JP2006193810A - Method for producing low yield ratio high tensile strength steel sheet having excellent gas cutting crack resistance and high heat input welded joint toughness and reduced acoustic anisotropy - Google Patents

Method for producing low yield ratio high tensile strength steel sheet having excellent gas cutting crack resistance and high heat input welded joint toughness and reduced acoustic anisotropy Download PDF

Info

Publication number
JP2006193810A
JP2006193810A JP2005009164A JP2005009164A JP2006193810A JP 2006193810 A JP2006193810 A JP 2006193810A JP 2005009164 A JP2005009164 A JP 2005009164A JP 2005009164 A JP2005009164 A JP 2005009164A JP 2006193810 A JP2006193810 A JP 2006193810A
Authority
JP
Japan
Prior art keywords
steel
temperature
heat input
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005009164A
Other languages
Japanese (ja)
Other versions
JP4610351B2 (en
Inventor
Mitsuaki Shibata
光明 柴田
Shigeo Okano
重雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005009164A priority Critical patent/JP4610351B2/en
Publication of JP2006193810A publication Critical patent/JP2006193810A/en
Application granted granted Critical
Publication of JP4610351B2 publication Critical patent/JP4610351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an advantageous method for producing a high tensile strength steel sheet having excellent gas cutting crack resistance and high heat input welded joint toughness, also having reduced acoustic anisotropy, further having high plastic deformability, and having tensile strength in the class of 590 MPa. <P>SOLUTION: A steel stock in which a chemical componential composition is suitably controlled is heated to the temperature range of 950 to 1,300°C, is then rolled at a cumulative draft in the temperature range of an austenite unrecrystallization temperature t(°C) shown by prescribed formula or below so as to be finished at ≥(austenite unrecrystallization temperature t-80°C) to ≤1,100°C, is thereafter directly quenched from a temperature of ≥780°C to ≤300°C at the cooling rate of ≥3°C/s, is successively subjected to reheating quenching in the temperature range of 760 to 840°C, and is subsequently tempered in the temperature range of 450 to 550°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐ガス切断割れ性に優れると共に、約100KJ/mmまでもの超大入熱溶接での継手靭性に優れ、且つ音響異方性が小さく、塑性変形能が大きく、しかも引張強さが590MPa以上の溶接構造用高張力鋼板を製造するための有用な方法に関するものである。   The present invention is excellent in gas cut cracking resistance, joint toughness in super high heat input welding up to about 100 KJ / mm, small acoustic anisotropy, large plastic deformability, and tensile strength of 590 MPa. The present invention relates to a useful method for producing the above-described high-strength steel sheet for welded structure.

近年、建築物の超高層化や橋梁の少数主桁化が進む中で、溶接施工時の予熱低減とともに、大入熱溶接の適用および溶接継手部への超音波探傷試験の適用、地震に対する終局耐力設計の適用が設計・施工サイドで進められつつある。これに伴い、それらに供用される鋼材サイドとしては、下記(1)〜(4)の各項目について検討されている。
(1)予熱低減要求に対しては、溶接低温割れ感受性組成(PCM)の低減、
(2)大入熱溶接の適用に対しては、入熱量の増大に耐えうる溶接継手部全部位の高靭 性化、
(3)溶接継手部への超音波探傷試験(UT)への適用に対しては、斜角UTに用いら れる横波の鋼材とSTB試験片での音速比が、例えば、板厚25mm超え、公称屈
折角度70°で探傷する場合においては、V/VSTB0.995〜1.015の範囲
内にあることによって音響異方性が小さいこと(日本建築学会における鋼構造建築
溶接部の超音波検査基準の定義に従う)、
(4)地震に対する終局耐力設計の適用に対しては、降伏比(降伏点/引張強さ×10 0%)が小さいこと(即ち、塑性変形能が高いこと)が要求されると共に(建築用
途の場合、80%以下)、使用される鋼材の板厚・引張強さについても厚肉・高強
度化(最大100mm厚で、建築用途の場合、590MPa以上、橋梁の場合、
570MPa以上)されつつある。
In recent years, with the progress of super-high-rise buildings and fewer main girder bridges, in addition to reducing preheating during welding, application of high heat input welding, application of ultrasonic flaw detection tests to welded joints, and ultimate earthquake Application of proof stress design is being promoted on the design and construction side. Accordingly, the following items (1) to (4) have been studied as the steel material side used for them.
(1) In response to the requirement for preheating reduction, reduction of weld cold cracking sensitive composition (P CM )
(2) For the application of high heat input welding, toughness of all parts of the welded joint that can withstand the increase in heat input,
(3) For application to the ultrasonic flaw detection test (UT) to the welded joint, the sound velocity ratio between the steel material of the transverse wave used for the oblique angle UT and the STB test piece is, for example, more than 25 mm thick, When flaw detection is performed at a nominal bending angle of 70 °, the acoustic anisotropy is small by being within the range of V / V STB 0.995 to 1.015 (superstructure of welded steel structures in the Architectural Institute of Japan). According to the definition of sonographic standards),
(4) For the application of ultimate strength design for earthquakes, it is required that the yield ratio (yield point / tensile strength x 100%) is small (ie, the plastic deformability is high) (for construction) 80% or less), and the thickness and tensile strength of the steel materials used are also increased in thickness and strength (maximum thickness is 100mm, for architectural use, 590MPa or more, for bridges,
570 MPa or more).

建築用鋼に要求される低降伏比、および小さい音響異方性が要求される590MPa級鋼の製造方法の一つとして、例えば非特許文献1に示されるような技術が提案されている。この技術では、0.13C−0.25Si−1.44Mn−0.21Cu−0.20Ni−0.08Cr−0.17Mo−0.04Vの化学成分組成で炭素当量Ceqが0.45%の80mm厚材を用い、Ac3点以上の温度からなる再加熱焼入れ(RQ)、二相域(Ac1点以上Ac3点未満)からの焼入れ(Q’)およびAc1点未満の温度での焼戻し(T)を施すQ−Q’−T法を用いて、軟質で延性に優れるフェライトとより硬質のベイナイトの二相組織として、降伏比80%以下、引張強さ590MPa以上を得るものである。 For example, a technique as shown in Non-Patent Document 1 has been proposed as one of the methods for producing a 590 MPa class steel that requires a low yield ratio and small acoustic anisotropy required for building steel. In this technique, a chemical composition of 0.13C-0.25Si-1.44Mn-0.21Cu-0.20Ni-0.08Cr-0.17Mo-0.04V and a carbon equivalent Ceq of 0.45% is 80 mm. Reheating quenching (RQ) consisting of a temperature of Ac 3 point or higher, quenching from a two-phase region (Ac 1 point or higher and less than Ac 3 point) (Q '), and tempering at a temperature lower than Ac 1 point. By using the QQ'-T method for applying (T), a yield ratio of 80% or less and a tensile strength of 590 MPa or more are obtained as a two-phase structure of soft and excellent ductile ferrite and harder bainite.

この技術で得られる中炭素系の590MPa級鋼板は、低降伏比で音響異方性も小さい特性を発揮し、建築用として使用されているものの、フェライト相の生成によって母材および継手部において所定の強度を確保するために炭素当量Ceqを従来の590MPa級鋼板より高くする必要があり(例えば炭素当量Ceqが0.42%超)、必然的に低温割れ防止予熱温度が100℃と高くなってしまい、大入熱溶接継手部の靭性も低位なものとなる。   The medium carbon 590 MPa grade steel sheet obtained by this technology exhibits low yield ratio and low acoustic anisotropy, and is used for construction purposes. In order to ensure the strength of the steel, it is necessary to make the carbon equivalent Ceq higher than that of the conventional 590 MPa grade steel sheet (for example, the carbon equivalent Ceq is more than 0.42%), and the preheating temperature for preventing low temperature cracking is inevitably as high as 100 ° C. Therefore, the toughness of the high heat input welded joint is also low.

極低炭素系のベイナイト組織を活用し、音響異方性を改善すると共に、引張強さが570MPa級または590MPa級の鋼材を製造する方法としては、例えば特許文献1〜3のような各技術も提案されている。   As a method for utilizing the ultra-low carbon bainite structure to improve acoustic anisotropy and producing a steel material having a tensile strength of 570 MPa class or 590 MPa class, for example, each technique as described in Patent Documents 1 to 3 is also available. Proposed.

このうち特許文献1の技術では、C:0.001%以上0.030%未満、Si:0.60%以下、Mn:0.20〜3.00%、Ni:2.0%以下、Cu:0.7〜2.0%およびAl:0.10%以下を夫々含む組成になる鋼素材を、860℃以上の温度に加熱して冷却した後、500℃以上800℃未満の温度域に再加熱して冷却することによって、材質ばらつきが少なく、且つ音響異方性の小さい570MPa級の高強度鋼材を製造する方法について開示されている。   Among them, in the technique of Patent Document 1, C: 0.001% or more and less than 0.030%, Si: 0.60% or less, Mn: 0.20 to 3.00%, Ni: 2.0% or less, Cu : After the steel material which becomes a composition which respectively contains 0.7-2.0% and Al: 0.10% or less is heated and cooled to the temperature of 860 degreeC or more, it is in the temperature range of 500 degreeC or more and less than 800 degreeC. A method for producing a high strength steel material of 570 MPa class with little material variation and small acoustic anisotropy by reheating and cooling is disclosed.

また特許文献2の技術では、C:0.005〜0.025%、Si:0.60%以下、Mn:0.4〜1.6%、P:0.025%以下、S:0.010%以下、Al:0.1%以下、Cu:0.6〜2%、Ni:0.25〜2.0%、Ti:0.001〜0.050%およびB:0.0002〜0.0030%からなる化学成分組成で、且つ重量比Mn/Cu:2.0以下且つ117Mn(%)+163Cu(%):250〜350%で含有し、残部がFeおよび不可避不純物から成る鋳片を、1050〜1250℃に再加熱後、950℃以下の温度域における累積圧下率が50%以下で仕上げ圧延温度が800℃以上の熱間圧延を施すことによって、圧延ままで鋼板の厚み方向の靭性および音響異方性に優れる590MPa級の溶接用極厚鋼板を製造する方法について開示されている。   In the technique of Patent Document 2, C: 0.005 to 0.025%, Si: 0.60% or less, Mn: 0.4 to 1.6%, P: 0.025% or less, S: 0.00. 010% or less, Al: 0.1% or less, Cu: 0.6-2%, Ni: 0.25-2.0%, Ti: 0.001-0.050% and B: 0.0002-0 A slab comprising a chemical composition composed of .0030% and a weight ratio of Mn / Cu: 2.0 or less and 117 Mn (%) + 163 Cu (%): 250 to 350%, with the balance being Fe and inevitable impurities , After reheating to 1050 to 1250 ° C., by performing hot rolling with a cumulative rolling reduction in a temperature range of 950 ° C. or less of 50% or less and a finish rolling temperature of 800 ° C. or more, toughness in the thickness direction of the steel sheet as it is rolled 590MPa welding electrode with excellent acoustic anisotropy It discloses a method of manufacturing the steel sheet.

更に、特許文献3には、C:0.025〜0.045%、Nb:0.005〜0.1%でMoを含まない音響異方性が小さく、溶接性に優れた引張強さ590MPa以上の非調質型の低降伏比高張力鋼板の製造方法が示されている。   Furthermore, Patent Document 3 discloses that C: 0.025 to 0.045%, Nb: 0.005 to 0.1%, Mo-free acoustic anisotropy is small, and tensile strength 590 MPa excellent in weldability. A method for producing the above non-tempered low yield ratio high strength steel sheet is shown.

しかしながら、これまで提案されている極低炭素系ベイナイト組織の高張力鋼板においても夫々次に示すような問題が指摘される。まず上記特許文献1の技術では、得られる鋼材の音響異方性は小さいものの、降伏比は80%を超えており、建築用途に供用できない。   However, the following problems are pointed out also in the high-tensile steel sheets having an ultra-low carbon bainite structure proposed so far. First, in the technique of Patent Document 1, although the acoustic anisotropy of the obtained steel material is small, the yield ratio exceeds 80% and cannot be used for architectural purposes.

特許文献2の技術では、得られる鋼板の音響異方性は小さく、降伏比も建築用鋼板に対する要求値(80%以下)を満足するものの、Cuの析出による強度上昇効果を、圧延後の冷却過程に依っているため、冷却速度が速い場合には上記効果が安定して得られるとは限らず、しかもこうした効果は板厚に依存することになる。大入熱HAZ靭性についても、入熱50KJ/mmの熱サイクルシャルピー(0℃での吸収エネルギーvE0)で52〜71J程度であり(実施例の表2)、本発明で目標とする平均70J以上を安定して達成できるものではない。またこの技術では、CuおよびNiを必須成分として含むものであるが、これらの適切な配合割合については何ら考慮されていないので(実施例の表1でNi/Cuが0.47〜0.95)、ガス切断面に表面に平行方向にCuの液化に起因する割れの感受性を有するものとなる。 In the technique of Patent Document 2, although the obtained steel sheet has small acoustic anisotropy and the yield ratio satisfies the required value (80% or less) for the steel sheet for construction, the effect of increasing the strength due to precipitation of Cu is reduced by cooling after rolling. Depending on the process, when the cooling rate is fast, the above effect is not always obtained stably, and such an effect depends on the plate thickness. The large heat input HAZ toughness is also about 52 to 71 J in the heat cycle Charpy (absorption energy vE 0 at 0 ° C.) with a heat input of 50 KJ / mm (Table 2 in Examples), and the average of 70 J targeted in the present invention. The above cannot be achieved stably. Further, in this technique, Cu and Ni are included as essential components, but no consideration is given to their appropriate blending ratio (Ni / Cu is 0.47 to 0.95 in Table 1 of the Examples). The gas cut surface is susceptible to cracking due to Cu liquefaction in a direction parallel to the surface.

特許文献3の技術は、空冷ままで小さい音響異方性と低降伏比を実現させることによって建築用鋼板としての要求特性を満足させたものであるが、大入熱溶接継手の入熱量が20KJ/mm程度と比較的小さいので(例えば実施例の表3)、本発明の目標とする約100KJ/mmまでの溶接入熱において、高HAZ靭性を確保できる保証はない。   The technique of Patent Document 3 satisfies the required characteristics as a steel sheet for construction by realizing a small acoustic anisotropy and a low yield ratio while being air-cooled, but the heat input amount of the large heat input welded joint is 20 KJ. / Mm, which is relatively small (for example, Table 3 of Examples), there is no guarantee that high HAZ toughness can be secured at the welding heat input up to about 100 KJ / mm which is the target of the present invention.

一方、引張強さ590MPa級で入熱20KJ/mm以上における大入熱溶接継手靭性に優れた鋼材として、例えば特許文献4〜6のような技術も提案されている。   On the other hand, technologies such as Patent Documents 4 to 6 have been proposed as steel materials having a tensile strength of 590 MPa and excellent in toughness of high heat input welded joints at a heat input of 20 KJ / mm or more.

このうち特許文献4には、C:0.001〜0.03%、Mn:0.8〜3.0%、B:0.0003〜0.0050%を含み、且つTi/Alが5.0以上を満足し、かつTi酸化物:20〜90%、Al23:70%以下、Ca酸化物,REM酸化物のいずれか1種または2種の合計:5〜50%、MnO:15%以下からなる酸化物系介在物を分散させた引張強さ570MPa級鋼材の製造方法が開示されている。 Among these, Patent Document 4 includes C: 0.001 to 0.03%, Mn: 0.8 to 3.0%, B: 0.0003 to 0.0050%, and Ti / Al is 5. 0 or more, and Ti oxide: 20 to 90%, Al 2 O 3 : 70% or less, one or two of Ca oxide and REM oxide: 5 to 50%, MnO: A method for producing a tensile strength 570 MPa grade steel material in which oxide inclusions of 15% or less are dispersed is disclosed.

また特許文献5には、C:0.02%以下、Mn:0.5〜2.0%、Nb:0.010〜0.10%、B:0.0003〜0.0040%で、且つB/Nが0.3〜1.0の組成を有する引張強さ552〜605MPaの非調質型低温用鋼材について開示されている。   In Patent Document 5, C: 0.02% or less, Mn: 0.5 to 2.0%, Nb: 0.010 to 0.10%, B: 0.0003 to 0.0040%, and Non-tempered steel for low temperature use with a tensile strength of 552 to 605 MPa having a composition of B / N of 0.3 to 1.0 is disclosed.

更に、特許文献6には、C:0.01〜0.06%、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:1.5%以下(0%を含む)、Ti:0.005〜0.03%、B:0.0006〜0.005%、O:0.0025〜0.015%を含有し、([Mn]+1.5×[Cr]+2×[Mo])で定義されるパラメータKPが2.4質量%以上である高張力鋼板について開示されている。またこうした高張力鋼板を製造する工程として、850〜950℃で圧延を完了し、その後冷却し、次いで750〜800℃に再加熱後水焼入れを行い、最終的に550〜600℃で焼戻しすることについて示されている(例えば、実施例の表3、4)。   Further, in Patent Document 6, C: 0.01 to 0.06%, Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 1.5% or less (0 %), Ti: 0.005 to 0.03%, B: 0.0006 to 0.005%, O: 0.0025 to 0.015%, ([Mn] + 1.5 × [ A high-strength steel sheet having a parameter KP defined by Cr] + 2 × [Mo]) of 2.4% by mass or more is disclosed. Moreover, as a process for producing such a high-tensile steel plate, rolling is completed at 850 to 950 ° C., then cooled, then re-heated to 750 to 800 ° C. and then water-quenched, and finally tempered at 550 to 600 ° C. (Eg, Tables 3 and 4 in the Examples).

しかしながら、上記特許文献4の技術では、0.005〜0.10%程度のNbを含むものであり(実施例で0.04〜0.05%)、圧延終了温度を800℃以上(実施例で820〜850℃)と規定しており、建築用途の溶接構造用鋼材に要求される音響異方性を安定して満足し得ないものである(この点については後述する)。   However, in the technique of the above-mentioned Patent Document 4, Nb is contained in an amount of about 0.005 to 0.10% (0.04 to 0.05% in the examples), and the rolling end temperature is 800 ° C. or more (Examples). 820 to 850 ° C.), and cannot stably satisfy the acoustic anisotropy required for a steel material for welded structures for architectural purposes (this point will be described later).

特許文献5の技術では、上記特許文献4と同様にNb:0.010〜0.10%を含有しており、こうした鋼材に対して750℃以上で圧延を終了し、空冷あるいは加速冷却が施されることによって引張強さ590MPa級を満足させるものであるが、降伏比は82%以上となって建築用途に適用できないものである。   In the technique of Patent Document 5, Nb: 0.010 to 0.10% is contained as in Patent Document 4, and the rolling of these steel materials is finished at 750 ° C. or higher, and air cooling or accelerated cooling is performed. As a result, the tensile strength of the 590 MPa class is satisfied, but the yield ratio is 82% or more and cannot be applied to architectural purposes.

特許文献6の技術では、低炭素鋼(C含有量0.03%ベース)において、Cu,NbおよびMoを無添加としたものも示されているが(実施例の表1のNo.1)、この鋼材におけるMn量はJIS G 3106のSM570および建設大臣一般認定の高性能鋼SA440におけるMn量の規定量(1.6%以下)を超えるものである。またMn量を1.60%以下としたものも示されているが(表1のNo.12)、この鋼材ではCuおよびNbの無添加による強度低下をMoの添加によって補償するものであり、こうした鋼材では靭性がvE-40(−40℃における吸収エネルギー)で71Jと低位であり、しかもガス切断性に劣るものとなる。即ち、こうした鋼材では、ガス切断面の表面粗度がWES2801を満足するのは困難であり、ノッチが生成されて破壊の起点となるため、構造用部材としては適さない。 In the technique of Patent Document 6, although low carbon steel (based on a C content of 0.03%) is also shown in which Cu, Nb and Mo are not added (No. 1 in Table 1 of Examples). The amount of Mn in this steel material exceeds the prescribed amount (1.6% or less) of the amount of Mn in SM570 of JIS G 3106 and high performance steel SA440 certified by the Minister of Construction. Moreover, although what made Mn amount 1.60% or less is also shown (No. 12 of Table 1), in this steel material, the strength reduction by the addition of Cu and Nb is compensated by addition of Mo, Such a steel material has a toughness as low as 71 J in vE -40 (absorbed energy at -40 ° C), and is inferior in gas cutting property. That is, in such a steel material, it is difficult for the surface roughness of the gas cut surface to satisfy WES2801, and a notch is generated and becomes a starting point of fracture, so that it is not suitable as a structural member.

ところで、Cuを含有する鋼材において、Cuに起因する表面割れを抑制し、且つ溶接熱影響部の靭性をも優れたものとした技術として、例えば特許文献7に示されるようなものも知られている。この技術は、Si:0.05〜0.5%、Cr:0.1〜0.6%、B:0.0005%以下を含有する溶接構造用Cu含有鋼であり、圧延時の割れを防止すると共に、12KJ/mmのCO2溶接における溶接熱影響部の靭性vE0が良好であるとしている。またNiを添加する場合は、鋼中Cu量の1/3未満に規定することが望ましいことが示されている。 By the way, in the steel material containing Cu, as a technique for suppressing surface cracks caused by Cu and having excellent toughness of the weld heat affected zone, for example, a technique as shown in Patent Document 7 is also known. Yes. This technology is a Cu-containing steel for welded structures containing Si: 0.05 to 0.5%, Cr: 0.1 to 0.6%, B: 0.0005% or less, and cracks during rolling It is said that the toughness vE 0 of the weld heat affected zone in CO 2 welding at 12 KJ / mm is good. Moreover, when adding Ni, it has shown that it is desirable to prescribe | regulate to less than 1/3 of the amount of Cu in steel.

しかしながら、この技術で圧延時の割れが防止できたとしても、ガス切断時に鋼成分がスラグ化する過程において鋼中のCuやCu合金が低温まで溶融状態で残存する場合には、圧延の加熱時に比較して鋼が一旦溶融する程に格段に入熱量が大きいため、溶融状態のCuのガス切断面の粒界に容易に侵入し易くなることによって、ガス切断割れを防止できないこともあり、そのままの状態では破壊の起点を内在したものとなり、割れが開口する方向の軸応力が作用する部位への適用はできない。
「日本鋼管技報」No.122(1988)、第5〜10頁 特開平9−256042号公報 特許請求の範囲等 特開平11−193445号公報 特許請求の範囲、実施例の表1、2等 特開2002−53912号公報 特許請求の範囲、実施例の表3等 特開2000−345239号公報 特許請求の範囲等 特開2001−20034号公報 特許請求の範囲等 特開2001−335883号公報 特許請求の範囲、実施例の表3、4等 特開2002−371337号公報 特許請求の範囲等
However, even if cracking during rolling can be prevented with this technique, when the Cu or Cu alloy in the steel remains in a molten state up to a low temperature in the process of slagging the steel component during gas cutting, Compared to the fact that the amount of heat input is so large that the steel is once melted in comparison, it is easy to easily enter the grain boundary of the gas cut surface of the molten Cu, and may not prevent gas cut cracks. In this state, the starting point of fracture is inherent, and it cannot be applied to a site where axial stress acts in the direction in which the crack opens.
“Japan Steel Pipe Technical Report” 122 (1988), pp. 5-10 Japanese Patent Laid-Open No. 9-256042 Claims etc. Japanese Patent Application Laid-Open No. 11-193445 Patent Claims, Examples Table 1, 2 etc. JP, 2002-53912, A Claims, Table 3 of an example, etc. JP, 2000-345239, A Claims etc. JP, 2001-20034, A Claims etc. JP, 2001-335883, A Claims, Tables 3 and 4 of an example, etc. JP, 2002-371337, A Claims etc.

本発明は、こうした従来技術における課題を解決するためになされたものであって、その目的は、耐ガス切断割れ性および大入熱溶接継手靭性に優れ、且つ音響異方性が小さく、しかも塑性変形能が大きい、引張強さ590MPa級の高張力鋼板を製造するための有な方法を提供することにある。   The present invention has been made in order to solve such problems in the prior art, and its purpose is excellent in gas cut cracking resistance and high heat input weld joint toughness, and has low acoustic anisotropy and plasticity. An object of the present invention is to provide an effective method for producing a high-tensile steel plate having a large deformability and a tensile strength of 590 MPa.

上記目的を達成し得た本発明の高張力鋼板の製造方法とは、C:0.015〜0.045%(質量%の意味、以下同じ)、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まず、且つ下記(2)式で示されるCEN値が0.27〜0.33%の範囲内にある化学成分組成を有する鋼素材を、950〜1300℃の温度範囲に加熱し、次いで下記(3)式で示されるオーステナイト未再結晶化温度t(℃)以下の温度範囲での累積圧下率を60%以下として、(オーステナイト未再結晶化温度t−80℃)以上、1100℃以下で圧延を終了した後、780℃以上の温度から3℃/秒以上の冷却速度で300℃以下になるまで直接焼入れを行い、引き続き760〜840℃の温度範囲において再加熱度焼入れを行った後、450〜550℃の温度範囲にて焼き戻す点に要旨を有するものである。
[Ti]×14.0/47.9−0.001≦[N]≦[Ti]×14.0/47.9+[B]×14.0/10.8 ‥(1)
但し、[Ti],[N],および[B]は、夫々Ti,NiおよびBの含有量(質量%)を示す。
CEN=[C]+A(c)・[[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[V])/5+5[B]] ‥(2)
但し、A(c)= 0.75+0.25・tanh[20([C]-0.12)]であり、[C],[Si],[Mn],[Cu],[Ni],[Cr],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,VおよびBの含有量(質量%)を示す。
t(℃)=887+464[C]+(732×[V]-230×√[V])+890×[Ti]+363[sol.Al]-357×[Si]
‥(3)
本発明の製造方法においては、圧延を終了した後、オンラインレベラー矯正を行うことも有用である。
The production method of the high-strength steel sheet of the present invention that can achieve the above-mentioned object is: C: 0.015-0.045% (meaning mass%, the same shall apply hereinafter), Si: 0.4% or less (0% Mn: 0.8 to 1.6%, Cr: 0.5 to 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, Cu: 0.5 to 0.95%, Ni: 0.7 to 5.0% (however, Ni The ratio [Ni] / [Cu] ≧ 1) of the content [Ni] and the Cu content [Cu], Ti: 0.005 to 0.03% and N satisfying the following formula (1) A steel material having a chemical composition that does not substantially contain Nb and Mo and has a CE N value in the range of 0.27 to 0.33% represented by the following formula (2) is 950 to 1300 ° C. Then, the cumulative rolling reduction in the temperature range below the austenite non-recrystallization temperature t (° C.) represented by the following formula (3) is set to 60% or less (the austenite non-recrystallization temperature t− 80 ° C.) or more and 1100 ° C. or less after rolling, and then at a cooling rate of 3 ° C./second or more from a temperature of 780 ° C. or more to 300 ° C. It has a gist in that it is directly quenched until it reaches the following, followed by reheating quenching in the temperature range of 760 to 840 ° C. and then tempering in the temperature range of 450 to 550 ° C.
[Ti] × 14.0 / 47.9−0.001 ≦ [N] ≦ [Ti] × 14.0 / 47.9 + [B] × 14.0 / 10.8 (1)
However, [Ti], [N], and [B] indicate the contents (mass%) of Ti, Ni, and B, respectively.
CE N = [C] + A (c) ・ [[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [V]) / 5 + 5 [B]] (2)
However, A (c) = 0.75 + 0.25 · tanh [20 ([C] -0.12)], [C], [Si], [Mn], [Cu], [Ni], [Cr], [ V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, V, and B, respectively.
t (℃) = 887 + 464 [C] + (732 × [V] -230 × √ [V]) + 890 × [Ti] +363 [sol.Al] -357 × [Si]
(3)
In the production method of the present invention, it is also useful to perform online leveler correction after the rolling is completed.

また本発明で用いる鋼素材には、必要によって、(a)V:0.005〜0.10%、(b)Ca:0.0005〜0.01%、(c)La:0.002〜0.02%,Ce:0.0003〜0.0050%およびMg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上、等を含有することも有効であり、これら含有される成分に応じて高張力鋼板の特性を更に向上させることができる。   The steel materials used in the present invention include (a) V: 0.005 to 0.10%, (b) Ca: 0.0005 to 0.01%, and (c) La: 0.002 as necessary. It is also effective to contain one or more selected from the group consisting of 0.02%, Ce: 0.0003 to 0.0050% and Mg: 0.0005 to 0.0030%. The characteristics of the high-tensile steel sheet can be further improved depending on the components contained.

本発明の製造方法によれば、低降伏比で予熱を必要とせず、且つ約100KJ/mmまでもの大入熱溶接を施しても平均70J以上の高HAZ靭性を確保でき、歪み速度の大きな地震に対しても溶接継手部の脆性破壊を防止でき、しかもガス切断割れの欠陥を内在せず、音響異方性も小さいものとなり、超高層建築物の主要溶接構造部材として極めて信頼性の高い引張強度590MPa級高張力鋼板が得られた。   According to the manufacturing method of the present invention, high HAZ toughness of 70 J or more on average can be secured even if high heat input welding is performed up to about 100 KJ / mm without requiring a low yield ratio, and an earthquake with a large strain rate. In addition, it can prevent brittle fracture of welded joints, has no internal defects of gas cutting cracks, and has low acoustic anisotropy, making it an extremely reliable tensile material as the main welded structural member of high-rise buildings. A high strength steel plate with a strength of 590 MPa was obtained.

超高層建築物に供せられる引張強さ590MPa級高張力鋼板に関して、従来の降伏比80%以下の塑性変形能に加えて、溶接継手の厚肉化に対応して、溶接入熱50〜100KJ/mmの超大入熱化を実現すると共に、大地震のように大きい歪み速度を有する外力に抵抗するために、溶接継手の全部位において、ダイアフラム溶接部に対する溶接施工指針に示される平均15J以上より遥かに高位な平均70J以上の要求靭性が要望されるようになってきた。   In addition to the conventional plastic deformability with a yield ratio of 80% or less, the welding heat input of 50 to 100 KJ is applicable to the high-strength steel sheet with a tensile strength of 590 MPa for high-rise buildings. In order to realize an extremely large heat input of / mm and to resist external forces having a large strain rate like a large earthquake, the average value of 15 J or more shown in the welding guidelines for diaphragm welds in all parts of the welded joint A much higher average toughness of 70 J or more has been demanded.

一方、橋梁の場合においても、大入熱溶接化に加えて、溶接継手部を従来の放射線透過試験から超音波斜角探傷試験に切り替わる趨勢にあることから、高層建築物の場合と同様に、横波に対する音響異方性が小さいことが求められるようになっている。   On the other hand, in the case of bridges, in addition to high heat input welding, the welded joint is in a tendency to switch from the conventional radiation transmission test to the ultrasonic oblique flaw detection test, so as in the case of high-rise buildings, The acoustic anisotropy with respect to the transverse wave is required to be small.

本発明者らが、建築用590MPa級高張力鋼板において低降伏比,音響異方性が小さいことに加え、約100KJ/mmまでものエレクトロスラグ溶接が施された強度部材に関して、溶接熱影響部に平均70J以上の靭性を持たせることについて鋭意検討した。   In addition to a low yield ratio and small acoustic anisotropy in a 590 MPa class high-tensile steel sheet for construction, the present inventors have applied a heat-affected zone to a strength member subjected to electroslag welding up to about 100 KJ / mm. We have intensively studied to provide an average toughness of 70 J or more.

その結果、1350〜1400℃に昇温した後、冷却速度の極めて小さい熱影響部に対してはTiNによる結晶粒粗大化の抑制効果に加えて、(i)溶融線近傍の熱影響部の結晶粒界へのフェライト析出および粒界からのフェライトサイドプレートの生成を抑制すること、更には(ii)同結晶粒内を微細ベイナイト組織にすることが有効であることを知見した。   As a result, after heating to 1350-1400 ° C., in addition to the effect of suppressing grain coarsening by TiN for the heat affected zone with a very low cooling rate, (i) crystals in the heat affected zone in the vicinity of the melting line It has been found that it is effective to suppress the precipitation of ferrite at the grain boundaries and the formation of ferrite side plates from the grain boundaries, and (ii) to make the inside of the crystal grains a fine bainite structure.

そして上記(i)に対しては、冷却速度が極めて小さい場合においても、固溶Bを結晶粒界に偏析させることが効果的であることが判明した。またそのためには、BNの生成を抑制するためにフリーNをTiで固定すると共に、Ar3変態点を上昇させるMoを無添加とし、Ar3変態点を低下させるCrを積極的に適量添加することが有効であることが分かった。 For (i) above, it has been found that it is effective to segregate the solid solution B at the grain boundaries even when the cooling rate is extremely low. For that purpose, in order to suppress the formation of BN, free N is fixed with Ti, Mo which raises the Ar 3 transformation point is not added, and an appropriate amount of Cr which lowers the Ar 3 transformation point is positively added. Was found to be effective.

また上記(ii)に対しては、前記(2)式で規定される炭素当量CENを0.27〜0.33%に制御すると共に、構成するCを極低化し、加えてNbを無添加とすることによって、熱影響部の旧オーステナイト結晶粒内のミクロ組織を大傾角化させた微細ベイナイトブロックの集合体とできることが効果的であることが判明した。また上記CENが0.27〜0.33%の範囲では、小入熱溶接時の予熱フリー化も実現できることも分かった。尚、これらの方策による母材の強度低下を補償するために、ε−Cu相による析出強化を積極的に活用する必要がある。 In addition to the above (ii), the carbon equivalent CE N defined by the above formula (2) is controlled to 0.27 to 0.33%, and the constituent C is made extremely low, and Nb is not added. It has been proved that it is effective to be an aggregate of fine bainite blocks in which the microstructure in the prior austenite crystal grains in the heat-affected zone is increased in inclination by the addition. It was also found that when the CE N is in the range of 0.27 to 0.33%, preheating free at the time of small heat input welding can be realized. In addition, in order to compensate for the strength reduction of the base material due to these measures, it is necessary to actively utilize precipitation strengthening due to the ε-Cu phase.

ところで、析出強化が発現するCuを過剰添加すると、ガス切断時に溶融した低融点のCuやCu合金が選択的に結晶粒界に侵入することによって、約0.2mm深さに及ぶヘアクラックが多数発生することから、Cu含有量を0.5〜0.95%に制限する共に、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]を1以上として、溶融時に共晶化させて、凝固温度の高温化を図ることで割れ感受性を小さくする必要がある。   By the way, when Cu that exhibits precipitation strengthening is excessively added, a low melting point Cu or Cu alloy melted at the time of gas cutting selectively penetrates into the crystal grain boundary, so that there are many hair cracks extending to a depth of about 0.2 mm. Therefore, the Cu content is limited to 0.5 to 0.95%, and the ratio [Ni] / [Cu] of the Ni content [Ni] and the Cu content [Cu] is set to 1 or more to melt. Sometimes it is necessary to reduce the susceptibility to cracking by eutecticizing and increasing the solidification temperature.

また母材の降伏比を低減(80%以下)させる方策として、従来のフェライト・ベイナイトの2相組織化とは異なり、MnおよびCrの添加によってベイナイト変態を促進させること、およびC含有量を0.015〜0.045%とすると共に、760〜840℃の2相域での焼入れと450〜550℃での焼き戻し等の熱処理を行うことによって、ベイナイト相間に微細な島状マルテンサイト相を0.5〜3.5%分散させることが必要である。   Also, as a measure for reducing the yield ratio of the base metal (80% or less), unlike the conventional two-phase structure of ferrite bainite, bainite transformation is promoted by addition of Mn and Cr, and the C content is reduced to 0. .015 to 0.045%, and by performing heat treatment such as quenching in a two-phase region of 760 to 840 ° C. and tempering at 450 to 550 ° C., a fine island martensite phase is formed between bainite phases. It is necessary to disperse 0.5 to 3.5%.

更に、母材の音響異方性については、日本建築学会の「鋼構造建築溶接部の超音波検査基準」の付則表1にあるSTBとの音速比がないと判定される範囲を満足させるためには、オーステナイト未再結晶温度以下での累積圧下率60%以下として、(オーステナイト未再結晶化温度−80℃)以上、1100℃以下の温度範囲で圧延を終了することによって、母材の旧オーステナイト粒径の平均アスペクト比(圧延方向の平均粒径/板厚方向の平均粒径)を1〜1.2の範囲に制御するによって実現できる。   Furthermore, with respect to the acoustic anisotropy of the base material, in order to satisfy the range in which it is determined that there is no sound velocity ratio with STB in Appendix Table 1 of “Ultrasonic Inspection Standards for Steel Structure Building Welds” of the Architectural Institute of Japan. The rolling reduction is finished at a temperature range of (austenite non-recrystallization temperature−80 ° C.) or more and 1100 ° C. or less as a cumulative reduction ratio of 60% or less at the austenite non-recrystallization temperature or less. This can be realized by controlling the average aspect ratio of the austenite grain size (average grain size in the rolling direction / average grain size in the sheet thickness direction) in the range of 1 to 1.2.

以上の方策を総合して適用することによって、50〜100KJ/mmの大入熱溶接が施されてもvE0で平均70J以上を有し、且つガス切断割れ感受性のない建築用590MPa級高性能鋼(SA440)に適合した鋼板が得られることを見出し、本発明を完成するに至った。 By applying the above measures in a comprehensive manner, even if a large heat input welding of 50 to 100 KJ / mm is applied, it has an average value of 70 J or more at vE 0 and is not susceptible to gas cutting cracking. The present inventors have found that a steel plate suitable for steel (SA440) can be obtained, and have completed the present invention.

以下に、本発明の特性を得るための化学組成およびミクロ組織の限定理由を、その経緯に沿って説明する。   The reason for limiting the chemical composition and the microstructure for obtaining the characteristics of the present invention will be described below along the background.

本発明者らは、前記CEN値が約0.30%の一定となるようにMn含有量を可変にして調整した5鋼種(0.035C−1.45Mn−0.95Cu−1Ni−0.7Cr−0.015Ti−0.0012B−0.0040N系の基本鋼,0.4Mo添加鋼,0.01Nb添加鋼,0.4Mo−0.01Nb添加鋼および0.05C系鋼)のスキンプレート材と、SN490B−TMC(0.14C−0.3Si−1.25Mn−0.008Nb−0.012Ti系,60mm厚)のダイアフラム材を組合せし、ギャップ25mmを設けて入熱100KJ/mmのエレクトロスラグ溶接を行ない、溶接継手部のスキンプレート側の熱影響部(HAZ)の靭性(切欠き位置:大入熱溶接HAZで最も低靭性を示すボンド+0.5mm)を比較調査した(後記表7の実験No.2〜7参照)。 The inventors of the present invention have five steel types (0.035C-1.45Mn-0.95Cu-1Ni-0.0) adjusted with the Mn content variable so that the CE N value is constant at about 0.30%. 7Cr-0.015Ti-0.0012B-0.0040N-based basic steel, 0.4Mo-added steel, 0.01Nb-added steel, 0.4Mo-0.01Nb-added steel, and 0.05C-based steel) skin plate material And a SN490B-TMC (0.14C-0.3Si-1.25Mn-0.008Nb-0.012Ti system, 60 mm thick) diaphragm material, with a gap of 25 mm and an electroslag with a heat input of 100 KJ / mm Welding and comparing the toughness of the heat affected zone (HAZ) on the skin plate side of the welded joint (notch position: bond showing the lowest toughness in high heat input welding HAZ + 0.5 mm) And 査 (see Experimental No.2~7 the following Table 7).

この結果から、上記CEN値が約0.30%と同レベルを示す化学成分組成であっても、Mo無添加,Nb無添加,Cr増量およびC低減によって、夫々大入熱HAZ靭性を大幅に向上させること、およびこれらの要件を複合化させることにより、最もHAZ靭性が低くなるボンド+0.5mm位置近傍においても、vE070J以上を初めて保証できることが分かった。また、MoおよびNbの無添加による強度低下をCuの析出強化とMn,Crによる固溶強化によって補償できることも分かった。 From this result, even if the chemical component composition shows the same level as the CE N value of about 0.30%, the large heat input HAZ toughness is greatly increased by adding no Mo, no Nb, adding Cr, and reducing C. It was found that, by combining these requirements and by combining these requirements, it is possible to guarantee vE 0 70 J or more for the first time even in the vicinity of the bond +0.5 mm position where the HAZ toughness is lowest. It was also found that the strength reduction due to the absence of addition of Mo and Nb can be compensated by precipitation strengthening of Cu and solid solution strengthening by Mn and Cr.

また、大入熱溶接HAZ靭性が高位な鋼種(後記表1の鋼種B)を基本成分として、CuやNiの含有量を変化させてLPガス(LPG)切断によって、ガス切断面から鋼板表面に平行方向に進展する割れの最大深さを比較調査した(後記表7の実験No.2,8〜17参照)。   In addition, steel grade with high heat input welding HAZ toughness (steel grade B in Table 1 below) is used as a basic component, and the content of Cu and Ni is changed to LP gas (LPG) cutting from the gas cut surface to the steel plate surface. A comparative investigation was made on the maximum depth of cracks extending in the parallel direction (see Experiment Nos. 2 and 8 to 17 in Table 7 below).

この結果から、Cu含有量が0.95%以下でかつ、前記比[Ni]/[Cu]を1以上に制御することにより、ガス切断割れ感受性が小さくなることが判明したのである。   From this result, it has been found that by controlling the ratio [Ni] / [Cu] to 1 or more when the Cu content is 0.95% or less, the sensitivity to gas cutting cracks is reduced.

更に、本発明者らは、0.035C−1.45Mn−0.95Cu−1Ni−0.7Cr−0.015Ti−0.0012B−0.0040N系の基本成分(後記表1の鋼種B)のC含有量を変化させた鋼種を用い、連続鋳造スラブを1050〜1100℃に加熱後、100mm厚に900℃で熱間圧延後直接焼入れし、引き続き840℃での焼入れ処理(Q’処理)と500℃での焼戻し処理(T処理)を実施して、強度,降伏比およびミクロ組織および100KJ/mmでのHAZ靭性に及ぼすC含有量の影響を調査した(後記表7の実験No.2,6,18〜21参照)。   Furthermore, the inventors of the present invention have a basic component of 0.035C-1.45Mn-0.95Cu-1Ni-0.7Cr-0.015Ti-0.0012B-0.0040N system (steel type B in Table 1 below). Using steel grades with varying C content, the continuous cast slab was heated to 1050-1100 ° C, then hot-rolled to 900mm at 900 ° C and then directly quenched, followed by quenching at 840 ° C (Q 'treatment) A tempering treatment (T treatment) at 500 ° C. was carried out to investigate the influence of the C content on the strength, yield ratio, microstructure and HAZ toughness at 100 KJ / mm (Experiment No. 2 in Table 7 below). 6, 18-21).

この結果から、C:0.015%以上で降伏比80%以下と強度を両立できることが分かったのである。また、これらの鋼種における大入熱HAZ靭性の調査結果から、vE0で平均70J以上を確保するためには、C含有量の上限を0.045%とする必要があることが分かった。 From this result, it was found that when C: 0.015% or more, the yield ratio is 80% or less and the strength is compatible. Further, from the investigation results of the high heat input HAZ toughness in these steel types, it was found that the upper limit of the C content needs to be 0.045% in order to ensure an average of 70 J or more in vE 0 .

次に、本発明で対象とする鋼素材における化学成分組成の限定理由について説明する。まず本発明では、上記のようにC:0.015〜0.045%、Si:0.01〜0.4%、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まないものとする必要があるが、これら元素の範囲限定理由は、次の通りである。   Next, the reason for limiting the chemical component composition in the steel material that is the subject of the present invention will be described. First, in the present invention, as described above, C: 0.015 to 0.045%, Si: 0.01 to 0.4%, Mn: 0.8 to 1.6%, Cr: 0.5 to 1.%. 3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, Cu: 0.5 to 0.95%, Ni: 0.7 to 5.0% (however, Ni The ratio [Ni] / [Cu] ≧ 1) of the content [Ni] and the Cu content [Cu], Ti: 0.005 to 0.03% and N satisfying the following formula (1) Although it is necessary to substantially not contain Nb and Mo, the reasons for limiting the ranges of these elements are as follows.

C:0.015〜0.045%
Cは低温ベイナイトを形成させて高張力鋼の強度と低降伏比の確保に有効な元素であり、そのためには0.015%以上含有させる必要がある。しかしながら、Cを過剰に含有させると、高冷却速度側でマルテンサイト相を形成して耐溶接低温割れ性を劣化させると共に、大入熱溶接HAZで島状マルテンサイト相を増大させて靭性を劣化させることになる。こうしたことから、その上限は0.045%とする必要がある。尚、母材強度と大入熱溶接HAZ靭性の両立の観点から、好ましい下限は0.02%であり、好ましい上限は0.04%である。
C: 0.015-0.045%
C is an element effective for forming low-temperature bainite and ensuring the strength and low yield ratio of high-tensile steel, and for that purpose, it is necessary to contain 0.015% or more. However, if C is contained excessively, a martensite phase is formed on the high cooling rate side and the cold cracking resistance of welding is deteriorated, and the island-like martensite phase is increased by high heat input HAZ to deteriorate toughness. I will let you. For these reasons, the upper limit needs to be 0.045%. In addition, from a viewpoint of coexistence of base material strength and high heat input welding HAZ toughness, a preferable lower limit is 0.02%, and a preferable upper limit is 0.04%.

Si:0.4%以下(0%を含む)
Siは脱酸剤および強化元素として有効な元素であるが、過剰に含有させると大入熱溶接HAZでの島状マルテンサイト相を増加させて靭性を劣化させる。こうしたことから、その上限を0.4%とし、また含有量はできるだけ少ない方が良いことからその下限を0%とする。Siを含まない場合には、脱酸はMn,Al,Ti等で任意に代替可能である。尚、Si含有量の好ましい上限は0.3%である。
Si: 0.4% or less (including 0%)
Si is an effective element as a deoxidizer and strengthening element. However, if excessively contained, it increases the island-like martensite phase in the high heat input welding HAZ and deteriorates toughness. For these reasons, the upper limit is set to 0.4%, and the lower content is preferably as low as possible, so the lower limit is set to 0%. When Si is not included, deoxidation can be arbitrarily replaced with Mn, Al, Ti, or the like. In addition, the preferable upper limit of Si content is 0.3%.

Mn:0.8〜1.6%
Mnはフェライト変態を低温,長時間側に移行させ、低温で上部ベイナイト相を形成させて強化するのに有効な元素である。そのためにはMnは0.8%以上含有させる必要がある。しかしながらMnを過剰に含有させると、母材および大入熱溶接HAZの靭性の劣化および耐溶接低温割れ性の劣化を引き起こすので、上限を1.6%とする。Mn含有量の好ましい下限は1.0%であり、好ましい上限は1.5%である。
Mn: 0.8 to 1.6%
Mn is an element that is effective in causing the ferrite transformation to shift to a low temperature for a long time and to form and strengthen the upper bainite phase at a low temperature. For that purpose, it is necessary to contain 0.8% or more of Mn. However, when Mn is contained excessively, the toughness of the base metal and the high heat input weld HAZ and the deterioration of the weld cold crack resistance are caused, so the upper limit is made 1.6%. The minimum with preferable Mn content is 1.0%, and a preferable upper limit is 1.5%.

Cr:0.5〜1.3%
Crは焼入性を向上させることによって、低温での上部ベイナイト相の形成および同一強度レベル比較での降伏比の低減に有効な元素である。また、大入熱溶接HAZのフェライト変態を低温,長時間側に移行させるため、低温でベイナイト相を形成させ易くして靭性向上に有効である。こうした効果を発揮させるために、Crは0.5%以上含有させる必要がある。しかしながら、Crを過剰に含有させると大入熱溶接HAZでの島状マルテンサイト相の増大を招くことから、その上限は1.3%とする必要がある。尚、Cr含有量の好ましい下限は0.6%であり、好ましい上限は1.1%である。
Cr: 0.5 to 1.3%
Cr is an element that is effective for forming the upper bainite phase at a low temperature and reducing the yield ratio by comparing the same strength level by improving hardenability. In addition, since the ferrite transformation of the high heat input weld HAZ is shifted to a low temperature and long time side, it is easy to form a bainite phase at a low temperature and effective in improving toughness. In order to exhibit such an effect, Cr needs to be contained 0.5% or more. However, if Cr is excessively contained, the island-like martensite phase is increased in the high heat input welding HAZ, so the upper limit needs to be 1.3%. In addition, the minimum with preferable Cr content is 0.6%, and a preferable upper limit is 1.1%.

sol.Al:0.08%(0%を含む)
sol.Al(可溶性Al)は脱酸に有効な元素であるが、大入熱溶接HAZでTiオキサイドを核とする粒内のベイナイトを形成させることで靭性を向上させるには、含有量はできるだけ少ない方がよく、下限を0%とする。その場合の脱酸はMn,Si,Ti等で任意に代替可能である。またsol.Alは、TiによるN固定を補うことによって母材の焼入性確保に有効に作用するが、過剰に含有されると非金属介在物を増加させて靭性劣化を招くことになる。こうしたことから、sol.Alを含有させるときにはその上限を0.08%とする必要がある。尚、sol.Alの好ましい上限は0.06%程度である。
sol. Al: 0.08% (including 0%)
sol. Al (soluble Al) is an element effective for deoxidation, but in order to improve toughness by forming intragranular bainite with Ti oxide as the core in high heat input welding HAZ, the content should be as small as possible The lower limit is 0%. In this case, deoxidation can be arbitrarily replaced with Mn, Si, Ti, or the like. Also, sol. Al effectively works to secure the hardenability of the base material by supplementing N fixation with Ti, but if it is excessively contained, it increases nonmetallic inclusions and causes toughness deterioration. Therefore, sol. When Al is contained, the upper limit needs to be 0.08%. In addition, sol. A preferable upper limit of Al is about 0.06%.

B:0.0004〜0.003%
Bは焼入性を向上させて低冷却速度でもフェライト変態を抑制し、低温域でのベイナイトの生成を促進するため、母材強度の向上に有効である。また大入熱溶接HAZにおいて、固溶Bが旧オーステナイト粒界に偏析すると共に、残部のBNとなったものは粒界に析出して粒内ベイナイト変態核として作用するため、粒界フェライト相の生成が抑制されて靭性向上に有効に作用する。そのためには、Bは0.0004%以上含有させる必要がある。しかしながら、Bが過剰に含有されると鋼の焼入性が高くなり過ぎて、島状マルテンサイト相を増加させ、母材および大入熱溶接HAZの靭性を劣化させると共に、耐溶接低温割れ性を劣化させる。こうしたことから、B含有量の上限は0.003%とする必要がある。尚、B含有量の好ましい下限は0.006%、好ましい上限は0.002%である。
B: 0.0004 to 0.003%
B improves the hardenability, suppresses ferrite transformation even at a low cooling rate, and promotes the formation of bainite in a low temperature region, and is therefore effective in improving the base material strength. In the high heat input welding HAZ, the solid solution B segregates at the prior austenite grain boundaries, and the remaining BN precipitates at the grain boundaries and acts as intragranular bainite transformation nuclei. Formation is suppressed and effectively acts to improve toughness. For that purpose, B needs to be contained in an amount of 0.0004% or more. However, if B is contained excessively, the hardenability of the steel becomes too high, the island martensite phase is increased, the toughness of the base metal and the high heat input weld HAZ is deteriorated, and the resistance to welding cold cracking is also improved. Deteriorate. For these reasons, the upper limit of the B content needs to be 0.003%. In addition, the minimum with preferable B content is 0.006%, and a preferable upper limit is 0.002%.

Cu:0.5〜0.95%
Cuは固溶強化およびε−Cu相のクラスターの析出により、母材の強度を向上させるのに有効な元素である。これらの効果を発揮させるためには、Cuは0.5%以上含有させる必要がある。しかしながら、Cuを過剰に含有させると、ガス切断面にCu濃縮相を形成し、熱膨張時に旧オーステナイト粒界に侵入して割れを誘発させることから、その上限を0.95%とする。Cu含有量の好ましい下限は0.7%であり、好ましい上限は0.9%である。
Cu: 0.5 to 0.95%
Cu is an element effective for improving the strength of the base material by solid solution strengthening and precipitation of clusters of ε-Cu phase. In order to exhibit these effects, it is necessary to contain Cu 0.5% or more. However, if Cu is excessively contained, a Cu-concentrated phase is formed on the gas cut surface and enters the prior austenite grain boundary during thermal expansion to induce cracking, so the upper limit is made 0.95%. The minimum with preferable Cu content is 0.7%, and a preferable upper limit is 0.9%.

Ni:0.7〜5.0%
Niは、焼入性を向上させると共に、母材および大入熱溶接HAZの基地の靭性を向上させる元素であり、これらの効果を作用させるには、0.7%以上含有させる必要がある。しかしながら、Niを過剰に含有させると、焼入性が高くなり過ぎて島状マルテンサイト相が増加して靭性劣化を招くばかりか不経済でもあるので、その上限を5%とする。尚、Ni含有量の好ましい下限は0.9%であり、好ましい上限は3%である。
Ni: 0.7-5.0%
Ni is an element that improves the hardenability and improves the toughness of the base material and the base of the high heat input welding HAZ, and in order to exert these effects, it is necessary to contain 0.7% or more. However, if Ni is contained excessively, the hardenability becomes too high and the island-like martensite phase increases, leading to deterioration of toughness and also being uneconomical, so the upper limit is made 5%. In addition, the minimum with preferable Ni content is 0.9%, and a preferable upper limit is 3%.

但し、[Ni]/[Cu]≧1
本発明の高張力鋼においては、Ni含有量[Ni]とCuの含有量[Cu]の比[Ni]/[Cu]で1以上とする必要がある。こうした要件を満足させることによって、ガス切断面に濃縮するCu−Ni合金相の融点を高温化でき、高温割れを防止できる。
However, [Ni] / [Cu] ≧ 1
In the high-tensile steel of the present invention, the ratio [Ni] / [Cu] of the Ni content [Ni] and the Cu content [Cu] needs to be 1 or more. By satisfying these requirements, the melting point of the Cu—Ni alloy phase concentrated on the gas cut surface can be increased, and hot cracking can be prevented.

Ti:0.005〜0.03%
Tiは固溶NをTiNとして固定して固溶B量を増加させ、母材の焼入性を向上させるのに有効な元素である。またTi脱酸でTi酸化物を生成させる場合には、大入熱溶接HAZにおいて粒内ベイナイト相の生成核として作用して靭性を向上させる。こうした効果を発揮させるためには、Ti含有量は0.005%以上とする必要がある。しかしながら、Tiを過剰に含有させるとTiCの析出によって母材およびHAZの靭性を劣化させるので、その上限を0.03%とする。尚、Ti含有量の好ましい下限は0.008%であり、好ましい上限は0.02%である。
Ti: 0.005 to 0.03%
Ti is an element effective for fixing solid solution N as TiN, increasing the amount of solid solution B, and improving the hardenability of the base material. Further, when Ti oxide is generated by Ti deoxidation, it acts as a nucleus for formation of an intragranular bainite phase in high heat input welding HAZ and improves toughness. In order to exert such effects, the Ti content needs to be 0.005% or more. However, when Ti is excessively contained, the toughness of the base metal and the HAZ is deteriorated by precipitation of TiC, so the upper limit is made 0.03%. In addition, the minimum with preferable Ti content is 0.008%, and a preferable upper limit is 0.02%.

N:前記(1)式を満足する量
大入熱溶接HAZにおいて靭性を高位に確保するためには、旧オーステナイト粒内にTiNを微細析出させること、およびBNを複合的に析出させることで、粒内ベイナイトの生成核となすことが有効である。こうした観点から、N含有量の下限を(Tiの化学量論的当量)−0.001%とし、その上限をTiとBの化学量論的当量の総量とした。これを超えると、固溶NによるHAZの靭性劣化や母材の焼入性低下を惹き起こすことになる。
N: In order to ensure high toughness in the high heat input welding HAZ that satisfies the above formula (1) , fine precipitation of TiN in the prior austenite grains and composite precipitation of BN, It is effective to form the nuclei of intragranular bainite. From such a viewpoint, the lower limit of the N content was (Ti stoichiometric equivalent) −0.001%, and the upper limit was the total amount of Ti and B stoichiometric equivalents. Exceeding this will cause toughness degradation of the HAZ due to the solute N and a decrease in the hardenability of the base metal.

Nb:実質的に含まない
Nbは固溶して焼入性を向上させるが、大入熱溶接HAZにおいて旧オーステナイト粒内に板状の粗大な上部ベイナイト相を形成させ、結晶方位が揃うことになるので破壊経路の障壁とならず、靭性を大きく劣化させる。こうした観点から、本発明の高張力鋼においては実質的に含有しないことが必要である。尚、「実質的に含まない」とは、不純物程度(例えば、0.005%以下)として混入することは許容する趣旨である。
Nb: Nb not substantially contained improves the hardenability by solid solution, but forms a plate-like coarse upper bainite phase in the prior austenite grains in the high heat input welding HAZ, and the crystal orientation is aligned. Therefore, it does not become a barrier for the fracture path and greatly deteriorates the toughness. From such a viewpoint, it is necessary that the high-tensile steel of the present invention is not substantially contained. Note that “substantially free” means that it is allowed to be mixed as an impurity (for example, 0.005% or less).

Mo:実質的に含まない
Moは焼入性を向上させて強度向上に有効な元素であるが、Ar3変態点を上昇させて大入熱溶接HAZで高温ベイナイト相や島状マルテンサイト相の生成を促進させて靭性を劣化させる。こうした観点から、本発明の高張力鋼においては実質的に含有しないことが必要である。尚、「実質的に含まない」とは、不純物程度(例えば、0.05%以下)として混入することは許容する趣旨である。
Mo: Mo which is substantially not contained is an element effective for improving the hardenability and improving the strength. However, the Ar 3 transformation point is raised to increase the high-temperature bainite phase or the island martensite phase in the high heat input welding HAZ. Promotes formation and degrades toughness. From such a viewpoint, it is necessary that the high-tensile steel of the present invention is not substantially contained. Note that “substantially does not contain” means that it is allowed to be mixed as an impurity (for example, 0.05% or less).

本発明で対象とする鋼素材においては、上記(2)式で規定されるCEN値も適切な範囲に制御する必要があるが、この範囲限定理由は、次の通りである。 In the steel material that is the subject of the present invention, it is necessary to control the CE N value defined by the above equation (2) within an appropriate range. The reason for limiting the range is as follows.

CE N :0.27〜0.33%
上記(2)式で規定されるCENは、溶接HAZの硬化性を表現する炭素当量である。このCENの値が0.27%未満では、厚肉材で引張強さ590MPa級を満足できなくなる。またCENの値が0.33%を超えると、耐溶接低温割れ性が劣化して、予熱が必要となるばかりでなく、島状マルテンサイト相が増加して大入熱溶接HAZの靭性が低位となり、入熱100KJ/mmで目標とする平均vE0:70Jを安定して確保することが困難となる。よって、本発明の高張力鋼においては、上記(2)式で規定されるCEN値が0.27〜0.33%の範囲内とする必要がある。CEN値の好ましい下限は0.28%であり、好ましい上限は0.32%である。
CE N : 0.27 to 0.33%
CE N defined by the above formula (2) is a carbon equivalent expressing the curability of the welded HAZ. If the CE N value is less than 0.27%, the thick material cannot satisfy the tensile strength of 590 MPa class. Also the value of CE N exceeds 0.33%, the resistance to weld cold cracking resistance deteriorates, preheating not only necessary, toughness high heat-input welding HAZ island martensite phase is increased It becomes low, and it becomes difficult to stably secure the target average vE 0 : 70 J at a heat input of 100 KJ / mm. Therefore, in the high-tensile steel of the present invention, the CE N value defined by the above equation (2) needs to be in the range of 0.27 to 0.33%. The preferable lower limit of the CE N value is 0.28%, and the preferable upper limit is 0.32%.

尚、上記炭素当量CENは、鋼素材がNbやMoを含有するときには、これらの項目も入れて下記(4)式のように表せるものであるが、本発明で対象とする鋼素材では、これらの元素を実質的に含まないものであるので、炭素当量CENの値としては上記(2)式で規定するものを採用したものである。従って、NbやMoを含有する鋼素材の炭素当量を評価するときには、下記(4)式によって求められる値を採用することになる(後記鋼種A,C,D,E等)。
CEN=[C]+A(c)・[[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]]
‥(4)
但し、A(c)= 0.75+0.25・tanh[20([C]-0.12)]であり、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo],[Nb],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,Nb,VおよびBの含有量(質量%)を示す。
In addition, when the steel material contains Nb and Mo, the carbon equivalent CE N can be expressed as the following formula (4) including these items. However, in the steel material targeted by the present invention, Since these elements are not substantially contained, the value defined by the above formula (2) is adopted as the value of the carbon equivalent CE N. Therefore, when evaluating the carbon equivalent of the steel material containing Nb or Mo, a value obtained by the following equation (4) is adopted (the steel types A, C, D, E, etc. described later).
CE N = [C] + A (c) ・ [[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 [B]]
(4)
However, A (c) = 0.75 + 0.25 · tanh [20 ([C] -0.12)], [C], [Si], [Mn], [Cu], [Ni], [Cr], [ Mo], [Nb], [V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, Nb, V and B, respectively.

本発明で対象とする鋼素材には、必要によって、(a)V:0.005〜0.10%、(b)Ca:0.0005〜0.01%、(c)La:0.002〜0.02%,Ce:0.0003〜0.0050%およびMg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上、等を含有することも有効であるが、これらの成分を含有させるときの範囲限定理由は、次の通りである。   The steel materials to be used in the present invention include (a) V: 0.005 to 0.10%, (b) Ca: 0.0005 to 0.01%, and (c) La: 0.002 as necessary. It is also effective to contain one or more selected from the group consisting of ˜0.02%, Ce: 0.0003 to 0.0050% and Mg: 0.0005 to 0.0030%. The reasons for limiting the range when these components are contained are as follows.

V:0.005〜0.10%
Vは母材強度の向上に有効な元素である。こうした効果を発揮させるためには、Vは0.005%以上含有させることが好ましいが、0.10%を超えて過剰に含有させると大入熱溶接HAZ靭性が低下することになる。尚、V含有量のより好ましい下限は0.03であり、より好ましい上限は0.06%である。
V: 0.005-0.10%
V is an element effective for improving the base material strength. In order to exert such an effect, it is preferable to contain V in an amount of 0.005% or more. However, if it is contained in excess of 0.10%, the high heat input welding HAZ toughness is lowered. In addition, the more preferable minimum of V content is 0.03, and a more preferable upper limit is 0.06%.

Ca:0.0005〜0.01%
CaはSをCaSとして固定すると共に、粒状の非金属介在物として形態を制御することにより、板厚中央部に存在するS偏析部に柱角継手溶接時に発生するZ方向引張応力が作用する場合においても、絞りおよび靭性を向上させて、偏析部からの破壊を防止するのに有効である。また、[O]と化合してCaOとして、大入熱溶接後のベイナイト変態の核を旧オーステナイト粒内に分散させて、ベイナイトブロックサイズを微細化させて大入熱HAZ靭性を向上させる作用も発揮する。これらの効果を発揮させるためには、Caは0.0005%以上含有させることが好ましいが、0.01%を超えて過剰に含有させてもその効果は飽和するばかりか、母材の靭性が却って劣化する。尚、Ca含有量のより好ましい下限は0.01%であり、より好ましい上限は0.05%である。
Ca: 0.0005 to 0.01%
When Ca fixes S as CaS and controls the form as granular non-metallic inclusions, the Z-direction tensile stress generated during column angle joint welding acts on the S segregated portion in the center of the plate thickness Is effective in improving drawing and toughness and preventing breakage from the segregated portion. Moreover, it combines with [O] to form CaO, and the core of bainite transformation after high heat input welding is dispersed in the prior austenite grains, and the bainite block size is refined to improve the high heat input HAZ toughness. Demonstrate. In order to exert these effects, Ca is preferably contained in an amount of 0.0005% or more. However, if the Ca content exceeds 0.01%, the effect is not only saturated, but the toughness of the base material is increased. On the contrary, it deteriorates. In addition, the more preferable minimum of Ca content is 0.01%, and a more preferable upper limit is 0.05%.

La:0.002〜0.02%、Ce:0.0003〜0.0050%、Mg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上
LaおよびCeは希土類元素(REM)の1種であり、硫化物としてSを固定し、偏析部の絞りおよび靭性を向上させるのに有効に作用する。またCeとMgは、大入熱溶接後の冷却時において、CeO2やMgOの低融点酸化物を旧オーステナイト粒内に析出させて、それを核にベイナイト変態するため、ベイナイトブロックを微細化させて、破壊経路を複雑化させることにより、大入熱溶接HAZ靭性を向上させる。La,Ce,Mgが上記各下限よりも少ない場合にはこれらの効果が発揮されず、上限よりも多くなると過剰な非金属介在物の存在により、母材靭性を却って劣化させることになる。より好ましい下限は夫々La:0.002%、Ce:0.005%、Mg:0.001%であり、より好ましい上限は夫々La:0.01%、Ce:0.002%、Mg:0.0020%である。
One or more selected from the group consisting of La: 0.002-0.02%, Ce: 0.0003-0.0050%, Mg: 0.0005-0.0030% La and Ce are rare earth elements It is a kind of (REM) and works effectively to fix S as a sulfide and improve the drawing and toughness of the segregation part. In addition, Ce and Mg precipitate CeO 2 or MgO low melting point oxides in the prior austenite grains during cooling after high heat input welding, and transform the bainite block into fine bainite blocks. Thus, the high heat input welding HAZ toughness is improved by complicating the fracture path. When La, Ce, and Mg are less than the above lower limits, these effects are not exhibited. When the La, Ce, and Mg are more than the upper limits, the presence of excessive nonmetallic inclusions causes deterioration of the base metal toughness. More preferable lower limits are La: 0.002%, Ce: 0.005%, Mg: 0.001%, respectively, and more preferable upper limits are La: 0.01%, Ce: 0.002%, Mg: 0. 0020%.

本発明で対象とする鋼素材において、上記成分の他は、Feおよび不可避不純物からなるものであるが、その特性を阻害しない程度の微量成分(許容成分)も含み得るものであり、こうした鋼素材を用いることも本発明の範囲に含まれるものである。   In the steel material which is the subject of the present invention, in addition to the above components, it consists of Fe and inevitable impurities, but it can also contain trace components (allowable components) to the extent that they do not impede its properties. It is also included in the scope of the present invention.

本発明の製造方法においては、上記のような化学成分組成を有する鋼素材を用い、その製造条件を適切にすることによって、希望する特性を発揮する高張力鋼板が得られるのであるが、本発明の製造方法は、基本的には連鋳法あるいは造塊法により作製されたスラグを用いて、圧延後直接焼入れ(DQ)→二相域焼入れ(Q’)→焼き戻し(T)の工程を行うことを特徴とするものである。次に、本発明で規定する各製造条件について説明する。尚、以下の製造条件においては、温度管理の位置は鋼材の表面部とし、加熱、熱処理においては均熱化するものとする。   In the production method of the present invention, a steel material having the chemical composition as described above is used, and by making the production conditions appropriate, a high-tensile steel sheet exhibiting desired properties can be obtained. The manufacturing method is basically a process of direct quenching after rolling (DQ) → two-phase region quenching (Q ′) → tempering (T) using slag produced by a continuous casting method or an ingot casting method. It is characterized by doing. Next, each manufacturing condition prescribed | regulated by this invention is demonstrated. In the following manufacturing conditions, the position of temperature control is the surface portion of the steel material, and soaking is performed in heating and heat treatment.

スラブ加熱温度:950〜1300℃
スラブ加熱温度については、1300℃を超えると、旧オーステナイト粒の粗大化を引き起こし、靭性を劣化させる。これに対して、スラブ加熱温度が950℃未満になると、スラブの含まれるBN析出物を完全に解離することができず、圧延後の直接焼入れ時におけるBのオーステナイト粒界偏析量が減少するので、焼入れ性が著しく低下する。こうしたことから、スラブ加熱温度は、950〜1300℃の温度範囲とする必要がある。
Slab heating temperature: 950-1300 ° C
When the slab heating temperature exceeds 1300 ° C., coarsening of prior austenite grains is caused and toughness is deteriorated. In contrast, when the slab heating temperature is less than 950 ° C., the BN precipitates contained in the slab cannot be completely dissociated, and the amount of segregation of B austenite grain boundaries during direct quenching after rolling is reduced. The hardenability is significantly reduced. Therefore, the slab heating temperature needs to be in the temperature range of 950 to 1300 ° C.

圧延温度域:前記(3)式で示されるオーステナイト未再結晶化温度t(℃)以下、および圧延終了温度:(オーステナイト未再結晶化温度−80℃)以上、1100℃以下
圧延温度域が前記オーステナイト未再結晶化温度t(℃)以下となると、圧延方向に伸長した(100)面に平行な加工組織が形成され、冷却、焼戻し後においてもそれが残存するために、鋼板の靭性レベルを低下させると共に、圧延方向と圧延方向に直交する方向において、音響異方性が発現することになる。従って、オーステナイト未再結晶化温度t以下での圧下率(累積圧延率)はできるだけ小さくする必要があり、こうした趣旨からしてなるので、累積圧下率を60%以下とする必要がある。尚、このときの累積圧下率の下限については上記趣旨からして0%(即ち、上記温度域では圧延を行わない)をも含むものである。
Rolling temperature range: austenite non-recrystallization temperature t (° C.) or less represented by the above formula (3), and rolling end temperature: (austenite non-recrystallization temperature−80 ° C.) or more and 1100 ° C. or less. When the temperature falls below the austenite non-recrystallization temperature t (° C.), a processed structure parallel to the (100) plane extending in the rolling direction is formed and remains even after cooling and tempering. While lowering, acoustic anisotropy appears in the rolling direction and the direction perpendicular to the rolling direction. Therefore, the rolling reduction (cumulative rolling ratio) at the austenite non-recrystallization temperature t or less needs to be as small as possible. For this purpose, the cumulative rolling reduction needs to be 60% or less. Incidentally, the lower limit of the cumulative rolling reduction at this time includes 0% (that is, rolling is not performed in the above temperature range) from the above-mentioned purpose.

一方、圧延終了温度(圧延仕上温度)については、音響異方性を発現させる圧延集合組織の生成を抑制するという観点から(オーステナイト未再結晶化温度−80℃)以上とする必要があるが、母材靭性料を確保するという観点からして、1100℃以下とする必要がある。尚、圧延終了温度の好ましい下限は850℃であり、好ましい上限は1050℃程度であり、こうした条件を満足させることによって、音量異方性に影響を与える平均アスペクト比を適切な範囲(例えば、1〜1.2)に制御できることになる。   On the other hand, the rolling end temperature (rolling finishing temperature) needs to be not less than (austenite non-recrystallization temperature−80 ° C.) from the viewpoint of suppressing the generation of a rolling texture that develops acoustic anisotropy. From the viewpoint of securing the base material toughness material, it is necessary to set the temperature to 1100 ° C. or lower. The preferable lower limit of the rolling end temperature is 850 ° C., and the preferable upper limit is about 1050 ° C. By satisfying these conditions, the average aspect ratio that affects the volume anisotropy is in an appropriate range (for example, 1 To 1.2).

即ち、音響異方性が「日本建築学会の鋼構造建築溶接部の超音波検査規準」にある付則表1にあるSTBと試験片との音速差がないと判定される範囲を満足させるためには、後述するように、平均アスペクト比(主圧延方向/板厚方向の平均粒径比)を適切な範囲に制御することが好ましいのであるが、こうした条件を満足させるためには、上記のように圧延温度域および圧延終了温度を適切に設定して圧延を行う必要がある。   That is, in order to satisfy the range in which the acoustic anisotropy is determined to have no difference in sound velocity between the STB and the test piece in Appendix Table 1 in the “Ultrasonic Inspection Standard for Steel Structure Building Welds of the Architectural Institute of Japan”. As will be described later, it is preferable to control the average aspect ratio (average particle size ratio in the main rolling direction / sheet thickness direction) within an appropriate range. In order to satisfy these conditions, It is necessary to perform rolling while appropriately setting the rolling temperature range and the rolling end temperature.

尚、上記オーステナイト未再結晶化温度t(℃)は、鋼素材がNbを含有するときには、その項目も入れて下記(5)式のように表せるものであるが、本発明で対象とする鋼素材では、この元素を含まないものであるので、オーステナイト未再結晶化温度t(℃)としては上記(3)式で規定するものを採用したものである。従って、Nbを含有する鋼素材のオーステナイト未再結晶化温度t(℃)を評価するときには、下記(5)式によって求められる値を採用することになる(後記鋼種A,D,E等)。
t(℃)=887+464[C]+(6445[Nb]-644√[Nb])+(732×[V]-230×√[V])+890×
[Ti]+363[sol.Al]-357×[Si] ‥(5)
但し、[C],[Nb],[V],[Ti],[sol. Al]および[Si]は、夫々C,Nb,V,Ti,sol.AlおよびSiの含有量(質量%)を示す。
The austenite non-recrystallization temperature t (° C.) can be expressed by the following formula (5) including the item when the steel material contains Nb. Since the material does not contain this element, the austenite non-recrystallization temperature t (° C.) is the one defined by the above equation (3). Therefore, when evaluating the austenite non-recrystallization temperature t (° C.) of the steel material containing Nb, the value obtained by the following equation (5) is adopted (the steel types A, D, E, etc. described later).
t (℃) = 887 + 464 [C] + (6445 [Nb] -644√ [Nb]) + (732 × [V] -230 × √ [V]) + 890 ×
[Ti] +363 [sol.Al] -357 × [Si] (5)
However, [C], [Nb], [V], [Ti], [sol. Al] and [Si] are C, Nb, V, Ti, sol. The content (mass%) of Al and Si is shown.

圧延終了後の冷却条件:780℃以上の温度から3℃/秒以上の冷却速度で300℃以下になるまで直接焼入れを行う
圧延終了後の冷却条件については、冷却開始温度が780℃未満の場合、或いは冷却速度が3℃/秒未満の場合には、連続冷却変態図におけるフェライトノーズを通過することによって、冷却後において初析フェライト相と粗大なベイナイト相を含むミクロ組織が形成されて、母材の強度、靭性が低下することになる。また、冷却停止温度が300℃を上回る場合には、ベイナイト相でも微細化が図れないため、強度、靭性が低位なものとなる。こうしたことから、圧延終了後の圧延条件としては、780℃以上の温度から3℃/秒以上の冷却速度で300℃以下になるまで直接焼入れ(DQ)を行う必要がある。尚、「直接焼入れ」とは、圧延終了後の熱片をオンライン上で焼入れする処理を意味する。
Cooling conditions after completion of rolling: For cooling conditions after completion of rolling in which direct quenching is performed from a temperature of 780 ° C. or higher to a temperature of 300 ° C. or lower at a cooling rate of 3 ° C./second or more , the cooling start temperature is less than 780 ° C. Alternatively, when the cooling rate is less than 3 ° C./second, a microstructure including a pro-eutectoid ferrite phase and a coarse bainite phase is formed after cooling by passing through a ferrite nose in the continuous cooling transformation diagram. The strength and toughness of the material will decrease. Further, when the cooling stop temperature is higher than 300 ° C., the bainite phase cannot be refined, so that the strength and toughness are low. For these reasons, it is necessary to perform direct quenching (DQ) from 780 ° C. or higher to 300 ° C. or lower at a cooling rate of 3 ° C./second or higher as rolling conditions after completion of rolling. The “direct quenching” means a process of quenching the hot pieces after rolling on-line.

冷却後の再加熱焼入れ:760〜840℃の温度範囲において再加熱度焼入れを行う
冷却後の再加熱焼入れについては、840℃を超える再加熱温度域ではオーステナイト化が過度に進む結果、焼入れ組織もベイナイト相の分率が過多となり、島状マルテンサイト相が多くなって、降伏比が目標とする80%を超えてしまうことになる。一方、再加熱温度が760℃未満になると、再加熱でのオーステナイト化が十分でないので、ベイナイト相の微細化が図れず、島状マルテンサイト相も過小となることから、強度が低位なものとなる。また、再加熱温度が760〜840℃の温度範囲であっても、焼きならしでは低位な強度しか得られないので、焼入れをする必要がある。
Reheating and quenching after cooling: Reheating and quenching in which the reheating degree quenching is performed in the temperature range of 760 to 840 ° C. As a result of excessive austenitization in the reheating temperature range exceeding 840 ° C., the quenching structure is also increased. The fraction of bainite phase becomes excessive, the number of island martensite phases increases, and the yield ratio exceeds the target 80%. On the other hand, if the reheating temperature is less than 760 ° C., the austenite formation by reheating is not sufficient, so that the bainite phase cannot be refined and the island-like martensite phase is too small, and the strength is low. Become. Moreover, even if the reheating temperature is in the temperature range of 760 to 840 ° C., only a low strength can be obtained by normalization, so that it is necessary to quench.

再加熱焼入れ後の焼戻し温度範囲:450〜550℃
再加熱焼入れ後の焼戻し温度については、550℃を超える温度となると転位密度の減少によって強度が低下し、450℃未満の温度となるとCu析出が十分でなくなって、降伏強度が低位となる。こうしたことから、再加熱焼入れ後の焼戻し温度は450〜550℃の範囲とする必要がある。
Tempering temperature range after reheating and quenching: 450-550 ° C
With regard to the tempering temperature after reheating and quenching, when the temperature exceeds 550 ° C., the strength decreases due to a decrease in the dislocation density, and when the temperature becomes less than 450 ° C., Cu precipitation becomes insufficient and the yield strength becomes low. Therefore, the tempering temperature after reheating and quenching needs to be in the range of 450 to 550 ° C.

本発明においては、母材の降伏比を低減させる(80%以下)方策として、従来のフェライト・ベイナイトの2相組織化とは異なり、(a)Mn,Crの添加と、圧延後におけるオーステナイト域からの3℃/秒以上の冷却速度での300℃までの直接焼入れおよび二相域再加熱後の焼入れの組み合わせによって、フェライト変態を抑制し、ベイナイト変態の開始を低温化することにより、ミクロ組織を微細なベイナイト基地とすることに加えて、(b)0.015〜0.045%のCの含有と、760〜840℃の2相域熱処理の組み合わせによって、上記ベイナイト基地中に所定量の島状マルテンサイト相を微細分散させるものである。   In the present invention, as a measure for reducing the yield ratio of the base material (80% or less), unlike the conventional two-phase structure of ferrite bainite, (a) the addition of Mn and Cr, and the austenite region after rolling By controlling the ferrite transformation and lowering the start of the bainite transformation by a combination of direct quenching to 300 ° C. at a cooling rate of 3 ° C./second or more and quenching after two-phase region reheating, the microstructure In addition to the fine bainite base, (b) a combination of 0.015 to 0.045% C and a two-phase region heat treatment at 760 to 840 ° C. The island-like martensite phase is finely dispersed.

また、母材の音響異方性について、「日本建築学会の鋼構造建築溶接部の超音波検査規準」にある付則表1にあるSTBと試験片との音速差がないと判定される範囲を満足させるには、上記のように圧延温度域での累積圧下率を適切に規制することが必要となるが、加えてNbを無添加とすることによって、上記のオーステナイト再結晶化温度を低温化させることができるのである。   In addition, regarding the acoustic anisotropy of the base material, a range in which it is determined that there is no difference in sound velocity between the STB and the test piece in Appendix Table 1 in the “Ultrasonic Inspection Standard for Steel Structure Building Welds of the Architectural Institute of Japan”. In order to satisfy the requirements, it is necessary to appropriately regulate the cumulative rolling reduction in the rolling temperature region as described above, but in addition, by adding no Nb, the austenite recrystallization temperature is lowered. It can be made.

更に、上記のような化学成分組成であっても、DQ−二相域焼入れ後に450〜550℃の焼戻しを施すことによって、焼入れ時に形成された可動転位の不動転位化を促進させると共に、所定量のε−Cu相の析出によって降伏強度をSA440の規格下限値(440MPa)以上を確保できるようになるのである。   Furthermore, even with the chemical component composition as described above, by performing tempering at 450 to 550 ° C. after DQ-two-phase quenching, the dislocation of the movable dislocation formed during quenching is promoted and a predetermined amount. By precipitation of the ε-Cu phase, the yield strength can be ensured to be equal to or greater than the lower limit of the standard value of SA440 (440 MPa).

本発明においては、上記のような条件(化学成分組成および製造条件)を満足させることによって、希望する特性を発揮する高張力鋼板が得られるのであるが、こうした鋼板においては、旧オーステナイト粒径の平均アスペクト比(主圧延方向/板厚方向の平均粒径比)、および島状マルテンサイト相やε−Cu相のクラスターの分散率が適切な範囲に制御されていることが好ましい。これらの好ましい範囲およびその理由は、次の通りである。   In the present invention, by satisfying the above conditions (chemical component composition and production conditions), a high-tensile steel sheet exhibiting desired properties can be obtained. It is preferable that the average aspect ratio (average grain size ratio in the main rolling direction / sheet thickness direction) and the dispersion ratio of the island-like martensite phase and ε-Cu phase clusters are controlled within an appropriate range. These preferable ranges and the reasons thereof are as follows.

板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向/板厚方
向の平均粒径比):1.0〜1.2
板厚方向断面における旧オーステナイト粒径のアスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.2を超えると、結晶方位が特定の方向に配向した、いわゆる集合組織が多く形成されるため,音響異方性が「日本建築学会の鋼構造建築溶接部の超音波検査規準」にある付則表1にあるSTBとの音速比がないと判定される範囲(例えば、板厚25mm超えを公称屈折角70°の探触子で探傷する場合、0.995≦V/VSTB≦1.015)を超えることになり、超音波探傷試験で欠陥位置を正しく表示できなくなり、施工上問題となる。従って、旧オーステナイトの平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)は1.0から1.2までの範囲に制御することが好ましい。より好ましくは、平均アスペクトを1.0〜1.1の範囲内とするのが良い。
Average aspect ratio of prior austenite grain size in the cross section in the thickness direction (main rolling direction / thickness direction)
Average particle size ratio): 1.0 to 1.2
When the aspect ratio of the prior austenite grain size in the cross section in the thickness direction (average grain size in the main rolling direction / average grain size in the thickness direction) exceeds 1.2, the so-called texture in which the crystal orientation is oriented in a specific direction Therefore, a range in which the acoustic anisotropy is determined to have no sound velocity ratio with STB in Appendix Table 1 in “Ultrasonic Inspection Standard of Steel Structure Building Welding by the Architectural Institute of Japan” (for example, When flaw detection is performed with a probe having a nominal refraction angle of 70 ° exceeding a plate thickness of 25 mm, it will exceed 0.995 ≦ V / V STB ≦ 1.015), and the defect position cannot be correctly displayed in the ultrasonic flaw detection test. It becomes a construction problem. Therefore, it is preferable to control the average aspect ratio of the prior austenite (average particle size in the main rolling direction / average particle size in the plate thickness direction) in the range of 1.0 to 1.2. More preferably, the average aspect is in the range of 1.0 to 1.1.

0.5〜3.5体積%の島状マルテンサイト相と4×10 20 〜26×10 20 個/m 3 のε−Cu相のクラスターがベイナイト基地に分散していること
本発明に係る高張力鋼において、低CENで降伏比(降伏強度/引張強度×100%)が耐震設計の観点から建築の主要部材に要求される降伏比80%以下を具備させるには、ベイナイト相の基地に、より硬質の島状マルテンサイト相を微細分散させることが好ましい。島状マルテンサイト相の分散率が0.5体積%未満の場合には、降伏比が80%を超えることになる。一方、島状マルテンサイト相の分散率が3.5体積%を超える場合には、降伏比が80%以下となるものの、母材の靭性が低位となる。従って、島状マルテンサイト相を0.5〜3.5体積%とすることが好ましい。より好ましくは1〜3体積%とするのが良い。また低CENで引張強さ:590MPa以上を確保するには、ベイナイト相を基地として、時効によるε−Cu相の析出強化を加える必要がある。ε−Cu相のクラスターが4×1020個/m3未満で分散するとベイナイト地であっても引張強度が不足する。一方、ε−Cu相のクラスターが26×1020個/m3を超えて存在すると靭性が劣化する傾向を呈するようになると共に、ガス切断時に低融点のCu合金を多量に形成するようになってガス切断面に粒界割れを引き起こす。従って、ベイナイト地にε−Cu相のクラスターを4×1020〜26×1020個/m3分散させることが好ましい。より好ましくは7×1020〜22×1020個/m3である。
Clusters of 0.5 to 3.5% by volume of island martensite phase and 4 × 10 20 to 26 × 10 20 pieces / m 3 of ε-Cu phase are dispersed in the bainite base. in tensile steel, in order to include a yield ratio (yield strength / tensile strength × 100%) is below the yield ratio of 80% required for the main members of the building in terms of seismic design of low-CE N is the base of the bainite phase It is preferable to finely disperse the harder island martensite phase. When the dispersion ratio of the island-like martensite phase is less than 0.5% by volume, the yield ratio exceeds 80%. On the other hand, when the dispersion ratio of the island-like martensite phase exceeds 3.5% by volume, the toughness of the base material is low although the yield ratio is 80% or less. Therefore, the island-like martensite phase is preferably 0.5 to 3.5% by volume. More preferably, the content is 1 to 3% by volume. Further, in order to secure a tensile strength of 590 MPa or more with low CE N , it is necessary to add precipitation strengthening of the ε-Cu phase by aging using the bainite phase as a base. When ε-Cu phase clusters are dispersed at less than 4 × 10 20 / m 3 , tensile strength is insufficient even in bainite. On the other hand, if the number of ε-Cu phase clusters exceeds 26 × 10 20 / m 3 , the toughness tends to deteriorate, and a large amount of low melting point Cu alloy is formed during gas cutting. Causing intergranular cracking on the gas cut surface. Therefore, it is preferable to disperse 4 × 10 20 to 26 × 10 20 clusters / m 3 of ε-Cu phase clusters in bainite. More preferably 7 × 10 20 ~22 × 10 20 atoms / m 3.

本発明方法を実施するに当り、圧延終了後の直接焼入れ前において、オンラインレベラー矯正を行うことも好ましい。こうした矯正を付加することによって、目標材質特性を満足すると共に、平坦度不良による切捨てを必要としない高張力鋼板が実現できることになる。   In carrying out the method of the present invention, it is also preferable to perform online leveler correction before direct quenching after the end of rolling. By adding such correction, it is possible to realize a high-tensile steel sheet that satisfies the target material characteristics and does not require cutting off due to poor flatness.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変形することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and any design modifications may be made in accordance with the gist of the present invention. It is included in the range.

下記表1〜3に示す化学成分組成の鋼を用い、下記表4〜7に示す製造条件にて鋼板を製造した。下記表1には、本発明で規定する(1)式の範囲、(2)式で規定するCENの値、(3)式で規定されるオーステナイト未再結晶化温度t(γ未再結晶化温度t)および[Ni]/[Cu]の値を示した。また、表4〜7中、QはAc3点以上の温度からなる再加熱焼入れの温度、Q’は二相域(Ac1点以上Ac3点未満)からの焼入れ温度、TはAc1点未満の温度での焼戻し温度を夫々示す。尚、CENの値およびオーステナイト未再結晶化温度tは、NbやMoを含むものについては(鋼種A,C,D,E)、前記(4)式または(5)式に従って求めた値を示した。 Steel sheets having chemical composition compositions shown in Tables 1 to 3 below were used, and steel sheets were manufactured under the manufacturing conditions shown in Tables 4 to 7 below. Table 1 below shows the range of the formula (1) defined by the present invention, the value of CE N defined by the formula (2), and the austenite non-recrystallization temperature t (γ unrecrystallized) defined by the formula (3). Temperature) and [Ni] / [Cu] values. In Tables 4 to 7, Q is the reheating quenching temperature consisting of a temperature of Ac 3 point or higher, Q ′ is the quenching temperature from the two-phase region (Ac 1 point or higher and less than Ac 3 point), and T is Ac 1 point. The tempering temperatures at temperatures below are shown respectively. In addition, the value of CE N and the austenite non-recrystallization temperature t are those obtained according to the above formula (4) or (5) for those containing Nb and Mo (steel types A, C, D, E). Indicated.

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

得られた各鋼板について、旧オーステナイト(γ)粒径のアスペクト比、島状マルテンサイト相の体積率、ε−Cu相クラスターの個数等を下記の方法によって測定した。   About each obtained steel plate, the aspect ratio of the prior austenite ((gamma)) particle size, the volume ratio of an island-like martensite phase, the number of (epsilon) -Cu phase clusters, etc. were measured with the following method.

[旧オーステナイト(γ)粒径のアスペクト比]
主圧延方向の板厚断面における旧オーステナイト粒界は、(5ml塩酸+1gピクリン酸+100mlエタノール)からなる腐食液を用いて現出させ、主圧延方向の平均粒径と板厚方向の平均粒径を測定して、それらの比を平均アスペクト比として求めた。
[Aspect ratio of former austenite (γ) particle size]
The prior austenite grain boundaries in the plate thickness section in the main rolling direction are revealed using a corrosive solution consisting of (5 ml hydrochloric acid + 1 g picric acid + 100 ml ethanol), and the average grain size in the main rolling direction and the average grain size in the plate thickness direction are determined. Measurements were taken to determine their ratio as the average aspect ratio.

[島状マルテンサイト相の体積率]
島状マルテンサイト相は、主圧延方向および主圧延方向に直角方向の板厚断面を、レペラー試薬を用いて現出させて撮影し、画像解析装置によって分率(体積率)を算出した。
[Volume ratio of island martensite phase]
The island-like martensite phase was photographed by exposing the main rolling direction and the plate thickness section perpendicular to the main rolling direction using a repeller reagent, and the fraction (volume ratio) was calculated by an image analyzer.

[ε−Cu相のクラスターの個数]
ε−Cu相のクラスターについては、板厚断面から薄膜を採取して、分析電子顕微鏡を用いて、ε−Cu相の固定および本クラスター分布の撮影を行ない、画像解析装置によって単位面積当りの個数を算出した。
[Number of clusters of ε-Cu phase]
For ε-Cu phase clusters, a thin film is taken from the cross section of the plate thickness, the ε-Cu phase is fixed and the distribution of this cluster is photographed using an analytical electron microscope, and the number per unit area is measured by an image analyzer. Was calculated.

また得られた各鋼板について、ガス切断割れ感受性、音響異方性、母材の引張特性[降伏強度(0.2%YS),引張強度(TS),降伏比(YR)、母材靭性、耐溶接低温割れ性および大入熱溶接HAZ靭性について夫々下記の方法によって評価した。   In addition, for each steel plate obtained, gas cutting crack sensitivity, acoustic anisotropy, tensile properties of the base material [yield strength (0.2% YS), tensile strength (TS), yield ratio (YR), base material toughness, The welding cold crack resistance and high heat input weld HAZ toughness were evaluated by the following methods, respectively.

[ガス切断割れ感受性]
鉄骨製作過程において鋼板切断に汎用されるLPガスの板厚に応じた適正切断条件(例えば、100mm厚の場合、#5火口)で酸素圧:0.6MPa(6kgf/cm2)、LPガス圧:0.06MPa(0.6kgf/cm2)、切断速度:210mm/分で切断した後、切断面に直角な方向の断面を光学顕微鏡観察して、切断表面からの最大割れ深さを測定した。割れ無しを合格とした。
[Gas cutting crack sensitivity]
Oxygen pressure: 0.6 MPa (6 kgf / cm 2 ), LP gas pressure under appropriate cutting conditions (for example, # 5 crater in the case of 100 mm thickness) according to the plate thickness of LP gas widely used for steel plate cutting in the steel frame manufacturing process : 0.06 MPa (0.6 kgf / cm 2 ), cutting speed: 210 mm / min. After cutting, the cross section perpendicular to the cut surface was observed with an optical microscope, and the maximum crack depth from the cut surface was measured. . No crack was accepted.

[音響異方性]
日本建築学会の鋼構造建築溶接部の超音波検査規準に定義されたSTB音速比(V/VSTB)を主圧延方向(L方向)および主圧延方向に直角方向(C方向)について測定し、付則表1に従ってSTBとの音速差の有無の判定を行った。付則表1のV/VSTBの範囲を合格とした。例えば板厚:25mm超えを公称屈折角度70°の探傷子で探傷する場合、0.995≦V/VSTB≦1.015を音響異方性がないものと判定した。
[Acoustic anisotropy]
STB sound velocity ratio (V / V STB ) defined in the ultrasonic inspection standard for steel structure building welds of the Architectural Institute of Japan was measured in the main rolling direction (L direction) and the direction perpendicular to the main rolling direction (C direction). The presence or absence of a difference in sound velocity from STB was determined according to Appendix Table 1. The range of V / V STB in Appendix Table 1 was considered acceptable. For example, when flaw detection is performed with a flaw having a plate thickness of more than 25 mm and a nominal refraction angle of 70 °, 0.995 ≦ V / V STB ≦ 1.015 is determined to have no acoustic anisotropy.

[母材の引張特性]
鋼板のt/4(tは板厚)からC方向にJIS Z 22014号試験片を採取してJIS Z 2241の要領で引張試験を行ない、降伏強度(0.2%耐力:σ0.2)、引張強度(TS)、降伏比(降伏強度/引張強度×100%:YR)を測定した。降伏強度:440〜540MPa、引張強度:590〜740MPaおよび降伏比:80%以下を合格とした。
[Tensile properties of base material]
A JIS Z 22014 test piece was taken in the C direction from t / 4 (t is the plate thickness) of the steel sheet and subjected to a tensile test in accordance with JIS Z 2241. Yield strength (0.2% proof stress: σ 0.2 ), tensile Strength (TS) and yield ratio (yield strength / tensile strength × 100%: YR) were measured. Yield strength: 440-540 MPa, tensile strength: 590-740 MPa, and yield ratio: 80% or less were accepted.

[母材靭性]
鋼板のt/4からL方向にJIS Z 2202 4号試験片を採取してJIS Z 2242に準拠して衝撃試験を行ない、破面遷移温度(vTrs)を測定した。vTrsが−20℃以下を目標として合格とした。
[Base material toughness]
JIS Z 2204 No. 4 test specimens were collected in the L direction from t / 4 of the steel sheet, subjected to an impact test in accordance with JIS Z 2242, and the fracture surface transition temperature (vTrs) was measured. The target was vTrs of −20 ° C. or less.

[耐溶接低温割れ性]
JIS Z 3158のy形溶接割れ試験法に従い、入熱量:1.7KJ/mmで被覆アーク溶接を行ない、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
[Weld cold crack resistance]
According to the JIS Z 3158 y-type weld crack test method, covered arc welding was performed at a heat input of 1.7 KJ / mm, and the root crack prevention preheating temperature was measured. 25 degrees C or less was set as the pass.

[大入熱溶接HAZ靭性]
入熱量100KJ/mmのエレクトロスラグ溶接により、柱・ダイアフラム溶接継手を作製して、柱(スキンプレート)側から、吸収エネルギーが最も低位となることが多いとされるボンド+0.5mm位置にZ−T方向の切欠きを入れたシャルピー衝撃試験片(JIS Z 2204 4号)をn=3で採取し、0℃における平均衝撃吸収エネルギーvE0を求めた。平均70J以上を合格とした。尚、実験No.74,98のエレクトロスラグ溶接継手のみダイアフラム材には、40mm厚のSN490B(0.16%C−0.34%Si−1.34%Mn−0.034%V系鋼)を使用した。
[Large heat input welding HAZ toughness]
A column / diaphragm welded joint is manufactured by electroslag welding with a heat input of 100 KJ / mm. From the column (skin plate) side, the absorbed energy is often the lowest, Z- A Charpy impact test piece (JIS Z 2204 No. 4) with a notch in the T direction was taken at n = 3, and an average impact absorption energy vE 0 at 0 ° C. was determined. An average of 70 J or more was accepted. Experiment No. For only 74 and 98 electroslag welded joints, 40 mm thick SN490B (0.16% C-0.34% Si-1.34% Mn-0.034% V steel) was used as the diaphragm material.

これらの結果を、下記表8〜11に示すが、これらの結果から、次のように考察できる。まず、実験No.1は従来型の中C系のSA440鋼であり、CENが高いため、溶接低温割れ防止予熱温度が100℃と高く、入熱量100KJ/mmでのエレクトロスラグ溶接のHAZ靭性も低位である。 These results are shown in Tables 8 to 11 below, and can be considered as follows from these results. First, Experiment No. 1 is a conventional C-based SA440 steel in, for CE N is high, weld cold cracking prevention preheating temperature as high as 100 ° C., HAZ toughness of electroslag welding in heat input 100 kJ / mm is also low.

実験No.2は本発明の基本成分系であり、母材の強靭性は目標を満足し、溶接性は予熱不要と良好であり、入熱量100KJ/mmでのエレクトロスラグ溶接のHAZ靭性も目標平均70J以上を十分満足するものである。   Experiment No. 2 is a basic component system of the present invention, the toughness of the base material satisfies the target, the weldability is good as it does not require preheating, and the HAZ toughness of electroslag welding at a heat input of 100 KJ / mm is also a target average of 70 J or more. Is sufficiently satisfied.

実験No.3〜6のものは、実験No.2と同CENであるものの(表1の鋼種C,D,E,F)、それぞれ0.4Mo系,0.01Nb系,0.4Mo−0.01Nb系、0.05C系であり、大入熱HAZ靭性が低位である。 Experiment No. 3 to 6 are those of Experiment No. 2 and CE N (steel types C, D, E, and F in Table 1), which are 0.4Mo series, 0.01Nb series, 0.4Mo-0.01Nb series, and 0.05C series, respectively. The heat input HAZ toughness is low.

実験No.7〜12のものは、Niを1%と一定とした上で、Cu量を変化させてNi/Cu比を変化させたものである(表1の鋼種G〜L)。また、実験No.13〜17は、Cu:0.95%とした上で、Ni量を変化させたものである(表1の鋼種M〜Q)。Cu:0.95%を超えたもの(実験No.8,9)は、Ni/Cu比が1以下であってもガス切断割れ感受性を有することが分かる。また、Cuが0.5%未満のもの(実験No.12)では、降伏強度および引張強度が目標値を下回っている。   Experiment No. 7 to 12 were obtained by changing the Ni / Cu ratio by changing the amount of Cu while keeping Ni constant at 1% (steel types G to L in Table 1). In addition, Experiment No. 13 to 17 are Cu: 0.95%, and the amount of Ni is changed (steel types M to Q in Table 1). It can be seen that Cu: exceeding 0.95% (Experiment No. 8, 9) has gas cut cracking susceptibility even when the Ni / Cu ratio is 1 or less. In the case where Cu is less than 0.5% (Experiment No. 12), the yield strength and the tensile strength are lower than the target values.

実験No.18〜21は、C量を除いて本発明成分で一定とし、C量のみ変化させたものである(表1の鋼種R〜U)。C量が0.015%未満のもの(実験No.18)では、降伏強度(0.2%YS)、引張強度(TS)とも目標値を下回っていることが分かる。   Experiment No. Nos. 18 to 21 are constant in the composition of the present invention except for the C amount, and only the C amount is changed (steel types R to U in Table 1). It can be seen that when the C content is less than 0.015% (Experiment No. 18), the yield strength (0.2% YS) and the tensile strength (TS) are both below the target values.

実験No.22は、Q’処理(二相域焼入れ処理)がなく、母材のミクロ組織を構成する島状マルテンサイト相の体積率が本発明で規定する範囲を下回ったものであり、降伏比(YR)が目標値の80%を超えることが分かる。   Experiment No. No. 22 has no Q ′ treatment (two-phase quenching treatment), and the volume ratio of the island-like martensite phase constituting the microstructure of the base material falls below the range specified in the present invention, and the yield ratio (YR ) Exceeds 80% of the target value.

実験No.23,24,80は、γ未再結晶化温度t以下での累積圧下率および圧延終了温度(圧延仕上温度)を変化させたものであり、γ未再結晶化温度t以下での累積圧下率を60%以下とし、且つ圧延終了温度を(オーステナイト未再結晶化温度t−80℃)以上とすることによって(実験No.23,80)、母材の旧オーステナイト粒のアスペクト比(主圧延方向の粒径/板厚方向の粒径)を1.2以下に制御でき、音響異方性の目標値を満足するようになる。   Experiment No. Nos. 23, 24, and 80 are obtained by changing the cumulative reduction ratio at the γ non-recrystallization temperature t or lower and the rolling end temperature (rolling finishing temperature), and the cumulative reduction ratio at the γ non-recrystallization temperature t or lower. Is 60% or less, and the rolling finish temperature is (austenite non-recrystallization temperature t-80 ° C.) or more (Experiment No. 23, 80), the aspect ratio of the prior austenite grains of the base material (main rolling direction) (Particle size / particle size in the plate thickness direction) can be controlled to 1.2 or less, and the target value of acoustic anisotropy is satisfied.

実験No.25〜27はSi量を除いて本発明で規定する範囲内とし、Si量のみ変化させたものである(表1の鋼種V〜X)。Siが0.4%を超えると(実験No.27)、島状マルテンサイト相の体積率が増大して、母材靭性は目標値を満足しない。   Experiment No. 25 to 27 are within the range defined in the present invention except for the Si amount, and only the Si amount is changed (steel types V to X in Table 1). When Si exceeds 0.4% (Experiment No. 27), the volume ratio of the island-like martensite phase increases, and the base material toughness does not satisfy the target value.

実験No.28〜31は、Mn量を除いて本発明で規定する範囲内とし、Mn量のみ変化させたものである(表の鋼種Y,Zおよび表2の鋼種A1,B1)。Mnが1.6%を超えてCENが0.33%を上回る実験No.31のものでは(鋼種B1)、降伏比YRが高く、耐溶接低温割れ性、大入熱HAZ靭性とも目標値を下回ることが分かる。 Experiment No. Nos. 28 to 31 are within the range defined in the present invention except for the amount of Mn, and only the amount of Mn is changed (steel types Y and Z in the table and steel types A1 and B1 in Table 2). Experiment No. with Mn exceeding 1.6% and CE N exceeding 0.33%. In the case of No. 31 (steel type B1), it can be seen that the yield ratio YR is high, and both the weld cold crack resistance and the high heat input HAZ toughness are below the target values.

実験No.32〜34は、高Mn側においてCr量を変化させたものであり(表2の鋼種C1,D1,E1)、Cr量が0.5%を下回る実験No.32は降伏強度、引張強度が目標値を満足しない。   Experiment No. Nos. 32 to 34 are obtained by changing the Cr amount on the high Mn side (steel types C1, D1, E1 in Table 2). No. 32 does not satisfy the target values of yield strength and tensile strength.

実験No.35,36は、低Mn側においてCr量を変化させたものであり(表2の鋼種F1,G1)、Crは同一引張強度比較で降伏比の低減に有効に作用するものの、Cr量が1.3%を超え、CENも0.33%を上回る実験No.36のものでは(鋼種G1)、母材靭性、耐溶接低温割れ性および大入熱HAZ靭性が目標値を満足しない。 Experiment No. Nos. 35 and 36 are obtained by changing the Cr amount on the low Mn side (steel types F1 and G1 in Table 2). Cr acts effectively in reducing the yield ratio in the same tensile strength comparison, but the Cr amount is 1 Experiment No. over 3% and CE N also over 0.33%. In the case of 36 (steel type G1), the base metal toughness, the weld cold crack resistance and the high heat input HAZ toughness do not satisfy the target values.

実験No.37〜40はAl量を除いて本発明で規定する範囲内とし、Al量のみ変化させたものである(表2の鋼種H1〜K1)。Alが0.08%超えの実験No.40のものでは(鋼種K1)、母材靭性が目標値を下回ることが分かる。   Experiment No. 37 to 40 are within the range defined in the present invention except for the Al amount, and only the Al amount is changed (steel types H1 to K1 in Table 2). Experiment No. with Al over 0.08%. In the case of 40 (steel type K1), it can be seen that the base metal toughness is lower than the target value.

実験No.41〜44は、B量を除いて本発明で規定する範囲内とし、B含有量を変化させたものである(表2の鋼種L1〜O1)。全B量が0.003%を超えた実験No.44のものでは(鋼種O1)、降伏強度(0.2%YS)、降伏比(YR)が目標値を上回り、母材靭性,耐溶接低温割れ性,大入熱溶接HAZ靭性が目標値を満足しないことが分かる。   Experiment No. Nos. 41 to 44 are within the range defined in the present invention except for the B amount, and the B content is changed (steel types L1 to O1 in Table 2). Experiment No. in which the total amount of B exceeded 0.003%. In the case of No. 44 (steel grade O1), the yield strength (0.2% YS) and the yield ratio (YR) exceed the target values, and the base metal toughness, welding cold crack resistance, and high heat input welding HAZ toughness are the target values. You can see that you are not satisfied.

実験No.45〜47は、Ni量を除いて本発明で規定する範囲内とし、Ni量を上限
側に変化させたものである(表2の鋼種P1〜R1)。Ni量が5%を超えた実験No.47のものでは(鋼種R1)、母材靭性および耐溶接低温割れ性に劣っている。
Experiment No. Nos. 45 to 47 are within the range defined in the present invention excluding the Ni amount, and the Ni amount is changed to the upper limit side (steel types P1 to R1 in Table 2). Experiment No. with Ni amount exceeding 5%. In 47 (steel type R1), the base metal toughness and the resistance to welding cold cracking are inferior.

実験No.48〜51,97は、TiNの量バランスを変化させたものである(表2の鋼種S1〜V1、S2)。実験No.48のTi無添加のものでは、降伏強度(YR)および大入熱溶接HAZ靭性が目標値を下回る。一方、Tiを過多に添加した実験No.97のものでは母材靭性およびHAZ靭性において目標値を下回っている。また、実験No.51のものでは、N含有量が本発明で規定する(1)式の上限を上回っており(鋼種V1)、母材靭性および大入熱溶接HAZ靭性が目標値を下回ることになる。   Experiment No. Nos. 48 to 51 and 97 are obtained by changing the TiN amount balance (steel types S1 to V1 and S2 in Table 2). Experiment No. In the case of 48 without addition of Ti, the yield strength (YR) and the high heat input HAZ toughness are lower than the target values. On the other hand, in Experiment No. in which Ti was added excessively. In 97, the base material toughness and the HAZ toughness are lower than the target values. In addition, Experiment No. In No. 51, the N content exceeds the upper limit of the formula (1) defined in the present invention (steel type V1), and the base metal toughness and the high heat input welding HAZ toughness are lower than the target values.

実験No.52〜55は、V量を除いて本発明で規定する範囲内とし、V量を変化させたものである(表2の鋼種W1〜Z1)。実験No.55のものでは、V量が0.10%を超えたものであり(鋼種Z1)、大入熱HAZ靭性が目標値を下回っていることが分かる。   Experiment No. 52 to 55 are within the range defined by the present invention except for the V amount, and the V amount is changed (steel types W1 to Z1 in Table 2). Experiment No. In No. 55, the amount of V exceeded 0.10% (steel type Z1), and it can be seen that the high heat input HAZ toughness is below the target value.

実験No.56〜59は、本発明の基本成分をベースにCa含有量を変化させたものである(表3の鋼種A2〜D2)。Ca量が0.01%を超えると(実験No.59)、大入熱溶接HAZ靭性が劣化する傾向を呈し、目標値を満足しないことが分かる。   Experiment No. Nos. 56 to 59 are obtained by changing the Ca content based on the basic components of the present invention (steel types A2 to D2 in Table 3). When the Ca content exceeds 0.01% (Experiment No. 59), it can be seen that the high heat input welding HAZ toughness tends to deteriorate and does not satisfy the target value.

実験No.60〜63は、本発明の基本成分に希土類元素であるLaの量を変化させて含有させたものである(表3の鋼種E2〜H2)。La含有量が0.02%を超えると(実験No.63)、大入熱HAZ靭性が却って劣化して目標値を下回ることが分かる。   Experiment No. 60 to 63 are those in which the basic component of the present invention contains the amount of La, which is a rare earth element, changed (steel types E2 to H2 in Table 3). When the La content exceeds 0.02% (Experiment No. 63), it can be seen that the high heat input HAZ toughness deteriorates and falls below the target value.

実験No.64〜67は、本発明の基本成分をベースにMg含有量を変化させたものである(表3の鋼種I2〜L2)。Mgが0.0030%を超えると(実験No.67)、大入熱溶接HAZ靭性が却って劣化して、目標値を下回る。   Experiment No. Nos. 64 to 67 are obtained by changing the Mg content based on the basic components of the present invention (steel types I2 to L2 in Table 3). If Mg exceeds 0.0030% (Experiment No. 67), the high heat input welding HAZ toughness deteriorates and falls below the target value.

実験No.68〜71は、Laまたは(La+Mg)の添加に加えて、Ce量を変化させて含有させたものである(表3の鋼種O2〜P2)。Ceが0.0050%を超えた実験No.71のものでは、大入熱溶接HAZ靭性が却って劣化して、目標値を下回っていることが分かる。   Experiment No. Nos. 68 to 71 contain La or (La + Mg) in addition to changing the Ce amount (steel types O2 to P2 in Table 3). Experiment No. with Ce over 0.0050%. In the case of No. 71, it can be seen that the high heat input welding HAZ toughness deteriorates and falls below the target value.

実験No.72、73は、(Mg+Ce)または(La+Ce)を本発明範囲内で添加したものであり(表3の鋼種Q2,R2)、母材の強靭性,耐溶接低温割れ性,大入熱溶接HAZ靭性とし目標値を満足することが分かる。   Experiment No. 72 and 73 are those in which (Mg + Ce) or (La + Ce) is added within the scope of the present invention (steel types Q2 and R2 in Table 3), the toughness of the base metal, the resistance to welding cold cracking, and the high heat input welding HAZ. It can be seen that the toughness satisfies the target value.

実験No.74,98は、夫々45mm厚、20mm厚のDQ−Q’−T材の本発明例であり、全ての特性において目標値を満足する。   Experiment No. 74 and 98 are examples of the present invention of DQ-Q'-T materials having a thickness of 45 mm and a thickness of 20 mm, respectively, and satisfy the target values in all the characteristics.

実験No.75〜79は、本発明で規定する成分鋼種(鋼種S2)に対して、スラブ加熱温度を900〜1350℃の範囲内で変化させたものである。加熱温度が本発明で規定する温度を下回った場合(実験No.75)には、引張強度(TS)は目標値を下回ると共に、降伏比(YR)が目標とする80%以下を満足しないものとなる。また、加熱温度が本発明で規定する範囲を超えた場合(実験No.79)には、母材靭性が低位で目標値を満足しないものとなる。一方、加熱温度が本発明で規定する範囲内にある場合(実験No.76〜78)には、全ての特性において目標値を満足する。   Experiment No. 75-79 change the slab heating temperature within the range of 900-1350 degreeC with respect to the component steel grade (steel grade S2) prescribed | regulated by this invention. When the heating temperature falls below the temperature specified in the present invention (Experiment No. 75), the tensile strength (TS) is below the target value and the yield ratio (YR) does not satisfy the target of 80% or less. It becomes. When the heating temperature exceeds the range specified in the present invention (Experiment No. 79), the base material toughness is low and the target value is not satisfied. On the other hand, when the heating temperature is within the range defined by the present invention (Experiment Nos. 76 to 78), the target values are satisfied in all the characteristics.

実験No.81〜83は、本発明で規定する成分鋼種(鋼種T2)に対して、スラブの圧延終了温度(圧延仕上温度)をオーステナイト未再結晶温度t付近の温度範囲で変化させたものである。圧延終了温度が1150℃になると(実験No.83)、変態組織の結晶粒も粗大化するので、母材靭性料が低下し、目標値を満足しなくなる。一方、圧延終了温度が本発明で規定する範囲内のものでは(実験No.81、82)、目標材質特性を満足することになる。   Experiment No. 81 to 83 are obtained by changing the rolling end temperature (rolling finishing temperature) of the slab in the temperature range near the austenite non-recrystallization temperature t with respect to the component steel type (steel type T2) defined in the present invention. When the rolling end temperature reaches 1150 ° C. (Experiment No. 83), the crystal grains of the transformation structure are also coarsened, so that the base material toughness is reduced and the target value is not satisfied. On the other hand, when the rolling end temperature is within the range specified by the present invention (Experiment Nos. 81 and 82), the target material characteristics are satisfied.

実験No.84は、本発明で規定する成分鋼種に対して、圧延後の直接焼入れ開始温度(冷却開始温度)が本発明で規定する下限温度を下回ったものであるが、降伏強度(TS)、母材靭性ともに目標材質特性を下回ることになる。   Experiment No. No. 84 is a component steel type specified in the present invention, in which the direct quenching start temperature (cooling start temperature) after rolling is lower than the lower limit temperature specified in the present invention, but the yield strength (TS), base metal Both toughness will fall below the target material properties.

実験No.85,86は、本発明で規定する成分鋼種(鋼種T2)に対して、圧延終了後の冷却速度を変化させたものである。冷却速度が本発明で規定する下限を下回ったもの(実験No.85)では、降伏強度、引張強度および母材靭性のいずれも目標特性を満足しないものとなる。これに対して、冷却速度が本発明で規定する範囲内にあるもの(実験No.86)では、目標材質特性を満足することになる。   Experiment No. Nos. 85 and 86 are obtained by changing the cooling rate after the rolling with respect to the component steel types (steel type T2) defined in the present invention. When the cooling rate falls below the lower limit specified in the present invention (Experiment No. 85), none of the yield strength, tensile strength, and base metal toughness satisfies the target characteristics. On the other hand, when the cooling rate is within the range defined by the present invention (Experiment No. 86), the target material characteristics are satisfied.

実験No.87,88は、本発明で規定する成分鋼種(鋼種T2)に対して、圧延後の直接焼入れ停止温度(冷却停止温度)を高温側に変化させたものである。焼入れ停止温度が本発明で規定する範囲を超えるもの(実験No.88)では、降伏強度、引張強度および母材靭性料のいずれも目標特性を満足しないものとなる。これに対して、冷却速度が本発明で規定する範囲内にあるもの(実験No.87)では、目標材質特性を満足することになる。   Experiment No. Nos. 87 and 88 are obtained by changing the direct quenching stop temperature (cooling stop temperature) after rolling to the high temperature side with respect to the component steel type (steel type T2) defined in the present invention. When the quenching stop temperature exceeds the range specified in the present invention (Experiment No. 88), none of the yield strength, tensile strength, and base metal toughener satisfy the target characteristics. On the other hand, when the cooling rate is within the range defined by the present invention (Experiment No. 87), the target material characteristics are satisfied.

実験No.89〜92は、本発明で規定する成分鋼種(鋼種T2)に対して、二相域焼入れ温度(Q’)を変化させたものである。二相域焼入れ温度が本発明で規定する範囲を大きく下回るもの(実験No.89)では、降伏強度が目標特性を下回るものとなる。また2相域焼入れ温度が本発明で規定する範囲を大きく超えるもの(実験No.92)では、降伏比(YR)が目標とする80%以下を満足しないものとなる。これに対して、二相域焼入れ温度が本発明で規定する範囲内にあるもの(実験No.90,91)では、目標材質特性を満足することになる。   Experiment No. Nos. 89 to 92 are obtained by changing the two-phase quenching temperature (Q ′) with respect to the component steel types (steel type T2) defined in the present invention. When the two-phase region quenching temperature is significantly lower than the range defined in the present invention (Experiment No. 89), the yield strength is lower than the target characteristic. In addition, when the two-phase region quenching temperature greatly exceeds the range specified in the present invention (Experiment No. 92), the yield ratio (YR) does not satisfy the target of 80% or less. On the other hand, when the two-phase quenching temperature is within the range defined by the present invention (Experiment No. 90, 91), the target material characteristics are satisfied.

実験No.93〜96は、本発明で規定する成分鋼種(鋼種T2)に対して、二相域焼入れ後の焼戻し温度(T)を変化させたものである。焼戻し温度が本発明で規定する範囲を大きく下回るもの(実験No.93)では、ε−Cu相クラスターの析出個数が少ないため、降伏強度(0.2%YS)が目標特性を下回るものとなる。また焼戻し温度が本発明で規定する範囲を大きく超えるもの(実験No.96)では、降伏強度、引張強度とも目標値を下回るものとなる。これに対して、焼戻し温度が本発明で規定する範囲内にあるもの(実験No.94,95)では、目標材質特性を満足することになる。   Experiment No. Nos. 93 to 96 are obtained by changing the tempering temperature (T) after the two-phase region quenching with respect to the component steel type (steel type T2) defined in the present invention. When the tempering temperature is much lower than the range defined in the present invention (Experiment No. 93), the number of ε-Cu phase cluster precipitates is small, so the yield strength (0.2% YS) is lower than the target characteristics. . When the tempering temperature greatly exceeds the range specified in the present invention (Experiment No. 96), both the yield strength and the tensile strength are lower than the target values. On the other hand, when the tempering temperature is within the range defined by the present invention (Experiment No. 94, 95), the target material characteristics are satisfied.

実験No.99,100は、本発明で規定する成分鋼種に対して、オンラインレベラー矯正した後、直接焼入れを施したものである。圧延後、オンラインレベラー矯正を施さずに直接焼入れした実験No.83の場合と同様、目標材質特性を満足でき、且つ平坦度不良による切捨てを必要としない鋼板が得られることになる。   Experiment No. Nos. 99 and 100 are obtained by directly quenching the component steel types defined in the present invention after online leveler correction. After rolling, experiment No. 1 was directly quenched without online leveler correction. As in the case of No. 83, a steel sheet that can satisfy the target material characteristics and does not need to be cut off due to poor flatness is obtained.

これらの結果から明らかなように、本発明で得られる高張力鋼板においては、母材の強靭性、降伏比が目標値を満足し、ガス切断割れ感受性および音響異方性がない。しかも、耐溶接割れ性が良好で、大入熱溶接HAZ靭性は全て部位においてvE0が平均70J以上を有することが分かる。尚、柱同士の1RUNサブマージ溶接の角継手においてもエレクトロスラグ溶接と同等の大入熱溶接であるため、HAZ靭性もあらゆる部位において平均70J以上を確保できることは言うまでもなく、溶接方法を問わず、本発明鋼の特性を満足できるものである。尚、本発明の高張力鋼板のガス切断性については、実施例には示していないが、いずれもWES2801(1980)の2級以上を十分満足するガス切断面の品質を有するものであった。 As is clear from these results, in the high-tensile steel sheet obtained by the present invention, the toughness and yield ratio of the base material satisfy the target values, and there is no gas cutting crack sensitivity and acoustic anisotropy. In addition, it can be seen that the weld crack resistance is good, and the high heat input welded HAZ toughness has an average vE 0 of 70 J or more in all parts. It should be noted that, even in a 1RUN submerged welding corner joint between columns, since it is a high heat input welding equivalent to electroslag welding, it is needless to say that the average HAZ toughness can be secured at 70J or higher in any part. The characteristics of the invention steel can be satisfied. In addition, although it does not show in the Example about the gas cutting property of the high-tensile steel plate of this invention, all had the quality of the gas cutting surface which fully satisfied the 2nd grade or more of WES2801 (1980).

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Figure 2006193810
Figure 2006193810

Claims (5)

C:0.015〜0.045%(質量%の意味、以下同じ)、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まず、且つ下記(2)式で示されるCEN値が0.27〜0.33%の範囲内にある化学成分組成を有する鋼素材を、950〜1300℃の温度範囲に加熱し、次いで下記(3)式で示されるオーステナイト未再結晶化温度t(℃)以下の温度範囲での累積圧下率を60%以下として、(オーステナイト未再結晶化温度t−80℃)以上、1100℃以下で圧延を終了した後、780℃以上の温度から3℃/秒以上の冷却速度で300℃以下になるまで直接焼入れを行い、引き続き760〜840℃の温度範囲において再加熱度焼入れを行った後、450〜550℃の温度範囲にて焼き戻すことを特徴とする耐ガス切断割れ性および大入熱溶接継手靭性に優れ且つ音響異方性の小さい低降伏比高張力鋼板の製造方法。
[Ti]×14.0/47.9−0.001≦[N]≦[Ti]×14.0/47.9+[B]×14.0/10.8 ‥(1)
但し、[Ti],[N],および[B]は、夫々Ti,NiおよびBの含有量(質量%)を示す。
CEN=[C]+A(c)・[[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[V])/5+5[B]] ‥(2)
但し、A(c)= 0.75+0.25・tanh[20([C]-0.12)]であり、[C],[Si],[Mn],[Cu],[Ni],[Cr],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,VおよびBの含有量(質量%)を示す。
T(℃)=887+464[C]+(732×[V]-230×√[V])+890×[Ti]+363[sol.Al]-357×[Si]
‥(3)
但し、[C],[V],[Ti],[sol. Al]および[Si]は、夫々C,V,Ti,sol.AlおよびSiの含有量(質量%)を示す。
C: 0.015-0.045% (meaning of mass%, the same applies hereinafter), Si: 0.4% or less (including 0%), Mn: 0.8-1.6%, Cr: 0.5 ~ 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, Cu: 0.5 to 0.95%, Ni: 0.7 to 5.0% (however, Ni The ratio [Ni] / [Cu] ≧ 1) of the content [Ni] and the Cu content [Cu], Ti: 0.005 to 0.03% and N satisfying the following formula (1) A steel material having a chemical composition that does not substantially contain Nb and Mo and has a CE N value in the range of 0.27 to 0.33% represented by the following formula (2) is 950 to 1300 ° C. Then, the cumulative rolling reduction in the temperature range below the austenite non-recrystallization temperature t (° C.) represented by the following formula (3) is set to 60% or less (the austenite non-recrystallization temperature t− 80 ° C.) or more and 1100 ° C. or less after rolling, and then at a cooling rate of 3 ° C./second or more from a temperature of 780 ° C. or more to 300 ° C. It is hardened directly until it becomes below, followed by reheating degree quenching in the temperature range of 760 to 840 ° C. and then tempering in the temperature range of 450 to 550 ° C. A method for producing a low-yield ratio high-tensile steel sheet having excellent heat input weld joint toughness and small acoustic anisotropy.
[Ti] × 14.0 / 47.9−0.001 ≦ [N] ≦ [Ti] × 14.0 / 47.9 + [B] × 14.0 / 10.8 (1)
However, [Ti], [N], and [B] indicate the contents (mass%) of Ti, Ni, and B, respectively.
CE N = [C] + A (c) ・ [[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [V]) / 5 + 5 [B]] (2)
However, A (c) = 0.75 + 0.25 · tanh [20 ([C] -0.12)], [C], [Si], [Mn], [Cu], [Ni], [Cr], [ V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, V, and B, respectively.
T (℃) = 887 + 464 [C] + (732 × [V] -230 × √ [V]) + 890 × [Ti] +363 [sol.Al] -357 × [Si]
(3)
However, [C], [V], [Ti], [sol. Al] and [Si] are C, V, Ti, sol. The content (mass%) of Al and Si is shown.
圧延を終了した後、オンラインレベラー矯正を行う請求項1に記載の低降伏比高張力鋼板の製造方法。   The method for producing a low-yield ratio high-tensile steel sheet according to claim 1, wherein after the rolling is finished, online leveler correction is performed. 更に、V:0.005〜0.10%を含有する鋼素材を用いるものである請求項1または2に記載の低降伏比高張力鋼板の製造方法。   Furthermore, the manufacturing method of the low yield ratio high tension steel plate of Claim 1 or 2 which uses the steel raw material containing V: 0.005-0.10%. 更に、Ca:0.0005〜0.01%を含有する鋼素材を用いるものである請求項1〜3のいずれかに記載の低降伏比高張力鋼板の製造方法。   Furthermore, the manufacturing method of the low yield ratio high-tensile steel plate in any one of Claims 1-3 which uses the steel raw material containing 0.0005-0.01%. 更に、La:0.002〜0.02%,Ce:0.0003〜0.0050%およびMg:0.0005〜0.0030%よりなる群から選ばれる1種または2種以上を含有する含有する鋼素材を用いるものである請求項1〜4のいずれかに記載の低降伏比高張力鋼板の製造方法。   Furthermore, containing containing 1 type (s) or 2 or more types chosen from the group which consists of La: 0.002-0.02%, Ce: 0.0003-0.0050% and Mg: 0.0005-0.0030% The method for producing a low yield ratio high strength steel sheet according to any one of claims 1 to 4, wherein a steel material to be used is used.
JP2005009164A 2005-01-17 2005-01-17 Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy Active JP4610351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005009164A JP4610351B2 (en) 2005-01-17 2005-01-17 Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005009164A JP4610351B2 (en) 2005-01-17 2005-01-17 Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy

Publications (2)

Publication Number Publication Date
JP2006193810A true JP2006193810A (en) 2006-07-27
JP4610351B2 JP4610351B2 (en) 2011-01-12

Family

ID=36800113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005009164A Active JP4610351B2 (en) 2005-01-17 2005-01-17 Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy

Country Status (1)

Country Link
JP (1) JP4610351B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031796A (en) * 2005-07-28 2007-02-08 Kobe Steel Ltd Low-yield-ratio high-tensile-strength steel sheet
JP2011001625A (en) * 2009-06-22 2011-01-06 Sumitomo Metal Ind Ltd High tensile strength steel having excellent corrosion resistance and weld zone toughness, and marine structure
CN116287978A (en) * 2023-02-03 2023-06-23 包头钢铁(集团)有限责任公司 Low-crack-rate carbon structural steel special-shaped blank and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047532A (en) * 2000-05-24 2002-02-15 Kobe Steel Ltd High tensile strength steel sheet excellent in weldability and its production method
JP2002053912A (en) * 2000-08-01 2002-02-19 Kobe Steel Ltd Method for producing as rolled, low yield patio high tensile strength steel sheet having little acoustic anisotropy and excellent weldability
JP2005036295A (en) * 2003-07-17 2005-02-10 Kobe Steel Ltd Low yield ratio high tensile strength steel sheet excellent in gas cutting crack resistance and high heat input welded joint toughness and low in acoustic anisotropy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047532A (en) * 2000-05-24 2002-02-15 Kobe Steel Ltd High tensile strength steel sheet excellent in weldability and its production method
JP2002053912A (en) * 2000-08-01 2002-02-19 Kobe Steel Ltd Method for producing as rolled, low yield patio high tensile strength steel sheet having little acoustic anisotropy and excellent weldability
JP2005036295A (en) * 2003-07-17 2005-02-10 Kobe Steel Ltd Low yield ratio high tensile strength steel sheet excellent in gas cutting crack resistance and high heat input welded joint toughness and low in acoustic anisotropy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031796A (en) * 2005-07-28 2007-02-08 Kobe Steel Ltd Low-yield-ratio high-tensile-strength steel sheet
JP4485427B2 (en) * 2005-07-28 2010-06-23 株式会社神戸製鋼所 Low yield ratio high strength steel sheet
JP2011001625A (en) * 2009-06-22 2011-01-06 Sumitomo Metal Ind Ltd High tensile strength steel having excellent corrosion resistance and weld zone toughness, and marine structure
CN116287978A (en) * 2023-02-03 2023-06-23 包头钢铁(集团)有限责任公司 Low-crack-rate carbon structural steel special-shaped blank and production method thereof

Also Published As

Publication number Publication date
JP4610351B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
EP3042976B1 (en) Steel sheet for thick-walled high-strength line pipe having exceptional corrosion resistance, crush resistance properties, and low-temperature ductility, and line pipe
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4485427B2 (en) Low yield ratio high strength steel sheet
JP2012188731A (en) Low yield ratio and high strength hot-rolled steel sheet excellent in low-temperature toughness, and production method therefor
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2008266735A (en) Low yield ratio high tensile strength steel plate excellent in low temperature toughness of weld heat-affected zone and base material, and its manufacturing method
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
US11299798B2 (en) Steel plate and method of producing same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
JP5045073B2 (en) Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
WO2014175122A1 (en) H-shaped steel and method for producing same
JP2016084524A (en) H shape steel for low temperature and manufacturing method therefor
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP5136156B2 (en) Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP4025263B2 (en) Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4610351B2 (en) Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy
JP3734692B2 (en) Non-refining type low yield ratio high tensile strength steel sheet with low acoustic anisotropy and excellent weldability
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150