.
[0016]
The waveform of the drive voltage is not particularly limited. Any driving waveform such as a rectangular wave (FIG. 10), a sine wave, and a triangular wave may be used. Although the phase difference of the drive waveform applied to each electrode is not particularly limited, it is preferable that the input is performed with a uniform phase difference (FIG. 11). For example, when the number of electrode groups is n, the phase difference between the electrodes is 2π / n.
[0017]
As a method of driving the opaque charged electrophoretic particles 5, gradually increasing or decreasing the effective electric field strength is one of the good driving methods (FIG. 13). The input waveform of the voltage to be applied to each electrode may be a sine wave, a rectangular wave, or the like with a phase shifted, but may be input by increasing or decreasing the voltage at a lower frequency. This element is driven by moving the opaque electrophoretic particles 5 from the first electrode 7 to the second electrode 8, from the second electrode 8 to the third electrode 9, from the third electrode 9,... By slightly changing the voltage for moving from the second electrode 8 to the second electrode 8 and the voltage for moving from the second electrode 8 to the third electrode 9, the transport amount of the particles is changed, and the particles can be uniformly dispersed. For example, a driving method of inputting a voltage with a value given by the following equation is one example.
[0018]
[Outside 1]
Figure 2004061834
[0019]
(However, f: frequency, t: time, n: number of electrode group, N: number of electrode group, α: real number not less than -1 and not more than 1)
Alternatively, as shown in FIG. 13, a cycle of gradually lowering or increasing the driving voltage may be repeated.
[0020]
The opaque charged electrophoretic particles 5 are gathered in a part of the electrophoretic light control element 21 to form a translucent state (FIG. 1), and the opaque charged electrophoretic particles 5 are dispersed throughout the electrophoretic light control element 21 to be semi-transparent. (FIG. 2) is one of the good driving methods. The opaque charged electrophoretic particles 5 may be gathered at any location in the device as long as the opaque charged electrophoretic particles 5 are brought into the light transmitting state. It may be collected at the center of the device or at the periphery of the device (FIG. 1). Alternatively, they may be collected on one or more electrode groups.
[0021]
A configuration in which the opaque light-shielding portion 11 is provided in a part of the electrophoretic light control element 21 is one of preferable configurations (FIGS. 4, 5, 8, and 9). The configuration of the light shielding unit 11 is not particularly limited. A partially transparent and partially opaque substrate (FIG. 3) or an opaque substrate with holes (FIGS. 4 and 5) may be provided on the first substrate 1 or the second substrate 2. Alternatively, the first substrate 1 or the second substrate 2 may be colored opaquely. Alternatively, a partially opaque substrate may be used for the first substrate 1 or the second substrate 2. Alternatively, an electrode may be made of an opaque electrode material and used as the light shielding portion 11.
[0022]
The light shielding area is not particularly limited. It may be at the center of the element or at the periphery (FIGS. 8 and 9). An electrode partially made of an opaque material may be used as a light-shielding portion.
[0023]
One of the preferable driving methods is to transport the opaque charged electrophoretic particles 5 to the light-shielding portion 1 to form a translucent state, and to transport the particles to a part or all of the opening portion 12 to form a semi-transparent state. . By collecting the opaque charged electrophoretic particles 5 in the light shielding unit 11, the transmittance in the light transmitting state becomes constant. Further, the opaque charged electrophoretic particles 5 may be dispersed in the entire opening 12 to form a semi-transparent state (FIG. 8), or may be moved to a part of the opening 12 to leave a semi-transmissive part and leave a semi-transparent part. It is also a good driving method to make the light transmitting state (FIG. 9). It is also a good driving method to move the particles onto the opaque electrode and some transparent electrodes to achieve a semi-transparent state.
[0024]
It is one of the preferable configurations to provide two or more electrode layers arranged via the insulating portion 3 and to arrange two or more electrode groups and half or less of the total number of electrode groups in one electrode layer. . As shown in FIG. 2, at least a portion for maintaining insulation, such as a gap between the electrodes, is required between the electrodes. When the electrodes are arranged on the entire surface, two or more electrode layers are provided and half or less of the total number of electrode groups is arranged on one electrode layer, whereby a configuration having no gap between the electrodes becomes possible (FIG. 1). ). In addition, by arranging two or more electrode groups in one electrode layer, the number of electrode layers can be reduced, and manufacturing becomes easy. As a preferred configuration, the first substrate 1 and the second substrate 2 are provided with an electrode layer having two electrode groups, one electrode layer each (FIG. 3) or two electrode layers each (FIG. 4).
[0025]
FIG. 7 shows a preferable configuration in which the electrodes are formed in a ring shape having different diameters and the electrodes are arranged concentrically. The thickness of the electrode is not particularly limited. It may be the same for all the electrodes, or may change depending on, for example, the diameter of the electrodes. Further, the electrode does not have to be a complete ring, and a part of the ring may be cut to arrange the wiring for wiring. The electrode disposed inside the annular electrode is not necessarily annular, and may include the inside of the electrode as an electrode region, for example, as a circle.
[0026]
FIG. 6 shows a preferable configuration in which a strip-shaped electrode is disposed and a part or all of the electrode is disposed at an angle other than 0 degree with respect to the centrifugal direction of the element. Since the electrodes are arranged at an angle other than 0 degrees with respect to the centrifugal direction, the opaque charged electrophoretic particles 5 can be simultaneously conveyed in the centrifugal direction and the circumferential direction, and the distribution density of the opaque charged electrophoretic particles 5 in the element is uniform. Can be The angle between the electrode and the centrifugal direction is not particularly limited. It may be constant or may vary depending on the distance from the element center. The width of the electrode is not particularly limited. It may be constant or may change depending on the distance from the element center as shown in FIG.
[0027]
A method of moving the opaque electrophoretic particles 5 to a desired area, applying two different voltages to one or more electrode groups, and alternately switching the voltages is one of the good driving methods. Further, a driving method in which the effective electric field intensity applied to the opaque charged electrophoretic particles 5 is gradually reduced to make the voltage applied to the electrodes the same is also a preferable driving method. By these driving methods, the distribution of the opaque charged electrophoretic particles becomes uniform, and the transmittance control becomes easy.
[0028]
FIG. 14 shows an example of a preferable imaging device using the present device. A drive circuit 23 for applying a desired voltage to each electrode group and a light amount measuring unit 22 for measuring the amount of light passing through the element are provided. The light amount measuring means 22 may be of any type. For example, an image sensor 36 such as a charge-coupled device may be used as the light amount measuring unit 22 and the driving circuit 23 may control the electrophoretic light amount adjusting device 21 so as to have an appropriate transmittance depending on the output.
[0029]
Although the method of applying the electrophoretic light amount adjusting element 35 is not particularly limited, it is a good application method to apply it to the lens device 33, the imaging module 32, the imaging device 31, and the like. An example is shown in FIG.
[0030]
The method of arranging the electrophoretic light amount adjusting element of the present invention is not particularly limited as long as it is arranged on the optical axis of an optical component such as a lens and an image sensor. An example of this is shown in FIG. 16. An example in which the electrophoretic light amount adjusting element 165 of the present invention is disposed at a position corresponding to the stop position of the lens device 164 (FIG. 16A), or a configuration in which the element is disposed on the front surface of the lens 164 (FIG. FIG. 16B shows a preferred configuration example.
[0031]
The number of lenses constituting the lens device is not particularly limited. It may be composed of a plurality of sheets or one sheet. It suffices if at least the amount of light incident on the image sensor can be changed and a desired image can be obtained on the image forming surface, and it may be arranged at any position. Accordingly, by arranging the image sensor 166 on the image forming surface, it becomes possible to adjust the amount of incident light.
[0032]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0033]
(Example 1)
In this example, the device having the cross-sectional configuration shown in FIG. 1 and the planar configuration shown in FIG. 7 was manufactured and driven.
[0034]
The size of the manufactured element is 1 mm in diameter and 0.53 mm in thickness. First, an ITO film was formed at a low temperature on glass having a thickness of 0.2 mm as the first substrate 1, and was patterned by photolithography and etching into a shape shown in the figure. Subsequently, SiO 2 was formed as an insulating portion, ITO was formed thereon at a low temperature, and patterned by photolithography and etching into the shape shown in the figure. Similarly, a film of SiO 2 was formed as an insulating portion. The gap support 4 was formed thereon. The gap support 4 was formed by applying a photosensitive epoxy resin, and then performing exposure and wet development to have a height of 30 μm. The formed space was filled with the insulating liquid 6 and the opaque charged electrophoretic particles 5. As the insulating liquid 6, isoparaffin was used. As the opaque electrophoretic particles 5, a mixture of polystyrene and carbon having an average particle size of about 2 μm was used. The opaque charged electrophoretic particles 5 in isoparaffin showed a positively charged polarity. Next, a glass having a thickness of 0.2 mm as the second substrate 2 was placed on the first substrate 1 while performing alignment, and a peripheral portion of the element was bonded with an adhesive.
[0035]
Driving was performed by connecting the driving device 23 to this. First, when the device was driven by the waveform shown in FIG. 11, the opaque charged electrophoretic particles 5 dispersed throughout the device were conveyed to the center of the device and became translucent. The drive voltage is 10V. When the device was driven by the waveform shown in FIG. 12, the opaque charged electrophoretic particles 5 dispersed in the center of the device were conveyed to the periphery of the device and were in a light transmitting state. The drive voltage is likewise 10V.
[0036]
When the device was driven by the waveform shown in FIG. 13, the opaque charged electrophoretic particles 5 dispersed around the device were dispersed throughout the device and became a semi-transparent light state. The drive voltage is up to 10V. When the first electrode 7 and the third electrode 9 and the second electrode 8 and the fourth electrode 10 were set to the same potential and 5 V was alternately applied to one and -5 V to the other, the opaque electrophoretic particles 5 were uniformly dispersed. Further, when the voltage was gradually reduced and all the electrodes were set to 0 V, they were more uniformly dispersed.
[0037]
When the light amount measuring means 22 is connected to this driving device, and the drive voltage is selected and applied depending on the output of the light amount measuring means 22, the light amount transmitted through the electrophoretic light amount adjusting element 21 can be kept constant. did it. In addition, when this element was mounted on the imaging device 31 and driven, a good image could be obtained from a bright place to a dark place.
[0038]
(Example 2)
In this example, the device having the cross-sectional configuration shown in FIG. 5 and the planar configuration shown in FIG. 6 was manufactured and driven.
[0039]
The size of the manufactured element is 1 mm in diameter and 0.53 mm in thickness. First, an ITO film was formed at a low temperature on glass having a thickness of 0.2 mm as the first substrate 1, and was patterned by photolithography and etching into a shape shown in the figure. Subsequently, a film of SiO 2 was formed as an insulating portion. The gap support 4 was formed thereon. The gap support 4 was formed by applying a photosensitive epoxy resin, and then performing exposure and wet development to have a height of 30 μm. The formed space was filled with the insulating liquid 6 and the opaque charged electrophoretic particles 5. As the insulating liquid 6, isoparaffin was used. As the opaque electrophoretic particles 5, a mixture of polystyrene and carbon having an average particle size of about 2 μm was used. The opaque charged electrophoretic particles 5 in isoparaffin showed a positively charged polarity. Next, a glass having a thickness of 0.2 mm as the second substrate 2 was placed on the first substrate 1 while performing alignment, and a peripheral portion of the element was bonded with an adhesive. An opaque substrate having a hole having a diameter of 0.7 mm was arranged thereon to form a light shielding portion.
[0040]
Driving was performed by connecting the driving device 23 to this. First, when the element was driven by the waveform shown in FIG. 12, the opaque charged electrophoretic particles 5 dispersed throughout the element were conveyed to the periphery of the element and were in a light-transmitting state. The drive voltage is 10V. When the device was driven by the waveform shown in FIG. 13, the opaque charged electrophoretic particles 5 dispersed around the device were dispersed throughout the device to be in a semi-transparent light state (FIG. 8). The drive voltage is up to 10V. When the device was driven by the waveform shown in FIG. 11, the opaque charged electrophoretic particles 5 dispersed throughout the device were conveyed to the center of the device and became semi-transparent (FIG. 9). The drive voltage is likewise 10V. When the first electrode 7 and the third electrode 9 and the second electrode 8 and the fourth electrode 10 were set to the same potential and 5 V was alternately applied to one and -5 V to the other, the opaque electrophoretic particles 5 were uniformly dispersed. Further, when the voltage was gradually reduced and all the electrodes were set to 0 V, they were more uniformly dispersed.
[0041]
When the light amount measuring means 22 is connected to this driving device, and the drive voltage is selected and applied depending on the output of the light amount measuring means 22, the light amount transmitted through the electrophoretic light amount adjusting element 21 can be kept constant. did it. In addition, when this element was mounted on the imaging module 32 and driven, a good image was obtained from a bright place to a dark place.
[0042]
【The invention's effect】
As described above, the following effects were obtained by the present invention.
First, an electrophoretic light amount adjusting element in which the transmittance changes with one element was provided. As a result, the lens device, the imaging module, and the imaging device, which were difficult to miniaturize, can be significantly reduced in size.
[0043]
Second, since the transmittance can be changed in a stepless manner, the transmittance can be changed even during the shooting of a moving image, and a better moving image can be shot.
[Brief description of the drawings]
FIG. 1 shows an example of a typical cross-sectional view of an electrophoretic light quantity adjusting element of the present invention.
FIG. 2 shows an example of a typical cross-sectional view of the electrophoretic light amount adjusting element of the present invention.
FIG. 3 shows an example of a typical cross-sectional view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 4 shows an example of a typical cross-sectional view of the electrophoretic light amount adjusting element of the present invention.
FIG. 5 shows an example of a typical cross-sectional view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 6 shows an example of a typical plan view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 7 shows an example of a typical plan view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 8 shows an example of a typical plan view of the electrophoretic light quantity adjusting element of the present invention.
FIG. 9 shows an example of a typical plan view of the electrophoretic light amount adjusting element of the present invention.
FIG. 10 shows an example of a typical driving method of the electrophoretic light amount adjusting element of the present invention.
FIG. 11 shows an example of a typical driving method of the electrophoretic light amount adjusting element of the present invention.
FIG. 12 shows an example of a typical driving method of the electrophoretic light quantity adjusting element of the present invention.
FIG. 13 shows an example of a typical driving method of the electrophoretic light amount adjusting element of the present invention.
FIG. 14 shows an example of a typical application method of the electrophoretic light quantity adjusting element of the present invention.
FIG. 15 shows an example of a typical application method of the electrophoretic light quantity adjusting element of the present invention.
FIG. 16 is a diagram illustrating an example of an imaging device using the electrophoretic light amount adjusting element of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st board | substrate 2 2nd board | substrate 3 Insulating part 4 Gap support 5 Opaque charged electrophoretic particle 6 Insulating liquid 7 First electrode 8 Second electrode 9 Third electrode 10 Fourth electrode 11 Light shielding part 12 Opening 21 Electrophoretic light quantity Adjusting element 22 Light amount measuring means 23 Drive device 31 Imaging device 32 Imaging module 33 Lens device 34 Lens 35 Electrophoretic light amount adjusting device 36 Image sensor 37 Image sensor driving device 38 Drive device 39 Storage device

Claims (15)

実質的に透明な第一基板と、該第一基板に間隙支持体を介して対向して配置された実質的に透明な第二基板と、前記両基板の少なくとも一方の対向面側に形成された複数の電極と、前記両基板間に充填された透明絶縁性液体と複数の不透明帯電泳動粒子からなる電気泳動液とを含む電気泳動光量調整素子であって、
前記電極のうち3以上の電極で一電極群を形成し、少なくとも1つ以上の電極群を備えたことを特徴とする電気泳動光量調整素子。
A substantially transparent first substrate, a substantially transparent second substrate disposed opposite to the first substrate via a gap support, and formed on at least one of the opposing surfaces of the two substrates; A plurality of electrodes, an electrophoretic light amount adjustment element including an electrophoretic liquid comprising a plurality of opaque charged electrophoretic particles and a transparent insulating liquid filled between the two substrates,
An electrophoretic light amount adjusting element, wherein one electrode group is formed by three or more electrodes among the electrodes, and at least one electrode group is provided.
前記電極群が複数かつ周期的に配置された電極構成を有している電気泳動光量調整素子であって、各電極群中の電極が他の電極群中の相対応する電極と電気的に結線されていることを特徴とする請求項1記載の電気泳動光量調整素子。An electrophoretic light amount adjustment element having an electrode configuration in which the electrode groups are arranged in a plurality and periodically, wherein an electrode in each electrode group is electrically connected to a corresponding electrode in another electrode group. 2. The electrophoretic light quantity adjusting element according to claim 1, wherein: 請求項1記載の電気泳動光量調整素子の駆動方法であって、駆動用の電気信号を前記一電極群を形成している電極中の、第1電極、第2電極、・・第n電極(nは整数)の順に時系列に順次印加して、前記不透明帯電泳動粒子を移動させることにより素子の透過光量を調節することを特徴とする電気泳動光量調整素子の駆動方法。2. The driving method of an electrophoretic light amount adjusting element according to claim 1, wherein a driving electric signal is applied to a first electrode, a second electrode,..., An n-th electrode among the electrodes forming the one electrode group. a method of driving the electrophoretic light quantity adjusting element, wherein the opaque charged electrophoretic particles are moved so as to adjust the transmitted light quantity of the element by sequentially applying them in the order of n). 請求項1記載の電気泳動光量調整素子の駆動方法であって、前記一電極群を形成している電極中の、第1電極、第2電極、・・第n電極(nは整数)に位相の異なる電気信号を同時に入力して、前記不透明帯電泳動粒子を移動させることにより素子の透過光量を調節することを特徴とする電気泳動光量調整素子の駆動方法。2. The driving method for an electrophoretic light amount adjusting element according to claim 1, wherein the first electrode, the second electrode,..., The n-th electrode (n is an integer) among the electrodes forming the one electrode group. A method for driving an electrophoretic light quantity adjusting element, comprising: simultaneously inputting different electric signals of the above and moving the opaque charged electrophoretic particles to adjust the transmitted light quantity of the element. 前記電気信号の大きさを徐々に増減させて前記不透明帯電泳動粒子を移動させることを特徴とする請求項2乃至3記載の電気泳動光量調整素子の駆動方法。4. The method according to claim 2, wherein the opaque charged electrophoretic particles are moved by gradually increasing or decreasing the magnitude of the electric signal. 前記電気泳動調光素子が非透光性領域と透光性領域からなり、前記非透光性領域に前記不透明帯電泳動粒子を集合させたときは前記透光性領域が透過状態となり、前記透光性領域の一部もしくは全部に前記不透明帯電泳動粒子を分散させたときに半透光状態もしくは非透過状態になることを特徴とする請求項1記載の電気泳動光量調整素子。The electrophoretic light control element includes a non-translucent area and a translucent area. When the opaque charged electrophoretic particles are aggregated in the non-translucent area, the translucent area is in a transmissive state, and 2. The electrophoretic light quantity adjusting device according to claim 1, wherein when the opaque charged electrophoretic particles are dispersed in a part or the entirety of the light region, the electrophoretic particles enter a semi-transmissive state or a non-transmissive state. 少なくとも前記非透光性領域が、不透明な遮光性部材により形成されていることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting device according to claim 1, wherein at least the non-light-transmitting region is formed of an opaque light-shielding member. 前記電極の配置方法が、各基板上に2層に渡って形成されていることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting element according to claim 1, wherein the electrode is arranged in two layers on each substrate. 前記電極郡の各電極のパターンが環状であり、その平面配置がそれぞれ半径を異にする同心円状に配置されていることを特徴とする請求項1記載の電気泳動光量調整素子。2. The electrophoretic light quantity adjusting element according to claim 1, wherein the pattern of each electrode of the electrode group is annular, and the planar arrangement thereof is arranged concentrically with different radii. 前記電極郡の各電極のパターンが帯状であり、その平面配置が電気泳動光量調整素子の中心より遠心方向に対して0度より大きい角度で配置されていることを特徴とする請求項1記載の電気泳動光量調整素子。The pattern of each electrode of the electrode group is band-shaped, and its planar arrangement is arranged at an angle larger than 0 degree with respect to the centrifugal direction from the center of the electrophoretic light amount adjusting element. Electrophoretic light intensity adjustment element. 電気泳動光量調整素子の遠心方向と電極との成す角が素子の中心からの距離に依存して変化することを特徴とする請求項9記載の電気泳動光量調整素子。10. The electrophoretic light quantity adjusting element according to claim 9, wherein an angle formed between the electrode and the electrode in the centrifugal direction of the electrophoretic light quantity adjusting element changes depending on a distance from a center of the element. 前記電極群に異なる2つの電圧をそれぞれ少なくとも1つ以上の前記電極に印加し、かつ該電圧を交互に入れ替えることを特徴とする請求項2乃至3記載の電気泳動光量調整素子の駆動方法。4. The method according to claim 2, wherein two different voltages are applied to the electrode group to at least one or more of the electrodes, respectively, and the voltages are alternately exchanged. 前記不透明帯電泳動粒子にかかる実効的な電界強度を徐々に低下させて、前記電極群に含まれる全ての電極の印加電圧を同じにすることを特徴とする請求項2乃至3記載の電気泳動光量調整素子の駆動方法4. The electrophoretic light quantity according to claim 2, wherein an effective electric field intensity applied to the opaque charged electrophoretic particles is gradually reduced to make the applied voltage of all the electrodes included in the electrode group equal. Driving method of adjustment element 前記電極群に駆動電圧を印加する駆動回路と、請求項1記載の電気泳動光量調整素子、該素子を透過する光量を測定する光量測定手段とを備え、該光量測定手段の出力に応じて前記駆動回路からの駆動電圧を可変することを特徴とする請求項1記載の光量調整装置。A driving circuit that applies a driving voltage to the electrode group; and an electrophoretic light amount adjusting element according to claim 1; and a light amount measuring unit that measures a light amount transmitted through the element. 2. The light amount adjusting device according to claim 1, wherein the driving voltage from the driving circuit is variable. 光路中にレンズおよび撮像素子および請求項1記載の電気泳動光量調整素子を適宜配置したことを特徴とする撮像装置。An imaging apparatus, wherein a lens, an imaging element, and the electrophoresis light amount adjustment element according to claim 1 are appropriately arranged in an optical path.
JP2002219705A 2002-07-29 2002-07-29 Light amount adjusting element and imaging apparatus using the same Expired - Fee Related JP4164308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219705A JP4164308B2 (en) 2002-07-29 2002-07-29 Light amount adjusting element and imaging apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219705A JP4164308B2 (en) 2002-07-29 2002-07-29 Light amount adjusting element and imaging apparatus using the same

Publications (2)

Publication Number Publication Date
JP2004061834A true JP2004061834A (en) 2004-02-26
JP4164308B2 JP4164308B2 (en) 2008-10-15

Family

ID=31940541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219705A Expired - Fee Related JP4164308B2 (en) 2002-07-29 2002-07-29 Light amount adjusting element and imaging apparatus using the same

Country Status (1)

Country Link
JP (1) JP4164308B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183378A (en) * 2006-01-06 2007-07-19 Canon Inc Method for driving electrophoretic display device
JP2007233390A (en) * 2006-03-02 2007-09-13 Thomson Licensing Variable iris using charged opaque particles
CN102385210A (en) * 2010-08-30 2012-03-21 鸿富锦精密工业(深圳)有限公司 Aperture and camera module adopting same
KR20130021219A (en) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 Electrophoretic display device
KR101973339B1 (en) * 2018-11-21 2019-04-26 김광수 Electronic Aperture
KR20200060206A (en) * 2019-04-22 2020-05-29 김광수 Electronic Aperture
JP2020086210A (en) * 2018-11-28 2020-06-04 Tianma Japan株式会社 Beam direction controller
CN111240121A (en) * 2020-02-21 2020-06-05 京东方科技集团股份有限公司 Transparent control device and display screen
CN116943044A (en) * 2023-09-18 2023-10-27 东莞市红富照明科技有限公司 Far infrared physiotherapy lamp based on electrophoresis control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885172B (en) 2014-03-06 2016-04-13 京东方科技集团股份有限公司 3D eyeglass and 3D glasses

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183378A (en) * 2006-01-06 2007-07-19 Canon Inc Method for driving electrophoretic display device
US7733325B2 (en) 2006-01-06 2010-06-08 Canon Kabushiki Kaisha Electrophoretic display apparatus
JP4557891B2 (en) * 2006-01-06 2010-10-06 キヤノン株式会社 Driving method of electrophoretic display device
JP2007233390A (en) * 2006-03-02 2007-09-13 Thomson Licensing Variable iris using charged opaque particles
CN102385210A (en) * 2010-08-30 2012-03-21 鸿富锦精密工业(深圳)有限公司 Aperture and camera module adopting same
KR20130021219A (en) * 2011-08-22 2013-03-05 삼성디스플레이 주식회사 Electrophoretic display device
KR101882734B1 (en) * 2011-08-22 2018-08-27 삼성디스플레이 주식회사 Electrophoretic display device
KR101973339B1 (en) * 2018-11-21 2019-04-26 김광수 Electronic Aperture
JP7145738B2 (en) 2018-11-28 2022-10-03 Tianma Japan株式会社 Beam direction controller
JP2020086210A (en) * 2018-11-28 2020-06-04 Tianma Japan株式会社 Beam direction controller
KR102142245B1 (en) * 2019-04-22 2020-08-06 김광수 Electronic Aperture
KR20200060206A (en) * 2019-04-22 2020-05-29 김광수 Electronic Aperture
CN111240121A (en) * 2020-02-21 2020-06-05 京东方科技集团股份有限公司 Transparent control device and display screen
CN111240121B (en) * 2020-02-21 2024-05-28 京东方科技集团股份有限公司 Transparent control device and display screen
CN116943044A (en) * 2023-09-18 2023-10-27 东莞市红富照明科技有限公司 Far infrared physiotherapy lamp based on electrophoresis control
CN116943044B (en) * 2023-09-18 2023-11-24 东莞市红富照明科技有限公司 Far infrared physiotherapy lamp based on electrophoresis control

Also Published As

Publication number Publication date
JP4164308B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP3566524B2 (en) Electrophoretic display
US5745281A (en) Electrostatically-driven light modulator and display
JP4164308B2 (en) Light amount adjusting element and imaging apparatus using the same
CN105467579B (en) MEMS light valve and display device
CN1496490A (en) Image display and image projector
US20170168223A1 (en) Display substrate, display apparatus having the same, and fabricating method thereof
TWI709790B (en) A liquid crystal lens
JP2002169191A (en) Image display medium and image display device
KR101593546B1 (en) Liquid Crystal Lens and Driving method of the same
JP2004258615A (en) Display device and method for manufacturing particle utilized for image display
JP2004233575A (en) Method for manufacturing electrophoresis display device
KR101534626B1 (en) Electro-Phoresis Display Device and the forming method of Separator
JP2021533419A (en) A device for locally changing optical properties and a method for providing it.
JP2004061833A (en) Electrophoretic light quantity control element, its driving method and device using the element
JP2004061831A (en) Electrophoretic light quantity adjusting element
CN112379560A (en) Diaphragm and diaphragm module
JP4989949B2 (en) Liquid crystal optical element and liquid crystal optical module
JP4684448B2 (en) LIGHT MODULATION DEVICE, ITS MODULATION DEVICE MANUFACTURING METHOD, IMAGE FORMING DEVICE HAVING THE LIGHT MODULATION DEVICE, AND IMAGE PROJECTION DISPLAY DEVICE HAVING THE LIGHT MODULATION DEVICE
JP2004061839A (en) Electrophoretic light adjusting device and its driving method
KR102152647B1 (en) Droplet removal device by electrowetting and method thereof
JP2007041273A (en) Electrophoretic light quantity adjusting element and imaging device using the same
JP2004061840A (en) Electrophoretic light adjusting device, its driving method and apparatus using same
JP2004012906A (en) Light control element, its driving method and image pickup device using the light control element
JP2004061832A (en) Light adjusting device, its driving method and apparatus using same
JP5935994B2 (en) Image display medium and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees