JP2006201159A - Method of analyzing quality of nonferrous metal and manufacturing method of the same - Google Patents

Method of analyzing quality of nonferrous metal and manufacturing method of the same Download PDF

Info

Publication number
JP2006201159A
JP2006201159A JP2005366434A JP2005366434A JP2006201159A JP 2006201159 A JP2006201159 A JP 2006201159A JP 2005366434 A JP2005366434 A JP 2005366434A JP 2005366434 A JP2005366434 A JP 2005366434A JP 2006201159 A JP2006201159 A JP 2006201159A
Authority
JP
Japan
Prior art keywords
amount
quality
insoluble
ferrous metal
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005366434A
Other languages
Japanese (ja)
Other versions
JP4697429B2 (en
Inventor
Satoru Mizuno
哲 水野
Yutaka Hayashibe
豊 林部
Kazuhiro Akiyama
和裕 秋山
Satoshi Agawa
智 阿川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005366434A priority Critical patent/JP4697429B2/en
Publication of JP2006201159A publication Critical patent/JP2006201159A/en
Application granted granted Critical
Publication of JP4697429B2 publication Critical patent/JP4697429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of analyzing a quality of a nonferrous metal such as a high purity copper excellent in the analysis accuracy and applied to a process control and a quality control. <P>SOLUTION: The method determines the quality of the nonferrous metal based on a determination expression y=[A]x+b within a target range of the quantity of an insoluble residual of the nonferrous metal. x is the quantity of the insoluble residual of the nonferrous metal. y is the quantity of an interfused refractory lining component contained in the residual. [A] and b are a coefficient and a constant defined in response to the nonferrous metal. In XY coordinate system, the quality of the nonferrous metal is determined from a fact that an analysis value is included within a range from a boundary indicated by the preset determination expression y=[A]x+b1 to a boundary indicated by the preset determination expression y=[A]x+b2. Alternately, the method determines the quality of the nonferrous metal by approximating at least two or more analytical values by the linear determination expression y=[A]x+b. x is the quantity of the insoluble residual of the nonferrous metal. y is the quantity of the interfused refractory lining component. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は非鉄金属の品位判定方法と、該判定方法を利用した製造方法に関する。本発明の品位判定方法によれば、高純度銅などの非鉄金属について、含有不溶解物の残渣量等に基づいて、分析精度に優れ、非鉄金属製品の工程管理や品質管理に適用することができる品位判定方法である。 The present invention relates to a method for determining the quality of a non-ferrous metal and a manufacturing method using the determination method. According to the quality determination method of the present invention, non-ferrous metals such as high-purity copper can be applied to process management and quality control of non-ferrous metal products with excellent analysis accuracy based on the amount of residual insoluble matter contained. This is a method for determining the quality.

従来、高純度金属や合金に含まれる不純物は、SEM等の機器分析や、硝酸または塩酸などの鉱酸に試料を溶解し、測定対象元素や濃度に応じて、lCPやICP−MS、FL−AASなどによって測定を行う湿式分析が一般的である。しかし、含有不純物の炭素、アルミニウム、チタン、ジルコンの酸化物等の耐火性元素は不溶解残渣になるため、これらの従来法による分析では正確に濃度を評価することができない。また、6N品位の超高純度金属を素材として加工されたスバッタリングターゲットや箔などの製品は、上記不溶解残渣が極微粒子となって含有されるため、これが不良品発生の原因になる。このような不溶解残渣に対して、従来は、顕微鏡などの目視観察等によって残渣量を求めていたが、局部的な観察のために目視観察等によるものは分析精度が低く、またSEM等の機器分析で測定する以外に評価手段がなく、工程管理や品質管理に反映させることができない。 Conventionally, impurities contained in high-purity metals and alloys are analyzed by instrumental analysis such as SEM, or by dissolving a sample in mineral acid such as nitric acid or hydrochloric acid, and depending on the element and concentration to be measured, lCP, ICP-MS, FL- A wet analysis in which measurement is performed by AAS or the like is common. However, since the refractory elements such as carbon, aluminum, titanium, and zircon oxides contained as impurities become insoluble residues, the concentration cannot be accurately evaluated by analysis using these conventional methods. In addition, products such as sputtering targets and foils processed using 6N grade ultra-high purity metal as a raw material contain the insoluble residue as ultrafine particles, which causes defective products. For such insoluble residues, conventionally, the amount of the residue was obtained by visual observation with a microscope or the like. However, for local observation, analysis by visual observation or the like has low analysis accuracy, and SEM or the like. There is no evaluation means other than measurement by instrument analysis, and it cannot be reflected in process control and quality control.

具体的には、例えば、非鉄金属含有物の分析方法として次の方法が従来知られている。すなわち、非鉄含有金属をサンプリングし、得られた粒状試料を研磨した後に、反射光による光学的性質を基礎として含有鉱物の形態を分析すると共に該鉱物の面積を求めて体積量に換算し、これから該鉱物の構成元素濃度を算定する方法である(特許文献1)。
特開2000−28604号公報
Specifically, for example, the following method is conventionally known as a method for analyzing non-ferrous metal-containing materials. That is, after sampling the non-ferrous metal and polishing the obtained granular sample, analyze the form of the mineral containing the optical properties by reflected light and calculate the area of the mineral and convert it into a volume, This is a method for calculating the constituent element concentration of the mineral (Patent Document 1).
JP 2000-28604 A

従来の上記分析方法は、試料の研磨に時間がかかるうえに、表面に現れる鉱物の面積を基準にして分析を行うために分析精度が低いと云う問題がある。本発明は、従来の分析方法における上記問題を解決したものであり、高純度銅などの非鉄金属について、分析精度に優れ、工程管理や品質管理に適用することができる品位判定方法を提供するものである。 The conventional analysis method has a problem that it takes time to polish the sample and the analysis accuracy is low because the analysis is performed based on the area of the mineral appearing on the surface. The present invention solves the above problems in conventional analysis methods, and provides a quality determination method that is excellent in analysis accuracy and can be applied to process control and quality control for non-ferrous metals such as high-purity copper. It is.

本発明は、以下の構成からなる非鉄金属の品位判定方法である。
(1)非鉄金属の不溶解残渣量の目標値範囲内で、不溶解残渣量xと、該残渣に含まれる炉材成分混入量yとによる判定式y=[A]x+b(式中、[A]、bは各々非鉄金属に応じて定められる係数および定数)に基づいて、該非鉄金属の品位を判定することを特徴とする品位判定方法。
(2)XY座標において、不溶解残渣量の目標値範囲内で、予め定めた判定式y=[A]x+b1によって示される境界からy=[A]x+b2によって示される境界に至る範囲内に、分析値が含まれことによって非鉄金属の品位を判定する上記(1)の品位判定方法。
(3)XY座標において、非鉄金属の不溶解残渣量xと炉材成分混入量yとについて、少なくとも2つ以上の分析値が、不溶解残渣量の目標値範囲内で、判定式y=[A]x+bの直線に近似されることによって非鉄金属の品位を判定する上記(1)の品位判定方法。
(4)非鉄金属がCu、Pb、Ni、Co、Sn、In、Sb、Bi、Te、Al、Ti、Znの各金属またはこれらの合金であり、炉材成分yがカーボン量、不溶解残量xが不溶解物合計量である上記(1)〜(3)の何れかに記載する品位判定方法。
(5)非鉄金属がターゲット、箔、条、接点の材料として用いられる高純度金属である上記(1)〜(4)の何れかに記載する品位判定方法。
(6)非鉄金属の不溶解残渣量xと、該残渣に含まれる炉材成分量yとに基づいて該非鉄金属の品位を判定すると共に、上記残渣量xおよび上記炉材成分混入量yに基づいて溶融工程の条件を調整する非鉄金属の製造方法。
The present invention is a method for determining the quality of a non-ferrous metal having the following configuration.
(1) Within the target value range of the insoluble residue amount of the non-ferrous metal, a judgment formula y = [A] x + b (where [ A] and b are each a coefficient and a constant determined according to the non-ferrous metal), and the quality of the non-ferrous metal is determined.
(2) In the XY coordinates, within a target value range of the insoluble residue amount, within a range from a boundary indicated by a predetermined judgment formula y = [A] x + b1 to a boundary indicated by y = [A] x + b2. The quality determination method according to (1) above, wherein the quality of the nonferrous metal is determined by including the analysis value.
(3) In the XY coordinates, for the insoluble residue amount x of the non-ferrous metal and the furnace material component mixing amount y, at least two or more analytical values are within the target value range of the insoluble residue amount, and the judgment formula y = [ A] The quality determination method according to (1) above, wherein the quality of the non-ferrous metal is determined by being approximated to a straight line of x + b.
(4) The non-ferrous metal is Cu, Pb, Ni, Co, Sn, In, Sb, Bi, Te, Al, Ti, Zn, or an alloy thereof, and the furnace material component y is the amount of carbon and the insoluble residue. The quality determination method according to any one of (1) to (3), wherein the amount x is a total amount of insoluble matter.
(5) The quality determination method according to any one of (1) to (4) above, wherein the non-ferrous metal is a high-purity metal used as a target, foil, strip, or contact material.
(6) The non-ferrous metal insoluble residue amount x and the furnace material component amount y contained in the residue are used to determine the quality of the non-ferrous metal, and the residue amount x and the furnace material component mixing amount y The manufacturing method of the nonferrous metal which adjusts the conditions of a melting process based on.

本発明は、溶融工程を経た非鉄金属の品位判定方法であって、非鉄金属に含まれる不溶解残渣量の目標値範囲内で、不溶解残渣量xと、該残渣に含まれる炉材成分混入量yとによる判定式y=[A]x+b(式中、[A]、bは各々非鉄金属に応じて定められる係数および定数)に基づいて、該非鉄金属の品位を判定することを特徴とする品位判定方法である。 The present invention is a method for determining the quality of a non-ferrous metal that has undergone a melting step, and within the target value range of the insoluble residue contained in the non-ferrous metal, the amount of insoluble residue x and the mixing of furnace material components contained in the residue And determining the quality of the non-ferrous metal based on a determination formula y = [A] x + b (wherein [A] and b are coefficients and constants determined according to the non-ferrous metal, respectively). This is a quality determination method.

溶融工程を経た非鉄金属とは、製錬工程や精錬工程などにおいて、各種の溶融炉等による溶融工程を経た非鉄金属であり、例えば、高純度銅や高純度鉛など、あるいはこれらの合金などである。溶融工程において、溶融炉等の炉材成分が非鉄金属に僅かながら混入する場合がある。例えば、ターゲット材の素材となる高純度銅は、6N品位まで純度を高めるために、カーボン製の精製炉を用いて溶融精製されるが、この溶融工程で炉材のカーボンが微量ながら高純度銅に混入する。このカーボンは高純度銅中で微小な不溶解物(パーティクル)として存在する。 Non-ferrous metals that have undergone a melting process are non-ferrous metals that have undergone a melting process in various melting furnaces in smelting and refining processes, such as high-purity copper and high-purity lead, or alloys thereof. is there. In the melting step, a furnace material component such as a melting furnace may be slightly mixed into the nonferrous metal. For example, high-purity copper, which is the raw material of the target material, is melted and refined using a carbon refining furnace in order to increase the purity to 6N grade. Mixed in. This carbon exists as fine insoluble matter (particles) in high purity copper.

また、溶融炉を覆う蓋材や炉周辺の設備の材料成分が混入する場合もある。例えば、炉を覆う蓋材に由来するアルミナや炉周辺の耐火材に由来するチタニア、ジルコニアなどが非鉄金属に固溶する場合がある。 Moreover, the cover material which covers a melting furnace and the material component of the equipment around a furnace may mix. For example, alumina derived from a lid covering the furnace, titania, zirconia derived from a refractory material around the furnace, or the like may be dissolved in a non-ferrous metal.

非鉄金属中にパーティクル等の不溶解物が含まれており、あるいは固溶体が存在すると、製品不良の原因になる。例えば、高純度銅に微小なカーボンパーティクルが含まれていると、これをターゲット材として用いたときに、製品不良の原因になるので、これらの不純物量を抑えるために、製造した非鉄金属製品について品位判定が行われている。 If insoluble materials such as particles are contained in the non-ferrous metal or a solid solution is present, it may cause a product defect. For example, if fine carbon particles are contained in high-purity copper, it will cause product defects when used as a target material. To reduce the amount of these impurities, the manufactured non-ferrous metal products Quality judgment is performed.

通常、例えば、非鉄金属試料Agを硝酸等に溶解し、このときに生じる酸不溶解残渣量をBgとした場合、酸不溶解残渣量(Bg)の許容量を設定し、これに対して当該非鉄金属の品位が定められるが、単に残渣量を測定するだけでは不純物の成分およびその混入原因が不明であり、品位向上を図るための十分な情報が得られない。 Usually, for example, when a non-ferrous metal sample Ag is dissolved in nitric acid or the like and the amount of acid-insoluble residue generated at this time is Bg, an allowable amount of acid-insoluble residue (Bg) is set. Although the quality of non-ferrous metals is determined, simply measuring the amount of residue does not reveal the components of impurities and the cause of their incorporation, and sufficient information for improving the quality cannot be obtained.

本発明は、非鉄金属試料について、不溶解残渣量だけではなく、その残渣成分を分析し、例えば、溶解炉の炉材成分であるカーボンの混入を明らかにし、上記不溶解物残渣量と、該不溶解物に含まれるカーボンなどの炉材成分の混入量とに基づいて品位を判定する方法である。なお、本発明において、不溶解残渣量とは非鉄金属を硝酸等に溶解したときに、カーボンや、アルミナ、ジルコニア等のような酸に不溶解な成分を主とする残渣の量であり、炉材成分混入量とは不溶解残渣に含まれる炉材成分の含有量である。 The present invention analyzes not only the amount of undissolved residue but also the residue component of the non-ferrous metal sample, for example, reveals the mixing of carbon, which is a furnace material component of the melting furnace, This is a method for determining the quality based on the amount of furnace material components such as carbon contained in the insoluble matter. In the present invention, the amount of insoluble residue is the amount of residue mainly composed of components insoluble in acids such as carbon, alumina, zirconia, etc. when non-ferrous metals are dissolved in nitric acid, etc. The material component mixing amount is the content of the furnace material component contained in the insoluble residue.

本発明の判定方法は、非鉄金属に含まれる不溶解残渣量の目標値範囲内で、不溶解残渣量xと、該残渣に含まれる炉材成分混入量yとによる判定式y=[A]x+b(式中、[A]、bは各々非鉄金属に応じて定められる係数および定数)に基づいて、該非鉄金属の品位を判定する方法である。具体的には、例えば、高純度銅あるいは高純度鉛について、上記判定式のyは炉材成分のカーボン量、不溶解残量xはカーボンを含むその他の不溶解物の合計量である。判定式の係数[A]および定数bは非鉄金属の種類や用途などに応じて定められる。また、上記判定式は複数の分析データに基づいて例えば最小二乗法によって近似される直線である。 In the determination method of the present invention, the determination formula y = [A] based on the insoluble residue amount x and the furnace material component mixing amount y included in the residue within the target value range of the insoluble residue amount included in the nonferrous metal. This is a method for determining the quality of a non-ferrous metal based on x + b (where [A] and b are coefficients and constants determined according to the non-ferrous metal, respectively). Specifically, for example, for high-purity copper or high-purity lead, y in the above judgment formula is the amount of carbon of the furnace material component, and the insoluble residual amount x is the total amount of other insoluble materials including carbon. The coefficient [A] and the constant b in the determination formula are determined according to the type and application of the nonferrous metal. Further, the determination formula is a straight line approximated by, for example, the least square method based on a plurality of analysis data.

品位の許容範囲は、例えば、定数bによって定められる。図1のXY座標において、不溶解残渣量の目標値範囲内で、予め定めた判定式y=[A]x+b1によって示される境界からy=[A]x+b2によって示される境界に至る範囲内に、分析値が含まれことによって非鉄金属の品位を判定する。 The allowable range of quality is determined by a constant b, for example. In the XY coordinates of FIG. 1, within the target value range of the insoluble residue amount, within a range from a boundary indicated by a predetermined judgment formula y = [A] x + b1 to a boundary indicated by y = [A] x + b2. The quality of the non-ferrous metal is determined by including the analysis value.

具体的には、例えば、図1のXY座標において、非鉄金属試料の不溶解残渣量xと炉材成分混入量yについて、該非鉄金属の種類および用途などに基づいて定められた係数[A]、定数b1、b2をおのおの含む判定式y=[A]x+b1、y=[A]x+b2によって示される直線で区画される許容範囲Mを定め、個々の試料について得られた不溶解残渣量xと炉材成分混入量yの分析値をプロットし、この点が、不溶解残渣量xの目標値範囲内で、上記許容範囲Mに含まれるものを合格品位とする。図1の例において、各試料No.1〜No.4について得られる分析値S1〜S4のうち、試料No.1とNo.2の分析値S1とS2は許容範囲Mに含まれるので合格品位であり、試料No.3とNo.4の分析値S3とS4は許容範囲Mから外れるので不合格品である。 Specifically, for example, in the XY coordinates of FIG. 1, the coefficient [A] determined based on the type and use of the non-ferrous metal with respect to the insoluble residue amount x and the furnace material component mixing amount y of the non-ferrous metal sample , An allowable range M defined by a straight line indicated by a judgment formula y = [A] x + b1, y = [A] x + b2 each including constants b1 and b2, and an insoluble residue amount x obtained for each sample, The analytical value of the furnace material component mixing amount y is plotted, and this point is defined as an acceptable quality within the allowable range M within the target value range of the insoluble residue amount x. In the example of FIG. 1, among the analysis values S1 to S4 obtained for each of the samples No. 1 to No. 4, the analysis values S1 and S2 of the samples No. 1 and No. 2 are included in the allowable range M. Since the analysis values S3 and S4 of samples No. 3 and No. 4 are out of the allowable range M, they are rejected.

本発明の判定方法は、品位の許容範囲を予め定める方法に限らず、非鉄金属の不溶解残渣量xと炉材成分混入量yのおのおの少なくとも2つ以上の分析値が、XY座標において、不溶解残渣量の目標値範囲内で、判定式y=[A]x+bの直線に近似されることによって非鉄金属の品位を判定することができる。 The determination method of the present invention is not limited to a method of predetermining the acceptable range of quality, and at least two or more analysis values of the insoluble residue amount x of the non-ferrous metal and the furnace material component mixing amount y are not in the XY coordinates. The quality of the non-ferrous metal can be determined by approximating a straight line of the determination formula y = [A] x + b within the target value range of the dissolved residue amount.

具体的には、後述の実施例1に示すように、各試料について測定した不溶解残渣量xと炉材成分混入量yの分析値をXY座標にプロットした点が、y=[A]x+bの直線に近似され、各分析値の点が何れもこの直線の近傍に位置するので、不溶解残渣量の目標値範囲内で、これらの試料は何れも合格品位と判断することができる。 Specifically, as shown in Example 1 described later, the points where the analysis values of the insoluble residue amount x and the furnace material component mixing amount y measured for each sample are plotted on the XY coordinates are y = [A] x + b Since each analysis value point is located in the vicinity of this straight line, all of these samples can be judged as acceptable quality within the target value range of the insoluble residue.

本発明の方法によって品位を判定した非鉄金属を、例えば、ターゲット材や金属箔などに加工して使用すると、合格品位と判定されたものは殆ど不良品が発生せず、一方、不合格品と判定されたものは殆ど全てが不良品になり、本発明の判定方法は信頼性が高い。 When the non-ferrous metal whose quality is determined by the method of the present invention is processed into, for example, a target material or a metal foil and used, those that are determined to be acceptable quality produce almost no defective products, while Almost all determined items are defective, and the determination method of the present invention is highly reliable.

本発明の判定方法は、例えば、Cu、Pb、Ni、Co、Sn、In、Sb、Bi、Te、Al、Ti、Zn等の各非鉄金属またはこれらの合金について、炉材成分yがカーボン量、不溶解残量xが不溶解物合計量として幅広く適用することができ、具体的には、ターゲット、箔、条、接点の材料として用いられる高純度金属について好適に適用することができる。 The determination method of the present invention is such that, for example, for each non-ferrous metal such as Cu, Pb, Ni, Co, Sn, In, Sb, Bi, Te, Al, Ti, Zn, or an alloy thereof, the furnace material component y is a carbon content. The insoluble residual amount x can be widely applied as the total amount of insoluble matter. Specifically, it can be suitably applied to high-purity metals used as materials for targets, foils, strips, and contacts.

本発明の方法は、製造した非鉄金属の品位を判定することに限らず、品位判定のために測定した非鉄金属の不溶解残渣量xと、該残渣に含まれる炉材成分量yとに基づいて非鉄金属の溶融工程条件を調整する指標として利用することができる。 The method of the present invention is not limited to determining the quality of the produced non-ferrous metal, but based on the non-soluble residue amount x of the non-ferrous metal measured for the quality determination and the furnace material component amount y contained in the residue. Thus, it can be used as an index for adjusting the melting process condition of the non-ferrous metal.

本発明の判定方法によれば、非鉄金属の品位を、炉材成分混入量および不溶解残量に基づいて、精度良く判定することができるので、非鉄金属製品の工程管理や品質管理に適用することができる。具体的には、例えば、ターゲットや金属箔などの材料として用いられる高純度銅や高純度鉛などについて、不溶解残渣の成分分析に基づいて、ターゲット材についてはパーティクル発生量を低下させ、銅箔な鉛箔などの場合には異物混入による圧延不良を低減することができる。 According to the determination method of the present invention, the quality of the non-ferrous metal can be accurately determined based on the amount of the furnace material components mixed and the undissolved remaining amount, so that it is applied to process management and quality control of the non-ferrous metal product. be able to. Specifically, for example, for high-purity copper and high-purity lead used as materials for targets and metal foils, the amount of generated particles is reduced for target materials based on component analysis of insoluble residues, and copper foil In the case of a lead foil or the like, it is possible to reduce rolling defects due to foreign matter contamination.

また、ICP−MS分析によって不溶解残渣の成分濃度を把握することによって、製品工程で異常が発生した場合にその要因元素の特定が容易になる。さらに、不溶解残渣量を規格化することによって一定品位に品質を管理することができる。なお、従来の非鉄金属における不溶解物分析では、その正確な成分濃度まで把握されておらず、非鉄金属製品の工程管理や品質管理に適用することは難しい。 Further, by grasping the component concentration of the insoluble residue by ICP-MS analysis, when an abnormality occurs in the product process, it becomes easy to identify the factor element. Furthermore, quality can be controlled to a certain quality by standardizing the amount of insoluble residue. In the conventional insoluble substance analysis in non-ferrous metals, the exact component concentration is not grasped, and it is difficult to apply to process management and quality control of non-ferrous metal products.

本発明の判定方法において、例えば、高純度銅について以下の手順に従って分析を行う。
(1)試料を硝酸にてエッチング処理を行い、表面近傍の付着不純物を除去する。
(2)エッチングした試料を100g秤量する。
(3)試料に硝酸を加えて加熱溶解する。
(4)室温まで冷却後、市販のフィルターにて濾過し、残渣を捕集する。
(5)炭素分析は上記(1)〜(4)を繰返して残渣を捕集したフィルターを試料とする。
(6)炭素を除く不純物元素について、上記(1)〜(4)を繰り返し、残渣を捕集したフィルターを試料とし、以下の手順に従って前処理を行う。
(7)残渣を捕集したフィルターを濃硫酸にて分解する。
(8)試料に硝酸と過酸化水素を加え、残渣およびフィルター中の有機物を分解する。
(9)残留硫酸分が乾固するまで白煙処理を行い、揮発させる。
(10)硝酸を加えた超純水にて、測定対象元素を抽出する。
(11)抽出濃縮後、2mlに定容し、ICP−MSにて成分測定を行う。
なお、試料は溶解が容易なように切り粉状に加工し用いる。また、フィルターはIPC−MS分析にはポリカーポネートフィルター(孔径0.4μm、47mmφ)を用いるのが良く、炭素分析にはガラスフィルター(孔径0.6μm、47mmφ)を用いると良い。
In the determination method of the present invention, for example, high purity copper is analyzed according to the following procedure.
(1) The sample is etched with nitric acid to remove adhering impurities near the surface.
(2) Weigh 100 g of the etched sample.
(3) Add nitric acid to the sample and dissolve by heating.
(4) After cooling to room temperature, filter with a commercially available filter and collect the residue.
(5) Carbon analysis uses the filter which collected the residue by repeating the above (1) to (4) as a sample.
(6) Repeat steps (1) to (4) above for the impurity elements other than carbon, and use the filter that collects the residue as a sample, and perform pretreatment according to the following procedure.
(7) The filter collecting the residue is decomposed with concentrated sulfuric acid.
(8) Add nitric acid and hydrogen peroxide to the sample to decompose the residue and organic matter in the filter.
(9) Treat with white smoke until the residual sulfuric acid content is solidified and evaporate.
(10) Extract the element to be measured with ultrapure water to which nitric acid has been added.
(11) After extraction and concentration, the volume is adjusted to 2 ml, and the components are measured by ICP-MS.
In addition, the sample is used after being cut into chips so as to be easily dissolved. The filter is preferably a polycarbonate filter (pore size 0.4 μm, 47 mmφ) for IPC-MS analysis, and a glass filter (pore size 0.6 μm, 47 mmφ) for carbon analysis.

以下に本発明の実施例を示す。
〔実施例1〕
高純度銅(6N銅)の複数の試料について、上記分析手順に従って、炉材成分に由来するカーボン含有量yと不溶解残渣量xとを測定し、図2に示す結果を得た。最小二乗法によって近似した直線y=[A]x+b([A]=0.4437、b=8.4906)の付近の範囲に含まれるもの(直線上またはその近傍に位置するもの:◆印)は、ターゲット材に加工して使用したところ何れも正常品であった。一方、この範囲に属さないもの(□印、△印)を使用したところ、何れも不良品であった。このように測定値をプロットし、直線近似した場合、正常品は、表記直線の一定範囲内に分布し、異常品は、その範囲を超えて分布する。よって、残渣量に比べ、カーボン量が著しく少ないあるいは、多いプロットは、試料中のカーボンの偏析に起因するものと考えられ、その結果を製品の品質管理にフィードバックすることが可能である。
Examples of the present invention are shown below.
[Example 1]
For a plurality of samples of high-purity copper (6N copper), the carbon content y derived from the furnace material components and the insoluble residue amount x were measured according to the above analysis procedure, and the results shown in FIG. 2 were obtained. Those included in the range in the vicinity of the straight line y = [A] x + b ([A] = 0.4437, b = 8.4906) approximated by the least squares method (those located on or near the straight line: ◆ mark) are target materials When processed and used, all were normal products. On the other hand, when products not belonging to this range (□ mark, Δ mark) were used, all were defective. When the measured values are plotted and approximated by a straight line in this way, normal products are distributed within a certain range of the notation straight line, and abnormal products are distributed beyond that range. Therefore, a plot in which the amount of carbon is significantly smaller or larger than the amount of residue is considered to be caused by segregation of carbon in the sample, and the result can be fed back to product quality control.

〔実施例2〕
高純度銅(6N銅)の複数の試料について、上記分析手順に従って、溶融炉の蓋材成分に由来するアルミニウム含有量yと、不溶解残渣量xとを測定し、図3に示す結果を得た。これらのうち、最小二乗法によって近似した直線y=[A]x+b1、直線y=[A]x+b2によって示される直線で区画された範囲に属するもの(◆印)は、ターゲット材に加工して使用したところ何れも正常品であった。一方、この範囲に属さないもの(□印、△印)を使用したところ、何れも不良品であった。
[Example 2]
For a plurality of samples of high-purity copper (6N copper), according to the above analysis procedure, the aluminum content y derived from the lid material component of the melting furnace and the insoluble residue amount x were measured, and the results shown in FIG. 3 were obtained. It was. Among these, those belonging to the range defined by the straight line y = [A] x + b1 and the straight line y = [A] x + b2 approximated by the least square method (marked with ♦) are processed into a target material and used. As a result, all were normal products. On the other hand, when products not belonging to this range (□ mark, Δ mark) were used, all were defective.

〔実施例3〕
高純度鉛(4N鉛)の複数の試料について、上記分析手順に従って、炉材成分に由来するカーボン含有量yと不溶解残渣量xとを測定し、図4に示す結果を得た。最小二乗法によって近似した直線y=[A]x+b([A]=0.837、b=2.7707)の付近の範囲に含まれるもの(直線上またはその近傍に位置するもの:◆印)は、ターゲット材に加工して使用したところ何れも正常品であった。一方、この範囲に属さないもの(□印、△印)を使用したところ、何れも不良品であった。
Example 3
For a plurality of samples of high-purity lead (4N lead), the carbon content y and the insoluble residue amount x derived from the furnace material components were measured according to the above analysis procedure, and the results shown in FIG. 4 were obtained. Those included in the range in the vicinity of the straight line y = [A] x + b ([A] = 0.837, b = 2.7707) approximated by the method of least squares (those located on or near the straight line: ◆ mark) are target materials When processed and used, all were normal products. On the other hand, when products not belonging to this range (□ mark, Δ mark) were used, all were defective.

〔実施例4〕
精製亜鉛について、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図5に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 4
For purified zinc, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 5 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例5〕
精製チタンについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図6に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 5
For purified titanium, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 6 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例6〕
精製アルミニウムについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図7に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 6
For purified aluminum, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 7 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例7〕
精製テルルについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図8に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 7
For purified tellurium, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analytical procedure, and the results shown in FIG. 8 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例8〕
精製ビスマスについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yとを測定し、図9に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 8
For purified bismuth, the amount of insoluble residue x and the amount of carbon y in the residue were measured according to the above analytical procedure, and the results shown in FIG. 9 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例9〕
精製アンチモンについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図10に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 9
For the purified antimony, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 10 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例10〕
精製インジウムについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図11に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 10
For purified indium, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 11 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例11〕
精製スズについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図12に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 11
For the purified tin, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 12 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例12〕
精製コバルトについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図13に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 12
For the purified cobalt, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 13 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

〔実施例13〕
精製ニッケルについて、上記分析手順に従って不溶解残渣量xと該残渣中のカーボン量yを測定し、図14に示す結果を得た。最小二乗法によって定めた判定式の直線を図中に示す。なお、図中の◆印の範囲は一般的な用途において合格品位である。
Example 13
For the purified nickel, the insoluble residue amount x and the carbon amount y in the residue were measured according to the above analysis procedure, and the results shown in FIG. 14 were obtained. The straight line of the judgment formula determined by the least square method is shown in the figure. In the figure, the range marked with ♦ indicates acceptable quality for general applications.

非鉄金属について、不溶解残渣量xと炉材成分混入量yとに基づく本発明の判定方法を示すグラフ。The graph which shows the determination method of this invention based on the insoluble residue amount x and the furnace material component mixing amount y about a nonferrous metal. 実施例1の高純度銅について、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues about the high purity copper of Example 1. 実施例2の高純度銅について、アルミニウム量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The graph of the analytical value which shows the determination method of this invention based on the amount of aluminum and the amount of insoluble residues about the high purity copper of Example 2. 実施例3の高純度鉛について、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues about the high purity lead of Example 3. 実施例4の亜鉛について、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。About the zinc of Example 4, the graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues. 実施例5のチタンについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。About the titanium of Example 5, the graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues. 実施例6のアルミニウムについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。About the aluminum of Example 6, the graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues. 実施例7のテルルについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The graph of the analytical value which shows the determination method of this invention about the tellurium of Example 7 based on the amount of carbon and the amount of insoluble residues. 実施例8のビスマスについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues about the bismuth of Example 8. 実施例9のアンチモンについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。About the antimony of Example 9, the graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues. 実施例10のインジウムについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The graph of the analytical value which shows the determination method of this invention about the indium of Example 10 based on the amount of carbon and the amount of insoluble residues. 実施例11のスズについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。About the tin of Example 11, the graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues. 実施例12のコバルトについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The cobalt of Example 12 is a graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues. 実施例13のニッケルについて、カーボン量と不溶解残渣量に基づく本発明の判定方法を示す分析値のグラフ。The nickel of Example 13 is a graph of the analytical value which shows the determination method of this invention based on the amount of carbon and the amount of insoluble residues.

Claims (6)

非鉄金属の不溶解残渣量の目標値範囲内で、不溶解残渣量xと、該残渣に含まれる炉材成分混入量yとによる判定式y=[A]x+b(式中、[A]、bは各々非鉄金属に応じて定められる係数および定数)に基づいて、該非鉄金属の品位を判定することを特徴とする品位判定方法。
Within the target value range of the insoluble residue amount of the non-ferrous metal, the judgment formula y = [A] x + b (in the formula, [A], with the insoluble residue amount x and the furnace material component mixing amount y contained in the residue) b is a quality determination method, wherein the quality of the nonferrous metal is determined based on a coefficient and a constant determined in accordance with the nonferrous metal.
XY座標において、不溶解残渣量の目標値範囲内で、予め定めた判定式y=[A]x+b1によって示される境界からy=[A]x+b2によって示される境界に至る範囲内に、分析値が含まれことによって非鉄金属の品位を判定する請求項1の品位判定方法。
In the XY coordinates, within the target value range of the insoluble residue amount, the analysis value is within the range from the boundary indicated by the predetermined judgment formula y = [A] x + b1 to the boundary indicated by y = [A] x + b2. The quality determination method according to claim 1, wherein the quality of the non-ferrous metal is determined by being included.
XY座標において、非鉄金属の不溶解残渣量xと炉材成分混入量yとについて、少なくとも2つ以上の分析値が、不溶解残渣量の目標値範囲内で、判定式y=[A]x+bの直線に近似されることによって非鉄金属の品位を判定する請求項1の品位判定方法。
In the XY coordinates, at least two or more analysis values of the non-ferrous metal insoluble residue amount x and the furnace material component mixing amount y are within the target value range of the insoluble residue amount, and the determination formula y = [A] x + b The quality determination method according to claim 1, wherein the quality of the non-ferrous metal is determined by being approximated by a straight line.
非鉄金属がCu、Pb、Ni、Co、Sn、In、Sb、Bi、Te、Al、Ti、Znの各金属またはこれらの合金であり、炉材成分yがカーボン量、不溶解残量xが不溶解物合計量である請求項1〜3の何れかに記載する品位判定方法。
The non-ferrous metal is each metal of Cu, Pb, Ni, Co, Sn, In, Sb, Bi, Te, Al, Ti, Zn or an alloy thereof, the furnace material component y is the carbon amount, and the insoluble residual amount x is The quality determination method according to any one of claims 1 to 3, which is a total amount of insoluble matter.
非鉄金属がターゲット、箔、条、接点の材料として用いられる高純度金属である請求項1〜4の何れかに記載する品位判定方法。
The quality determination method according to any one of claims 1 to 4, wherein the non-ferrous metal is a high-purity metal used as a target, foil, strip, or contact material.
非鉄金属の不溶解残渣量xと、該残渣に含まれる炉材成分量yとに基づいて該非鉄金属の品位を判定すると共に、上記残渣量xおよび上記炉材成分混入量yに基づいて溶融工程の条件を調整する非鉄金属の製造方法。


The non-ferrous metal insoluble residue amount x and the furnace material component amount y contained in the residue are used to determine the quality of the non-ferrous metal and melt based on the residue amount x and the furnace material component mixing amount y. A method for producing a non-ferrous metal in which process conditions are adjusted.


JP2005366434A 2004-12-21 2005-12-20 Non-ferrous metal quality analysis method and manufacturing method thereof Active JP4697429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005366434A JP4697429B2 (en) 2004-12-21 2005-12-20 Non-ferrous metal quality analysis method and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004369129 2004-12-21
JP2004369129 2004-12-21
JP2005366434A JP4697429B2 (en) 2004-12-21 2005-12-20 Non-ferrous metal quality analysis method and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006201159A true JP2006201159A (en) 2006-08-03
JP4697429B2 JP4697429B2 (en) 2011-06-08

Family

ID=36959272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005366434A Active JP4697429B2 (en) 2004-12-21 2005-12-20 Non-ferrous metal quality analysis method and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4697429B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364482A (en) * 2013-07-23 2013-10-23 中国食品药品检定研究院 Microwave digestion ICP-MS determination method of lead content in drug-packaging-use aluminum foil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929129A (en) * 2016-04-22 2016-09-07 贵州航天精工制造有限公司 Detection method for hydrogen content of titanium alloy bolt or screw

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128237A (en) * 1993-11-02 1995-05-19 Nkk Corp Method and device for rapidly analyzing steel component
JPH1026618A (en) * 1995-05-19 1998-01-27 Nippon Steel Corp Quick evaluating method of material present in metal
JP2000206108A (en) * 1999-01-19 2000-07-28 Nkk Corp COMPOSITION FOR SECONDARY TREATMENT OF Ca-CONTAINING OXIDE-BASED, Na-CONTAINING OXIDE-BASED AND K-CONTAINING OXIDE-BASED INCLUSIONS IN IRON AND STEEL SAMPLE, AS WELL AS SECONDARY TREATMENT METHOD
JP2001159627A (en) * 1999-12-01 2001-06-12 Sanyo Special Steel Co Ltd Method for evaluating cleanliness of metal material
JP2001324478A (en) * 2000-05-15 2001-11-22 Asahi Denka Kogyo Kk Method for measuring content of trace amount of aluminum in tantalum compound
JP2002139488A (en) * 2000-10-30 2002-05-17 Japan Steel Works Ltd:The Method for preparing magnesium alloy material
JP2002224721A (en) * 2001-01-30 2002-08-13 Kobe Steel Ltd Method for predicting material of a1 alloy plate
JP2003322596A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Method of analyzing impurity element in metallic sodium
JP2004198145A (en) * 2002-12-16 2004-07-15 Kobe Steel Ltd METHOD FOR ANALYZING CaO-CONTAINING INCLUSION IN METAL
JP2004301605A (en) * 2003-03-31 2004-10-28 Jfe Steel Kk Electrolyte for extraction analysis of deposit and/or inclusion in steel, and electrolytic extraction method of deposit and/or inclusion in steel using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07128237A (en) * 1993-11-02 1995-05-19 Nkk Corp Method and device for rapidly analyzing steel component
JPH1026618A (en) * 1995-05-19 1998-01-27 Nippon Steel Corp Quick evaluating method of material present in metal
JP2000206108A (en) * 1999-01-19 2000-07-28 Nkk Corp COMPOSITION FOR SECONDARY TREATMENT OF Ca-CONTAINING OXIDE-BASED, Na-CONTAINING OXIDE-BASED AND K-CONTAINING OXIDE-BASED INCLUSIONS IN IRON AND STEEL SAMPLE, AS WELL AS SECONDARY TREATMENT METHOD
JP2001159627A (en) * 1999-12-01 2001-06-12 Sanyo Special Steel Co Ltd Method for evaluating cleanliness of metal material
JP2001324478A (en) * 2000-05-15 2001-11-22 Asahi Denka Kogyo Kk Method for measuring content of trace amount of aluminum in tantalum compound
JP2002139488A (en) * 2000-10-30 2002-05-17 Japan Steel Works Ltd:The Method for preparing magnesium alloy material
JP2002224721A (en) * 2001-01-30 2002-08-13 Kobe Steel Ltd Method for predicting material of a1 alloy plate
JP2003322596A (en) * 2002-04-30 2003-11-14 Mitsubishi Heavy Ind Ltd Method of analyzing impurity element in metallic sodium
JP2004198145A (en) * 2002-12-16 2004-07-15 Kobe Steel Ltd METHOD FOR ANALYZING CaO-CONTAINING INCLUSION IN METAL
JP2004301605A (en) * 2003-03-31 2004-10-28 Jfe Steel Kk Electrolyte for extraction analysis of deposit and/or inclusion in steel, and electrolytic extraction method of deposit and/or inclusion in steel using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364482A (en) * 2013-07-23 2013-10-23 中国食品药品检定研究院 Microwave digestion ICP-MS determination method of lead content in drug-packaging-use aluminum foil

Also Published As

Publication number Publication date
JP4697429B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
KR101290856B1 (en) High-purity copper or high-purity copper alloy sputtering target and process for manufacturing the sputtering target
KR20160143865A (en) Ag alloy sputtering target and ag alloy film manufacturing method
KR102046732B1 (en) Ag ALLOY SPUTTERING TARGET, MANUFACTURING METHOD FOR Ag ALLOY SPUTTERING TARGET, Ag ALLOY FILM, AND MANUFACTURING METHOD FOR ALLOY FILM
Fray The use of solid electrolytes as sensors for applications in molten metals
JP4697429B2 (en) Non-ferrous metal quality analysis method and manufacturing method thereof
Shuva et al. Thermodynamics behavior of germanium during equilibrium reactions between FeO x-CaO-SiO 2-MgO slag and molten copper
JP2017146132A (en) Assaying method for precious metal elements
Kinneberg et al. Origin and effects of impurities in high purity gold
Xiao et al. Role of trivalent antimony in the removal of As, Sb, and Bi impurities from copper electrolytes
JP2002372518A (en) Method for determinating platinum group element
Szalatkiewicz Metals recovery from waste of printed circuit boards processed in plasmatron plasma reactor
Bakke et al. Inclusion assessment in magnesium and magnesium base alloys
Stanica et al. Aluminum melt cleanliness performance evaluation using PoDFA (Porous Disk Filtration Apparatus) technology
WO2016043183A1 (en) Ag ALLOY SPUTTERING TARGET, MANUFACTURING METHOD FOR Ag ALLOY SPUTTERING TARGET, Ag ALLOY FILM, AND MANUFACTURING METHOD FOR ALLOY FILM
JP6636799B2 (en) Copper alloy sputtering target and evaluation method thereof
Batista et al. The effects of deoxidation practice on the quality of thin foil low-carbon steel
Harper et al. A comparison of X-ray fluorescence and wet chemical analysis for lead on air filters from different personal samplers used in a secondary lead smelter/solder manufacturer
Kumar et al. Microstructural analysis of lead-free solder alloys
Barefoot et al. Fire assay for iridium
CN117133373B (en) Intelligent classification system for quartz sand production and processing based on mixing algorithm
Nkohla Characteristics of ferrochrome smelter slag and its implications in metal accounting
Al-Jallaf et al. The Effect of TIB 2 Granules on Metal Quality
CN110199051A (en) Cu-Ni alloy sputtering targets and its manufacturing method
Feret Application of XRF in the aluminum industry
Wroblewski et al. Effect of impurities on melting point of ESR fluxes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4697429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150