JP2006197635A - Rfレシーバ - Google Patents

Rfレシーバ Download PDF

Info

Publication number
JP2006197635A
JP2006197635A JP2006045800A JP2006045800A JP2006197635A JP 2006197635 A JP2006197635 A JP 2006197635A JP 2006045800 A JP2006045800 A JP 2006045800A JP 2006045800 A JP2006045800 A JP 2006045800A JP 2006197635 A JP2006197635 A JP 2006197635A
Authority
JP
Japan
Prior art keywords
signal
receiver
frequency
oscillator
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006045800A
Other languages
English (en)
Other versions
JP3916649B2 (ja
Inventor
Thomas E Mcewan
マッキーワン,トーマス,イー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of JP2006197635A publication Critical patent/JP2006197635A/ja
Application granted granted Critical
Publication of JP3916649B2 publication Critical patent/JP3916649B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D11/00Super-regenerative demodulator circuits
    • H03D11/02Super-regenerative demodulator circuits for amplitude-modulated oscillations
    • H03D11/04Super-regenerative demodulator circuits for amplitude-modulated oscillations by means of semiconductor devices having more than two electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/30Circuits for homodyne or synchrodyne receivers

Abstract

【課題】超再生のレシーバに関連した問題を取り扱い、当該問題への適切な解法を与える新規なRFレシーバを提供する。
【解決手段】RF信号を受信するための受信アンテナと、マイクロパワーRF増幅器とを有するRFレシーバは、受信アンテナに接続され、1又は2以上の所望の同調周波数を決定するための周波数選択ネットワークと、周波数選択ネットワークに接続されるとともに、平均インピーダンスを有しており、RF信号を周期的にサンプリングして、RF信号のサンプル化されたレプリカを得るためのサンプリング混合器とを備える。
【選択図】 図1

Description

本発明は、一般に、ラジオ無線周波数(RF)トランスポンダーに関する。より詳細には、本発明は、遠隔制御システムの無線レシーバとして及び遠隔インタロゲーテッド(interrogated)RFトランスポンダーとしての使用に適合できる新規な超再生マイクロパワーRFレシーバに関する。
超再生タイプのラジオ無線レシーバは、一般に、高周波数で低パワーのラジオ無線信号の受信器で使用され、このラジオ無線信号の受信器は、構造の小型サイズ、容易性、及び経済性のため自動車のガレージドアの開放装置、ポータブル電話、遠隔計器読取システム等において典型的に使用され得るようなものである。超再生レシーバの多くの製造業者は非常に低パワーの消費ユニットを設計することを目指すとともに、これらのユニットを低コストで大量生産することを目指している。典型的に、ラジオ無線レシーバの全体の回路は、アンテナに加え1つ又はいくつかの誘導素子を含み、単一の回路基板に収容される。この産業分野で従来提案され且つ使用されてきた各種の様式及びタイプの超再生のラジオ無線レシーバは、特にレシーバの固有パワーの消費が制限されるため、各種の程度の成功を経験してきた。
超再生のレシーバあるいは検出器は、オシレータがラジオ無線周波数より低い率で発振状態と非発振状態との間で自動的に切り換えられる超再生の回路である。切換周波数は、抑制周波数(quenching frequency)と呼ばれる。検出されるべき信号電圧は、フィードバックループに接続され、このフィードバックループは、発振を生じるトランジスタ増幅器に接続されている。
印加電圧が存在しない場合、抑制電圧(quench voltage)の各サイクル間に増加する発振は、入力回路内のノイズ電圧により決定される初期振幅で始まり、発振についての平衡値に対応する最終値に到達する。これらの発振は、それから、抑制電圧が発振状態を阻止すると、衰える。
より詳細には、従来の超再生のレシーバは、典型的に、アンテナと、該アンテナで受信される入力信号に応答する超再生の検出器と、を含む。従来の超再生のレシーバは、更に、受信信号を増幅するバッファ増幅器と、抑制オシレータ(quench oscillator)と、ローパスフィルタと、を含む。抑制オシレータは、また、検出器として作動し、抑制オシレータの出力は、ローパスフィルタを介して低周波信号として得られる。この低周波信号は、低周波増幅器及びバンドパスフィルタを介して信号レベル検出器に供給される。結果として生じる低周波信号が所与のレベルより高いときには、信号レベル検出器は、信号がレシーバに導入された旨の指示を与える。
従来の抑制オシレータは、一般に、1つのトランジスタを含み、次のように動作する。トランジスタが導通状態から非導通状態への遷移状態であると、トランジスタのコレクタ電圧は、充填時間定数に従って徐々に増加する。トランジスタの変化するコレクタ電圧は、コンデンサを介して当該トランジスタのエミッタに供給される。もしコレクタ電圧が最大値に到達すると、すなわち、もし抑制オシレータの発振インダクタを介して流れる電流が最小値に減少させられると、トランジスタのベースにはバイアス電圧が供給され、発振インダクタにより生じさせられる逆起電力のために、トランジスタを導通状態にする。従って、トランジスタは、急激に導通状態になる。
トランジスタがひとたび導通状態になると、発振インダクタは、逆起電力によりトランジスタを非導通状態にし、トランジスタのコレクタ電圧は、徐々に上昇する。このように、トランジスタは、導通状態と非導通状態との間で繰返して切り換えられ、発振を開始するようにする。このような切換に応答して、同調回路は、電圧及び電流に過渡的変化を生ずる。これらの状況下で、バッファ増幅器の出力は、同調回路に印加され、ある種の混合動作を実行する。この混合動作から生ずる変調信号は、ローパスフィルタに供給される。
現存する超再生のレシーバに改良を加える継続的な発展が試みられている。このような超再生のレシーバの例及びこれらのレシーバの発展の傾向は、次の特許に示されており、これらの全ての特許が参考としてここで含まれる:
US 特許No 特許権者 発行日
US 3,883,809 バー プランク その他(Ver Planch et al.) 1975. 5.13
US 4,143,324 デービス(Davis) 1979. 3. 6
US 4,307,465 ゲラー(Geller) 1981.12.22
US 4,393,514 ミナクチ(Minakuchi) 1983. 7.12
US 4,455,682 マスターズ(Masters) 1984. 6.19
US 4,749,964 アシュ(Ash) 1988. 6. 7
US 4,786,903 グリンダール その他(Grindahl et al.) 1988.11.22
US 5,029,271 マイアーディルク(Meierdierck) 1991. 7. 2
バープランク その他の特許は、“超再生の混合器及び増幅器”と題するものであり、トンネルダイオードを含む超再生の回路を記載する。このトンネルダイオードは、ラジオ無線周波数の入力信号を増幅し、該入力信号を局所発振と混合して中間周波数出力を与えるように動作する。局所発振は、トンネルダイオードに印加される抑制周波数の発振の調波であり、超再生を生じる。
デービスの特許は、“トランジスタ化された超再生のラジオ無線周波数の検出器”と題するものであり、バイアス回路もベースデカップルコンデンサも利用しないトランジスタ化された超再生のラジオ無線周波数の検出器を記載する。検出器は、自己抑制であり、従来の超再生の検出器の場合よりもかなり高い抑制周波数で動作する。
ゲラーの特許は、“デジタル通信レシーバ”と題するものであり、2進符号化連続波RF信号を受信して検出する受信装置を記載する。2進信号は、超再生の検出器で検出される。検出された信号及びDC基準電圧は、増幅器に印加され、この増幅器は、検出された信号に対応するが、DC基準電圧の軸のまわりで振幅が変化するようにシフトされた信号を生ずる。シフトされた信号及びDC基準電圧は、比較器に印加され、この比較器は、シフトされた信号がDC基準電圧より高いときに所定の電圧レベルの出力信号を生じ、シフトされた信号がDC基準電圧より低いときに0ボルトの出力信号を生じる。
ミナクチその他の特許は、“超再生のレシーバ”と題するものであり、受信された信号を低周波数の信号に変換する抑制オシレータを含む超再生のレシーバを記載する。抑制オシレータは、トランジスタと、正フィードバック回路と、RC時間定数回路と、を含む。ベース電圧とRC回路のRC時間定数とを含む発振条件を修正する回路が与えられる。
マスターズの特許は、超再生のラジオ無線レシーバと題するものであり、レシーバの周波数が所定の同調周波数からシフトするのを避けるように特に適合する超再生タイプのラジオ無線レシーバを記載する。レシーバは超再生のラジオ無線回路及び関連したアンテナを含み、この関連したアンテナは、回路基板に取り付けられ、ラジオ無線の伝送波に対して反射性を有する壁部を含む収容器に受け入れられている。ラジオ無線レシーバは、金属部品の近くに設置され、同調周波数を安定に保つように適合されている。
アシュの特許は、“フィードバック回路にソーデバイス(Saw Surface acoustic wave Device)を有する超再生の検出器”と題するものであり、単一のトランジスタを利用し、出力を入力に結合するフィードバックループに表面音響波(surface acoustic wave)装置を有し、発振を生じさせる超再生の検出器を記載する。
グリンダール その他の特許は、“遠隔インタロゲーテッド(Interrogated)トランスポンダー”と題するものであり、発振回路と、検出器と、復調器と、論理回路とを一般に含む遠隔インタロゲーテッドトランスポンダーを示す。発振回路は、コルピッツ発振器を含み、このコルピッツ発振器は、増幅トランジスタに容量的にフィードバックされた平行同調タンク負荷を含む。同調タンクは、短縮された半波長のマイクロストリップのセクションから構成される。外部抑制回路は、npnバイポーラ結合のスイッチングトランジスタを含む。このスイッチングトランジスタは、増幅トランジスタのソースに接続されている。外部抑制回路は、増幅トランジスタを周期的にターンオフして、同調されたバンク内の発振が止まるのを許容するように設けられている。
マイアーディルクの特許は“超再生の検出器”と題するものであり振幅のエンベロープ(この振幅のエンベロープに基づいて情報信号が伝えられる)を有する高周波の搬送波信号を受信する入力要素を含む改良された超再生の検出器を記載する。検出器は、また、第1及び第2の発振器と、情報信号に対応する出力信号を生ずる出力要素と、を含む。検出器は、出力要素の間でフィードバック部品の使用を特徴付ける。これらのフィードバック部品は、演算増幅器と、第1及び第2の発振器に接続された基準信号とを含み、演算増幅器の出力信号が、第1の増幅器を規定したトランジスタを抑制して当該増幅器のリニア部分で動作するように、使用されてもよい。
これらのタイプの超再生のレシーバは、一般に、簡単で比較的経済的である。しかしながら、これらのレシーバは、重大な不利な点に遭遇する。第一に、たとえ印加信号が存在しないとしても、これらのレシーバの多くは、連続的にターンオンされ、従って、比較的高いパワー消費を有し、これらは、レシーバの有用性を最小化するとともに、適用性を制限する。更に、発振回路が発振するために、共振周波数決定ネットワークに関連する損失は、発振トランジスタのパワー利得より低いべきである。しかしながら、低電流レベルでは、発振トランジスタから利用可能な利得は、共振周波数決定ネットワーク内での損失よりも小さく、再生動作は可能ではない。
従って、非常に低い電流レベルでの動作に適合できる新規なマイクロパワーRFレシーバについて、明確で且つなお満たされていない要求がある。
従って、本発明の目的は、従来の超再生のレシーバに関連した問題を取り扱い、当該問題への適切な解法を与える新規なRFレシーバを提供することにある。
本発明の他の目的は、非常に低い電流レベルでの動作に適合可能であり、非常に低いパワー消費を有する新規なRFレシーバを提供することにある。
本発明の更に他の目的は、遠隔制御システムの無線レシーバとして及び遠隔インタロゲーテッドRFレシーバとしての使用に適合可能である新規な超再生のマイクロパワーRFレシーバを提供することである。
本発明の更に他の目的は、自転車のガレージドアの開放装置、自動車、家庭、及び商業的なセキュリティシステムのキーレスエントリシステム、ポータブル且つコードレス電話、遠隔計器読取システム、遠隔測定器システム、ぺースメーカーのような医療移植、無線ドアベル及び炉のサーモスタットのような遠隔制御装置、ゴルフボールの追跡、雪崩の犠牲者の位置、及び、RFレシーバが延びた有用な電池寿命を有するのを要求する同様な適用での使用に適合できる新規なRFレシーバを提供することにある。
本発明の他の目的は、簡単で 低価格である新規なRFレシーバを提供することにある。
本発明の他の目的は、最小の誘導要素を含む新規なRFトランスポンダーを提供することにある。
簡潔に言えば、前記の及び別の目的は、新規なRFレシーバを提供することにより達成され、この新規なRFレシーバは所定の抑制周波数で一連のパルスを発生する外部抑制オシレータと、該抑制オシレータに接続されており、一連の周期的パルスを一連の指数的に減衰される駆動パルスに変換するパルス形成ネットワークと、を含む。オシレータは、これらの駆動パルスに接続されると共に、当該駆動パルスにより駆動され、アンテナは、変調されたRF信号を受信するために、オシレータに接続されている。
信号抽出ネットワークは、また、抑制周波数信号を阻止して検出されたRF信号を通過させるために、オシレータに接続されている。マイクロパワー増幅器は、検出されたRF信号を増幅するために、信号抽出ネットワークに接続されている。好適な実施例において、オシレータは、負極でのみ導通し、トランジスタで形成されるコルピッツオシレータである。入力カップリングネットワークは、アンテナとコルピッツオシレータとの間に接続されている。論理インターフェース及びデータ論理回路は、増幅されたRF信号を処理するために、マイクロパワー増幅器に接続されている。マイクロパワー増幅器は、自己安定増幅器を含み、この自己安定増幅器は、リニアモードで動作する1又は2以上のCMOSインバータと、パワー供給部とパワー供給ピンVDDとの間に接続されており、非常に低い電流レベルに増幅器を自動的に維持する電流調節回路と、から構成されている。
RFレシーバーの他の実施例は、典型的に300MHzのオーダでの共振周波数で、0.1から1マイクロヘンリーの範囲での自己共振インダクタすなわち同調回路を含み、この自己共振インダクタすなわち同調回路は、RFレシーバの動作周波数を定めるとともに、変調されたRF信号を受信する。わずかに前方にバイアスされたショットキー検出器ダイオードは、自己共振同調回路とマイクロパワー増幅器との間に接続され、検出された音声あるいはデータパルスを通過させる。
本発明のRFレシーバの更に他の実施例は、典型的には300MHzのオーダでRF信号を受信する受信アンテナと、該受信アンテナに接続されており、1又は2以上の所望の同調周波数を定める周波数選択ネットワークと、を含む。サンプリング混合器は、周波数選択ネットワークに接続され、変調されたRF信号を周期的にサンプリングし、RF信号のサンプルされたレプリカを得るようにする。
周波数選択ネットワークは、インピーダンス適合ネットワークとして動作し、整合された成端をアンテナに与えるともに高インピーダンス出力を与え、サンプリング回路の平均インピーダンスを整合するようにする。周波数選択ネットワークは、比較的長い負荷のない出力期間を有し、この期間で、周波数選択ネットワークは、非導通のサンプリング間隔でRFエネルギーを蓄積するとともに格納し、サンプリングの時に、格納されたエネルギーは実質的に抽出される。
サンプリング混合器は、次式で示されるように、多数のサンプリング周波数で変調されたRF信号をサンプルする:
F(Sig)=F(RF)−nF(LO)
ここで、F(Sig)は、検出されたRF信号の周波数であり、F(RF)は、周波数選択ネットワークのRFフィルタリング周波数であり、nは整数であり、F(LO)は、局所オシレータにより設定されるサンプリング周波数であり、典型的には、300KHzのオーダである。
典型的に、サンプリング混合器は、共通のカソード形態で2つのショットキーダイオードから形成され、局所オシレータのゲートパルスは、これらのショットキーダイオードの共通のカソードに供給されるようになっている。パルス発生器は、局所オシレータにより駆動され、矩形波の発振信号の切換速度を増加する。パルス形成ネットワークは、パルス発生器とショットキーダイオードの共通カソードとの間に接続され、パルス発生器の出力での発振矩形信号を速い上昇時間及び指数的に減衰する尾部を持つ高ピーク電流信号に変換する。
前記のレシーバは、自動車のガレージドアーの開放装置、キーレスエントリーシステム、ポータブルでコードレスの電話、遠隔計器読取システム、遠隔測定器システム、医療的移植、及び遠隔制御装置のような各種の適用において使用されるトランスポンダーの一部にされ得る。
米国政府は、ローレンスリバーモア国立研究所の活動について、米国エネルギー省とカリフォルニア大学との間の契約No.W−7405−ENG−48に従い、本発明の権利を有する。
図1は、本発明によるRFレシーバの回路図を示す。レシーバ10は、一般に、コルピッツオシレータ12を含み、このコルピッツオシレータ12は、50KHzのような所定周波数で動作する外部矩形波抑制(quench)オシレータにより、パルスを発生させられあるいは抑制させられる。パルス形成ネットワーク(PFN)は、抑制オシレータ14とコルピッツオシレータ12との間に接続され、指数的に減衰する駆動パルスをコルピッツオシレータ12に供給し、このコルピッツオシレータ12は、負極性のみで導通する。コルピッツオシレータには、トランジスタ15と該トランジスタ15の(破線で示される)内部容量C1及びC2とから構成される。
抑制オシレータ14の周波数は、アンテナ20の一部であってもよい入力カップリングネットワーク19のインダクタンスL、内部容量C1及びC2により定められるRF同調回路18のQに最適化される。抑制オシレータ14の周波数は、また、RF発振に最適化される。バンドパスフィルタ21は、一般に、LCネットワーク(このLCネットワークは、寄生容量−C3及びインダクタンスLを含んでもよい)から構成され、アンテナ20と入力カップリングネットワーク19との間に接続されている。螺施共振器あるいは表面音響波(surface acousticwave(SAW))フィルタ(図示せず)は、アンテナ20と入力カップリングネットワークとの間に選択的に挿入され、信号を選択的に更に増加させるようにしてもよい。
コルピッツオシレータ12は、抑制オシレータ14により繰り返し停止させられ再同期させられるので、変調されたRF信号が、アンテナ20により受信されるときはいつでも、信号関連電流は、トランジスタ15のコレクタ23と電源レール25との間に接続された信号抽出ネットワーク22内に流れるようにされる。信号抽出ネットワーク22は、RF及び抑制周波数を阻止し、より低い変調周波数信号を通過させる。
マイクロパワー増幅器27は、これらの変調周波数信号を信号抽出ネットワーク22から受信し、当該信号を増幅して論理インターフェース28に供給し、当該インターフェース28から、データ処理用の標準CMOS論理回路29のようなデータ論理回路に供給される。
折曲状(sinusoidal)の抑制波形を使用する従来の回路と異なり、レシーバ10は、パルス形成ネットワーク16により発生させられる減衰指数信号を使用する。これらの減衰指数信号は、特に、非常に低い電流レベルで動作を可能にする。更に、トランジスタ15のベースが入力カップリングネットワーク19を介して接地電位にある状態で、供給レール25の全電圧は、最適動作についてトランジスタ15のベース・コレクタ結合の両端に現れる。レシーバ10は、従来のレシーバより少ない部品を使用し、抑制オシレータに使用される伝統的な大きいインダクターを除去する。
図2は、図1に示されるRFレシーバ10の第1実施例のより詳細な回路図である。入力カップリングネットワーク19は、図1ではトランジスタ15のベース30に接続されているが、図2ではコレクタ23に接続されて示されているという点で、図1の回路図は、図2の回路図と異なる。このような相違は、回路図の各種の設計の可能性を示すために提示され、好適な実施例が図2に示されている状態である。好適な実施例での入力カップリングネットワーク19は、また、受信アンテナとして作用する。
コルピッツオシレータ12が発振するために、入力カップリングインダクタンスし、寄生容量−C3、及び内部容量−C1、C2から構成される共振周波数決定ネットワークに関連する電力損失は、発振トランジスタ15の電力利得より低いべきである。この目的のために、抑制オシレータ14は、コルピッツオシレータ12に関して外部に配置される。共振周波数決定ネットワークは、寄生容量C3とフィードバック経路としてのトランジスタ15の内部容量C1及びC2を使用し、追加的な外部容量に関連する損失を最小にするようにする。
超再生のオシレータ/レシーバは、別個の抑制オシレータインダクターを含まない。この目的のために、抑制オシレータ14は、抵抗及びコンデンサを使用するCMOSインバータから構成され、発振周波数を決定するようにする。更に、非常に低い動作電力を達成するために、トランジスタ15の固有の寄生容量及び入力カップリングネットワーク19の分散寄生容量C3を使用することにより、最小のコンデンサ要素が回路設計で使用される。
好適な実施例において、抑制オシレータ14は、一般に、直列に接続された2つのインバータ40,41(I1=74HCO04)と、抵抗42(R=4.7メグオーム)と、インバータ40の出力と、抵抗42との間に接続されたコンデンサ43(C=2ピコファラッド)と、及び、インバータ40の出力と接地側との間に接続された他のコンデンサ44(C=33ファラッド)と、を含む。パルス形成ネットワーク16は、第1の抵抗45(R=1キロオーム)を含み、この抵抗45は、その一端がトランジスタ15のエミッタに接続され、その他端が第2の抵抗46(R=47キロオーム)及びコンデンサ47(C=33ピコファラッド)に接続されている。抵抗46は接地され、コンデンサ47は、インバータ40の出力に接続されている。
信号抽出ネットワーク22は、供給レール25と入力カップリングネットワーク19との間に接続された抵抗48(R=220キロオーム)を含む。信号抽出ネットワーク22は、更に、入力カップリングネットワーク19と増幅器27との間に接続されたカップリングコンデンサ49(C=0.1マイクロファラッド)と、及び、抵抗48と接地側との間に接続されたバイパスコンデンサ50(C=44ピコファラッド)と、を含む。信号抽出ネットワーク22は、コルピッツオシレータ12からのRF信号が増幅器27に結合されるのを阻止する一方、レシーバ10により出力されるべきデータに対応するより低い周波数を通過させる。所望のデータ信号を示すエンベロープは、信号抽出ネットワーク22の出力に現れ、図3Eに示されている。
図4A、4B、4Cは、マイクロパワーベースバンド増幅器27について3つの例となる代替設計を示す。他の設計も可能であることは明らかである。増幅器27の重要な特徴は、供給レール25(V)と増幅器51の電源−ピンVDDとの間に電流調整回路を含むことである。電流調整回路は、供給レール25(V)と電源ピンVDDとの間に接続された(10メグオームのような)非常に高い抵抗値を有する抵抗53と、電源ピンVDDと接地側との間に接続されたバイパスコンデンサ52(C=2マイクロファラッド)と、を含む。
電流調整回路は、CMOS回路の生産変動、温度変化、及び電流変化に関わらず、自動的に増幅器51を非常に低い電流レベルに維持する。代わりの設計において、本発明の範囲から逸脱することなしに、抵抗53を定電流源で置き換え得ることが理解されるべきである。
増幅器51は、リニアモードで動作する1又は2以上の通常のCMOSインバータ(Iz=74HCO4又はMC14069)を含む。図4Aは、多数のCMOSインバータ(すなわち54.55)を示すが、奇数個のインバータが代わりに選択され得るべきである。
これらのインバータ54、55がリニアモードで動作するようにするために、外部フィードバック抵抗経路56Aが、増幅器51の出力と入力との間に、即ち点Xと点Xとの間に設けられている。この抵抗経路は、多くの方法で設計されることができ、これらの多くの方法のうちの3つが図4A、B、及びCにおいてそれぞれ符号56A、56B、及び56Cで示されている。これらの外部フィードバック抵抗経路は、インバータ54、55をリニアモードで動作させ、更に、増幅器51の出力電圧をVDD/2に等しくさせる。
フィードバック経路56Aは、図2及び4Aにおいて好適なモードとして示されている。フィードバック経路56Aは、約22メグオームの抵抗値を有する抵抗60を含み、この抵抗60は、2つのダイオード61、62(D=1N4148)と直列に接続されている。これらのダイオード61、62は、並列に接続され、高い抵抗の経路を与えるようにする。フィードバック経路56Bは、各々が約22メグオームの抵抗値を有し直列に接続された2つの抵抗65、66と該抵抗65、66に接続された接地経路であって直列に接続された抵抗67(R=1メグオーム)及びコンデンサ68(C=0.1マイクロファラッド)から構成される接地経路と、を含む。フィードバック経路56Cは、非常に高い抵抗値、例えばR=44メグオームを有する抵抗を含む。
図2に戻ると、論理インターフェイス28は、電圧レベル中継器(トランスレータ)として機能し、出力増幅器27の振れを論理回路29のスレッシュホールドに基づいて中心位置決めする。論理インターフェイス28は、供給レール25と論理回路29の入力との間に接続された第1の抵抗77(R=22メグオーム)と、及び、増幅器27と論理回路29の入力との間に接続された第2の抵抗76(R=10メグオーム)と、を含む。論理回路29は、インバータ(I1=74HCO4)を含むバイパスコンデンサCB(C=10マイクロファラッド)は、高い周波数安定性のために、供給レール25と接地側との間に接続されている。
図3Aは、抑制オシレータ14の矩形波発振信号の1期間を示し、当該発振信号は、パルス形成ネットワーク16に供給される。図3Bに示されるように、パルス形成ネットワーク16は、微分器として作用し、図3Aの矩形波発振信号を速い上昇時間及び指数的減衰尾部を有する高ピーク電流信号に変換し、当該信号をコルピッツオシレータ12に供給する。速い上昇時間の間に、すなわち高ピーク電流(0.1−1mA)の期間に、コルピッツオシレータには、発振させられる。なぜならば、高ピーク電流値は、トランジスタ15の相互コンダクタンスを増加させるからであり、これは発振を支持する。しかしながら、図3Bの減衰尾部の間のある点で、コルピッツオシレータには抑制される。抑制オシレータ14は、非常に低い電流レベルで発振するが、同時に、高ピーク電流スパイクを与えてコルピックオシレータ12を駆動するようにする。
図3Cは、パルス形成ネットワーク16により発生される速い上昇信号が負であるときにのみ、その後、短期間に、コルピッツオシレータ12のトランジスタ15がターンオンさせられることを示す。コルピッツオシレータ12の発振周波数は、約300MHzである。本例において、抑制オシレータ14の発振周波数は、約50KHzであり、抑制(quenching)は、約20ミリ秒生じる。
オシレータ12は、短期間発振し、発振は、RF入力カップリングネットワーク19のQに依存して減衰する。Qについての1つの定義は、発振が約37%に減衰するサイクル数である。本例において、発振器間は、約300ナノ秒(100サイクル×3ナノ秒/サイクル)であり、これは20マイクロ秒の全デューティサイクルの小部分(すなわち、デューティサイクルの1.5%)を示す。これは、アンテナ20により受信されるRF伝送リンクから入力連続データを低パワーで再復するという重要な区別できる特徴を与える。
図3Dは、デジタルデータを示す典型的なパルス化されたRF波形を示し、図3Eは、レシーバ10の出力で再生されたデータを示す。図3D及びEは、図3A、B、及びCより長い時間スケールに基づいている。パルス化されたRFシグナルは、トランジスタ15のベース・エミッタ結合で同期して整流され、ここで、抑制オシレータ14により生成されるパルス化発振は、結合を駆動して導通状態にしたり非導通状態にし、受信されたRFパルスを有する同期整流を与えるようにする。同期RF信号の存在は、トランジスタ15を流れる電流を増加させこれは、抽出され、増幅器27にデータとして印加される。
このように設計されると、マイクロパワー増幅器27は、通常のレシーバにより引き出される電流より低い桁の最小電流を1マイクロアンペアのオーダで引き出す。マイクロパワー増幅器27の全機能は、ベースバンド増幅器の全機能であり、これは、オーディオあるいはデータ増幅器として動作することができる。図示されたマイクロパワー増幅器の増幅率は、約1000である。
通常のレシーバに直面し且つ本件マイクロパワー増幅器27により取り扱われる1つの重要な問題となる現象は、トーテムポール電流スパイキングである。この現象は、電圧出力がVDD/2であるときに引き出される高パワー供給電流スパイクIDDにより特徴付けられる。この電流スパイクは、40から50ミリアンペアの範囲であり得、電流すなわち電池を速く放出させ得る。電圧VDDを減少させることにより、電流スパイクも減少させられ、増幅率は、ほぼ一定を維持する。本件マイクロパワー増幅器27は、電流調整回路48のために非常に近い電圧VDDで動作し、このようにして、最小電流を引き出し、最小パワーを消費する。
本件発明のインベンティブな特徴は、レシーバ10の低いパワー消費により例示される。前記の図示において、電源として使用されるアルカリ電池(Vs=1.5ボルト)は、約30年持続することが期待されるが、実際には、電池自身の貯蔵寿命により制限される。
図5は、図1のRFレシーバ10を含むトランスポンダー80のブロック図である。トランスポンダー80は、RFレシーバ10に接続されたアンテナ20(図1)のような受信アンテナを含む。アンテナ20は、レシーバ10の一部であってもよいことを気付くべきである。レシーバ10の出力でのデータは、データ処理ネットワーク82に伝達され、このネットワーク82は、データを処理し、処理された情報を送信機(トランスミッター)84に送り戻し、送信アンテナ86から送信するようにする。送信機84は、低い平均パワー消費のために低デューティサイクルで動作する通常の送信機であってもよい。
トランスポンダー80についての1つの例示となる適用において、レシーバ10により発生されるデータパルスは、データ処理ネットワーク82により復号化され、このネットワーク82は、トランスポンダー80を使用するための使用者の権限の有効性を識別する受容符号を与える。データ処理ネットワーク82は、使用者のユニットへの質問を発生し、このような質問を送信アンテナ84を介して伝送してもよい。使用者のユニットは、それから、質問に自動的に応答し、当該応答をトランスポンダー80に伝達し、当該トランスポンダー80は、ルックアップテーブルによりこのような応答の正確さを確認する。いくつかの適用において、外部データは、各種のインストルメンツへの符号及び各種のインストルメンツからの符号を含み得る。送信機84は、通常オフである。
図6は、本発明によるRFレシーバ100の第2実施例の回路図である。レシーバ100は、一般に、2つの回路セクションを含み、各セクションは、線1−1の各側にある。線1−1の右側の回路は、図1の回路と同様であり、従って、再び記述されない。線1−1の左側の回路は、典型的には0.1〜1マイクロヘンリーの範囲であり300MHzのオーダの共振周波数を有する自己共振回路101を含む。共振回路101は、レシーバ100の動作周波数を定め、また、いくつかの適用においてアンテナとして作用する。図1の入力カップリングネットワーク19は、レシーバ100の選択性を改善するために、適用され得る。
レシーバ100は、更に、抵抗103(R=2.2メグオーム)により(典型的には0.3ボルト)わずかに前方にバイアスされたショットキーダイオード102を含む。このような前方へのバイアスは、有用な整流が非常に低い信号レベルで生じる領域でダイオードIV曲線にダイオード102の動作点を設定する。IV曲線が事実非リニアであるので、到来するRF信号がダイオード102の両端の電圧を変化させると、対応するダイオード電流の変化は、主にユニポーラであり、すなわち、上方への電流の振れは、下方への電流の振れより大きく、結果としての平均信号ΔIは、非零、すなわち正である。この電流変化ΔIは、前方−電圧におけるわずかのシフトΔVを生じさせ、このシフトΔVは、ダイオード102と増幅器27の入力との間に接続されたコンデンサ104(C=0.47マイクロファラッド)により結合される。電圧ΔVは、検出されたRF信号である。
漂遊容量105(破線にて示されている)は、整流されたRFパルスを平均化する。コンデンサ104は、DC成分が増幅器27に流れるのを阻止するが、データパルスを通過させるDC阻止コンデンサである。DC成分は除去され、この結果、増幅器27は、飽和状態に駆動されない。
レシーバ100は、図2のレシーバ10より感度が低く選択性が低くあり得るが非常に少ないエネルギーを消費する。前述した図示において、電源として使用される1つのアルカリ電池(V=1.5ボルト)は、約300年持続することが期待されるが、実際には、電池自身の貯蔵寿命により制限される。
図7は、本発明によるRFレシーバ200の第3実施例の回路図である。レシーバ200は、一般に、2つの回路セクションを含み、各セクションは、線2−2の各側にある。線2−2の右側の回路は、図1の回路と同様であり、従って、再び記述されない。線2−2の左側の回路は、典型的に300MHzのオーダのRF信号を受信する受信アンテナ202を一般に含む。
受信された信号は、周波数選択ネットワーク(FSN)204に印加され、このネットワーク204は、所望の(1又は複数の)同調周波数を決定し、RF信号をサンプリング混合器206に供給する。FSN204は、フィルタとして作用し、1つ又はある範囲のRF周波数のみが通過するのを許す。FSN204は、タップを有するインダクター209に並列に接続されたコンデンサ207(C=5マイクロファラッド)を含む共振LC回路から一般に構成される。このLC回路は、インピーダンス適合ネットワークとして作用し、整合された成端をアンテナインピーダンス(典型的に75オーム)に与えるようにし、更に、高いインピーダンス出力を与えてサンプリング混合器206の平均インピーダンス(典型的に10キロオーム)を整合するようにする。
このインピーダンスの整合は、最適なパワー伝送が生じるのを許す。更に、本件FSN204は、比較的長い負荷のかからない出力期間を有し、これにより、本件FSN204は、非導通サンプリング間隔の間にエネルギーを蓄積して格納することになっている。サンプリングの時に、非常に低いインピーダンスは、FSN204の両端に有効に配置され、このFSN204に格納されたエネルギーが実質的に抽出されるようにする。このようにして、FSN204は、適合していない混合器に比して非常に有効な混合器を与える。
サンプリング混合器206は、周期的にRF信号をサンプルし、RF信号のサンプルされたレプリカを得るようにし、これは、トランスポンダーリンクを介して伝送されるべきオーディオあるいはデータ情報を保持する。このレプリカは、検出されたRF信号である。サンプリング混合器206は、次式で示されるように、受信されたRF信号を多数のサンプリング周波数でサンプルする:
F(Sig)=F(RF)−nF(LO)
ここで、F(Sig)は、検出されたRF信号の周波数であり、F(RF)は、FSN204のRFフィルタング周波数であり、nは整数であり、F(LO)は、局所オシレータ周波数(典型的に300KHz)により設定されたサンプリング周波数である。オーディオ/データ帯域幅は、0と10KHzの間の範囲にある一方、RF周波数は、0と500MHzの間の範囲にある。
サンプリング混合器206は、共通のカソード形態で2つのショットキーダイオード211,212を含む。ダイオード212のアノードは、ローパスフィルタ214に接続され、このローパスフィルタ211,212は、ショットキーダイオード211、212の出力でのオーディオ及び/又はデータ信号を平滑するとともに、RF及び局所オシレータ成分を取り除く。ローパスフィルタ214は、ショットキーダイオード212のアノードと接地側との間で並列に接続されたコンデンサ216(C=100ピコファラッド)と抵抗217(R=1メグオーム)とから構成されるRC回路で構成される。局所オシレータゲートパルスは、ショットキーダイオード211、212の共通カソードに供給され、ダイオード211、212を周期的に導通状態に駆動し、これにより、FSN204からのRF信号をサンプリングするようにする。サンプリング混合器206の出力は、それから、カップリングコンデンサ49(C=0.001マイクロファラッド)を介して増幅器27に供給される。
レシーバ200は、更に、局所オシレータ225を含み、この局所オシレータ225は、水晶227により典型的に300KHzの矩形波あるいは他の所望の発信周波数を発生する。水晶227は、コンデンサ228(C=33ピコファラッド)に直列に接続されるとともに、分路抵抗229(R=10メグオーム)の両端に接続され、且つ、インバータ230−(I1=74ACO4)の入力端子と出力端子に接続されている。コンデンサ232(C=22ピコファラッド)は、インバータ230の入力と接地側との間に接続されている。インバータ230の供給ピンは、抵抗233(R=47キロオーム)を介して電流V’DDに接続されている。電源V’DDの電圧は、1.1と1.9ボルトの間の範囲であり、典型的な1.5ボルトの値を有する。分路コンデンサ235(C=0.1マイクロファラッド)は、インバータ230の供給ピンと接地側との間に接続されている。
発振信号は、パルス発生器250に印加され、このパルス発生器250は、信号の上昇時間を減少することにより、より鋭い縁部を有する矩形波発振信号を与える。この目的のため、パルス発生器250は、インバータ251(I2=74ACO4)を含み、このインバータ251の入力は、コンデンサ252(C=1ナノファラッド)を介してインバータ230の出力に接続されている。分路抵抗253(R=10メグオーム)は、インバータ251の入力と出力との間に接続されている。インバータ251の電源ピンは、電源V’DDに接続されるとともに、バイパスコンデンサ255(C=0.1ファラッド)を介して接地されている。
速い上昇時間の矩形波は、それから、パルス形成ネットワーク(PFN)260に供給され、このパルス形成ネットワーク260は、インバータ251の出力とショットキーダイオード211,212の共通カソードとの間に接続されたコンデンサ261(C=2ピコファラッド)から構成され、このコンデンサ261は、続いて、分路抵抗262(R=1キロオーム)に接続されている。パルス形成ネットワーク260の機能は、パルス形成ネットワーク16(図1)の機能と同様である。パルス形成ネットワーク260は、微分器として作用し図3Bに示されるように、パルス発生器250の出力での速い上昇時間の矩形波信号を速い上昇時間及び指数的に減衰する尾部を持つ高ピーク電流信号に変換し、この高ピーク電流信号をショットキーダイオード211、212の共通カソードに印加する。パルス形成ネットワーク260の出力での負パルスは、サンプリング混合器206をバイアスさせ、当該サンプリング混合器206を駆動して導通状態にし、アンテナ202を介して受信されたRF信号のサンプリングを行う。
FSN204は、同調RF周波数を排他的に決定していないことに気付くべきである。レシーバ200の主な利点は、かなり低いパワー消費と正確な受信周波数水晶オシレータ227により正確な周波数を定める能力である。前記の図示において、電源として使用されるあるアルカリ電池(Vs=1.5ボルト)は約10年持続することが期待されるが、実際には電池自体の貯蔵寿命により制限される。
本発明のいくつかの例示としての適用は、自動車のガレージドアの開放装置、自動車、家庭、及び商業的セキュリティシステムのキーレスエントリーシステム、ポータブル且つコードレス電話、遠隔測定器読取システム、遠隔計器システム、ペースメーカーのような医療的移植、無線ドアベル及び炉のサーモスタットのような遠隔制御装置、ゴルフボール追跡、なだれ犠牲者位置、及びRFレシーバが多年の連続的な電池動作を有するのを要求する同様の適用を含むが、これらの適用に限定されない。
本発明の前述の記載は、図示及び記述のために提示されてきた。本発明の前述の記載は、網羅的であることを意図されておらず、すなわち、記述された正確な形態に本発明を限定することを意図されておらず、他の変更は、前述の教示の点で可能である。
本発明の前記の及び他の特徴、並びにこれらの特徴を達成する様式は、以下、明らかになり、本発明は、それ自体、次の記載及び添付図面を参照することにより最も良く理解される。添付図面において、
本発明によるRFレシーバのブロック図形式での回路図である。 図1のRFレシーバの第1実施例のより詳細な回路図である。 図1及び図2のRFレシーバの異なる段階での各種の波形を示す。 図1及び図2のRFレシーバの異なる段階での各種の波形を示す。 図1及び図2のRFレシーバの異なる段階での各種の波形を示す。 図1及び図2のRFレシーバの異なる段階での各種の波形を示す。 図1及び図2のRFレシーバの異なる段階での各種の波形を示す。 図1及び図2のRFレシーバにおいて使用されるマイクロパワー増幅器についての各種の設計を示す。 図1及び図2のRFレシーバにおいて使用されるマイクロパワー増幅器についての各種の設計を示す。 図1及び図2のRFレシーバにおいて使用されるマイクロパワー増幅器についての各種の設計を示す。 図1、図6、及び図7のRFレシーバを含むトランスポンダーのブロック図である。 本発明によるRFレシーバの第2実施例の回路図である。 本発明によるRFレシーバの第3実施例の回路図である。

Claims (8)

  1. RF信号を受信するための受信アンテナと、マイクロパワーRF増幅器とを有するRFレシーバであって、
    a)前記受信アンテナに接続され、1又は2以上の所望の同調周波数を決定するための周波数選択ネットワークと、
    b)前記周波数選択ネットワークに接続されるとともに、平均インピーダンスを有しており、前記RF信号を周期的にサンプリングして、前記RF信号のサンプル化されたレプリカを得るためのサンプリング混合器と
    を更に備え、
    c)前記周波数選択ネットワークは、インピーダンス適合ネットワークとして作用し、整合された成端を前記アンテナに与えるとともに、高インピーダンス出力を与えて、前記サンプリング混合器の前記平均インピーダンスを整合するようにし、
    d)前記周波数選択ネットワークは、比較的長い負荷のかかっていない出力期間と長い非導通サンプリング間隔とを有し、これにより、前記周波数選択ネットワークは、前記非導通サンプリング間隔中、及び、サンプリングの時に、エネルギーを蓄積するとともに格納し、格納されたエネルギーが実質的に抽出されており、
    e)前記マイクロパワー増幅器は、前記サンプリング混合器に接続され、前記サンプルされたレプリカ信号を増幅する
    ことを特徴とするRFレシーバ。
  2. 前記サンプリング混合器は、下式で示されるように、多数のサンプリング周波数で変調されたRF信号をサンプルする:
    F(Sig)=F(RF)−nF(LO)、
    ここで、F(Sig)は、変調されたRF信号の周波数であり、F(RF)は、前記周波数選択ネットワークのRFフィルタリング周波数であり、nは整数であり、F(LO)は、局所オシレータにより設定されるサンプリング周波数である、請求項1に記載のRFレシーバ。
  3. 前記サンプリング混合器は、共通のカソード形態で2つのショットキーダイオードを有しており、局所オシレータのゲートパルスが、前記ショットキーダイオードの共通のカソードに供給される、請求項2に記載のRFレシーバ。
  4. 矩形波の発振信号を生成するための局所オシレータを更に含む、請求項3に記載のRFレシーバ。
  5. 前記局所オシレータに接続され、前記矩形波の発振信号の上昇時間を減少するためのパルス発生器を更に含む、請求項4に記載のRFレシーバ。
  6. 前記パルス発生器と前記両ショットキーダイオードの共通カソードとの間に接続されて、前記パルス発生器の出力での前記発振矩形波信号を、速い上昇時間及び指数的に減衰する尾部を有する高ピークの電流信号に変換するためのパルス形成ネットワークを更に含む、請求項5に記載のRFレシーバ。
  7. 請求項1乃至6の何れか1つに記載のレシーバを含むトランスポンダー。
  8. a)所定の抑制周波数で一連の抑制発振パルスを発生するための外部抑制オシレータと、
    b)前記抑制オシレータに接続され、前記一連の抑制発振パルスを一連の指数的に減衰する駆動パルスに変換するためのパルス形成ネットワークと、
    c)前記駆動パルスに接続されるとともに、前記駆動パルスにより駆動されるオシレータと、
    d)前記オシレータに接続され、変調された信号を受信するためのアンテナと、
    e)RFオシレータに接続され、前記抑制周波数信号を阻止するとともに、検出された信号を通過させるための信号抽出ネットワークと、
    f)前記信号抽出ネットワークに接続され、前記検出された信号を増幅するマイクロパワー増幅器と
    を含むレシーバ。
JP2006045800A 1994-09-06 2006-02-22 Rfレシーバ Expired - Lifetime JP3916649B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/300,765 US5630216A (en) 1994-09-06 1994-09-06 Micropower RF transponder with superregenerative receiver and RF receiver with sampling mixer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP50957296A Division JP3841826B2 (ja) 1994-09-06 1995-08-29 マイクロパワーrfトランスポンダー

Publications (2)

Publication Number Publication Date
JP2006197635A true JP2006197635A (ja) 2006-07-27
JP3916649B2 JP3916649B2 (ja) 2007-05-16

Family

ID=23160490

Family Applications (2)

Application Number Title Priority Date Filing Date
JP50957296A Expired - Lifetime JP3841826B2 (ja) 1994-09-06 1995-08-29 マイクロパワーrfトランスポンダー
JP2006045800A Expired - Lifetime JP3916649B2 (ja) 1994-09-06 2006-02-22 Rfレシーバ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP50957296A Expired - Lifetime JP3841826B2 (ja) 1994-09-06 1995-08-29 マイクロパワーrfトランスポンダー

Country Status (8)

Country Link
US (1) US5630216A (ja)
EP (2) EP0781473B1 (ja)
JP (2) JP3841826B2 (ja)
AT (2) ATE477618T1 (ja)
AU (1) AU3462295A (ja)
CA (1) CA2199123C (ja)
DE (2) DE69536094D1 (ja)
WO (1) WO1996008086A1 (ja)

Families Citing this family (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362737B1 (en) * 1998-06-02 2002-03-26 Rf Code, Inc. Object Identification system with adaptive transceivers and methods of operation
AU8404398A (en) 1997-07-18 1999-02-10 Kohler Company Advanced touchless plumbing systems
AU8500298A (en) * 1997-07-18 1999-02-10 Kohler Company Bathroom fixture using radar detector having leaky transmission line to control fluid flow
WO1999004285A1 (en) 1997-07-18 1999-01-28 Kohler Company Radar devices for low power applications and bathroom fixtures
US6700939B1 (en) * 1997-12-12 2004-03-02 Xtremespectrum, Inc. Ultra wide bandwidth spread-spectrum communications system
US6281794B1 (en) * 1998-01-02 2001-08-28 Intermec Ip Corp. Radio frequency transponder with improved read distance
US6177872B1 (en) * 1998-03-13 2001-01-23 Intermec Ip Corp. Distributed impedance matching circuit for high reflection coefficient load
US6360998B1 (en) 1998-06-09 2002-03-26 Westinghouse Air Brake Company Method and apparatus for controlling trains by determining a direction taken by a train through a railroad switch
US6377215B1 (en) 1998-06-09 2002-04-23 Wabtec Railway Electronics Apparatus and method for detecting railroad locomotive turns by monitoring truck orientation
US6128558A (en) * 1998-06-09 2000-10-03 Wabtec Railway Electronics, Inc. Method and apparatus for using machine vision to detect relative locomotive position on parallel tracks
JP2000022450A (ja) * 1998-06-30 2000-01-21 Omron Corp 信号受信装置および方法、送受信装置、並びにネットワークシステム
US5986579A (en) * 1998-07-31 1999-11-16 Westinghouse Air Brake Company Method and apparatus for determining railcar order in a train
US6208246B1 (en) 1998-07-31 2001-03-27 Wabtec Railway Electronics, Inc. Method and apparatus for improving railcar visibility at grade crossings
US6273521B1 (en) 1998-07-31 2001-08-14 Westinghouse Air Brake Technologies Corporation Electronic air brake control system for railcars
DE69914784T2 (de) 1998-10-06 2004-09-23 General Electric Company Drahtloses hausfeuer - und sicherheitswarnungssystem
GB2343571B (en) * 1998-11-07 2001-01-10 Marconi Electronic Syst Ltd A receiver circuit
CA2289345C (en) * 1998-11-09 2002-10-29 Mark Miles Cloutier Inverted super regenerative receiver
US7346120B2 (en) 1998-12-11 2008-03-18 Freescale Semiconductor Inc. Method and system for performing distance measuring and direction finding using ultrawide bandwidth transmissions
FR2792477B1 (fr) * 1999-04-14 2001-07-06 Valeo Electronique Recepteur radio-frequence basse consommation
US6620057B1 (en) * 1999-04-15 2003-09-16 Flite Traxx, Inc. System for locating golf balls
US6239736B1 (en) 1999-04-21 2001-05-29 Interlogix, Inc. Range-gated radar motion detector
US6351246B1 (en) 1999-05-03 2002-02-26 Xtremespectrum, Inc. Planar ultra wide band antenna with integrated electronics
US6421535B1 (en) * 1999-05-12 2002-07-16 Xetron Corporation Superregenerative circuit
US7027493B2 (en) * 2000-01-19 2006-04-11 Time Domain Corporation System and method for medium wide band communications by impluse radio
WO2001067625A1 (en) * 2000-03-01 2001-09-13 Geir Monsen Vavik Transponder and transponder system
DE10032822A1 (de) * 2000-07-06 2002-01-24 Siemens Ag Vorrichtung zur Erzeugung eines Oszillatorsignals
WO2002013313A2 (en) 2000-08-07 2002-02-14 Xtremespectrum, Inc. Electrically small planar uwb antenna apparatus and system thereof
US6993315B1 (en) 2000-11-21 2006-01-31 Raytheon Company Super-regenerative microwave detector
US6504409B1 (en) 2001-04-17 2003-01-07 K-Tek Corporation Controller for generating a periodic signal with an adjustable duty cycle
US6853227B2 (en) 2001-04-17 2005-02-08 K-Tek Corporation Controller for generating a periodic signal with an adjustable duty cycle
US6873838B2 (en) * 2001-05-08 2005-03-29 Robert Bosch Corporation Superregenerative oscillator RF receiver with differential output
US6853835B2 (en) * 2001-08-13 2005-02-08 Hewlett-Packard Development Company, L.P. Asymmetric wireless communication system using two different radio technologies
US20030107475A1 (en) * 2001-12-12 2003-06-12 Bautista Edwin Espanola Receiver for and method of extending battery life
CN101572575A (zh) * 2002-01-09 2009-11-04 吉尔·蒙森·瓦维克 模拟再生收发机及包含再生收发机的系统
US6658091B1 (en) 2002-02-01 2003-12-02 @Security Broadband Corp. LIfestyle multimedia security system
JP4336946B2 (ja) * 2003-03-20 2009-09-30 セイコーエプソン株式会社 回転角速度の測定方法および装置
DE10314557A1 (de) * 2003-03-31 2004-10-28 Siemens Ag Kompakter Mikrowellen-Anstandsensor mit geringer Leistungsaufnahme durch Leistungsmessung an einem stimulierten Empfangsoszillator
US20040249257A1 (en) * 2003-06-04 2004-12-09 Tupin Joe Paul Article of manufacture for extracting physiological data using ultra-wideband radar and improved signal processing techniques
DE10341199A1 (de) * 2003-09-04 2005-04-07 Hirschmann Electronics Gmbh & Co. Kg Vorrichtung zum Empfangen von Signalen zur Steuerung einer Funktion in einem Fahrzeug
US7263138B2 (en) * 2003-09-25 2007-08-28 Microchip Technology Incorporated Q-quenching super-regenerative receiver
US6810307B1 (en) * 2003-11-14 2004-10-26 Honeywell International, Inc. Thermostat having a temperature stabilized superregenerative RF receiver
US7277687B2 (en) * 2003-12-03 2007-10-02 Starkey Laboratories, Inc. Low power amplitude modulation detector
FI115084B (fi) * 2003-12-16 2005-02-28 Polar Electro Oy Sähköinen piiri ja lähetysmenetelmä telemetristä lähetystä varten
US7506547B2 (en) * 2004-01-26 2009-03-24 Jesmonth Richard E System and method for generating three-dimensional density-based defect map
US10237237B2 (en) 2007-06-12 2019-03-19 Icontrol Networks, Inc. Communication protocols in integrated systems
US11159484B2 (en) 2004-03-16 2021-10-26 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US10200504B2 (en) 2007-06-12 2019-02-05 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US8988221B2 (en) 2005-03-16 2015-03-24 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US11316958B2 (en) 2008-08-11 2022-04-26 Icontrol Networks, Inc. Virtual device systems and methods
US11582065B2 (en) 2007-06-12 2023-02-14 Icontrol Networks, Inc. Systems and methods for device communication
US11113950B2 (en) 2005-03-16 2021-09-07 Icontrol Networks, Inc. Gateway integrated with premises security system
US8963713B2 (en) 2005-03-16 2015-02-24 Icontrol Networks, Inc. Integrated security network with security alarm signaling system
US10142392B2 (en) 2007-01-24 2018-11-27 Icontrol Networks, Inc. Methods and systems for improved system performance
US9609003B1 (en) 2007-06-12 2017-03-28 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US10339791B2 (en) 2007-06-12 2019-07-02 Icontrol Networks, Inc. Security network integrated with premise security system
US20160065414A1 (en) 2013-06-27 2016-03-03 Ken Sundermeyer Control system user interface
US10375253B2 (en) 2008-08-25 2019-08-06 Icontrol Networks, Inc. Security system with networked touchscreen and gateway
US8335842B2 (en) 2004-03-16 2012-12-18 Icontrol Networks, Inc. Premises management networking
US11277465B2 (en) 2004-03-16 2022-03-15 Icontrol Networks, Inc. Generating risk profile using data of home monitoring and security system
US10721087B2 (en) 2005-03-16 2020-07-21 Icontrol Networks, Inc. Method for networked touchscreen with integrated interfaces
US11677577B2 (en) 2004-03-16 2023-06-13 Icontrol Networks, Inc. Premises system management using status signal
US9191228B2 (en) 2005-03-16 2015-11-17 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US10382452B1 (en) 2007-06-12 2019-08-13 Icontrol Networks, Inc. Communication protocols in integrated systems
US11368327B2 (en) 2008-08-11 2022-06-21 Icontrol Networks, Inc. Integrated cloud system for premises automation
US9729342B2 (en) 2010-12-20 2017-08-08 Icontrol Networks, Inc. Defining and implementing sensor triggered response rules
US11811845B2 (en) 2004-03-16 2023-11-07 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US11368429B2 (en) 2004-03-16 2022-06-21 Icontrol Networks, Inc. Premises management configuration and control
US10444964B2 (en) 2007-06-12 2019-10-15 Icontrol Networks, Inc. Control system user interface
US9141276B2 (en) 2005-03-16 2015-09-22 Icontrol Networks, Inc. Integrated interface for mobile device
US20090077623A1 (en) 2005-03-16 2009-03-19 Marc Baum Security Network Integrating Security System and Network Devices
US10522026B2 (en) 2008-08-11 2019-12-31 Icontrol Networks, Inc. Automation system user interface with three-dimensional display
US9531593B2 (en) 2007-06-12 2016-12-27 Icontrol Networks, Inc. Takeover processes in security network integrated with premise security system
US11244545B2 (en) 2004-03-16 2022-02-08 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US11343380B2 (en) 2004-03-16 2022-05-24 Icontrol Networks, Inc. Premises system automation
US11201755B2 (en) 2004-03-16 2021-12-14 Icontrol Networks, Inc. Premises system management using status signal
US10313303B2 (en) 2007-06-12 2019-06-04 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US7711796B2 (en) 2006-06-12 2010-05-04 Icontrol Networks, Inc. Gateway registry methods and systems
US10156959B2 (en) 2005-03-16 2018-12-18 Icontrol Networks, Inc. Cross-client sensor user interface in an integrated security network
US11489812B2 (en) 2004-03-16 2022-11-01 Icontrol Networks, Inc. Forming a security network including integrated security system components and network devices
US8635350B2 (en) 2006-06-12 2014-01-21 Icontrol Networks, Inc. IP device discovery systems and methods
US11916870B2 (en) 2004-03-16 2024-02-27 Icontrol Networks, Inc. Gateway registry methods and systems
AU2005258784A1 (en) * 2004-07-01 2006-01-12 Powerid Ltd. Battery-assisted backscatter RFID transponder
US7545272B2 (en) 2005-02-08 2009-06-09 Therasense, Inc. RF tag on test strips, test strip vials and boxes
US10999254B2 (en) 2005-03-16 2021-05-04 Icontrol Networks, Inc. System for data routing in networks
US20120324566A1 (en) 2005-03-16 2012-12-20 Marc Baum Takeover Processes In Security Network Integrated With Premise Security System
US20110128378A1 (en) 2005-03-16 2011-06-02 Reza Raji Modular Electronic Display Platform
US20170180198A1 (en) 2008-08-11 2017-06-22 Marc Baum Forming a security network including integrated security system components
US11615697B2 (en) 2005-03-16 2023-03-28 Icontrol Networks, Inc. Premise management systems and methods
US11496568B2 (en) 2005-03-16 2022-11-08 Icontrol Networks, Inc. Security system with networked touchscreen
US9450776B2 (en) 2005-03-16 2016-09-20 Icontrol Networks, Inc. Forming a security network including integrated security system components
US11700142B2 (en) 2005-03-16 2023-07-11 Icontrol Networks, Inc. Security network integrating security system and network devices
US9306809B2 (en) 2007-06-12 2016-04-05 Icontrol Networks, Inc. Security system with networked touchscreen
US20060264196A1 (en) * 2005-05-19 2006-11-23 Chun-Wah Fan Super-regenerative receiver with damping resistor
JP2006333390A (ja) * 2005-05-30 2006-12-07 Furukawa Electric Co Ltd:The 低雑音増幅回路
KR100665330B1 (ko) * 2005-12-19 2007-01-09 삼성전기주식회사 수퍼리제너레이티브 수신기
US8098707B2 (en) * 2006-01-31 2012-01-17 Regents Of The University Of Minnesota Ultra wideband receiver
US20070196621A1 (en) * 2006-02-02 2007-08-23 Arnold Frances Sprayable micropulp composition
US10079839B1 (en) 2007-06-12 2018-09-18 Icontrol Networks, Inc. Activation of gateway device
US8368514B2 (en) 2006-09-01 2013-02-05 Leptonradio Ab Device for wireless operation and method for operating the device
US8228175B1 (en) 2008-04-07 2012-07-24 Impinj, Inc. RFID tag chips and tags with alternative behaviors and methods
US20080176529A1 (en) * 2007-01-19 2008-07-24 Lexiwave Technology (Hong Kong), Limited Superregenerative system
US11706279B2 (en) 2007-01-24 2023-07-18 Icontrol Networks, Inc. Methods and systems for data communication
US7633385B2 (en) 2007-02-28 2009-12-15 Ucontrol, Inc. Method and system for communicating with and controlling an alarm system from a remote server
US8115597B1 (en) * 2007-03-07 2012-02-14 Impinj, Inc. RFID tags with synchronous power rectifier
US8451986B2 (en) 2007-04-23 2013-05-28 Icontrol Networks, Inc. Method and system for automatically providing alternate network access for telecommunications
WO2008148040A1 (en) * 2007-05-24 2008-12-04 Lifewave, Inc. System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume
US11089122B2 (en) 2007-06-12 2021-08-10 Icontrol Networks, Inc. Controlling data routing among networks
US11237714B2 (en) 2007-06-12 2022-02-01 Control Networks, Inc. Control system user interface
US11316753B2 (en) 2007-06-12 2022-04-26 Icontrol Networks, Inc. Communication protocols in integrated systems
US10051078B2 (en) 2007-06-12 2018-08-14 Icontrol Networks, Inc. WiFi-to-serial encapsulation in systems
US11423756B2 (en) 2007-06-12 2022-08-23 Icontrol Networks, Inc. Communication protocols in integrated systems
US10523689B2 (en) 2007-06-12 2019-12-31 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US10666523B2 (en) 2007-06-12 2020-05-26 Icontrol Networks, Inc. Communication protocols in integrated systems
US11218878B2 (en) 2007-06-12 2022-01-04 Icontrol Networks, Inc. Communication protocols in integrated systems
US10616075B2 (en) 2007-06-12 2020-04-07 Icontrol Networks, Inc. Communication protocols in integrated systems
US10498830B2 (en) 2007-06-12 2019-12-03 Icontrol Networks, Inc. Wi-Fi-to-serial encapsulation in systems
US10389736B2 (en) 2007-06-12 2019-08-20 Icontrol Networks, Inc. Communication protocols in integrated systems
US11212192B2 (en) 2007-06-12 2021-12-28 Icontrol Networks, Inc. Communication protocols in integrated systems
US10423309B2 (en) 2007-06-12 2019-09-24 Icontrol Networks, Inc. Device integration framework
US11646907B2 (en) 2007-06-12 2023-05-09 Icontrol Networks, Inc. Communication protocols in integrated systems
US11601810B2 (en) 2007-06-12 2023-03-07 Icontrol Networks, Inc. Communication protocols in integrated systems
US8326246B2 (en) * 2007-07-10 2012-12-04 Qualcomm Incorporated Super regenerative (SR) apparatus having plurality of parallel SR amplifiers tuned to distinct frequencies
US10223903B2 (en) 2010-09-28 2019-03-05 Icontrol Networks, Inc. Integrated security system with parallel processing architecture
US8115673B1 (en) 2007-08-11 2012-02-14 Mcewan Technologies, Llc Self-oscillating UWB emitter-detector
US11831462B2 (en) 2007-08-24 2023-11-28 Icontrol Networks, Inc. Controlling data routing in premises management systems
US9324230B2 (en) 2008-12-04 2016-04-26 Gentex Corporation System and method for configuring a wireless control system of a vehicle using induction field communication
US11916928B2 (en) 2008-01-24 2024-02-27 Icontrol Networks, Inc. Communication protocols over internet protocol (IP) networks
US7683709B1 (en) 2008-06-05 2010-03-23 The United States Of America As Represented By The Secretary Of The Navy Low frequency power amplifier employing high frequency magnetic components
US20170185278A1 (en) 2008-08-11 2017-06-29 Icontrol Networks, Inc. Automation system user interface
US8326256B1 (en) 2008-07-15 2012-12-04 Impinj, Inc. RFID tag with MOS bipolar hybrid rectifier
US11729255B2 (en) 2008-08-11 2023-08-15 Icontrol Networks, Inc. Integrated cloud system with lightweight gateway for premises automation
US11792036B2 (en) 2008-08-11 2023-10-17 Icontrol Networks, Inc. Mobile premises automation platform
US10530839B2 (en) 2008-08-11 2020-01-07 Icontrol Networks, Inc. Integrated cloud system with lightweight gateway for premises automation
US11258625B2 (en) 2008-08-11 2022-02-22 Icontrol Networks, Inc. Mobile premises automation platform
US11758026B2 (en) 2008-08-11 2023-09-12 Icontrol Networks, Inc. Virtual device systems and methods
US9628440B2 (en) 2008-11-12 2017-04-18 Icontrol Networks, Inc. Takeover processes in security network integrated with premise security system
US9002427B2 (en) * 2009-03-30 2015-04-07 Lifewave Biomedical, Inc. Apparatus and method for continuous noninvasive measurement of respiratory function and events
JP5759451B2 (ja) 2009-04-22 2015-08-05 ライフウェーブ,インコーポレーテッド 胎児監視システム
US8638211B2 (en) 2009-04-30 2014-01-28 Icontrol Networks, Inc. Configurable controller and interface for home SMA, phone and multimedia
US9032565B2 (en) 2009-12-16 2015-05-19 Kohler Co. Touchless faucet assembly and method of operation
CN102985915B (zh) 2010-05-10 2016-05-11 网际网路控制架构网络有限公司 控制系统用户接口
US8836467B1 (en) 2010-09-28 2014-09-16 Icontrol Networks, Inc. Method, system and apparatus for automated reporting of account and sensor zone information to a central station
US11750414B2 (en) 2010-12-16 2023-09-05 Icontrol Networks, Inc. Bidirectional security sensor communication for a premises security system
US9147337B2 (en) 2010-12-17 2015-09-29 Icontrol Networks, Inc. Method and system for logging security event data
WO2013109195A1 (en) * 2012-01-19 2013-07-25 Agency For Science, Technology And Research Method of transmitting a converted signal, method of receiving a signal, and a transceiver device
US9192770B2 (en) 2012-10-31 2015-11-24 Medtronic, Inc. Medical device communication system and method
US9928975B1 (en) 2013-03-14 2018-03-27 Icontrol Networks, Inc. Three-way switch
US9287727B1 (en) 2013-03-15 2016-03-15 Icontrol Networks, Inc. Temporal voltage adaptive lithium battery charger
US9867143B1 (en) 2013-03-15 2018-01-09 Icontrol Networks, Inc. Adaptive Power Modulation
EP3031206B1 (en) 2013-08-09 2020-01-22 ICN Acquisition, LLC System, method and apparatus for remote monitoring
US11405463B2 (en) 2014-03-03 2022-08-02 Icontrol Networks, Inc. Media content management
US11146637B2 (en) 2014-03-03 2021-10-12 Icontrol Networks, Inc. Media content management
US9761049B2 (en) 2014-03-28 2017-09-12 Intel Corporation Determination of mobile display position and orientation using micropower impulse radar
KR101912281B1 (ko) * 2016-07-29 2019-01-14 삼성전기 주식회사 자성체 및 그것을 이용한 정보 송신 장치
JP2018026609A (ja) * 2016-08-08 2018-02-15 国立研究開発法人産業技術総合研究所 無線受信回路
US10749472B2 (en) * 2017-02-11 2020-08-18 Mumec, Inc. Frequency-converting super-regenerative transceiver
WO2019051201A1 (en) 2017-09-08 2019-03-14 Sobota Rodriguez Cristian SYSTEM AND METHOD FOR OPTOINDUCTIVE COUPLING FOR WIRELESS LOAD AND DATA COMMUNICATIONS

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3054056A (en) * 1960-11-15 1962-09-11 Motorola Inc Super-regenerative circuit with automatic gain control
US3883809A (en) * 1967-05-11 1975-05-13 Massachusetts Inst Technology Superregenerative mixers and amplifiers
US4143324A (en) * 1976-05-20 1979-03-06 Transcience Industries, Inc. Transistorized superregenerative radio frequency detector
US4307465A (en) * 1979-10-15 1981-12-22 Gte Laboratories Incorporated Digital communications receiver
JPS5696507A (en) * 1979-12-15 1981-08-04 Matsushita Electric Works Ltd Superregenerative receiver
US4455682A (en) * 1982-04-05 1984-06-19 Imperial Clevite Inc. Superregenerative radio receiver
DE3340828C1 (de) * 1983-11-11 1985-01-31 Rohde & Schwarz GmbH & Co KG, 8000 München Sampling-Mischer
US4786903A (en) * 1986-04-15 1988-11-22 E. F. Johnson Company Remotely interrogated transponder
US4749964A (en) * 1986-12-08 1988-06-07 R. F. Monolithics, Inc. Superregenerative detector having a saw device in the feedback circuit
US5029271A (en) * 1988-01-20 1991-07-02 Merit Electronic Design Co., Ltd. Superregenerative detector

Also Published As

Publication number Publication date
EP1411644A3 (en) 2004-11-10
DE69533924T2 (de) 2005-12-15
DE69536094D1 (de) 2010-09-23
JPH10505211A (ja) 1998-05-19
AU3462295A (en) 1996-03-27
EP1411644A2 (en) 2004-04-21
EP0781473A1 (en) 1997-07-02
JP3916649B2 (ja) 2007-05-16
US5630216A (en) 1997-05-13
CA2199123A1 (en) 1996-03-14
JP3841826B2 (ja) 2006-11-08
CA2199123C (en) 2007-07-24
WO1996008086A1 (en) 1996-03-14
ATE477618T1 (de) 2010-08-15
ATE287147T1 (de) 2005-01-15
DE69533924D1 (de) 2005-02-17
EP1411644B1 (en) 2010-08-11
EP0781473B1 (en) 2005-01-12
EP0781473A4 (en) 1999-12-08

Similar Documents

Publication Publication Date Title
JP3916649B2 (ja) Rfレシーバ
US11012953B2 (en) Frequency selective logarithmic amplifier with intrinsic frequency demodulation capability
US9048943B2 (en) Low-power, noise insensitive communication channel using logarithmic detector amplifier (LDA) demodulator
US8023586B2 (en) Inductive power and data transmission system based on class D and amplitude shift keying
US5586145A (en) Transmission of electronic information by pulse position modulation utilizing low average power
Moncunill-Geniz et al. An 11-Mb/s 2.1-mW synchronous superregenerative receiver at 2.4 GHz
US7046122B1 (en) Receiver circuit
WO1996024224A1 (en) A receiver with reduced current drain
US6349116B1 (en) Data communication system harnessing frequency shift keyed magnetic field
US20010055005A1 (en) High voltage crystal controlled oscillator for an electronic pen used with an electrostatic digitizing tablet
US4307465A (en) Digital communications receiver
Zgaren et al. Frequency-to-amplitude converter based FSK receiver for ultra-low power transceivers
US6703927B2 (en) High frequency regenerative direct detector
US3369075A (en) Transmission system for direct current level binary data
RU2212090C1 (ru) Высокостабильный импульсный свч-передатчик
KR960027344A (ko) 캐패시터 스위칭 전압제어 발진기
JPH0897634A (ja) 高調波発振器
US3434063A (en) Self-quenching negative resistance superregenerative diode detector
KR100354965B1 (ko) 위상동기루프 모듈
JPS58201432A (ja) ラジオ受信機
WO2021142411A1 (en) Oscillator for pulse communication with reduced startup latency
KR100398662B1 (ko) 무선 통신 장치용 국부 신호 발생 회로
RU40493U1 (ru) Сверхрегенеративный приемник с высокостабильным резонатором
JPH1127044A (ja) 増幅発振回路、同回路を用いた通信装置およびセンサ
US3201697A (en) Narrow band transistor radio employing crystal controlled oscillator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term