JP2006201337A - Adhesive optical film and image display - Google Patents

Adhesive optical film and image display Download PDF

Info

Publication number
JP2006201337A
JP2006201337A JP2005011295A JP2005011295A JP2006201337A JP 2006201337 A JP2006201337 A JP 2006201337A JP 2005011295 A JP2005011295 A JP 2005011295A JP 2005011295 A JP2005011295 A JP 2005011295A JP 2006201337 A JP2006201337 A JP 2006201337A
Authority
JP
Japan
Prior art keywords
optical film
film
sensitive adhesive
pressure
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005011295A
Other languages
Japanese (ja)
Other versions
JP4880228B2 (en
Inventor
Kanako Ito
奏子 伊藤
Akihiro Nishida
昭博 西田
Naoki Tsujiuchi
直樹 辻内
Shuji Yano
周治 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005011295A priority Critical patent/JP4880228B2/en
Publication of JP2006201337A publication Critical patent/JP2006201337A/en
Application granted granted Critical
Publication of JP4880228B2 publication Critical patent/JP4880228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polarising Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adhesive optical film at least with its one side laminated with an adhesive layer, which is excellent in rework performance. <P>SOLUTION: The optical film at least its one side is laminated with the adhesive layer, wherein the adhesive layer is laminated through the anchor layer formed of silane coupling agent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学フィルムの少なくとも一方の面に粘着剤層が積層されている粘着型光学フィルムに関する。さらには前記粘着型光学フィルムを用いた液晶表示装置、有機EL表示装置、PDP等の画像表示装置に関する。前記光学フィルムとしては、偏光板、位相差板、光学補償フィルム、輝度向上フィルム、さらにはこれらが積層されているものなどがあげられる。   The present invention relates to an adhesive optical film in which an adhesive layer is laminated on at least one surface of an optical film. Furthermore, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the adhesive optical film. Examples of the optical film include a polarizing plate, a retardation plate, an optical compensation film, a brightness enhancement film, and a laminate of these.

液晶ディスプレイ等は、その画像形成方式から液晶セルの両側に偏光素子を配置することが必要不可欠であり、一般的には偏光板が貼着されている。また液晶パネルには偏光板の他に、ディスプレイの表示品位を向上させるために様々な光学素子が用いられるようになってきている。例えば、斜め視野の着色防止としての位相差板、液晶ディスプレイの視野角を改善するための視野角拡大フィルム、さらにはディスプレイのコントラストを高めるための輝度向上フィルム等が用いられる。これらのフィルムは総称して光学フィルムと呼ばれる。   In a liquid crystal display or the like, it is indispensable to dispose polarizing elements on both sides of a liquid crystal cell because of its image forming method, and generally a polarizing plate is attached. In addition to polarizing plates, various optical elements have been used for liquid crystal panels in order to improve the display quality of displays. For example, a retardation plate for preventing coloring of an oblique field of view, a viewing angle widening film for improving the viewing angle of a liquid crystal display, and a brightness enhancement film for increasing the contrast of the display are used. These films are collectively called optical films.

前記光学フィルムを液晶セルに貼着する際には、通常、粘着剤が使用される。また、光学フィルムと液晶セル、また光学フィルム間の接着は、通常、光の損失を低減するため、それぞれの材料は粘着剤を用いて密着されている。このような場合に、光学フィルムを固着させるのに乾燥工程を必要としないこと等のメリットを有することから、粘着剤は、光学フィルムの片面に予め粘着剤層として設けられた粘着型光学フィルムが一般的に用いられる。   When sticking the optical film on a liquid crystal cell, an adhesive is usually used. In addition, the adhesive between the optical film and the liquid crystal cell and the optical film is usually in close contact with each other using an adhesive to reduce the loss of light. In such a case, since the adhesive has the merit that a drying step is not required to fix the optical film, the adhesive is an adhesive optical film provided in advance as an adhesive layer on one side of the optical film. Generally used.

前記粘着剤に要求される必要特性としては、(1)光学フィルムを液晶パネル表面に貼り合わせる際、貼り合わせ位置を誤ったり、貼合せ面に異物が噛み込んだりしたような場合にも光学フィルムを液晶パネル表面から剥離し、再度貼り合わせ(リワーク)が可能であること、(2)光学フィルムの寸法変化により生じる光学むらを防止するため応力緩和性を有すること、(3)環境促進試験として通常行われる加熱および加湿等による耐久試験に対して粘着剤に起因する不具合が発生しないこと、等が挙げられる。   The required properties required for the pressure-sensitive adhesive include: (1) When an optical film is bonded to the surface of a liquid crystal panel, the optical film can be used even when the bonding position is wrong or a foreign object is caught in the bonding surface. Can be peeled off from the surface of the liquid crystal panel and re-bonded (rework) is possible, (2) has stress relaxation properties to prevent optical unevenness caused by dimensional changes of the optical film, and (3) an environmental promotion test For example, a defect caused by the pressure-sensitive adhesive does not occur with respect to a durability test that is usually performed by heating and humidification.

特に、前記(1)のリワーク性に関しては、これまでの粘着型光学フィルムでは、粘着剤層と光学フィルム基材との密着性が低いため、液晶パネルから粘着型光学フィルムを剥離する際に、液晶パネル表面に粘着型光学フィルムの粘着剤が一部残ってしまう問題(以下これを粘着剤残りという)が生じていた。   In particular, with regard to the reworkability of (1) above, in the conventional adhesive optical film, since the adhesiveness between the adhesive layer and the optical film substrate is low, when peeling the adhesive optical film from the liquid crystal panel, There has been a problem that a part of the pressure-sensitive adhesive of the pressure-sensitive optical film remains on the surface of the liquid crystal panel (hereinafter referred to as pressure-sensitive adhesive residue).

このような問題を解決した粘着型光学フィルムとして、例えば、ポリエチレンイミンをアンカー層として設け、これを介して粘着剤層を積層したものが提案されている(特許文献1)。近年では、益々、リワーク性に関して、密着性がよく、粘着剤残りのない粘着型光学フィルムが望まれている。
特開2004−78143号公報
As an adhesive optical film that solves such problems, for example, a film in which polyethyleneimine is provided as an anchor layer and an adhesive layer is laminated therethrough has been proposed (Patent Document 1). In recent years, a pressure-sensitive adhesive optical film with good adhesiveness and no adhesive remaining has been desired for reworkability.
JP 2004-78143 A

本発明は、光学フィルムの少なくとも一方の面に粘着剤層が積層されている粘着型光学フィルムであって、リワーク性の良好な、粘着型光学フィルムを提供することを目的とする。   An object of the present invention is to provide a pressure-sensitive adhesive optical film in which a pressure-sensitive adhesive layer is laminated on at least one surface of an optical film, and has good reworkability.

また本発明は、前記粘着型光学フィルムを用いた画像表示装置を提供することを目的とする。   Another object of the present invention is to provide an image display device using the adhesive optical film.

本発明者らは、前記課題を解決すべく鋭意研究したところ、下記粘着型光学フィルムにより上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the following pressure-sensitive adhesive optical film, and have completed the present invention.

すなわち本発明は、光学フィルムの少なくとも一方の面に粘着剤層が積層されている粘着型光学フィルムにおいて、
前記粘着剤層は、シランカップリング剤により形成されたアンカー層を介して積層されていることを特徴とする粘着型光学フィルム、に関する。
That is, the present invention is an adhesive optical film in which an adhesive layer is laminated on at least one surface of the optical film,
The pressure-sensitive adhesive layer relates to a pressure-sensitive adhesive optical film, wherein the pressure-sensitive adhesive layer is laminated via an anchor layer formed of a silane coupling agent.

上記本発明の粘着型光学フィルムは、粘着剤残りの主原因が粘着剤層と光学フィルム基材との低密着性にあると考え、粘着剤層と光学フィルム基材の間にシランカップリング剤により形成されたアンカー層を介在させることにより、粘着剤層と光学フィルムとの密着性を向上させて、粘着剤残りを低減させている。   The pressure-sensitive adhesive optical film of the present invention is considered to be mainly due to low adhesion between the pressure-sensitive adhesive layer and the optical film substrate, and the silane coupling agent between the pressure-sensitive adhesive layer and the optical film substrate. By interposing the anchor layer formed by the above, the adhesiveness between the pressure-sensitive adhesive layer and the optical film is improved, and the pressure-sensitive adhesive residue is reduced.

上記粘着型光学フィルムにおいて、シランカップリング剤は、アミノ基含有シランカップリング剤であることが好ましい態様である。アミノ基含有シランカップリング剤により形成されるアンカー層はアミノ基を有するシラン層であり、当該アンカー層中のアミノ基は、粘着剤層の界面およびその近傍で、粘着剤層中の官能基と反応して、アンカー層と粘着剤層が強固に密着することができる。   In the pressure-sensitive adhesive optical film, the silane coupling agent is preferably an amino group-containing silane coupling agent. The anchor layer formed by the amino group-containing silane coupling agent is a silane layer having an amino group, and the amino group in the anchor layer is bonded to the functional group in the adhesive layer at and near the interface of the adhesive layer. It reacts and an anchor layer and an adhesive layer can adhere | attach firmly.

上記粘着型光学フィルムにおいて、前記粘着剤層は、アクリル系粘着剤により形成されていることが好ましい。   In the pressure-sensitive adhesive optical film, the pressure-sensitive adhesive layer is preferably formed of an acrylic pressure-sensitive adhesive.

上記粘着剤層を形成する粘着剤には、ベースポリマーとして、アミノ基と反応する官能基を含有するものを用いることが好ましい。前記ベースポリマーとして、アミノ基と反応する官能基を含有するものを用いることにより、アミノ基含有シランカップリング剤により形成されるアンカー層と粘着剤層の界面およびその近傍で、アミノ基と粘着剤層中の官能基が反応して、アンカー層と粘着剤層が強固に密着する。   For the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer, it is preferable to use a base polymer containing a functional group that reacts with an amino group. By using a polymer containing a functional group that reacts with an amino group as the base polymer, an amino group and a pressure-sensitive adhesive are formed at and near the interface between the anchor layer and the pressure-sensitive adhesive layer formed by the amino group-containing silane coupling agent. The functional group in the layer reacts, and the anchor layer and the pressure-sensitive adhesive layer adhere firmly.

前記粘着型光学フィルムにおいて、前記粘着剤層を形成する粘着剤のベースポリマーが含有する、アミノ基と反応する官能基が、カルボキシル基であることが好ましい態様である。カルボキシル基は、アミノ基との反応性が良く、ベースポリマーが含有する官能基として好適であり、粘着剤層とアンカー層の密着性が良好である。   In the pressure-sensitive adhesive optical film, it is preferable that the functional group that reacts with the amino group contained in the base polymer of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is a carboxyl group. The carboxyl group has good reactivity with the amino group, is suitable as a functional group contained in the base polymer, and has good adhesion between the pressure-sensitive adhesive layer and the anchor layer.

前記粘着型光学フィルムにおいて、アンカー層を積層する光学フィルム表面の素材としては、トリアセチルセルロース、ノルボルネン系樹脂またはポリカーボネートを好適に用いることができる。   In the pressure-sensitive adhesive optical film, triacetyl cellulose, norbornene-based resin or polycarbonate can be suitably used as the material for the optical film surface on which the anchor layer is laminated.

また本発明は、前記粘着型光学フィルムを少なくとも1枚用いた画像表示装置、に関する。本発明の粘着型光学フィルムは、液晶表示装置等の画像表示装置の各種の使用態様に応じて、1枚または複数のものを組み合わせて用いられる。   The present invention also relates to an image display device using at least one adhesive optical film. The pressure-sensitive adhesive optical film of the present invention is used in combination of one or more sheets depending on various usage modes of an image display device such as a liquid crystal display device.

本発明の粘着型光学フィルムの粘着剤層を形成する粘着剤は特に制限されず、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤等の各種の粘着剤を使用できるが、無色透明で、液晶セル等との接着性の良好なアクリル系粘着剤が一般的には用いられる。また、粘着剤のベースポリマーはアミノ基と反応する官能基を有するものが好ましい。   The pressure-sensitive adhesive forming the pressure-sensitive adhesive layer of the pressure-sensitive adhesive optical film of the present invention is not particularly limited, and various pressure-sensitive adhesives such as a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive can be used. In general, an acrylic pressure-sensitive adhesive having good adhesion to a liquid crystal cell or the like is used. The base polymer of the pressure-sensitive adhesive preferably has a functional group that reacts with an amino group.

アクリル系粘着剤は、アルキル(メタ)アクリレートのモノマーユニットを主骨格とするアクリル系ポリマーをベースポリマーとする。なお、(メタ)アクリレートはアクリレートおよび/またはメタクリレートをいい、本発明の(メタ)とは同様の意味である。アクリル系ポリマーの主骨格を構成する、アルキル(メタ)アクリレートのアルキル基の平均炭素数は1〜12程度のものであり、アルキル(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等を例示でき、これらは単独または組合せて使用できる。これらのなかでもアルキル基の炭素数1〜7のアルキル(メタ)アクリレートが好ましい。   The acrylic pressure-sensitive adhesive has an acrylic polymer having a main skeleton of an alkyl (meth) acrylate monomer unit as a base polymer. (Meth) acrylate refers to acrylate and / or methacrylate, and (meth) of the present invention has the same meaning. The average carbon number of the alkyl group of the alkyl (meth) acrylate constituting the main skeleton of the acrylic polymer is about 1 to 12, and specific examples of the alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (Meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like can be exemplified, and these can be used alone or in combination. Among these, alkyl (meth) acrylates having 1 to 7 carbon atoms in the alkyl group are preferable.

前記アクリル系ポリマー等のベースポリマーに導入される、アミノ基と反応する官能基としては、たとえば、カルボキシル基、エポキシ基、イソシアネート基等があげられる。これらのなかでもカルボキシル基が好適である。アミノ基と反応する官能基を有するアクリル系ポリマーは、当該官能基を有するモノマーユニットを含有している。カルボキシル基を有するモノマーとしてはアクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸等があげられる。エポキシ基を含有するモノマーとしてはグリシジル(メタ)アクリレート等があげられる。   Examples of the functional group that reacts with the amino group introduced into the base polymer such as the acrylic polymer include a carboxyl group, an epoxy group, and an isocyanate group. Of these, a carboxyl group is preferred. The acrylic polymer having a functional group that reacts with an amino group contains a monomer unit having the functional group. Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, fumaric acid, maleic acid, and itaconic acid. Examples of the monomer containing an epoxy group include glycidyl (meth) acrylate.

アクリル系ポリマー中の前記官能基を有するモノマーユニット(a)の割合は、特に制限されないが、アクリル系ポリマーを構成するモノマーユニット(A)(但し、前記モノマーユニット(a)を除く)との重量比(a/A)で、0.001〜0.12程度、さらには0.005〜0.1とするのが好ましい。   The ratio of the monomer unit (a) having the functional group in the acrylic polymer is not particularly limited, but the weight with respect to the monomer unit (A) constituting the acrylic polymer (excluding the monomer unit (a)). The ratio (a / A) is preferably about 0.001 to 0.12, more preferably 0.005 to 0.1.

また前記アクリル系ポリマーには、水酸基を有するモノマーユニット、N元素を有するモノマーユニット等を導入することができる。特に水酸基を有するモノマーユニットは好適である。水酸基を有するモノマーとしては、2−ヒドロキシエチル(メタ)アクリレート、N−メチロール(メタ)アクリルアミド等の水酸基含有モノマー、ヒドロキシブチル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等があげられる。N元素含有モノマーとしては、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、(メタ)アセトニトリル、ビニルピロリドン、N−シクロヘキシルマレイミド、イタコンイミド、N,N−ジメチルアミノエチル(メタ)アクリルアミド等があげられる。その他、アクリル系ポリマーには、粘着剤の性能を損なわない範囲で、さらには酢酸ビニル、スチレン等を用いることもできる。これらモノマーは1種または2種以上を組み合わせることができる。   In addition, a monomer unit having a hydroxyl group, a monomer unit having an N element, and the like can be introduced into the acrylic polymer. In particular, monomer units having a hydroxyl group are preferred. Examples of the monomer having a hydroxyl group include a hydroxyl group-containing monomer such as 2-hydroxyethyl (meth) acrylate and N-methylol (meth) acrylamide, hydroxybutyl (meth) acrylate, hydroxyhexyl (meth) acrylate and the like. N element-containing monomers include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, (meth) acryloylmorpholine, (meth) acetonitrile, vinylpyrrolidone, N-cyclohexylmaleimide Itaconimide, N, N-dimethylaminoethyl (meth) acrylamide and the like. In addition, as the acrylic polymer, vinyl acetate, styrene, or the like can be used as long as the performance of the pressure-sensitive adhesive is not impaired. These monomers can be used alone or in combination of two or more.

アクリル系ポリマーの平均分子量は特に制限されないが、重量平均分子量(GPC)は、30万〜250万程度であるのが好ましい。前記アクリル系ポリマーの製造は、各種公知の方法により製造でき、たとえば、バルク重合法、溶液重合法、懸濁重合法等のラジカル重合法を適宜選択できる。ラジカル重合開始剤としては、アゾ系、過酸化物系の各種公知のものを使用でき、反応温度は通常50〜85℃程度、反応時間は1〜8時間程度とされる。また、前記製造法のなかでも溶液重合法が好ましく、アクリル系ポリマーの溶媒としては一般に酢酸エチル、トルエン等の極性溶剤が用いられる。溶液濃度は通常20〜80重量%程度とされる。   The average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight (GPC) is preferably about 300,000 to 2.5 million. The acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a bulk polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected. As the radical polymerization initiator, various known azo and peroxide compounds can be used, and the reaction temperature is usually about 50 to 85 ° C. and the reaction time is about 1 to 8 hours. Among the above production methods, the solution polymerization method is preferable, and a polar solvent such as ethyl acetate or toluene is generally used as the solvent for the acrylic polymer. The solution concentration is usually about 20 to 80% by weight.

ゴム系粘着剤のベースポリマーとしては、たとえば、天然ゴム、イソプレン系ゴム、スチレン−ブタジエン系ゴム、再生ゴム、ポリイソブチレン系ゴム、さらにはスチレン−イソプレン−スチレン系ゴム、スチレン−ブタジエン−スチレン系ゴム等があげられ、シリコーン系粘着剤のベースポリマーとしては、たとえば、ジメチルポリシロキサン、ジフェニルポリシロキサン等があげられ、これらにカルボキシル基等のアミノ基と反応性を有する官能基が導入されたものを好適に使用できる。   Examples of the base polymer of the rubber adhesive include natural rubber, isoprene rubber, styrene-butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-isoprene-styrene rubber, and styrene-butadiene-styrene rubber. Examples of the base polymer of the silicone-based pressure-sensitive adhesive include dimethylpolysiloxane, diphenylpolysiloxane, and the like, in which functional groups having reactivity with amino groups such as carboxyl groups are introduced. It can be used suitably.

また、前記粘着剤は、架橋剤を含有する粘着剤組成物とするのが好ましい。粘着剤に配合できる多官能性化合物としては、有機系架橋剤や多官能性金属キレートがあげられる。有機系架橋剤としては、エポキシ系架橋剤、イソシアネート系架橋剤、イミン系架橋剤などがあげられる。有機系架橋剤としては、イソシアネート系架橋剤が好ましい。多官能性金属キレートは、多価金属が有機化合物と共有結合または配位結合しているものである。多価金属原子としては、Al、Cr、Zr、Co、Cu、Fe、Ni、V、Zn、In、Ca、Mg、Mn、Y、Ce、Sr、Ba、Mo、La、Sn、Ti等があげられる。共有結合または配位結合する有機化合物中の原子としては酸素原子等があげられ、有機化合物としてはアルキルエステル、アルコール化合物、カルボン酸化合物、エーテル化合物、ケトン化合物等があげられる。   The pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent. Examples of the polyfunctional compound that can be added to the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates. Examples of the organic crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, and an imine crosslinking agent. As the organic crosslinking agent, an isocyanate crosslinking agent is preferable. A polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinately bonded to an organic compound. Examples of polyvalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, and the like. can give. Examples of the atom in the organic compound that is covalently bonded or coordinated include an oxygen atom, and examples of the organic compound include an alkyl ester, an alcohol compound, a carboxylic acid compound, an ether compound, and a ketone compound.

アクリル系ポリマー等のベースポリマーと架橋剤の配合割合は特に制限されないが、通常、ベースポリマー(固形分)100重量部に対して、架橋剤(固形分)0.01〜10重量部程度が好ましく、さらには0.1〜6重量部程度が好ましい。   The blending ratio of the base polymer such as an acrylic polymer and the crosslinking agent is not particularly limited, but is usually preferably about 0.01 to 10 parts by weight of the crosslinking agent (solid content) with respect to 100 parts by weight of the base polymer (solid content). Furthermore, about 0.1-6 weight part is preferable.

さらには、前記粘着剤には、必要に応じて、粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、金属粉、その他の無機粉末等からなる充填剤、顔料、着色剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を、また本発明の目的を逸脱しない範囲で各種の添加剤を適宜に使用することもできる。また微粒子を含有して光拡散性を示す粘着剤層などとしてもよい。   Furthermore, the pressure-sensitive adhesive may include a tackifier, a plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, a pigment, a colorant, a filler, an antioxidant, if necessary. Various additives may be used as appropriate, such as an agent, an ultraviolet absorber, a silane coupling agent, and the like without departing from the object of the present invention. Moreover, it is good also as an adhesive layer etc. which contain microparticles | fine-particles and show light diffusibility.

アンカー層を形成するシランカップリング剤は、塗膜を形成できるものを特に制限なく使用できる。シランカップリング剤としては、光学フィルムの濡れ性や接着性を向上できるアンカー層を形成できるものが好ましい。なお、シランカップリング剤の他に、同一分子内にチタンを含む加水分解性の親水性基と有機官能性基とを有するチタネート系カップリング剤、同一分子内にアルミニウムを含む加水分解性の親水性基と有機官能性基とを有するアルミネート系カップリング剤などの他のカップリング剤や、エポキシ系樹脂、イソシアネート系樹脂、ウレタン系樹脂等の有機反応性基を有する樹脂を光学フィルム表面に塗設するなどの方法でアンカー層を形成することができるが、これらに比べてシラン系カップリング剤は、耐湿性、耐候性、耐熱性、透明性等が好ましい。またシランカップリング剤は、工業的に取り扱いやすいという観点からも好ましい。   As the silane coupling agent for forming the anchor layer, those capable of forming a coating film can be used without particular limitation. As the silane coupling agent, those capable of forming an anchor layer capable of improving the wettability and adhesiveness of the optical film are preferable. In addition to the silane coupling agent, a titanate coupling agent having a hydrolyzable hydrophilic group containing titanium and an organic functional group in the same molecule, a hydrolyzable hydrophilic containing aluminum in the same molecule. Other coupling agents such as aluminate coupling agents having functional groups and organic functional groups, and resins having organic reactive groups such as epoxy resins, isocyanate resins and urethane resins on the optical film surface The anchor layer can be formed by a method such as coating, but the silane coupling agent is preferably moisture resistant, weather resistant, heat resistant, transparent, etc., compared to these. A silane coupling agent is also preferable from the viewpoint of easy handling industrially.

シラン系カップリング剤は、通常、例えば、同一分子内にアミノ基、ビニル基、エポキシ基、メルカプト基、クロル基等の反応性官能基と加水分解性のアルコキシシリル基とを同一分子内に有するものであり、加水分解によりシラン層を形成する。かかるシラン系カップリング剤のなかでも、アミノ基を有するものが好ましい。   The silane coupling agent usually has, for example, a reactive functional group such as an amino group, a vinyl group, an epoxy group, a mercapto group, or a chloro group and a hydrolyzable alkoxysilyl group in the same molecule. The silane layer is formed by hydrolysis. Among such silane coupling agents, those having an amino group are preferable.

前記シランカップリング剤の具体例としては、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン等のイソシアネート基含有アルコキシシラン類;γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−ウレイドプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシラン、N−ベンジル−γ−アミノプロピルトリエトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシランなどのアミノ基含有アルコキシシラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン等のメルカプト基含有アルコキシシラン類;γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有アルコキシシラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(力ルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシラン等のカルボキシ含有アルコキシシラン類;ビ二ルメトキシシラン、ビニルトリエトキシシラン、γ−アクロイルオキシプロピルメチルトリエトキシシラン等のビニル型不飽和基含有アルコキシシラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン基含有アルコキシシラン類;トリス(トリメトキシシリル)イソシアヌレート基含有アルコキシシラン類、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステル、およびこれらの誘導体が挙げられる。   Specific examples of the silane coupling agent include isocyanate group-containing alkoxysilanes such as γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-isocyanatopropylmethyldiethoxysilane, and γ-isocyanatopropylmethyldimethoxysilane. Γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl) amino Propylmethyldimethoxysilane, γ- (2-aminoethyl) aminopropyltriethoxysilane, γ- (2-aminoethyl) aminopropylmethyldiethoxysilane, γ-ureidopropyltrimethoxysila Amino group-containing alkoxysilanes such as N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltriethoxysilane, N-vinylbenzyl-γ-aminopropyltriethoxysilane; γ-mercaptopropyl Mercapto group-containing alkoxysilanes such as trimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane; γ-glycidoxypropyltrimethoxysilane, γ-glycol Sidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysila Epoxy group-containing alkoxysilanes such as β-carboxyethyltriethoxysilane, β-carboxyethylphenylbis (2-methoxyethoxy) silane, N-β- (stroxymethyl) aminoethyl-γ-aminopropyltrimethoxylane, etc. Carboxy-containing alkoxysilanes; vinyl-type unsaturated group-containing alkoxysilanes such as vinylmethoxysilane, vinyltriethoxysilane, γ-acryloyloxypropylmethyltriethoxysilane; halogens such as γ-chloropropyltrimethoxysilane Group-containing alkoxysilanes; tris (trimethoxysilyl) isocyanurate group-containing alkoxysilanes, amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silyls Examples include corn, silylated polyester, and derivatives thereof.

またアンカー層の形成にあたっては、反応促進剤等の添加剤をシランカップリング剤に加えて用いることができる。   In forming the anchor layer, an additive such as a reaction accelerator can be added to the silane coupling agent.

本発明の粘着型光学フィルムは、図1に示すように、光学フィルム1に、粘着剤層3が、シランカップリング剤により形成されたアンカー層2を介して設けられている。また、粘着剤層3には離型シート4を設けることができる。   In the pressure-sensitive adhesive optical film of the present invention, as shown in FIG. 1, a pressure-sensitive adhesive layer 3 is provided on an optical film 1 via an anchor layer 2 formed of a silane coupling agent. A release sheet 4 can be provided on the pressure-sensitive adhesive layer 3.

本発明の粘着型光学フィルムに使用される光学フィルムとしては、液晶表示装置等の画像表示装置の形成に用いられるものが使用され、その種類は特に制限されない。たとえば、光学フィルムとしては偏光板があげられる。偏光板は偏光子の片面または両面には透明保護フィルムを有するものが一般に用いられる。透明保護フィルムそのものも光学フィルムになる。   As the optical film used in the pressure-sensitive adhesive optical film of the present invention, those used for forming an image display device such as a liquid crystal display device are used, and the kind thereof is not particularly limited. For example, the optical film includes a polarizing plate. A polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used. The transparent protective film itself becomes an optical film.

偏光子は、特に限定されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらの中でも、ポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これらの偏光子の厚さは特に制限されないが、一般的に5〜80μm程度である。   The polarizer is not particularly limited, and various types can be used. Examples of polarizers include dichroic iodine and dichroic dyes on hydrophilic polymer films such as polyvinyl alcohol films, partially formalized polyvinyl alcohol films, and ethylene / vinyl acetate copolymer partially saponified films. Examples thereof include polyene-based oriented films such as those obtained by adsorbing substances and uniaxially stretched, polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, a polarizer composed of a polyvinyl alcohol film and a dichroic material such as iodine is preferable. The thickness of these polarizers is not particularly limited, but is generally about 5 to 80 μm.

ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3〜7倍に延伸することで作成することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやブロッキング防止剤を洗浄することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、また延伸してからヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液や水浴中でも延伸することができる。   A polarizer obtained by dyeing a polyvinyl alcohol film with iodine and uniaxially stretching it can be prepared by, for example, dying polyvinyl alcohol in an aqueous solution of iodine and stretching it 3 to 7 times the original length. If necessary, it can be immersed in an aqueous solution such as potassium iodide which may contain boric acid, zinc sulfate, zinc chloride or the like. Further, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. In addition to washing the polyvinyl alcohol film surface with dirt and anti-blocking agents by washing the polyvinyl alcohol film with water, it also has the effect of preventing unevenness such as uneven coloring by swelling the polyvinyl alcohol film. is there. Stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be dyed with iodine after stretching. The film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.

前記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料としては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロースやトリアセチルセルロース等のセルロース系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマーなどがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体の如きポリオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブレンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。   As a material for forming the transparent protective film provided on one side or both sides of the polarizer, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy and the like is preferable. For example, polyester polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose polymers such as diacetyl cellulose and triacetyl cellulose, acrylic polymers such as polymethyl methacrylate, styrene such as polystyrene and acrylonitrile / styrene copolymer (AS resin) -Based polymer, polycarbonate-based polymer and the like. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, vinyl chloride polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, sulfone polymers , Polyether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol polymer, vinylidene chloride polymer, vinyl butyral polymer, arylate polymer, polyoxymethylene polymer, epoxy polymer, or the above Polymer blends and the like are also examples of polymers that form the transparent protective film. The transparent protective film can also be formed as a cured layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, and silicone.

また、特開2001−343529号公報(WO01/37007)に記載のポリマーフィルム、たとえば、(A)側鎖に置換および/または非置換イミド基を有する熱可塑性樹脂と、(B)側鎖に置換および/または非置換フェニルならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。具体例としてはイソブチレンとN−メチルマレイミドからなる交互共重合体とアクリロニトリル・スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。フィルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。   Moreover, the polymer film described in JP-A-2001-343529 (WO01 / 37007), for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imide group in the side chain, and (B) a substitution in the side chain And / or a resin composition containing a thermoplastic resin having unsubstituted phenyl and a nitrile group. A specific example is a film of a resin composition containing an alternating copolymer composed of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a film made of a mixed extruded product of the resin composition or the like can be used.

保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄膜性などの点より1〜500μm程度である。特に、5〜200μmが好ましい。   Although the thickness of a protective film can be determined suitably, generally it is about 1-500 micrometers from points, such as workability | operativity, such as intensity | strength and handleability, and thin film property. In particular, 5 to 200 μm is preferable.

また、保護フィルムは、できるだけ色付きがないことが好ましい。従って、Rth=(nx−nz)・d(ただし、nxはフィルム平面内の遅相軸方向の屈折率、nzはフィルム厚方向の屈折率、dはフィルム厚みである)で表されるフィルム厚み方向の位相差が−90nm〜+75nmである保護フィルムが好ましく用いられる。かかる厚み方向の位相差値(Rth)が−90nm〜+75nmのものを使用することにより、保護フィルムに起因する偏光板の着色(光学的な着色)はほぼ解消することができる。厚み方向位相差(Rth)は、さらに好ましくは−80nm〜+60nm、特に−70nm〜+45nmが好ましい。   Moreover, it is preferable that a protective film has as little color as possible. Therefore, Rth = (nx−nz) · d (where nx is the refractive index in the slow axis direction in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness). A protective film having a direction retardation of −90 nm to +75 nm is preferably used. By using a film having a thickness direction retardation value (Rth) of −90 nm to +75 nm, coloring (optical coloring) of the polarizing plate caused by the protective film can be almost eliminated. The thickness direction retardation (Rth) is more preferably -80 nm to +60 nm, and particularly preferably -70 nm to +45 nm.

保護フィルムとしては、偏光特性や耐久性などの点より、トリアセチルセルロース等のセルロース系ポリマーが好ましい。特にトリアセチルセルロースフィルムが好適である。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料からなる保護フィルムを用いても良く、異なるポリマー材料等からなる保護フィルムを用いても良い。前記偏光子と保護フィルムとは通常、水系接着剤等を介して密着している。水系接着剤としては、イソシアネート系接着剤、ポリビニルアルコール系接着剤、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を例示できる。   As the protective film, a cellulose polymer such as triacetyl cellulose is preferable from the viewpoints of polarization characteristics and durability. A triacetyl cellulose film is particularly preferable. In addition, when providing a protective film on both sides of a polarizer, the protective film which consists of the same polymer material may be used by the front and back, and the protective film which consists of a different polymer material etc. may be used. The polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like. Examples of the water-based adhesive include an isocyanate-based adhesive, a polyvinyl alcohol-based adhesive, a gelatin-based adhesive, a vinyl-based latex, a water-based polyurethane, and a water-based polyester.

前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防止処理、スティッキング防止や、拡散ないしアンチグレアを目的とした処理を施したものであっても良い。   The surface of the transparent protective film to which the polarizer is not adhered may be subjected to a treatment for the purpose of hard coat layer, antireflection treatment, sticking prevention, diffusion or antiglare.

ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるものであり、従来に準じた反射防止膜などの形成により達成することができる。また、スティッキング防止処理は他の部材の隣接層との密着防止を目的に施される。   The hard coat treatment is applied for the purpose of preventing scratches on the surface of the polarizing plate. For example, a transparent protective film with a cured film excellent in hardness, sliding properties, etc. by an appropriate ultraviolet curable resin such as acrylic or silicone is used. It can be formed by a method of adding to the surface of the film. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. Further, the sticking prevention treatment is performed for the purpose of preventing adhesion between adjacent layers of other members.

また、アンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式やエンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が0.5〜50μmのシリカ、アルミナ、チタニア、ジルコニア、酸化スズ、酸化インジウム、酸化カドミウム、酸化アンチモン等からなる導電性の場合もある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子(ビーズを含む)などの透明微粒子が用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹凸構造を形成する透明樹脂100重量部に対して一般的に2〜50重量部程度であり、5〜25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視覚などを拡大するための拡散層(視覚拡大機能など)を兼ねるものであっても良い。   Anti-glare treatment is applied for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visibility of the light transmitted through the polarizing plate. For example, the surface is roughened by sandblasting or embossing. It can be formed by imparting a fine concavo-convex structure to the surface of the transparent protective film by an appropriate method such as a method or a compounding method of transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine concavo-convex structure include conductive materials made of silica, alumina, titania, zirconia, tin oxide, indium oxide, cadmium oxide, antimony oxide, and the like having an average particle diameter of 0.5 to 50 μm. In some cases, transparent fine particles such as inorganic fine particles and organic fine particles (including beads) made of a crosslinked or uncrosslinked polymer are used. When forming a surface fine uneven structure, the amount of fine particles used is generally about 2 to 50 parts by weight, preferably 5 to 25 parts by weight, based on 100 parts by weight of the transparent resin forming the surface fine uneven structure. The anti-glare layer may also serve as a diffusion layer (such as a visual enlargement function) for diffusing the light transmitted through the polarizing plate to enlarge vision.

なお、前記反射防止層、スティッキング防止層、拡散層やアンチグレア層等は、透明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィルムとは別体のものとして設けることもできる。   The antireflection layer, antisticking layer, diffusion layer, antiglare layer, and the like can be provided on the transparent protective film itself, or can be provided separately from the transparent protective film as an optical layer.

また光学フィルムとしては、例えば反射板や反透過板、位相差板(1/2や1/4等の波長板を含む)、視覚補償フィルム、輝度向上フィルムなどの液晶表示装置等の形成に用いられることのある光学層となるものがあげられる。これらは単独で光学フィルムとして用いることができる他、前記偏光板に、実用に際して積層して、1層または2層以上用いることができる。   In addition, as an optical film, for example, it is used for forming a liquid crystal display device such as a reflection plate, an anti-transmission plate, a retardation plate (including wavelength plates such as 1/2 and 1/4), a visual compensation film, and a brightness enhancement film. And an optical layer that may be formed. These can be used alone as an optical film, or can be laminated on the polarizing plate for practical use and used as one layer or two or more layers.

特に、偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板、偏光板に更に視覚補償フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。   In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a polarizing plate is further laminated with a reflecting plate or a semi-transmissive reflecting plate, an elliptical polarizing plate or a circular polarizing plate in which a retardation plate is further laminated on a polarizing plate, a polarizing plate A wide viewing angle polarizing plate in which a visual compensation film is further laminated on a plate, or a polarizing plate in which a luminance enhancement film is further laminated on a polarizing plate is preferable.

反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。   A reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects incident light from the viewing side (display side). Such a light source can be omitted, and the liquid crystal display device can be easily thinned. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is attached to one surface of the polarizing plate via a transparent protective layer or the like as necessary.

反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。また、前記透明保護フィルムに微粒子を含有させて表面微細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有の保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ムラをより抑制しうる利点なども有している。透明保護フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレーティング方式、スパッタリング方式やメッキ方式などの適宜な方式で金属を透明保護層の表面に直接付設する方法などにより行うことができる。   Specific examples of the reflective polarizing plate include those in which a reflective layer is formed by attaching a foil or a vapor deposition film made of a reflective metal such as aluminum on one side of a transparent protective film matted as necessary. In addition, the transparent protective film may contain fine particles to form a surface fine concavo-convex structure, and a reflective layer having a fine concavo-convex structure thereon. The reflective layer having the fine concavo-convex structure has an advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance and to suppress unevenness in brightness and darkness. Moreover, the protective film containing fine particles also has an advantage that incident light and its reflected light are diffused when passing through it and light and dark unevenness can be further suppressed. The reflective layer of the fine concavo-convex structure reflecting the surface fine concavo-convex structure of the transparent protective film is formed by, for example, applying metal to the surface of the transparent protective layer by an appropriate method such as a vacuum deposition method, an ion plating method, a sputtering method, or a plating method. It can be performed by a method of attaching directly to the screen.

反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が透明保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。   Instead of the method of directly applying the reflecting plate to the transparent protective film of the polarizing plate, the reflecting plate can be used as a reflecting sheet provided with a reflecting layer on an appropriate film according to the transparent film. Since the reflective layer is usually made of metal, the usage form in which the reflective surface is covered with a transparent protective film, a polarizing plate or the like is used to prevent the reflectance from being lowered due to oxidation, and thus to maintain the initial reflectance for a long time. In addition, it is more preferable to avoid a separate attachment of the protective layer.

なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵電源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵電源を用いて使用できるタイプの液晶表示装置などの形成に有用である。   The semi-transmissive polarizing plate can be obtained by using a semi-transmissive reflective layer such as a half mirror that reflects and transmits light with the reflective layer. A transflective polarizing plate is usually provided on the back side of a liquid crystal cell, and displays an image by reflecting incident light from the viewing side (display side) when a liquid crystal display device is used in a relatively bright atmosphere. In a relatively dark atmosphere, a liquid crystal display device of a type that displays an image using a built-in power source such as a backlight built in the back side of the transflective polarizing plate can be formed. In other words, the transflective polarizing plate can be used to form liquid crystal display devices that can save energy when using a light source such as a backlight in a bright atmosphere and can be used with a built-in power supply even in a relatively dark atmosphere. It is.

偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板(λ/4板とも言う)が用いられる。1/2波長板(λ/2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。   An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. A phase difference plate or the like is used when changing linearly polarized light to elliptically polarized light or circularly polarized light, changing elliptically polarized light or circularly polarized light to linearly polarized light, or changing the polarization direction of linearly polarized light. In particular, a so-called quarter-wave plate (also referred to as a λ / 4 plate) is used as a retardation plate that changes linearly polarized light into circularly polarized light or changes circularly polarized light into linearly polarized light. A half-wave plate (also referred to as a λ / 2 plate) is usually used when changing the polarization direction of linearly polarized light.

楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈折により生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。   The elliptically polarizing plate is effectively used for black and white display without the above color by compensating (preventing) the coloration (blue or yellow) generated by the birefringence of the liquid crystal layer of the super twist nematic (STN) type liquid crystal display device. It is done. Further, the one in which the three-dimensional refractive index is controlled is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function.

位相差板としては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差板の厚さも特に制限されないが、20〜150μm程度が一般的である。   Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, a liquid crystal polymer alignment film, and a liquid crystal polymer alignment layer supported by a film. The thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 μm.

高分子素材としては、たとえば、ポリビニルアルコール、ポリビニルブチラール、ポリメチルビニルエーテル、ポリヒドロキシエチルアクリレート、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、メチルセルロース、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリフェニレンスルファイド、ポリフェニレンオキサイド、ポリアリルスルホン、ポリアミド、ポリイミド、ポリオレフィン、ポリ塩化ビニル、セルロース系重合体、ノルボルネン系樹脂、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物などがあげられる。これらの高分子素材は延伸等により配向物(延伸フィルム)となる。   Examples of the polymer material include polyvinyl alcohol, polyvinyl butyral, polymethyl vinyl ether, polyhydroxyethyl acrylate, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, polycarbonate, polyarylate, polysulfone, polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, Polyphenylene sulfide, polyphenylene oxide, polyallylsulfone, polyamide, polyimide, polyolefin, polyvinyl chloride, cellulose polymer, norbornene resin, or binary, ternary copolymers, graft copolymers, Examples include blends. These polymer materials become an oriented product (stretched film) by stretching or the like.

液晶ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団(メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどをあげられる。主鎖型の液晶ポリマーの具体例としては、屈曲性を付与するスペーサー部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性ポリマー、ディスコティックポリマーやコレステリックポリマーなどがあげられる。側鎖型の液晶ポリマーの具体例としては、ポリシロキサン、ポリアクリレート、ポリメタクリレート又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスペーサー部を介してネマチック配向付与性のパラ置換環状化合物単位からなるメソゲン部を有するものなどがあげられる。これらの液晶ポリマーは、たとえば、ガラス板上に形成したポリイミドやポリビニルアルコール等の薄膜の表面をラビング処理したもの、酸化ケイ素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して熱処理することにより行われる。   Examples of the liquid crystal polymer include various main chain types and side chain types in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain of the polymer. . Specific examples of the main chain type liquid crystal polymer include a nematic alignment polyester liquid crystal polymer, a discotic polymer, and a cholesteric polymer having a structure in which a mesogen group is bonded at a spacer portion that imparts flexibility. Specific examples of the side chain type liquid crystal polymer include polysiloxane, polyacrylate, polymethacrylate, or polymalonate as a main chain skeleton, and a nematic alignment-providing para-substitution through a spacer portion composed of a conjugated atomic group as a side chain. Examples thereof include those having a mesogenic part composed of a cyclic compound unit. These liquid crystal polymers are prepared by, for example, applying a solution of a liquid crystalline polymer on an alignment treatment surface such as a surface of a thin film such as polyimide or polyvinyl alcohol formed on a glass plate, or an oblique deposition of silicon oxide. This is done by developing and heat treatment.

位相差板は、例えば各種波長板や液晶層の複屈折による着色や視覚等の補償を目的としたものなどの使用目的に応じた適宜な位相差を有するものであって良く、2種以上の位相差板を積層して位相差等の光学特性を制御したものなどであっても良い。   The retardation plate may have an appropriate retardation according to the purpose of use, such as for the purpose of compensating for coloring, vision, etc. due to birefringence of various wave plates and liquid crystal layers, and may be two or more types. It may be one in which retardation plates are stacked and optical characteristics such as retardation are controlled.

また、上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。   The elliptical polarizing plate and the reflective elliptical polarizing plate are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination. Such an elliptically polarizing plate or the like can also be formed by sequentially laminating them sequentially in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflective) polarizing plate and a retardation plate. An optical film such as a polarizing plate has an advantage that it can improve the production efficiency of a liquid crystal display device and the like because of excellent quality stability and lamination workability.

視覚補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルムである。このような視覚補償位相差板としては、例えば位相差板、液晶ポリマー等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなどからなる。通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィルムが用いられるのに対し、視覚補償フィルムとして用いられる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延伸され厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は/及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどがあげられる。位相差板の素材原料ポリマーは、先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜なものを用いうる。   The visual compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed from a slightly oblique direction rather than perpendicular to the screen. Examples of such a visual compensation phase difference plate include a phase difference plate, an alignment film such as a liquid crystal polymer, and a film in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate. A normal retardation plate uses a birefringent polymer film that is uniaxially stretched in the plane direction, whereas a retardation plate used as a visual compensation film is biaxially stretched in the plane direction. Birefringent polymer film, biaxially stretched film such as polymer with birefringence with a controlled refractive index in the thickness direction that is uniaxially stretched in the plane direction and stretched in the thickness direction, etc. Used. Examples of the inclined alignment film include a film obtained by bonding a heat shrink film to a polymer film and stretching or / and shrinking the polymer film under the action of the contraction force by heating, and a film obtained by obliquely aligning a liquid crystal polymer. can give. The raw material polymer for the phase difference plate is the same as the polymer described in the previous phase difference plate, preventing coloration due to a change in the viewing angle based on the phase difference by the liquid crystal cell and expanding the viewing angle for good visual recognition. An appropriate one for the purpose can be used.

また、良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコチック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。   In addition, from the viewpoint of achieving a wide viewing angle with good visibility, an optical compensation position in which an alignment layer of a liquid crystal polymer, particularly an optically anisotropic layer composed of a tilted alignment layer of a discotic liquid crystal polymer, is supported by a triacetyl cellulose film. A phase difference plate can be preferably used.

偏光板と輝度向上フィルムを貼り合せた偏光板は、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわち、用いた偏光子の特性よっても異なるが、およそ50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射させずに輝度向上フィルムで一反反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。   A polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually provided on the back side of a liquid crystal cell. The brightness enhancement film reflects a linearly polarized light with a predetermined polarization axis or a circularly polarized light in a predetermined direction when natural light is incident due to a backlight such as a liquid crystal display device or reflection from the back side, and transmits other light. In addition, a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate allows light from a light source such as a backlight to enter to obtain transmitted light in a predetermined polarization state, and reflects light without transmitting the light other than the predetermined polarization state. The The light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer or the like provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state. Luminance can be improved by increasing the amount of light transmitted through the enhancement film and increasing the amount of light that can be used for liquid crystal display image display or the like by supplying polarized light that is difficult to be absorbed by the polarizer. That is, when light is incident through the polarizer from the back side of the liquid crystal cell without using a brightness enhancement film, light having a polarization direction that does not coincide with the polarization axis of the polarizer is almost polarized. It is absorbed by the polarizer and does not pass through the polarizer. That is, although depending on the characteristics of the polarizer used, approximately 50% of the light is absorbed by the polarizer, and accordingly, the amount of light that can be used for liquid crystal image display or the like is reduced and the image becomes dark. The brightness enhancement film reflects light that has a polarization direction that is absorbed by the polarizer without being incident on the polarizer, and is reflected by the brightness enhancement film, and then inverted through a reflective layer or the like provided behind the brightness enhancement film. The brightness enhancement film transmits only the polarized light in which the polarization direction of the light reflected and inverted between the two is allowed to pass through the polarizer. Since the light is supplied to the polarizer, light such as a backlight can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.

輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。   A diffusion plate may be provided between the brightness enhancement film and the reflective layer. The polarized light reflected by the brightness enhancement film is directed to the reflective layer or the like, but the installed diffuser plate uniformly diffuses the light passing therethrough and simultaneously cancels the polarized state and becomes a non-polarized state. That is, the light in the natural light state is directed toward the reflection layer or the like, reflected through the reflection layer or the like, and again passes through the diffusion plate and reenters the brightness enhancement film. In this way, by providing a diffuser plate that returns polarized light to the original natural light between the brightness enhancement film and the reflective layer, the brightness of the display screen is maintained, and at the same time, the brightness of the display screen is reduced and uniform. Can provide a bright screen. By providing such a diffuser plate, it is considered that the first incident light has a moderate increase in the number of repetitions of reflection, and in combination with the diffusion function of the diffuser plate, a uniform bright display screen can be provided.

前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。   The brightness enhancement film has a characteristic of transmitting linearly polarized light having a predetermined polarization axis and reflecting other light, such as a multilayer thin film of dielectric material or a multilayer laminate of thin film films having different refractive index anisotropies. Such as an alignment film of a cholesteric liquid crystal polymer or an alignment liquid crystal layer supported on a film substrate, which reflects either left-handed or right-handed circularly polarized light and transmits other light. Appropriate things, such as a thing, can be used.

従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を、位相差板を介し直線偏光化して偏光板に入射させることが好ましい。なお、その位相差板として1/4波長板を用いることにより、円偏光を直線偏光に変換することができる。   Therefore, in the brightness enhancement film of the type that transmits linearly polarized light having the predetermined polarization axis as described above, the transmitted light is incident on the polarizing plate with the polarization axis aligned as it is, thereby efficiently transmitting while suppressing absorption loss due to the polarizing plate. Can be made. On the other hand, in a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer, it can be incident on a polarizer as it is, but from the point of suppressing absorption loss, the circularly polarized light is converted into linearly polarized light through a retardation plate. It is preferably incident on the polarizing plate. Note that circularly polarized light can be converted to linearly polarized light by using a quarter wave plate as the retardation plate.

可視光域等の広い波長で1/4波長板として機能する位相差板は、例えば波長550nmの淡色光に対して1/4波長板として機能する位相差板と他の位相差特性を示す位相差層、例えば1/2波長板として機能する位相差層とを重畳する方式などにより得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層または2層以上の位相差層からなるものであってよい。   A retardation plate that functions as a quarter-wave plate at a wide wavelength in the visible light region or the like exhibits, for example, a retardation plate that functions as a quarter-wave plate for light-colored light having a wavelength of 550 nm and other retardation characteristics. It can be obtained by a method in which a phase difference layer, for example, a phase difference layer that functions as a half-wave plate is superimposed. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.

なお、コレステリック液晶層についても、反射波長が相違するものの組合せにして2層又は3層以上重畳した配置構造とすることにより、可視光域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。   In addition, a cholesteric liquid crystal layer having a reflection structure that reflects circularly polarized light in a wide wavelength range such as a visible light range can be obtained by combining two or more layers with different reflection wavelengths to form an overlapping structure. Based on this, transmitted circularly polarized light in a wide wavelength range can be obtained.

また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていても良い。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板などであっても良い。   Further, the polarizing plate may be formed by laminating a polarizing plate and two or more optical layers as in the above-described polarization separation type polarizing plate. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-described reflective polarizing plate or semi-transmissive polarizing plate and a retardation plate are combined may be used.

偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で順次別個に積層する方式にても形成することができるが、予め積層して光学フィルムとしたものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前記の偏光板と他の光学層の接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。   An optical film in which the optical layer is laminated on a polarizing plate can be formed by a method of sequentially laminating separately in the manufacturing process of a liquid crystal display device or the like. There is an advantage that the manufacturing process of a liquid crystal display device or the like can be improved because of excellent stability and assembly work. For the lamination, an appropriate adhesive means such as an adhesive layer can be used. When adhering the polarizing plate and the other optical layer, their optical axes can be set at an appropriate arrangement angle in accordance with the target phase difference characteristic.

前述した光学フィルム1上へ、前記シランカップリング剤を用いてアンカー層2を塗設する方法は特に制限されない。例えば、シランカップリング剤を無希釈で、または水、有機溶媒及びこれらの混合溶媒に溶解もしくは分散させた溶液もしくは分散液を、光学フィルム1上に塗布後、室温乾燥あるいは加熱処理してアンカー層2を形成する方法が工業的に作りやすく好ましい。   A method for coating the anchor layer 2 on the optical film 1 using the silane coupling agent is not particularly limited. For example, the silane coupling agent is undiluted, or a solution or dispersion in which water, an organic solvent, and a mixed solvent thereof are dissolved or dispersed is applied onto the optical film 1 and then dried at room temperature or heat-treated to fix the anchor layer. The method of forming 2 is preferable because it is easy to make industrially.

シランカップリング剤の溶液又は分散液の濃度としては特に制限はないが、通常0.1重量%以上とすることが安定的にアンカー層2を形成できるという観点から好ましい。より好ましくは1〜10重量%である。前記有機溶媒としては、シランカップリング剤を均一に溶解または分散させることができ、適度な揮発性を有するものであることが望ましい。前記有機溶媒の具体例としては、例えば、メタノール、エタノール、プロピルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類等があげられる。これら有機溶媒は単独でまたは混合して用いることができる。   Although there is no restriction | limiting in particular as a density | concentration of the solution or dispersion liquid of a silane coupling agent, Usually, it is preferable from a viewpoint that the anchor layer 2 can be formed stably 0.1 weight% or more. More preferably, it is 1 to 10% by weight. As the organic solvent, it is desirable that the silane coupling agent can be uniformly dissolved or dispersed and has an appropriate volatility. Specific examples of the organic solvent include alcohols such as methanol, ethanol and propyl alcohol, ketones such as acetone and methyl ethyl ketone, and aromatic hydrocarbons such as benzene, toluene and xylene. These organic solvents can be used alone or in combination.

前記シランカップリング剤またはその溶液もしくは分散液を光学フィルム1上に塗布する方法としては、液状物質を固体表面に塗布するために通常使用される方法、例えばグラビアコート法、ディップコート法、スプレーコート法、ダイコート法、流延法などの塗布方法を採用できる。通常、前記カップリング剤またはその溶液もしくは分散液を塗布後、室温乾燥または加熱処理してアンカー層2を形成する。加熱処理としては、20℃以上、光学フィルム1のTg以下の温度範囲で、1分間以上10時間以内の処理が通常である。   As a method of applying the silane coupling agent or a solution or dispersion thereof on the optical film 1, a method usually used for applying a liquid substance to a solid surface, for example, a gravure coating method, a dip coating method, a spray coating, etc. A coating method such as a method, a die coating method or a casting method can be employed. Usually, after applying the coupling agent or a solution or dispersion thereof, the anchor layer 2 is formed by drying at room temperature or heat treatment. As the heat treatment, treatment in a temperature range of 20 ° C. or more and Tg or less of the optical film 1 is usually performed for 1 minute or more and 10 hours or less.

アンカー層2の形成にあたり、光学フィルム1には活性化処理を施すことができる。活性化処理は各種方法を採用でき、たとえばケン化処理、コロナ処理、低圧UV処理、プラズマ処理等を採用できる。活性化処理は、光学フィルム1が、特にトリアセチルセルロース、ノルボルネン系樹脂、ポリカーボネート、ポリオレフィン系樹脂等の場合に有効であり、各フィルムの水との接触角を80度以下、好ましくは75度以下とすると、アンカー剤を塗布する際のハジキを抑えることができる。また光学フィルムに密着性よくアンカー層を形成できる。   In forming the anchor layer 2, the optical film 1 can be activated. Various methods can be employed for the activation treatment, for example, saponification treatment, corona treatment, low-pressure UV treatment, plasma treatment, or the like. The activation treatment is effective particularly when the optical film 1 is triacetyl cellulose, norbornene resin, polycarbonate, polyolefin resin, or the like, and the contact angle of each film with water is 80 degrees or less, preferably 75 degrees or less. Then, repelling when applying the anchor agent can be suppressed. Further, the anchor layer can be formed on the optical film with good adhesion.

アンカー層2(乾燥膜厚)の厚さは、特に限定されないが、濡れ性や密着性などの改善効果が得られる範囲であればできるだけ薄くすることが好ましく、20μm以下であることが望ましい。前記範囲を超える場合、厚さが厚くなる点で実用上の不利を招きやすい傾向となる。アンカー層の厚みは、500nm以下、さらには300nm以下、さらには200nm以下が好ましい。剥離帯電効果はアンカー層の厚みが厚い方が好ましいが、200nmを超えてもそれ以下と同等である。かかる点より、5〜500nm、さらには10〜300nm、さらには10〜200nmとするのが好ましい。   The thickness of the anchor layer 2 (dry film thickness) is not particularly limited, but is preferably as thin as possible as long as an improvement effect such as wettability and adhesion is obtained, and is preferably 20 μm or less. When the above range is exceeded, there is a tendency to cause a practical disadvantage in that the thickness is increased. The thickness of the anchor layer is preferably 500 nm or less, more preferably 300 nm or less, and further preferably 200 nm or less. The peeling charging effect is preferably greater in the thickness of the anchor layer, but even if it exceeds 200 nm, it is equivalent to less than that. From this point, it is preferable to set to 5 to 500 nm, further 10 to 300 nm, and further 10 to 200 nm.

粘着剤層3の形成は、前記アンカー層2上に積層することにより行う。形成方法としては、特に制限されず、アンカー層2に粘着剤(溶液)を塗布し乾燥する方法、粘着剤層3を設けた離型シート4により転写する方法等があげられる。塗布法は、リバースコーティング、グラビアコーティング等のロールコーティング法、スピンコーティング法、スクリーンコーティング法、ファウンテンコーティング法、ディッピング法、スプレー法などを採用できる。粘着剤層3(乾燥膜厚)は厚さ、特に限定されないが、10〜40μm程度とするのが好ましい。   The pressure-sensitive adhesive layer 3 is formed by laminating on the anchor layer 2. The forming method is not particularly limited, and examples thereof include a method of applying an adhesive (solution) to the anchor layer 2 and drying, a method of transferring using a release sheet 4 provided with the adhesive layer 3, and the like. As a coating method, a roll coating method such as reverse coating or gravure coating, a spin coating method, a screen coating method, a fountain coating method, a dipping method, or a spray method can be adopted. The pressure-sensitive adhesive layer 3 (dry film thickness) is not particularly limited in thickness, but is preferably about 10 to 40 μm.

離型シート4の構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体等があげられる。離型シート4の表面には、粘着剤層3からの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処理、フッ素処理などの剥離処理が施されていても良い。   As the constituent material of the release sheet 4, suitable thin leaves such as paper, polyethylene, polypropylene, synthetic resin films such as polyethylene terephthalate, rubber sheets, paper, cloth, non-woven fabrics, nets, foam sheets, metal foils, and laminates thereof. Such as body. The surface of the release sheet 4 may be subjected to a release treatment such as a silicone treatment, a long-chain alkyl treatment, or a fluorine treatment as necessary in order to enhance the peelability from the pressure-sensitive adhesive layer 3.

離型シートの構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体等があげられる。離型シートの表面には、粘着剤層3からの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アルキル処理、フッ素処理などの低接着性の剥離処理が施されていても良い。   As a constituent material of the release sheet, paper, polyethylene, polypropylene, polyethylene terephthalate and other synthetic resin films, rubber sheets, paper, cloth, non-woven fabric, nets, foam sheets and metal foils, and appropriate thin leaf bodies such as laminates thereof Etc. In order to improve the peelability from the pressure-sensitive adhesive layer 3, the surface of the release sheet may be subjected to a low-adhesive release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary.

なお、本発明の粘着型光学フィルムの光学フィルムや粘着剤層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってもよい。   In addition, each layer such as an optical film or an adhesive layer of the pressure-sensitive adhesive optical film of the present invention includes, for example, an ultraviolet ray such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, or a nickel complex compound. What gave the ultraviolet absorptivity by systems, such as a system processed with an absorber, may be used.

本発明の粘着型光学フィルムは液晶表示装置等の各種画像表示装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと粘着型光学フィルム、及び必要に応じての照明システム等の構成部品を適宜に組み立てて駆動回路を組み込むことなどにより形成されるが、本発明においては本発明による粘着型光学フィルムを用いる点を除いて特に限定は無く、従来に準じうる。液晶セルについても、例えばTN型やSTN型、π型などの任意なタイプなどの任意なタイプのものを用いうる。   The pressure-sensitive adhesive optical film of the present invention can be preferably used for forming various image display devices such as liquid crystal display devices. The liquid crystal display device can be formed according to the conventional method. That is, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an adhesive optical film, and an illumination system as necessary, and incorporating a drive circuit. There is no particular limitation except that an adhesive optical film is used. As the liquid crystal cell, an arbitrary type such as an arbitrary type such as a TN type, an STN type, or a π type can be used.

液晶セルの片側又は両側に粘着型光学フィルムを配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による光学フィルムは液晶セルの片側又は両側に設置することができる。両側に光学フィルムを設ける場合、それらは同じものであっても良いし、異なるものであっても良い。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。   An appropriate liquid crystal display device such as a liquid crystal display device in which an adhesive optical film is disposed on one side or both sides of a liquid crystal cell, or a backlight or a reflector used in an illumination system can be formed. In that case, the optical film according to the present invention can be installed on one side or both sides of the liquid crystal cell. When optical films are provided on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer or a suitable part such as a diffusing plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusing plate, a backlight, etc. Two or more layers can be arranged.

次いで有機エレクトロルミネセンス装置(有機EL表示装置)について説明する。本発明の光学フィルム(偏光板等)は、有機EL表示装置においても適用できる。一般に、有機EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネセンス発光体)を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組合せをもった構成が知られている。   Next, an organic electroluminescence device (organic EL display device) will be described. The optical film (polarizing plate or the like) of the present invention can also be applied to an organic EL display device. Generally, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative and the like and a light emitting layer made of a fluorescent organic solid such as anthracene, Alternatively, a structure having various combinations such as a stacked body of such a light emitting layer and an electron injection layer made of a perylene derivative, or a stacked body of these hole injection layer, light emitting layer, and electron injection layer is known. It has been.

有機EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。   In organic EL display devices, holes and electrons are injected into the organic light-emitting layer by applying a voltage to the transparent electrode and the metal electrode, and the energy generated by recombination of these holes and electrons excites the phosphor material. Then, light is emitted on the principle that the excited fluorescent material emits light when returning to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be predicted from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.

有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg−Ag、Al−Liなどの金属電極を用いている。   In an organic EL display device, in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and a transparent electrode usually formed of a transparent conductor such as indium tin oxide (ITO) is used as an anode. It is used as. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material having a small work function for the cathode, and usually metal electrodes such as Mg—Ag and Al—Li are used.

このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える。   In the organic EL display device having such a configuration, the organic light emitting layer is formed of a very thin film having a thickness of about 10 nm. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident from the surface of the transparent substrate at the time of non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode is again emitted to the surface side of the transparent substrate. The display surface of the organic EL display device looks like a mirror surface.

電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を含む有機EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。   In an organic EL display device comprising an organic electroluminescent light emitting device comprising a transparent electrode on the surface side of an organic light emitting layer that emits light upon application of a voltage and a metal electrode on the back side of the organic light emitting layer, the surface of the transparent electrode While providing a polarizing plate on the side, a retardation plate can be provided between the transparent electrode and the polarizing plate.

位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を1/4波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角をπ/4に調整すれば、金属電極の鏡面を完全に遮蔽することができる。   Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action. In particular, the mirror surface of the metal electrode can be completely shielded by configuring the retardation plate with a quarter-wave plate and adjusting the angle formed by the polarization direction of the polarizing plate and the retardation plate to π / 4. .

すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とくに位相差板が1/4波長板でしかも偏光板と位相差板との偏光方向のなす角がπ/4のときには円偏光となる。   That is, only the linearly polarized light component of the external light incident on the organic EL display device is transmitted by the polarizing plate. This linearly polarized light becomes generally elliptically polarized light by the phase difference plate, but becomes circularly polarized light particularly when the phase difference plate is a quarter wavelength plate and the angle formed by the polarization direction of the polarizing plate and the phase difference plate is π / 4. .

この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。   This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and becomes linearly polarized light again on the retardation plate. And since this linearly polarized light is orthogonal to the polarization direction of a polarizing plate, it cannot permeate | transmit a polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.

以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、各例中の部および%はいずれも重量基準である。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, all the parts and% in each example are based on weight.

実施例1
(光学フィルム)
ノルボルネン系樹脂(日本ゼオン(株)製,ゼオノア)を用いた、偏光子の透明保護フィルム(厚み40μm)に放電量133w・min/m2にてコロナ処理を行った。
Example 1
(Optical film)
A transparent protective film (thickness 40 μm) of a polarizer using a norbornene resin (manufactured by Nippon Zeon Co., Ltd., ZEONOR) was subjected to corona treatment at a discharge amount of 133 w · min / m 2 .

(アンカー層の形成)
アミノ基を有するシランカップリング剤(日本ユニカー(株)製,APZ−6601,カップリング剤濃度5%)100部に対しイソプロピルアルコール66.7部を加えることにより溶液を調製した。釈した溶液を調製した。この溶液をワイヤーバー#5を用いて前記光学フィルムのコロナ処理面上に塗布した後、揮発分を蒸発させた。蒸発後のシランカップリング剤により形成されたアンカー層の厚みは100nmであった。
(Formation of anchor layer)
A solution was prepared by adding 66.7 parts of isopropyl alcohol to 100 parts of a silane coupling agent having an amino group (manufactured by Nippon Unicar Co., Ltd., APZ-6601, coupling agent concentration 5%). A diluted solution was prepared. This solution was applied onto the corona-treated surface of the optical film using a wire bar # 5, and then volatile components were evaporated. The thickness of the anchor layer formed by the silane coupling agent after evaporation was 100 nm.

(粘着剤層の形成)
ベースポリマーとして、ブチルアクリレート:アクリル酸:2−ヒドロキシエチルアクリレート=100:5:0.1(重量比)の共重合体からなる重量平均分子量200万のアクリル系ポリマーを含有する溶液(固形分30%)を用いた。上記アクリル系ポリマー溶液にイソシアネート系多官能性化合物である日本ポリウレタン社製コロネートLをポリマー固形分100部に対して4部、および添加剤(信越シリコーン製,KBM403)を0.5部、粘度調整のための溶剤(酢酸エチル)を加え、粘着剤溶液(固形分12%)を調製した。当該粘着剤溶液を、乾燥後の厚みが25μmとなるように、離型フィルム(ポリエチレンテレフタレート基材:ダイヤホイルMRF38,三菱化学ポリエステル製)上に塗布した後、熱風循環式オーブンで乾燥して、粘着剤層を形成した。
(Formation of adhesive layer)
As a base polymer, a solution (solid content 30) containing an acrylic polymer having a weight average molecular weight of 2 million consisting of a copolymer of butyl acrylate: acrylic acid: 2-hydroxyethyl acrylate = 100: 5: 0.1 (weight ratio) %) Was used. Viscosity adjustment of 4 parts of Coronate L manufactured by Nippon Polyurethane Co., Ltd., an isocyanate-based polyfunctional compound, and 100 parts of polymer solids and 0.5 part of additive (manufactured by Shin-Etsu Silicone, KBM403) in the acrylic polymer solution. A solvent (ethyl acetate) was added to prepare an adhesive solution (solid content 12%). The adhesive solution was applied on a release film (polyethylene terephthalate substrate: Diafoil MRF38, manufactured by Mitsubishi Chemical Polyester Co., Ltd.) so that the thickness after drying was 25 μm, and then dried in a hot air circulation oven. An adhesive layer was formed.

(粘着型光学フィルムの作製)
上記光学フィルムの表面に形成したアンカー層に、粘着剤層を形成した離型フィルムを貼り合せ、粘着型光学フィルムを作製した。
(Preparation of adhesive optical film)
A release film in which an adhesive layer was formed was bonded to the anchor layer formed on the surface of the optical film to produce an adhesive optical film.

実施例2
(光学フィルムの作製)
トリアセチルセルロースを用いた、偏光子の透明保護フィルム(厚み80μm)にケン化処理を行った。
Example 2
(Production of optical film)
A saponification treatment was performed on a transparent protective film (thickness: 80 μm) of a polarizer using triacetylcellulose.

(粘着型光学フィルムの作製)
実施例1において、光学フィルムとして上記光学フィルムを用いたこと以外は、実施例1と同様にしてアンカー層を形成し、また実施例1と同様の粘着剤層を形成した離型フィルムを貼り合せ、粘着型光学フィルムを作製した。
(Preparation of adhesive optical film)
In Example 1, except that the above optical film was used as an optical film, an anchor layer was formed in the same manner as in Example 1, and a release film in which the same adhesive layer as in Example 1 was formed was bonded. An adhesive optical film was prepared.

比較例1
実施例1において、アンカー層の形成を行わなかったこと以外は実施例1と同様にして、粘着型光学フィルムを作製した。
Comparative Example 1
In Example 1, an adhesive optical film was produced in the same manner as in Example 1 except that the anchor layer was not formed.

比較例2
実施例2において、アンカー層の形成を行わなかったこと以外は実施例2と同様にして、粘着型光学フィルムを作製した。
Comparative Example 2
In Example 2, an adhesive optical film was produced in the same manner as in Example 2 except that the anchor layer was not formed.

実施例および比較例で得られた光学フィルムについて下記評価を行った。結果を表1に示す。   The following evaluation was performed about the optical film obtained by the Example and the comparative example. The results are shown in Table 1.

(粘着剤層と光学フィルム基材との密着性)
上記粘着型光学フィルムを25mm×150mmの大きさにカットし、これの粘着剤層面と、50μm厚のポリエチレンテレフタレートフィルム表面にインジウム−酸化錫を蒸着させた蒸着フィルムの蒸着面とが接するよう貼り合わせた後、20分間以上、23℃/60%RHの環境下で放置した。その後、ポリエチレンテレフタレートフィルムの端部を手で剥離し、粘着剤がポリエチレンテレフタレートフィルム側に付着しているのを確認した上で、島津製作所製の引っ張り試験機AG−1を用いて180°方向に300mm/分の速度で剥離した際の応力(N/25mm)を測定(25℃)した。
(Adhesion between adhesive layer and optical film substrate)
The above adhesive optical film is cut to a size of 25 mm × 150 mm, and the adhesive layer surface is bonded to the vapor deposition surface of the vapor deposition film in which indium-tin oxide is vapor-deposited on the surface of the 50 μm thick polyethylene terephthalate film. After that, it was left in an environment of 23 ° C./60% RH for 20 minutes or more. Then, after peeling off the edge part of a polyethylene terephthalate film by hand and confirming that the adhesive has adhered to the polyethylene terephthalate film side, 180 degree direction was used using the Shimadzu Corporation tensile tester AG-1. The stress (N / 25 mm) when peeled at a speed of 300 mm / min was measured (25 ° C.).

(粘着剤残り)
上記粘着型光学フィルムを15cm×15cmの大きさにカットし、これの粘着剤層面を、液晶パネル(ソニー製,VEGA KLV−17HR2,ガラス表面)に貼り付け、23℃/60%RHの環境下に1時間放置した。その後、粘着型光学フィルムを液晶パネルから手により剥がすリワークを行い、液晶パネル表面の粘着剤残りの状態を目視評価した。粘着剤が全く残っていない場合を「なし」、粘着剤が少しでも残っている場合を「あり」とした。
(Adhesive remaining)
The pressure-sensitive adhesive optical film is cut to a size of 15 cm × 15 cm, and the pressure-sensitive adhesive layer surface thereof is attached to a liquid crystal panel (Sony, VEGA KLV-17HR2, glass surface), and the environment is 23 ° C./60% RH. Left for 1 hour. Then, rework which peels an adhesive optical film from a liquid crystal panel by hand was performed, and the state of the adhesive remaining on the liquid crystal panel surface was visually evaluated. The case where no pressure-sensitive adhesive remained was defined as “none”, and the case where a pressure-sensitive adhesive remained even a little was defined as “present”.

Figure 2006201337
Figure 2006201337

本発明の粘着型光学フィルムの断面図である。It is sectional drawing of the adhesion type optical film of this invention.

符号の説明Explanation of symbols

1 光学フィルム
2 アンカー層
3 粘着剤層
4 離型シート
DESCRIPTION OF SYMBOLS 1 Optical film 2 Anchor layer 3 Adhesive layer 4 Release sheet

Claims (7)

光学フィルムの少なくとも一方の面に粘着剤層が積層されている粘着型光学フィルムにおいて、
前記粘着剤層は、シランカップリング剤により形成されたアンカー層を介して積層されていることを特徴とする粘着型光学フィルム。
In an adhesive optical film in which an adhesive layer is laminated on at least one surface of the optical film,
The pressure-sensitive adhesive optical film is characterized in that the pressure-sensitive adhesive layer is laminated via an anchor layer formed of a silane coupling agent.
シランカップリング剤が、アミノ基含有シランカップリング剤であることを特徴とする請求項1記載の粘着型光学フィルム。   The pressure-sensitive adhesive optical film according to claim 1, wherein the silane coupling agent is an amino group-containing silane coupling agent. 前記粘着剤層は、アクリル系粘着剤により形成されていることを特徴とする請求項1または2記載の粘着型光学フィルム。   The pressure-sensitive adhesive optical film according to claim 1 or 2, wherein the pressure-sensitive adhesive layer is formed of an acrylic pressure-sensitive adhesive. 前記粘着剤層を形成する粘着剤のベースポリマーがアミノ基と反応する官能基を含有していることを特徴とする請求項2または3記載の粘着型光学フィルム。   The pressure-sensitive adhesive optical film according to claim 2 or 3, wherein the base polymer of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer contains a functional group that reacts with an amino group. 前記粘着剤層を形成する粘着剤のベースポリマーが含有する、アミノ基と反応する官能基が、カルボキシル基であることを特徴とする請求項4記載の粘着型光学フィルム。   The pressure-sensitive adhesive optical film according to claim 4, wherein the functional group that reacts with an amino group contained in the base polymer of the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is a carboxyl group. アンカー層を積層する光学フィルム表面の素材が、トリアセチルセルロース、ノルボルネン系樹脂またはポリカーボネートであることを特徴とする請求項1〜5のいずれかに記載の粘着型光学フィルム。   The pressure-sensitive adhesive optical film according to any one of claims 1 to 5, wherein the material on the surface of the optical film on which the anchor layer is laminated is triacetyl cellulose, norbornene resin or polycarbonate. 請求項1〜6のいずれかに記載の粘着型光学フィルムを少なくとも1枚用いた画像表示装置。
An image display device using at least one adhesive optical film according to claim 1.
JP2005011295A 2005-01-19 2005-01-19 Adhesive optical film and image display device Active JP4880228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005011295A JP4880228B2 (en) 2005-01-19 2005-01-19 Adhesive optical film and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005011295A JP4880228B2 (en) 2005-01-19 2005-01-19 Adhesive optical film and image display device

Publications (2)

Publication Number Publication Date
JP2006201337A true JP2006201337A (en) 2006-08-03
JP4880228B2 JP4880228B2 (en) 2012-02-22

Family

ID=36959412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005011295A Active JP4880228B2 (en) 2005-01-19 2005-01-19 Adhesive optical film and image display device

Country Status (1)

Country Link
JP (1) JP4880228B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185138A (en) * 2008-02-05 2009-08-20 Toagosei Co Ltd Adhesive composition
JP2012223904A (en) * 2011-04-15 2012-11-15 Nitto Denko Corp Transparent resin film with pressure-sensitive adhesive layer, laminated film, and touch panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300543A (en) * 1995-05-09 1996-11-19 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure
JP2002103517A (en) * 2000-09-29 2002-04-09 Three M Innovative Properties Co Transparent resin coated stainless steel member
JP2002328223A (en) * 2001-05-02 2002-11-15 Kanegafuchi Chem Ind Co Ltd Protective film for polarizer
JP2004217825A (en) * 2003-01-16 2004-08-05 Teraoka Seisakusho:Kk Primer composition for adhesive sheet and adhesive sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08300543A (en) * 1995-05-09 1996-11-19 Nippon Synthetic Chem Ind Co Ltd:The Laminated structure
JP2002103517A (en) * 2000-09-29 2002-04-09 Three M Innovative Properties Co Transparent resin coated stainless steel member
JP2002328223A (en) * 2001-05-02 2002-11-15 Kanegafuchi Chem Ind Co Ltd Protective film for polarizer
JP2004217825A (en) * 2003-01-16 2004-08-05 Teraoka Seisakusho:Kk Primer composition for adhesive sheet and adhesive sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185138A (en) * 2008-02-05 2009-08-20 Toagosei Co Ltd Adhesive composition
JP2012223904A (en) * 2011-04-15 2012-11-15 Nitto Denko Corp Transparent resin film with pressure-sensitive adhesive layer, laminated film, and touch panel

Also Published As

Publication number Publication date
JP4880228B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4007502B2 (en) Adhesive optical film and image display device
JP4007920B2 (en) Adhesive optical film and image display device
JP4714452B2 (en) Antistatic adhesive optical film and image display device
JP4433145B2 (en) Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer, pressure-sensitive adhesive optical member, and image display device
JP4756626B2 (en) Optical film with surface protective film and image display device
JP4017156B2 (en) Adhesive polarizing plate with optical compensation layer and image display device
JP4335901B2 (en) Manufacturing method of polarizing plate
JP4527012B2 (en) Optical film with adhesive and image display device
JP2004258165A (en) Optical member and its manufacturing method, adhesion type optical member, and image display device
JP4721368B2 (en) Antistatic adhesive optical film and image display device
JP4410055B2 (en) Retardation pressure-sensitive adhesive layer, method for producing the same, pressure-sensitive adhesive optical film, method for producing the same, and image display device
JP4727238B2 (en) Optical member pressure-sensitive adhesive composition, optical member pressure-sensitive adhesive layer, pressure-sensitive adhesive optical member, and image display device
JP2009086452A (en) Method for manufacturing adhesive optical film, adhesive optical film and image display device
WO2006043449A1 (en) Antistatic adhesive optical film and image display
JP2005241989A (en) Antistatic optical film, antistatic adhesive optical film, their production method and image display device
JP2011017009A (en) Optical adhesive layer, optical film with adhesive, and image display device
JP5126925B2 (en) Optical pressure-sensitive adhesive, pressure-sensitive adhesive optical film, image display device, and pressure-sensitive adhesive film peeling method
JP4832748B2 (en) Antistatic adhesive optical film, method for producing the same, and image display device
WO2006043450A1 (en) Antistatic optical film, antistatic adhesive optical film and image display
JP2008009156A (en) Method of forming adhesive optical film, adhesive optical film, and image display device
JP5187930B2 (en) Adhesive composition, adhesive layer, and method for producing the same
JP4062668B2 (en) Adhesive optical film, optical film adhesive composition and image display device
JP4341813B2 (en) Optical member with adhesive, method for producing the same, and image display device
JP4346086B2 (en) Antistatic adhesive optical film and image display device
WO2006006358A1 (en) Optical film with pressure-sensitive adhesive and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110308

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111201

R150 Certificate of patent or registration of utility model

Ref document number: 4880228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250