JP2004301605A - Electrolyte for extraction analysis of deposit and/or inclusion in steel, and electrolytic extraction method of deposit and/or inclusion in steel using the same - Google Patents

Electrolyte for extraction analysis of deposit and/or inclusion in steel, and electrolytic extraction method of deposit and/or inclusion in steel using the same Download PDF

Info

Publication number
JP2004301605A
JP2004301605A JP2003093911A JP2003093911A JP2004301605A JP 2004301605 A JP2004301605 A JP 2004301605A JP 2003093911 A JP2003093911 A JP 2003093911A JP 2003093911 A JP2003093911 A JP 2003093911A JP 2004301605 A JP2004301605 A JP 2004301605A
Authority
JP
Japan
Prior art keywords
steel
inclusions
electrolyte
precipitates
inclusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003093911A
Other languages
Japanese (ja)
Other versions
JP4103661B2 (en
Inventor
Tadao Inose
匡生 猪瀬
Tetsushi Jodai
哲史 城代
Atsushi Chino
淳 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003093911A priority Critical patent/JP4103661B2/en
Publication of JP2004301605A publication Critical patent/JP2004301605A/en
Application granted granted Critical
Publication of JP4103661B2 publication Critical patent/JP4103661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte for extraction analysis and an electrolytic extraction method capable of extracting and separating a deposit and/or an inclusion in steel stably without being decomposed in the electrolyte. <P>SOLUTION: This electrolyte for extraction analysis of the deposit and/or the inclusion in steel is characterized by using alcohol as a solvent, and containing 0.2-0.4 v/v% acetylacetone, and 0.5-2 w/v% tetramethylammonium chloride. This electrolytic extraction method of the deposit and/or the inclusion in steel is characterized by electrolytically extracting the deposit and/or the inclusion in steel by using the electrolyte. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鋼中の析出物及び/又は介在物の抽出分析用の電解液及びそれを用いた鋼中析出物及び/又は介在物の電解抽出方法に関する。
【0002】
【従来の技術】
鉄鋼材料中に存在する析出物(炭化物、窒化物または硫化物などの析出物)または介在物(酸化物などの介在物)は、その存在形態、化学組成、粒径や量により、鉄鋼材料の品質特性に多大な影響を及ぼす。そのため、析出物及び/又は介在物の量を把握することは鉄鋼製品の出荷管理や品質特性評価又は鉄鋼プロセスの解析を行う上で非常に重要な項目となっている。
析出物または介在物の定量を行うためには、鉄鋼材料中の鉄マトリックスから析出物及び/又は介在物を抽出分離しなければならない。近年の精錬技術および熱処理技術の進歩によって、鉄鋼材料中に含まれる析出物や介在物の種類は多様化し、さらに、鉄鋼材料の清浄性向上にともなって微量化してきている。そのため析出物や介在物の抽出分離方法には、多様な化学組成の析出物や介在物を、分解することなく、しかも鉄鋼材料中に存在したままの状態で定量的に抽出分離することが求められている。
【0003】
析出物又は介在物を定量的に抽出する方法として非水溶媒中で電解を行う方法がある。この方法では、非水溶媒系電解液として、塩化リチウムやテトラメチルアンモニウムクロライドなどの支持電解質を含むアルコールを溶媒とするものが用いられる。代表的な電解液としては、例えば10%アセチルアセトン−1%テトラメチルアンモニウムクロライド−メタノール(以下10%AA系電解液)、4%サリチル酸メチル−1%サリチル酸−1%テトラメチルアンモニウムクロライド−メタノール(MS系電解液)、10%無水マレイン酸−2%テトラメチルアンモニウムクロライド−メタノール(MA系電解液)などが非特許文献1に記載されており、この中でも特に10%AA系電解液が汎用的に広く用いられている。
【0004】
【非特許文献1】
鉄と鋼、1990、76、483
【0005】
【発明が解決しようとする課題】
しかしながら、前記電解槽を用い、非水溶媒中で電解を行う方法では、鋼種によっては、化学的に不安定であり、電解液へ溶解する析出物又は介在物が存在する。そして、これらの不安定な析出物又は介在物が抽出操作中に電解液中へ化学溶解してしまうために定量的に抽出分離できないという問題がある。
【0006】
本発明は、以上のような課題を解決するためになされたものであり、鋼中析出物及び/又は介在物が電解液中で分解されることなく安定に抽出分離可能な抽出分析用の電解液及び電解抽出方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、電解抽出分離法に使用する電解液中のアセチルアセトンに着目し、アセチルアセトンを低濃度化することにより、化学的に不安定である析出物又は介在物も含め、全ての抽出された析出物及び/又は介在物の電解液への化学溶解を緩和し、析出物及び/又は介在物の定量値が増加することを見出した。
【0008】
本発明は、上記のような知見に基づいてなされたものであり、以下のような構成を有する。
【0009】
[1]アルコールを溶媒とし、アセチルアセトンを0.2〜0.4v/v%、テトラメチルアンモニウムクロライド0.5〜2w/v%を含有することを特徴とする鋼中析出物及び/又は介在物の抽出分析用電解液。
【0010】
[2]上記[1]に記載の鋼中析出物及び/又は介在物の抽出分析用電解液を用いて鋼中析出物及び/又は介在物を電解抽出することを特徴とする鋼中析出物及び/又は介在物の電解抽出方法。
【0011】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0012】
本発明の鋼中析出物及び/又は介在物の抽出分析用電解液は、(1)鉄イオンと錯体化可能な有機化合物(以下有機化合物と称す)と、(2)支持電解質と、(3)非水溶媒とを含むものとする。そして、それぞれ、(1)としてはアセチルアセトン、(2)としてはテトラメチルアンモニウムクロライド、および(3)としてはアルコ−ルを用いるものとする。
本発明の電解抽出方法では、まず、鉄イオンが有機化合物と錯体を形成し、鉄イオンと鋼中の析出物及び/又は介在物が分離する。そして、錯体化した鉄イオンは電解液中に溶解し、一方、分離した析出物及び/又は介在物は抽出される。
そこで、上記現象を元に不安定な析出物及び/又は介在物も含めて安定に抽出分離するために抽出分析用の電解液について検討を行った。その結果、化学的な安定性を問わず、全ての析出物及び/又は介在物を抽出するには、鉄イオンを直ちに有機化合物と錯体化させ、電解液中(非水溶媒)に溶解させると同時に、有機化合物に析出物及び/又は介在物が溶解しないことが重要であることがわかった。すなわち、鉄イオンが錯体化するのに十分な有機化合物がなければ、鋼中の析出物及び/又は介在物が鉄イオンと分離しずらくなり、定量値が下がる。一方では、有機化合物が必要以上に存在すると、鋼中の析出物及び/又は介在物が溶解して定量値が下がることがわかった。
さらに、有機化合物としては、電解液の調製が容易であること、電解液が安全であることなどが挙げられ、これらの性質が良好なものが選ばれる。
そこで、有機化合物に対する鉄の溶解度の関係と、各抽出元素(鋼中の析出物及び/又は介在物)の有機化合物に対する溶解度の関係について調べた。その結果、鉄イオンと錯体化可能な有機化合物として、アセチルアセトンを用い、その濃度を0.2〜0.4v/v%の低濃度で使用することで鉄は有機化合物と十分に錯体化し、さらに鋼中の析出物及び/又は介在物は溶解せずに抽出されることがわかった。アセチルアセトンの濃度が0.2v/v%未満では鉄が十分に有機化合物に溶解せず錯体化されない。一方、0.4v/v%を超えるとアセチルアセトンに鋼中の析出物及び/又は介在物が溶解し抽出量が減少する。
また、本発明の鋼中の析出物及び/又は介在物の抽出分析用電解液には、前記のとおり、第二成分として、支持電解質を含むものとする。支持電解質を用いる理由は、電解液の通電を可能とするためである。すなわち、電解液は、その第一成分である錯体化可能な有機化合物(本発明の場合はアセチルアセトン)を非水溶媒に溶解しただけでは通電しないので、通電を可能とするために、第二成分として非水溶媒に溶解する支持電解質を含むものとする。
支持電解質としては、ハロゲン化第四級アルキルアンモニウム類が従来より使用されている。前記ハロゲン化第四級アルキルアンモニウム類におけるアルキル基は、例えば、メチル基、エチル基、プロピル基、又はブチル基であり、ハロゲンは、例えば塩素原子又は臭素原子であり、これらを組み合わせたハロゲン化第四級アルキルアンモニウム類が、従来から使用されている。
本発明の抽出分析用電解液では、効率よく電解を行うために、支持電解質として、テトラメチルアンモニウムクロライド(アルキル基がメチル基であり、ハロゲンが塩素原子であるハロゲン化第四級アルキルアンモニウム)を使用することとする。テトラメチルアンモニウムクロライドは、非水溶媒、例えば、メタノールに対する溶解度が高く、電解液の液抵抗を下げる効果が最も優れている。本発明において抽出分析用電解液に含有されるテトラメチルアンモニウムクロライドは0.5〜2w/v%とする。0.5w/v%未満及び2w/v%超えでは十分な電流効率が得られない。
前記非水溶媒としては、電解を円滑にすすめ、しかも有機化合物と支持電解質とを溶解する化合物であればよく、例えば、メタノール、エタノール、又はイソプロピルアルコール等の低級アルコールが上げられる。この中で、本発明の非水溶媒としてはメタノールを使用することが好ましい。これは、メタノールが、その他の前記低級アルコールに比べてアセチルアセトンと鉄イオンの錯体を最も良く溶解するからである。
本発明の鋼中析出物及び/又は介在物抽出分析用の電解液は上記成分を調製することにより得られる。
この時、本発明の抽出分析用電解液を調製する際に使用するアセチルアセトン、テトラメチルアンモニウムクロライド、及びアルコ−ルは、通常市販の試薬グレードのものを使用することができ、できるだけ純度の高いものを使用することが好ましい。特に水分や結晶水を多量に含む場合は、事前に乾燥しておく必要がある。例えば、アセチルアセトンとしては純度99.5%以上、テトラメチルアンモニウムクロライドとしては純度96%以上、そして、アルコ−ルとしては純度99.5%以上のものを用いることが好ましい。また、アセチルアセトン、テトラメチルアンモニウムクロライド、及びアルコ−ルを調合する順番又は方法は、特に限定されるものではなく、常法により調合することができる。
また、本発明の電解液には、本発明の効果を奏しない範囲で、例えば、無水マレイン酸等を含有してもよい。
次に、上記により得られた本発明の鋼中析出物及び/又は介在物抽出分析用の電解液を用いて、鋼中析出物及び/又は介在物の電解抽出する、鋼中析出物及び/又は介在物の電解抽出方法について説明する。
本発明の電解抽出方法は、抽出分析用電解液として本発明の抽出分析用電解液を使用し、鉄鋼材料を陽極にし、電流密度5〜50mA/cm で定電流電解すること以外は、従来公知の電解抽出方法と同様にして実施することができる。例えば、ガラス製電解槽に、本発明の抽出分析用電解液を入れ、鉄鋼材料を陽極とし、適当な金属(例えば、白金)を陰極として、前記範囲内の電流密度で定電流電解を実施することにより、前記鉄鋼材料の鉄マトリックスを除去し、鋼中の析出物及び/又は介在物を抽出分離することができる。
本発明の電解抽出方法における電解時の電流密度は、5〜50mA/cmとし、さらには、15〜30mA/cmであることが好ましい。電解時の電流密度が5mA/cm 未満の場合には、電解速度が著しく遅くなり、実用的でない。一方、電流密度が50mA/cm を越えると、電解後の鉄鋼試料表面に黒い付着物が現れる。これは(電解液中のアセチルアセトン濃度が低いため)錯体生成速度が小さいことに起因すると考えられるが、詳細は不明である。さらに、電流密度が高くなると、電解液の温度が上昇し、安全上好ましくない。
電解方式には、定電位電解と定電流電解とがあるが、本発明の電解抽出方法では、定電流電解用いることとする。定電位電解を行う際には、基準電極との電位差を監視するために、参照電極を鉄鋼材料近傍に設置する必要がある。しかながら、電解が進行するに従って、正しく電位差を監視することができなくなり、参照電極先端を中心に付着物が生成して、結果的に電解が妨げられる。それに対して、定電流電解では参照電極を使用する必要がないため、定電位電解でみられるような前記問題は生じない。更に、電解装置の装置構成が複雑でなく、装置の組み立ても容易であるという利点がある。
本発明の電解抽出方法においては、電解を実施する前に、使用する抽出分析用電解液中の溶存酸素量を、常法により低減させておくことが好ましい。例えば、電解を実施する前に、予め、不活性ガス(例えば、窒素ガス又はアルゴンガス)を抽出分析用電解液中に通気することにより、前記抽出分析用電解液中の溶存酸素量を低減させることができる。
【0013】
また、本発明の電解抽出方法においては、使用する鉄鋼材料の表面に付着している油分や汚れを事前に除去する目的で、常法により鉄鋼材料の前処理を行うことが好ましい。前記前処理としては、例えば、研磨、超音波洗浄、脱脂、又は予備電解などを挙げることができる。更に、電解途中においては、抽出分析用電解液中に水分や酸素ガスなどが混入することを防ぐ目的から、不活性ガス(例えば、窒素ガス又はアルゴンガス)で抽出分析用電解液をパージしておくことが好ましい。前記パージ方法としては、例えば、電解液中には不活性ガスを通気しておく方法などを挙げることができる。
【0014】
【実施例】
(実施例1)
表1に示す成分からなる、析出物が化学的に不安定とされる高張力鋼板の鋳片を35mm×25mm×2mmに切り出し供試材として用いた。この供試材を、アセチルアセトン濃度を0.2v/v%〜10v/v%(0.2、0.3、0.5、0.75、1、2、4、6、8、10v/v%)と変化させたAA系電解液(アセチルアセトン、テトラメチルアンモニウムクロライド1w/v%、メタノールからなる)300mlにて、それぞれ0.1gずつを電流密度20mA/cmで定電流電解した。次いで、主な析出物形成元素について定量した。結果を図1に示す。ここで、析出物形成元素について濃度はICPにより測定した。図1より、電解液中のアセチルアセトン濃度が低くなるにつれて定量値が高くなり、アセチルアセトン濃度が0.4v/v%以下で全ての元素の定量値が高くなっていることがわかる。これは電解液中のアセチルアセトンの濃度を低くしたことで、電解液への抽出残渣の溶解が緩和されたためと考えられる。
【0015】
【表1】

Figure 2004301605
【0016】
(実施例2)
アセチルアセトン濃度10v/v%のAA系電解液およびアセチルアセトン濃度0.2v/v%AA系電解液300mlにて、上記実施例1と同様の供試材0.1gずつを電流密度20mA/cmで定電流電解した。次いで、析出物抽出残渣中に含まれる物質をX線回折によって同定した。得られた結果を図2に示す。図2より、アセチルアセトン濃度が0.2v/v%の場合については、従来のアセチルアセトン濃度10v/v%の場合と同様の物質が同定されていることがわかる。さらに、従来のアセチルアセトン濃度10v/v%の場合と比較して定量値が高くなっていることがわかる。これは、鉄マトリックスの溶解不足による母材の巻き込みや、沈殿の発生などが起きず、抽出残渣の電解液への溶解を緩和し、鋼中析出物及び/又は介在物を分解することなく安定に抽出分離することができることを示している。
【0017】
【発明の効果】
以上、本発明によれば、抽出残渣の電解液への溶解を緩和し、鋼中析出物及び/又は介在物を分解することなく安定に抽出分離することができる。さらに、鉄鋼最良の鉄マトリックスを除去して、鋼中の析出物及び/又は介在物を抽出分離することができるので、抽出分離された析出物及び/又は介在物は、例えば析出物形成元素の定量や、組成の観察に用いることができる。
【図面の簡単な説明】
【図1】電解液中アセチルアセトン濃度と鋼中析出物抽出濃度との関係を示す図である。
【図2】析出物抽出残渣のX線回折の結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolytic solution for extracting and analyzing precipitates and / or inclusions in steel and a method for electrolytically extracting precipitates and / or inclusions in steel using the same.
[0002]
[Prior art]
Precipitates (precipitates such as carbides, nitrides or sulfides) or inclusions (inclusions such as oxides) existing in the steel material depend on the form, chemical composition, particle size and amount of the steel material. Significant effect on quality characteristics. Therefore, grasping the amount of the precipitates and / or inclusions is a very important item in controlling the shipping of steel products, evaluating the quality characteristics, or analyzing the steel process.
In order to quantify the precipitates or inclusions, the precipitates and / or inclusions must be extracted and separated from the iron matrix in the steel material. With the recent advances in refining and heat treatment technologies, the types of precipitates and inclusions contained in steel materials have been diversified, and furthermore, trace amounts have been reduced with the improvement in cleanliness of steel materials. Therefore, the method of extracting and separating precipitates and inclusions is required to quantitatively extract and separate precipitates and inclusions of various chemical compositions without decomposing them and still exist in the steel material. Have been.
[0003]
As a method for quantitatively extracting the precipitates or inclusions, there is a method of performing electrolysis in a non-aqueous solvent. In this method, a non-aqueous solvent-based electrolytic solution using an alcohol containing a supporting electrolyte such as lithium chloride or tetramethylammonium chloride as a solvent is used. As typical electrolytes, for example, 10% acetylacetone-1% tetramethylammonium chloride-methanol (hereinafter referred to as 10% AA electrolyte), 4% methyl salicylate-1% salicylic acid-1% tetramethylammonium chloride-methanol (MS Non-Patent Document 1 describes 10% maleic anhydride-2% tetramethylammonium chloride-methanol (MA-based electrolyte), among which 10% AA-based electrolyte is generally used. Widely used.
[0004]
[Non-patent document 1]
Iron and steel, 1990, 76, 483
[0005]
[Problems to be solved by the invention]
However, in the method of performing electrolysis in a non-aqueous solvent using the electrolytic bath, depending on the type of steel, the steel is chemically unstable, and there are precipitates or inclusions dissolved in the electrolytic solution. In addition, since these unstable precipitates or inclusions are chemically dissolved in the electrolytic solution during the extraction operation, there is a problem that it cannot be quantitatively extracted and separated.
[0006]
The present invention has been made in order to solve the above-described problems, and has been made to solve the problems described above, and it is possible to stably extract and separate the precipitates and / or inclusions in steel without being decomposed in the electrolytic solution. The present invention provides a liquid and an electrolytic extraction method.
[0007]
[Means for Solving the Problems]
The present inventors focused on acetylacetone in the electrolytic solution used in the electrolytic extraction separation method, and by lowering the concentration of acetylacetone, all the extracted substances including precipitates or inclusions that are chemically unstable were removed. It has been found that the chemical dissolution of the precipitates and / or inclusions in the electrolytic solution is reduced, and the quantitative value of the precipitates and / or inclusions increases.
[0008]
The present invention has been made based on the above findings, and has the following configuration.
[0009]
[1] Precipitates and / or inclusions in steel characterized by containing 0.2 to 0.4 v / v% of acetylacetone and 0.5 to 2 w / v% of tetramethylammonium chloride using alcohol as a solvent. Extraction analysis electrolyte.
[0010]
[2] A precipitate in steel, wherein the precipitate and / or inclusion in steel is electrolytically extracted using the electrolytic solution for extraction analysis of precipitates and / or inclusions in steel according to [1]. And / or a method for electrolytic extraction of inclusions.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0012]
The electrolytic solution for extraction analysis of precipitates and / or inclusions in steel of the present invention comprises (1) an organic compound capable of complexing with iron ions (hereinafter referred to as an organic compound), (2) a supporting electrolyte, and (3) a supporting electrolyte. ) Non-aqueous solvents. Then, acetylacetone is used as (1), tetramethylammonium chloride is used as (2), and alcohol is used as (3), respectively.
In the electrolytic extraction method of the present invention, first, iron ions form a complex with an organic compound, and iron ions and precipitates and / or inclusions in steel are separated. Then, the complexed iron ions dissolve in the electrolytic solution, while the separated precipitates and / or inclusions are extracted.
Therefore, based on the above phenomenon, an electrolytic solution for extraction analysis was studied in order to stably extract and separate, including unstable precipitates and / or inclusions. As a result, regardless of chemical stability, to extract all precipitates and / or inclusions, iron ions are immediately complexed with an organic compound and dissolved in an electrolyte (non-aqueous solvent). At the same time, it has been found that it is important that the precipitates and / or inclusions do not dissolve in the organic compound. That is, if there is not enough organic compound to complex iron ions, precipitates and / or inclusions in the steel are difficult to separate from iron ions, and the quantitative value is reduced. On the other hand, it was found that when the organic compound was present more than necessary, the precipitates and / or inclusions in the steel were dissolved and the quantitative value was reduced.
Further, examples of the organic compound include that the preparation of the electrolytic solution is easy and that the electrolytic solution is safe. Those having good properties are selected.
Therefore, the relationship between the solubility of iron in organic compounds and the relationship between the solubility of each extracted element (precipitates and / or inclusions in steel) in organic compounds was examined. As a result, acetylacetone is used as the organic compound capable of complexing with iron ions, and iron is sufficiently complexed with the organic compound by using the acetylacetone at a low concentration of 0.2 to 0.4 v / v%. It was found that precipitates and / or inclusions in the steel were extracted without dissolving. When the concentration of acetylacetone is less than 0.2 v / v%, iron does not sufficiently dissolve in the organic compound and is not complexed. On the other hand, if it exceeds 0.4 v / v%, precipitates and / or inclusions in the steel are dissolved in acetylacetone, and the extraction amount is reduced.
As described above, the electrolyte for extraction analysis of precipitates and / or inclusions in steel of the present invention contains a supporting electrolyte as the second component. The reason for using the supporting electrolyte is to enable the flow of the electrolytic solution. That is, the electrolytic solution does not energize only by dissolving the complexable organic compound (acetylacetone in the case of the present invention) as the first component in a non-aqueous solvent. As a supporting electrolyte dissolved in a non-aqueous solvent.
As the supporting electrolyte, quaternary alkyl ammonium halides have been conventionally used. The alkyl group in the quaternary alkyl ammonium halides is, for example, a methyl group, an ethyl group, a propyl group, or a butyl group; the halogen is, for example, a chlorine atom or a bromine atom; Quaternary alkyl ammoniums have been used in the past.
In the electrolytic solution for extraction analysis of the present invention, tetramethylammonium chloride (a quaternary alkylammonium halide in which the alkyl group is a methyl group and the halogen is a chlorine atom) is used as a supporting electrolyte for efficient electrolysis. Shall be used. Tetramethylammonium chloride has a high solubility in a non-aqueous solvent, for example, methanol, and is most excellent in reducing the liquid resistance of the electrolytic solution. In the present invention, the amount of tetramethylammonium chloride contained in the electrolytic solution for extraction analysis is 0.5 to 2 w / v%. If it is less than 0.5 w / v% or more than 2 w / v%, sufficient current efficiency cannot be obtained.
The non-aqueous solvent may be any compound that facilitates electrolysis and that dissolves the organic compound and the supporting electrolyte. Examples of the non-aqueous solvent include lower alcohols such as methanol, ethanol, and isopropyl alcohol. Among them, it is preferable to use methanol as the non-aqueous solvent of the present invention. This is because methanol dissolves the complex of acetylacetone and iron ions better than the other lower alcohols.
The electrolytic solution for the analysis of precipitates and / or inclusions in steel of the present invention can be obtained by preparing the above components.
At this time, acetylacetone, tetramethylammonium chloride, and alcohol used when preparing the electrolytic solution for extraction analysis of the present invention can be those of a commercially available reagent grade, which is as pure as possible. It is preferred to use In particular, when a large amount of water or water of crystallization is contained, it is necessary to dry in advance. For example, it is preferable to use acetylacetone having a purity of 99.5% or more, tetramethylammonium chloride having a purity of 96% or more, and alcohol having a purity of 99.5% or more. The order or method of preparing acetylacetone, tetramethylammonium chloride and alcohol is not particularly limited, and can be prepared by a conventional method.
Further, the electrolytic solution of the present invention may contain, for example, maleic anhydride or the like as long as the effects of the present invention are not exerted.
Next, the precipitates and / or inclusions in the steel are subjected to electrolytic extraction by using the electrolytic solution for the analysis of precipitates and / or inclusions in the steel of the present invention obtained as described above. Alternatively, a method for electrolytically extracting inclusions will be described.
The electrolytic extraction method of the present invention is the same as that of the electrolytic extraction method of the present invention except that the electrolytic solution for extraction analysis is used as an electrolyte for extraction analysis, a steel material is used as an anode, and a constant current electrolysis is performed at a current density of 5 to 50 mA / cm 2. It can be carried out in the same manner as a known electrolytic extraction method. For example, the electrolytic solution for extraction analysis of the present invention is placed in a glass electrolytic cell, and a constant current electrolysis is performed at a current density within the above range using a steel material as an anode and an appropriate metal (for example, platinum) as a cathode. This makes it possible to remove the iron matrix of the steel material and extract and separate precipitates and / or inclusions in the steel.
The current density at the time of electrolysis in the electrolytic extraction method of the present invention is 5 to 50 mA / cm 2, and more preferably 15 to 30 mA / cm 2 . When the current density at the time of electrolysis is less than 5 mA / cm 2 , the electrolysis speed becomes extremely slow, which is not practical. On the other hand, when the current density exceeds 50 mA / cm 2 , black deposits appear on the surface of the steel sample after electrolysis. This may be due to the low rate of complex formation (because the acetylacetone concentration in the electrolyte is low), but the details are unknown. Furthermore, when the current density is high, the temperature of the electrolytic solution rises, which is not preferable for safety.
Electrolysis methods include constant potential electrolysis and constant current electrolysis. In the electrolytic extraction method of the present invention, constant current electrolysis is used. When performing constant potential electrolysis, it is necessary to install a reference electrode near a steel material in order to monitor a potential difference from a reference electrode. However, as the electrolysis proceeds, it becomes impossible to monitor the potential difference correctly, and deposits are formed around the tip of the reference electrode, thereby hindering the electrolysis. On the other hand, in the case of constant current electrolysis, it is not necessary to use a reference electrode, so that the above-mentioned problem which occurs in constant potential electrolysis does not occur. Furthermore, there is an advantage that the device configuration of the electrolysis device is not complicated, and the assembly of the device is easy.
In the electrolytic extraction method of the present invention, it is preferable to reduce the amount of dissolved oxygen in the electrolytic solution for extraction analysis to be used by an ordinary method before performing the electrolysis. For example, before carrying out electrolysis, an inert gas (for example, nitrogen gas or argon gas) is previously passed through the electrolytic solution for extraction analysis to reduce the amount of dissolved oxygen in the electrolytic solution for extraction analysis. be able to.
[0013]
Further, in the electrolytic extraction method of the present invention, it is preferable to perform a pretreatment of the steel material by an ordinary method in order to remove oil and dirt attached to the surface of the steel material to be used in advance. Examples of the pretreatment include polishing, ultrasonic cleaning, degreasing, and preliminary electrolysis. Further, during the electrolysis, the electrolyte for extraction analysis is purged with an inert gas (for example, nitrogen gas or argon gas) for the purpose of preventing water or oxygen gas from being mixed into the electrolyte for extraction analysis. Preferably. Examples of the purging method include a method in which an inert gas is passed through the electrolyte.
[0014]
【Example】
(Example 1)
A slab of a high-strength steel sheet whose components are shown in Table 1 and whose precipitates are chemically unstable was cut into 35 mm × 25 mm × 2 mm and used as a test material. This test material was prepared by adjusting the acetylacetone concentration to 0.2 v / v% to 10 v / v% (0.2, 0.3, 0.5, 0.75, 1, 2, 4, 6, 8, 10 v / v%). %) And 300 ml of an AA-based electrolytic solution (composed of acetylacetone, tetramethylammonium chloride 1 w / v%, and methanol), each of which was 0.1 g in a constant current electrolysis at a current density of 20 mA / cm 2 . Next, the main precipitate forming elements were quantified. The results are shown in FIG. Here, the concentration of the precipitate forming element was measured by ICP. FIG. 1 shows that the quantitative value increases as the acetylacetone concentration in the electrolytic solution decreases, and that the quantitative value of all elements increases when the acetylacetone concentration is 0.4 v / v% or less. This is probably because the concentration of acetylacetone in the electrolyte was reduced, so that the dissolution of the extraction residue in the electrolyte was eased.
[0015]
[Table 1]
Figure 2004301605
[0016]
(Example 2)
In an AA-based electrolyte having an acetylacetone concentration of 10 v / v% and an AA-based electrolyte having an acetylacetone concentration of 0.2 v / v%, 300 g of the same test material as in Example 1 was applied at a current density of 20 mA / cm 2 . Constant current electrolysis was performed. Next, the substance contained in the precipitate extraction residue was identified by X-ray diffraction. FIG. 2 shows the obtained results. From FIG. 2, it can be seen that when the acetylacetone concentration is 0.2 v / v%, the same substances as those in the case of the conventional acetylacetone concentration of 10 v / v% are identified. Furthermore, it turns out that the quantitative value is higher than that in the case of the conventional acetylacetone concentration of 10 v / v%. This is because the base material is not entangled by the insufficient dissolution of the iron matrix or precipitation does not occur, the dissolution of the extraction residue in the electrolyte solution is eased, and the precipitation residue and / or inclusions in the steel are stable without being decomposed. It can be extracted and separated.
[0017]
【The invention's effect】
As described above, according to the present invention, the dissolution of the extraction residue in the electrolytic solution is moderated, and the precipitate and / or inclusions in the steel can be stably extracted and separated without decomposing. Furthermore, since the best iron matrix in the steel can be removed and the precipitates and / or inclusions in the steel can be extracted and separated, the extracted and separated precipitates and / or inclusions are, for example, the precipitate forming elements. It can be used for quantitative determination and composition observation.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the concentration of acetylacetone in an electrolytic solution and the concentration of precipitates extracted in steel.
FIG. 2 is a view showing a result of X-ray diffraction of a precipitate extraction residue.

Claims (2)

アルコールを溶媒とし、アセチルアセトンを0.2〜0.4v/v%、テトラメチルアンモニウムクロライド0.5〜2w/v%を含有することを特徴とする鋼中析出物及び/又は介在物の抽出分析用電解液。Extraction analysis of precipitates and / or inclusions in steel characterized by containing 0.2 to 0.4 v / v% of acetylacetone and 0.5 to 2 w / v% of tetramethylammonium chloride using alcohol as a solvent. Electrolyte. 請求項1に記載の鋼中析出物及び/又は介在物の抽出分析用電解液を用いて鋼中析出物及び/又は介在物を電解抽出することを特徴とする鋼中析出物及び/又は介在物の電解抽出方法。A precipitate and / or inclusion in steel, wherein the precipitate and / or inclusion in steel are electrolytically extracted using the electrolytic solution for extracting and analyzing precipitate and / or inclusion in steel according to claim 1. Method for electrolytic extraction of substances.
JP2003093911A 2003-03-31 2003-03-31 Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same Expired - Fee Related JP4103661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003093911A JP4103661B2 (en) 2003-03-31 2003-03-31 Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003093911A JP4103661B2 (en) 2003-03-31 2003-03-31 Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same

Publications (2)

Publication Number Publication Date
JP2004301605A true JP2004301605A (en) 2004-10-28
JP4103661B2 JP4103661B2 (en) 2008-06-18

Family

ID=33406593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003093911A Expired - Fee Related JP4103661B2 (en) 2003-03-31 2003-03-31 Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same

Country Status (1)

Country Link
JP (1) JP4103661B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201159A (en) * 2004-12-21 2006-08-03 Mitsubishi Materials Corp Method of analyzing quality of nonferrous metal and manufacturing method of the same
JP2010145157A (en) * 2008-12-17 2010-07-01 Jfe Steel Corp Method for analysis of deposit and/or enclosure in metal sample
CN101556225B (en) * 2009-05-22 2011-06-08 北京科技大学 Method adopting neutral salt electrolyte to electrolytically extract tiny impurities from steel
TWI475225B (en) * 2014-01-24 2015-03-01 China Steel Corp Method of evaluating ductility of steel
JP2020148696A (en) * 2019-03-15 2020-09-17 Jfeスチール株式会社 Collection method of inclusions and/or deposits in metal sample, analysis method of inclusions and/or deposits in metal samples, and electrolytic solution
CN114199169A (en) * 2021-12-20 2022-03-18 北京科技大学 Original appearance analysis method for separating TiN inclusions in IF steel through electrolysis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201159A (en) * 2004-12-21 2006-08-03 Mitsubishi Materials Corp Method of analyzing quality of nonferrous metal and manufacturing method of the same
JP4697429B2 (en) * 2004-12-21 2011-06-08 三菱マテリアル株式会社 Non-ferrous metal quality analysis method and manufacturing method thereof
JP2010145157A (en) * 2008-12-17 2010-07-01 Jfe Steel Corp Method for analysis of deposit and/or enclosure in metal sample
CN101556225B (en) * 2009-05-22 2011-06-08 北京科技大学 Method adopting neutral salt electrolyte to electrolytically extract tiny impurities from steel
TWI475225B (en) * 2014-01-24 2015-03-01 China Steel Corp Method of evaluating ductility of steel
JP2020148696A (en) * 2019-03-15 2020-09-17 Jfeスチール株式会社 Collection method of inclusions and/or deposits in metal sample, analysis method of inclusions and/or deposits in metal samples, and electrolytic solution
CN114199169A (en) * 2021-12-20 2022-03-18 北京科技大学 Original appearance analysis method for separating TiN inclusions in IF steel through electrolysis

Also Published As

Publication number Publication date
JP4103661B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
Saïla et al. Electrochemical behaviour of dysprosium (III) in LiF–CaF2 on Mo, Ni and Cu electrodes
RU2698004C1 (en) Device for electrolytic etching and dissolution and a method for extracting particles of a metallic compound
CN102933495B (en) Method for recovering gold by solvent extraction
EP3418712B1 (en) Method for extracting metal compound particles, method for analyzing metal compound particles, and the use of the electrolyte solution for extracting metal compound particles present in a metal material
Zhou et al. Electroreduction of Gd3+ on W and Zn electrodes in LiCl–KCl eutectic: a comparison study
Li et al. Electro-deposition behavior in methanesulfonic-acid-based lead electro-refining
JP4103661B2 (en) Electrolytic solution for extraction analysis of precipitates and / or inclusions in steel, and method for electrolytic extraction of precipitates and / or inclusions in steel using the same
Pournaghi-Azar et al. Differential pulse anodic stripping voltammetry of copper in dichloromethane: application to the analysis of human hair
JP6897532B2 (en) Electrolytic solution for extracting metal compound particles, and electrolytic extraction method using it
Stankovic et al. Determination of Pb and Cd in water by potentiometric stripping analysis (PSA)
JP7020447B2 (en) A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
JP3454171B2 (en) Non-aqueous solvent electrolyte for extracting inclusions or precipitates in steel samples and method for electrolytic extraction of steel samples
JP2019039710A (en) Extraction method of carbide and/or nitride in metal material, analysis method of the carbide and/or nitride, analysis method of quantity of solid solution carbon and/or quantity of solid solution nitrogen in the metal material, and electrolytic solution used therefor
Kan et al. Electrochemical deposition of aluminum on W electrode from AlCl3-NaCl melts
CN113466271B (en) Method for accurately determining type, morphology and elemental composition of intermetallic compounds in steel
JP3984431B2 (en) Electrolyte composition for steel materials and method for analyzing inclusions or precipitates thereby
Ding et al. Electrochemical co-deposition of Ti n+ phases with gold in ionic liquids
Herzog et al. Effect of humic acid on the underpotential deposition-stripping voltammetry of copper in acetic acid soil extract solutions at mercaptoacetic acid-modified gold electrodes
Pournaghi‐Azar et al. Selective Determination of Trace Copper by Extraction‐Anodic Stripping Voltammetry of Copper (II) Acetylacetonate in Nonaqueous Media
Peerzada et al. Determination of selenium (IV) in biological sample by cathodic stripping voltammetry
Sousa et al. Scanning electrochemical microscopy: study of the deposition and stripping mechanism of lead in the presence of copper
JP2009019956A (en) Analyzing method of precipitate and/or inclusion in metal sample
Kuznetsov et al. Chronoamperometric studies in an ammonia citrate electrolyte for the deposition of a nickel-molybdenum alloy
RU2522905C1 (en) Method of rare-earth elements extraction from liquid alloys with zinc
Hayakawa et al. Studies on the Controlled Potential Electrolysis.(IX): Electrolytic Separation of Copper from Bismuth by the Use of Ethylenediaminetetraacetic Acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees