JP2007031796A - Low-yield-ratio high-tensile-strength steel sheet - Google Patents

Low-yield-ratio high-tensile-strength steel sheet Download PDF

Info

Publication number
JP2007031796A
JP2007031796A JP2005219596A JP2005219596A JP2007031796A JP 2007031796 A JP2007031796 A JP 2007031796A JP 2005219596 A JP2005219596 A JP 2005219596A JP 2005219596 A JP2005219596 A JP 2005219596A JP 2007031796 A JP2007031796 A JP 2007031796A
Authority
JP
Japan
Prior art keywords
steel sheet
steel
phase
toughness
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005219596A
Other languages
Japanese (ja)
Other versions
JP4485427B2 (en
Inventor
Mitsuaki Shibata
光明 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005219596A priority Critical patent/JP4485427B2/en
Publication of JP2007031796A publication Critical patent/JP2007031796A/en
Application granted granted Critical
Publication of JP4485427B2 publication Critical patent/JP4485427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-yield-ratio high-tensile-strength steel sheet which has superior gas-cutting cracking resistance, superior toughness in a high-heat-input weld joint, low acoustic anisotropy, high plastic deformability and a tensile strength of a 590 MPa grade, and can be applied even to a thin steel sheet. <P>SOLUTION: This steel sheet has a chemical composition containing appropriately controlled components, in which a CE<SB>N</SB>value expressed by the following equation is in a range of 0.27 to 0.33%: CE<SB>N</SB>=[C]+A(c)×ä[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]}, wherein A(c)=0.75+0.25×tanhä20([C]-0.12)}. The steel sheet also has a structure which contains a former austenite grain with an average aspect ratio (average grain size in main rolling direction/average grain size in sheet thickness direction) of 1.0 to 1.2 in a cross section in a sheet thickness direction, pseudo-polygonal ferrite of 10 to 40 vol.%, an island martensite phase of 0.5 to 3.5 vol.% and the balance a pseudo-pearlite phase. The structure also has ε-Cu phase clusters of 4×10<SP>20</SP>to 26×10<SP>20</SP>pieces/m<SP>3</SP>dispersed therein. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐ガス切断割れ性に優れると共に、約100KJ/mmまでもの超大入熱溶接での継手靭性に優れ、且つ音響異方性が小さく、塑性変形能が大きく、しかも引張強さが590MPa以上の溶接構造用低降伏比高張力鋼板に関するものである。   The present invention is excellent in gas cutting crack resistance, joint toughness in super-high heat input welding up to about 100 KJ / mm, low acoustic anisotropy, large plastic deformability, and tensile strength of 590 MPa. The present invention relates to the above-described low yield ratio high-tensile steel sheet for welded structures.

近年、建築物の超高層化や橋梁の少数主桁化が進む中で、溶接施工時の予熱低減とともに、大入熱溶接の適用および溶接継手部への超音波探傷試験の適用、地震に対する終局耐力設計の適用が設計・施工サイドで進められつつある。これに伴い、それらに供用される鋼材サイドとしては、下記(1)〜(4)の各項目について検討されている。
(1)予熱低減要求に対しては、溶接低温割れ感受性組成(PCM)の低減、
(2)大入熱溶接の適用に対しては、入熱量の増大に耐えうる溶接継手部全部位の高靭性化、
(3)溶接継手部への超音波探傷試験(UT)への適用に対しては、斜角UTに用いられる横波の鋼材とSTB試験片での音速比が、例えば、板厚25mm超え、公称屈折角度70°で探傷する場合においては、V/VSTB0.995〜1.015の範囲内にあることによって音響異方性が小さいこと(日本建築学会における鋼構造建築溶接部の超音波検査基準の定義に従う)、
(4)地震に対する終局耐力設計の適用に対しては、降伏比(降伏点/引張強さ×100%)が小さいこと(即ち、塑性変形能が高いこと)が要求されると共に(建築用途の場合、80%以下)、使用される鋼材の板厚・引張強さについても厚肉・高強度化(最大100mm厚で、建築用途の場合、590MPa以上、橋梁の場合、570MPa以上)されつつある。
In recent years, with the progress of super-high-rise buildings and fewer main girder bridges, in addition to reducing preheating during welding, application of high heat input welding, application of ultrasonic flaw detection tests to welded joints, and ultimate earthquake Application of proof stress design is being promoted on the design and construction side. Accordingly, the following items (1) to (4) have been studied as the steel material side used for them.
(1) In response to the requirement for preheating reduction, reduction of weld cold cracking sensitive composition (P CM ),
(2) For the application of high heat input welding, toughness of all parts of the welded joint that can withstand the increase in heat input,
(3) For application to the ultrasonic flaw detection test (UT) for welded joints, the sound velocity ratio between the steel material of the transverse wave used for the oblique angle UT and the STB test piece exceeds, for example, a plate thickness of 25 mm, When flaw detection is performed at a refraction angle of 70 °, the acoustic anisotropy is small by being in the range of V / V STB 0.995 to 1.015 (ultrasonic inspection of steel structure building welds in the Architectural Institute of Japan). According to the definition of the standard),
(4) For the application of ultimate strength design for earthquakes, it is required that the yield ratio (yield point / tensile strength x 100%) is small (that is, the plastic deformability is high) In the case of 80% or less), the thickness and tensile strength of the steel materials used are also being increased in thickness and strength (maximum thickness is 100 mm, 590 MPa or more for building applications, 570 MPa or more for bridges). .

建築用鋼に要求される低降伏比を満足する590MPa級鋼の製造方法の一つとして、例えば特許文献1に示されるような技術が提案されている。この技術では、C:0.10〜0.18%、Si:0.05〜0.50%、Mn:0.70〜1.50%、P:0.010%以下、S:0.002%以下、Nb:0.005〜0.030%およびCa:0.0010〜0.0030%を夫々含有し、残部Feおよび不可避不純物からなり、且つ炭素当量Ceq(JIS)が0.45%の鋼片を、再結晶温度域で圧延を完了し、5〜30℃/秒の冷却速度で400℃以下まで冷却後、Ac3点以上の温度からなる再加熱焼入れ(RQ)、二相域(Ac1点以上Ac3点未満)からの焼入れ(Q’)およびAc点未満の温度での焼戻し(T)を施すQ−Q’−T法を用いて、降伏比80%以下、引張強さ590MPa以上を得るものである。 As one method for producing a 590 MPa class steel that satisfies the low yield ratio required for building steel, for example, a technique as disclosed in Patent Document 1 has been proposed. In this technique, C: 0.10 to 0.18%, Si: 0.05 to 0.50%, Mn: 0.70 to 1.50%, P: 0.010% or less, S: 0.002 % Or less, Nb: 0.005 to 0.030% and Ca: 0.0010 to 0.0030%, respectively, the balance being Fe and inevitable impurities, and the carbon equivalent Ceq (JIS) is 0.45% The steel slab is completely rolled in the recrystallization temperature range, cooled to 400 ° C. or lower at a cooling rate of 5 to 30 ° C./second, reheat-quenched (RQ) consisting of temperatures of Ac 3 points or higher, and two-phase range ( using Q-Q'-T method for performing tempering (T) at a temperature of quenching (Q ') and Ac less than 1 point from Ac 1 point or more Ac less than 3 points), 80% yield ratio or less, the tensile strength 590 MPa or more is obtained.

また極低炭素系のベイナイト組織を活用し、音響異方性を改善すると共に、引張強さが570MPa級または590MPa級の鋼材を製造する方法としては、例えば特許文献2〜5のような各技術も提案されている。   Moreover, as a method of utilizing the extremely low carbon bainite structure to improve acoustic anisotropy and producing a steel material having a tensile strength of 570 MPa class or 590 MPa class, for example, each technique as described in Patent Documents 2 to 5 Has also been proposed.

このうち特許文献2の技術では、C:0.001%以上0.030%未満、Si:0.60%以下、Mn:0.20〜3.00%、Ni:2.0%以下、Cu:0.7〜2.0%およびAl:0.10%以下を夫々含む組成になる鋼素材を、860℃以上の温度に加熱して冷却した後、500℃以上800℃未満の温度域に再加熱して冷却することによって、材質ばらつきが少なく、且つ音響異方性の小さい570MPa級の高強度鋼材を製造する方法について開示されている。   Among them, in the technique of Patent Document 2, C: 0.001% or more and less than 0.030%, Si: 0.60% or less, Mn: 0.20 to 3.00%, Ni: 2.0% or less, Cu : After the steel material which becomes a composition which respectively contains 0.7-2.0% and Al: 0.10% or less is heated and cooled to the temperature of 860 degreeC or more, it is in the temperature range of 500 degreeC or more and less than 800 degreeC. A method for producing a high strength steel material of 570 MPa class with little material variation and small acoustic anisotropy by reheating and cooling is disclosed.

また特許文献3の技術では、C:0.005〜0.025%、Si:0.60%以下、Mn:0.4〜1.6%、P:0.025%以下、S:0.010%以下、Al:0.1%以下、Cu:0.6〜2%、Ni:0.25〜2.0%、Ti:0.001〜0.050%およびB:0.0002〜0.0030%からなる化学成分組成で、且つ重量比Mn/Cu:2.0以下且つ117Mn(%)+163Cu(%):250〜350%で含有し、残部がFeおよび不可避不純物から成る鋳片を、1050〜1250℃に再加熱後、950℃以下の温度域における累積圧下率が50%以下で仕上げ圧延温度が800℃以上の熱間圧延を施すことによって、圧延ままで鋼板の厚み方向の靭性および音響異方性に優れる590MPa級の溶接用極厚鋼板を製造する方法について開示されている。   In the technique of Patent Document 3, C: 0.005 to 0.025%, Si: 0.60% or less, Mn: 0.4 to 1.6%, P: 0.025% or less, S: 0.00. 010% or less, Al: 0.1% or less, Cu: 0.6-2%, Ni: 0.25-2.0%, Ti: 0.001-0.050% and B: 0.0002-0 A slab comprising a chemical composition composed of .0030% and a weight ratio of Mn / Cu: 2.0 or less and 117 Mn (%) + 163 Cu (%): 250 to 350%, with the balance being Fe and inevitable impurities , After reheating to 1050 to 1250 ° C., by performing hot rolling with a cumulative rolling reduction in a temperature range of 950 ° C. or less of 50% or less and a finish rolling temperature of 800 ° C. or more, toughness in the thickness direction of the steel sheet as it is rolled 590MPa welding electrode with excellent acoustic anisotropy It discloses a method of manufacturing the steel sheet.

更に、特許文献4には、C:0.025〜0.045%、Nb:0.005〜0.1%でMoを含まない、音響異方性が小さく、溶接性に優れた引張強さ590MPa以上の非調質型の低降伏比高張力鋼板の製造方法が示されている。   Furthermore, in Patent Document 4, C: 0.025 to 0.045%, Nb: 0.005 to 0.1%, which does not contain Mo, has low acoustic anisotropy, and has excellent weldability. A method for producing a non-tempered, low yield ratio, high strength steel sheet of 590 MPa or higher is shown.

特許文献5では、C:0.015〜0.045%、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%を夫々含有し、且つ下記(2)式で示されるCE値が0.27〜0.33%の範囲内にある化学成分組成を有し、0.5〜3.5体積%の島状マルテンサイト相と4×1020〜26×1020個/m3のε−Cu相クラスターがベイナイト地に分散したものとすることによって、耐ガス切断割れ性および大入熱溶接継手靭性に優れ且つ音響異方性の小さい低降伏比高張力鋼板が開示されている。
CE=[C]+A(c)・{[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]}
‥(2)
但し、A(c)= 0.75+0.25・tanh{20([C]-0.12)}であり、[C],[Si],[Mn],[Cu],[Ni],[Cr] ,[Mo],[Nb],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,Nb,VおよびBの含有量(質量%)を示す。
In Patent Document 5, C: 0.015-0.045%, B: 0.0004-0.003%, Cu: 0.5-0.95%, Ni: 0.7-5.0% (however, , Ratio of Ni content [Ni] and Cu content [Cu] [Ni] / [Cu] ≧ 1), Ti: 0.005 to 0.03%, respectively, and represented by the following formula (2) a CE N value the chemical compositions in the range of 0.27 to 0.33 percent which, island martensite phase of 0.5 to 3.5 vol% and 4 × 10 20 ~26 × 10 20 by epsilon-Cu phase clusters of pieces / m 3 is assumed dispersed in bainite area, a small low yield ratio high-tensile steel sheets and the acoustic anisotropy excellent resistance gas cutting crack resistance and high heat input welded joint toughness It is disclosed.
CE N = [C] + A (c) · {[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 [B]}
(2)
However, A (c) = 0.75 + 0.25 · tanh {20 ([C] -0.12)}, and [C], [Si], [Mn], [Cu], [Ni], [Cr], [ Mo], [Nb], [V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, Nb, V and B, respectively.

しかしながら、これまで提案されている極低炭素系ベイナイト組織の高張力鋼板においては夫々次に示すような問題が指摘される。まず上記特許文献1の技術では、提案されている中炭素鋼の590MPa級鋼板は、建築用として使用されているものの、ポリゴナルフェライトの生成によって、母材および継手部において所定の強度を確保するための炭素当量がQT型の590Pa級鋼板よりも高くなるので、適用溶接入熱も17KJ/mmと少なくなり、100KJ/mmもの大入熱溶接継手部での靭性が低位のものとなる。また、上記特許文献2の技術では、得られる鋼材の音響異方性は小さいものの、降伏比は80%を超えており、建築用途に供用できない。   However, the following problems are pointed out in the high-tensile steel sheets having a very low carbon bainite structure proposed so far. First, in the technique of Patent Document 1, the proposed medium carbon steel 590 MPa class steel plate is used for construction, but by generating polygonal ferrite, a predetermined strength is secured in the base material and the joint portion. Therefore, since the carbon equivalent is higher than that of the QT type 590Pa grade steel plate, the applied welding heat input is also reduced to 17 KJ / mm, and the toughness at a large heat input welded joint of 100 KJ / mm is low. Moreover, with the technique of the said patent document 2, although the acoustic anisotropy of the steel material obtained is small, the yield ratio exceeds 80% and cannot be used for a building use.

特許文献3の技術では、得られる鋼板の音響異方性は小さく、降伏比も建築用鋼板に対する要求値(80%以下)を満足するものの、Cuの析出による強度上昇効果を、圧延後の冷却過程に依っているため、冷却速度が速い場合には上記効果が安定して得られるとは限らず、しかもこうした効果は板厚に依存することになる。大入熱HAZ靭性についても、入熱50KJ/mmの熱サイクルシャルピー(0℃での吸収エネルギーvE)で52〜71J程度であり(実施例の表2)、本発明で目標とする平均70J以上を安定して達成できるものではない。またこの技術では、CuおよびNiを必須成分として含むものであるが、これらの適切な配合割合については何ら考慮されていないので(実施例の表1でNi/Cuが0.47〜0.95)、ガス切断面の表面に平行方向に、Cuの液化に起因する割れの感受性を有するものとなる。 In the technique of Patent Document 3, although the acoustic anisotropy of the obtained steel sheet is small and the yield ratio satisfies the required value (80% or less) for the steel sheet for construction, the effect of increasing the strength due to precipitation of Cu is reduced by cooling after rolling. Depending on the process, when the cooling rate is fast, the above effect is not always obtained stably, and such an effect depends on the plate thickness. The high heat input HAZ toughness is also about 52 to 71 J (absorption energy vE 0 at 0 ° C.) with a heat input of 50 KJ / mm (Table 2 in the examples), and the average 70 J targeted in the present invention. The above cannot be achieved stably. Further, in this technique, Cu and Ni are included as essential components, but no consideration is given to their appropriate blending ratio (Ni / Cu is 0.47 to 0.95 in Table 1 of the Examples). It becomes susceptible to cracking due to Cu liquefaction in a direction parallel to the surface of the gas cut surface.

特許文献4の技術は、空冷ままで小さい音響異方性と低降伏比を実現させることによって建築用鋼板としての要求特性を満足させたものであるが、大入熱溶接継手の入熱量が20KJ/mm程度と比較的小さいので(例えば実施例の表3)、本発明の目標とする約100KJ/mmまでの溶接入熱において、高HAZ靭性を確保できる保証はない。   The technique of Patent Document 4 satisfies the required characteristics as a steel sheet for construction by realizing small acoustic anisotropy and low yield ratio while being air-cooled, but the heat input amount of the large heat input welded joint is 20 KJ. / Mm, which is relatively small (for example, Table 3 of Examples), there is no guarantee that high HAZ toughness can be secured at the welding heat input up to about 100 KJ / mm which is the target of the present invention.

特許文献5の技術では、DQ(直接焼入れ)−Q’−TおよびRQ−Q’―Tを適用することによって、ベイナイト地に島状マルテンサイトを分散させ、これによって板厚45〜100の範囲において建築用590MPa級鋼の目標降伏比である80%以下を満足する高強度鋼板が開示されている。この技術は、比較的厚い鋼板においては、極めて有用な技術といえるのであるが、板厚が45mm未満では板厚が薄くなるにつれて降伏比が急激に増大して80%を超えてしまうことがあり、適用する板厚に限界があった。   In the technique of Patent Document 5, by applying DQ (direct quenching) -Q′-T and RQ-Q′-T, island-like martensite is dispersed in the bainite ground, and thereby the thickness ranges from 45 to 100. Discloses a high-strength steel sheet that satisfies a target yield ratio of 590 MPa class steel for construction, which is 80% or less. This technique can be said to be an extremely useful technique for a relatively thick steel sheet. However, if the plate thickness is less than 45 mm, the yield ratio may increase rapidly and exceed 80% as the plate thickness decreases. There was a limit to the plate thickness to be applied.

一方、引張強さ590MPa級で入熱20KJ/mm以上における大入熱溶接継手靭性に優れた鋼材として、例えば特許文献6〜8のような技術も提案されている。   On the other hand, techniques such as Patent Documents 6 to 8 have been proposed as steel materials having a tensile strength of 590 MPa and excellent in toughness of large heat input weld joints at a heat input of 20 KJ / mm or more.

このうち特許文献6には、C:0.001〜0.03%、Mn:0.8〜3.0%、B:0.0003〜0.0050%を含み、且つTi/Alが5.0以上を満足し、かつTi酸化物:20〜90%、Al23:70%以下、Ca酸化物,REM酸化物のいずれか1種または2種の合計:5〜50%、MnO:15%以下からなる酸化物系介在物を分散させた引張強さ570MPa級鋼材の製造方法が開示されている。 Among these, Patent Document 6 includes C: 0.001 to 0.03%, Mn: 0.8 to 3.0%, B: 0.0003 to 0.0050%, and Ti / Al is 5. 0 or more, and Ti oxide: 20 to 90%, Al 2 O 3 : 70% or less, one or two of Ca oxide and REM oxide: 5 to 50%, MnO: A method for producing a tensile strength 570 MPa grade steel material in which oxide inclusions of 15% or less are dispersed is disclosed.

また特許文献7には、C:0.02%以下、Mn:0.5〜2.0%、Nb:0.010〜0.10%、B:0.0003〜0.0040%で、且つB/Nが0.3〜1.0の組成を有する引張強さ552〜605MPaの非調質型低温用鋼材について開示されている。   In Patent Document 7, C: 0.02% or less, Mn: 0.5 to 2.0%, Nb: 0.010 to 0.10%, B: 0.0003 to 0.0040%, and Non-tempered steel for low temperature use with a tensile strength of 552 to 605 MPa having a composition of B / N of 0.3 to 1.0 is disclosed.

更に、特許文献8には、C:0.01〜0.06%、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:1.5%以下(0%を含む)、Ti:0.005〜0.03%、B:0.0006〜0.005%、O:0.0025〜0.015%を含有し、([Mn]+1.5×[Cr]+2×[Mo])で定義されるパラメータKPが2.4質量%以上である高張力鋼板について開示されている。またこうした高張力鋼板を製造する工程として、850〜950℃で圧延を完了し、その後冷却し、次いで750〜800℃に再加熱後水焼入れを行い、最終的に550〜600℃で焼戻しすることについて示されている(例えば、実施例の表3、4)。   Further, in Patent Document 8, C: 0.01 to 0.06%, Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 1.5% or less (0 %), Ti: 0.005-0.03%, B: 0.0006-0.005%, O: 0.0025-0.015%, ([Mn] + 1.5 × [ A high-strength steel sheet having a parameter KP defined by Cr] + 2 × [Mo]) of 2.4% by mass or more is disclosed. Moreover, as a process for producing such a high-tensile steel plate, rolling is completed at 850 to 950 ° C., then cooled, then re-heated to 750 to 800 ° C. and then water-quenched, and finally tempered at 550 to 600 ° C. (Eg, Tables 3 and 4 in the Examples).

しかしながら、上記特許文献6の技術では、0.005〜0.10%程度のNbを含むものであり(実施例で0.04〜0.05%)、圧延終了温度を800℃以上(実施例で820〜850℃)と規定しており、建築用途の溶接構造用鋼材に要求される音響異方性を安定して満足し得ないものである(この点については後述する)。   However, in the technique of Patent Document 6 described above, Nb is included in an amount of about 0.005 to 0.10% (0.04 to 0.05% in the example), and the rolling end temperature is 800 ° C. or more (Example). 820 to 850 ° C.), and cannot stably satisfy the acoustic anisotropy required for a steel material for welded structures for architectural purposes (this point will be described later).

特許文献7の技術では、上記特許文献6と同様にNb:0.010〜0.10%を含有しており、こうした鋼材に対して750℃以上で圧延を終了し、空冷あるいは加速冷却が施されることによって引張強さ590MPa級を満足させるものであるが、降伏比は82%以上となって建築用途に適用できないものである。   In the technique of Patent Document 7, Nb: 0.010 to 0.10% is contained in the same manner as in Patent Document 6 described above. Rolling of such steel material is finished at 750 ° C. or higher, and air cooling or accelerated cooling is performed. As a result, the tensile strength of the 590 MPa class is satisfied, but the yield ratio is 82% or more and cannot be applied to architectural purposes.

特許文献8の技術では、低炭素鋼(C含有量0.03ベース)において、Cu,NbおよびMoを無添加としたものも示されているが(実施例の表1のNo.1)、この鋼材におけるMn量はJIS G 3106のSM570および建設大臣一般認定の高性能鋼SA440におけるMn量の規定量(1.6%以下)を超えるものである。またMn量を1.60%以下としたものも示されているが(表1のNo.12)、この鋼材ではCuおよびNbの無添加による強度低下をMoの添加によって補償するものであり、こうした鋼材では靭性がvE-40(−40℃における吸収エネルギー)で71Jと低位であり、しかもガス切断性に劣るものとなる。即ち、こうした鋼材では、ガス切断面の表面粗度がWES2801を満足するのは困難であり、ノッチが生成されて破壊の起点となるため、構造用部材としては適さない。 In the technique of Patent Document 8, although low carbon steel (based on a C content of 0.03), Cu, Nb and Mo are not added (No. 1 in Table 1 of Examples). The amount of Mn in this steel exceeds the specified amount (1.6% or less) of the amount of Mn in SM570 of JIS G 3106 and high performance steel SA440 certified by the Minister of Construction. Moreover, although what made Mn amount 1.60% or less is also shown (No. 12 of Table 1), in this steel material, the strength reduction by the addition of Cu and Nb is compensated by addition of Mo, Such a steel material has a toughness as low as 71 J in vE -40 (absorbed energy at -40 ° C), and is inferior in gas cutting property. That is, in such a steel material, it is difficult for the surface roughness of the gas cut surface to satisfy WES2801, and a notch is generated and becomes a starting point of fracture, so that it is not suitable as a structural member.

ところで、Cuを含有する鋼材において、Cuに起因する表面割れを抑制し、且つ溶接熱影響部の靭性をも優れたものとした技術として、例えば特許文献9に示される技術も知られている。この技術は、Si:0.05〜0.5%、Cr:0.1〜0.6%、B:0.0005%以下を含有する溶接構造用Cu含有鋼であり、圧延時の割れを防止すると共に、12KJ/mmのCO2溶接における溶接熱影響部の靭性vEが良好であるとしている。またNiを添加する場合は、鋼中Cu量の1/3未満に規定することが望ましいことが示されている。 By the way, the technique shown by patent document 9 is also known as a technique which made the steel material containing Cu suppress the surface crack resulting from Cu, and was excellent also in the toughness of a welding heat affected zone. This technology is a Cu-containing steel for welded structures containing Si: 0.05 to 0.5%, Cr: 0.1 to 0.6%, B: 0.0005% or less, and cracks during rolling It is said that the toughness vE 0 of the weld heat affected zone in CO 2 welding at 12 KJ / mm is good. Moreover, when adding Ni, it has shown that it is desirable to prescribe | regulate to less than 1/3 of the amount of Cu in steel.

しかしながら、この技術で圧延時の割れが防止できたとしても、ガス切断時に鋼成分がスラグ化する過程において鋼中のCuやCu合金が低温まで溶融状態で残存する場合には、圧延の加熱時に比較して鋼が一旦溶融する程に格段に入熱量が大きいため、溶融状態のCuのガス切断面の粒界に容易に侵入し易くなることによって、ガス切断割れを防止できないこともあり、そのままの状態では破壊の起点を内在したものとなり、割れが開口する方向の軸応力が作用する部位への適用はできない。
特公平7−47774号公報 特許請求の範囲等 特開平9−256042号公報 特許請求の範囲等 特開平11−193445号公報 特許請求の範囲、実施例の表1、2等 特開2002−53912号公報 特許請求の範囲、実施例の表3等 特開2005−36295号公報 特許請求の範囲 特開2000−345239号公報 特許請求の範囲等 特開2001−20034号公報 特許請求の範囲等 特開2001−335883号公報 特許請求の範囲、実施例の表3、4等 特開2002−371337号公報 特許請求の範囲
However, even if cracking during rolling can be prevented with this technique, when the Cu or Cu alloy in the steel remains in a molten state up to a low temperature in the process of slagging the steel component during gas cutting, Compared to the fact that the amount of heat input is so large that the steel is once melted in comparison, it is easy to easily enter the grain boundary of the gas cut surface of the molten Cu, and may not prevent gas cut cracks. In this state, the starting point of fracture is inherent, and it cannot be applied to a site where axial stress acts in the direction in which the crack opens.
Japanese Patent Publication No. 7-47774 Patent Claims etc. Japanese Patent Laid-Open No. 9-256042 Claims etc. Japanese Patent Application Laid-Open No. 11-193445 Patent Claims, Examples Table 1, 2 etc. JP, 2002-53912, A Claims, Table 3 of an example, etc. JP, 2005-36295, A Claims JP, 2000-345239, A Claims etc. JP, 2001-20034, A Claims etc. JP, 2001-335883, A Claims, Tables 3 and 4 of an example, etc. JP, 2002-371337, A Claims

本発明は、こうした従来技術における課題を解決するためになされたものであって、その目的は、耐ガス切断割れ性および大入熱溶接継手靭性に優れ、且つ音響異方性が小さく、しかも塑性変形能が大きい、薄鋼板でも適用できるような引張強さ590MPa級の低降伏比高張力鋼板を提供することにある。   The present invention has been made in order to solve such problems in the prior art, and its purpose is excellent in gas cut cracking resistance and high heat input weld joint toughness, and has low acoustic anisotropy and plasticity. An object of the present invention is to provide a low-yield-ratio high-tensile steel plate having a tensile strength of 590 MPa that can be applied even to a thin steel plate having a large deformability.

上記目的を達成し得た本発明の低降伏比高張力鋼板とは、C:0.015〜0.045%(質量%の意味、以下同じ)、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まず、且つ下記(2)式で示されるCE値が0.27〜0.33%の範囲内にあり、残部がFeおよび不可避的不純物からなる化学成分組成を有し、板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.0〜1.2であると共に、10〜40体積%の擬ポリゴナルフェライト、0.5〜3.5体積%の島状マルテンサイト相、残部が擬似パーライト相の組織を有し、この組織中には4×1020〜26×1020個/m3のε−Cu相クラスターが分散したものである点に要旨を有するものである。
[Ti]×14.0/47.9−0.001≦[N]≦[Ti]×14.0/47.9+[B]×14.0/10.8 ‥(1)
但し、[Ti],[N],および[B]は、夫々Ti,NiおよびBの含有量(質量%)を示す。
CE=[C]+A(c)・{[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]}
‥(2)
但し、A(c)= 0.75+0.25・tanh{20([C]-0.12)}であり、[C],[Si],[Mn],[Cu],[Ni],[Cr] ,[Mo],[Nb],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,Nb,VおよびBの含有量(質量%)を示す。
The low-yield-ratio high-tensile steel sheet of the present invention that has achieved the above-mentioned object is: C: 0.015-0.045% (meaning mass%, the same shall apply hereinafter), Si: 0.4% or less (0% Mn: 0.8 to 1.6%, Cr: 0.5 to 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, Cu: 0.5 to 0.95%, Ni: 0.7 to 5.0% (however, Ni The ratio [Ni] / [Cu] ≧ 1) of the content [Ni] and the Cu content [Cu], Ti: 0.005 to 0.03% and N satisfying the following formula (1) , substantially free of Nb and Mo, and CE N value represented by the following formula (2) is in the range of 0.27 to 0.33%, the chemical composition and the balance being Fe and unavoidable impurities The average aspect ratio of the prior austenite grain size in the cross section in the thickness direction (average grain size in the main rolling direction / average grain size in the thickness direction) is 1.0 to 1.2, and 10 to 40 volumes. % Pseudo-polygonal ferrite, 0.5 to 3.5% by volume of an island-like martensite phase, the balance having a pseudo-pearlite phase structure, Of the tissue and has a gist in that 4 × 10 20 ~26 × 10 20 atoms / m 3 of epsilon-Cu phase clusters is obtained by dispersing.
[Ti] × 14.0 / 47.9−0.001 ≦ [N] ≦ [Ti] × 14.0 / 47.9 + [B] × 14.0 / 10.8 (1)
However, [Ti], [N], and [B] indicate the contents (mass%) of Ti, Ni, and B, respectively.
CE N = [C] + A (c) · {[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 [B]}
(2)
However, A (c) = 0.75 + 0.25 · tanh {20 ([C] -0.12)}, and [C], [Si], [Mn], [Cu], [Ni], [Cr], [ Mo], [Nb], [V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, Nb, V and B, respectively.

本発明の低降伏比高張力鋼板には、必要によって、(a)V:0.005〜0.10%、(b)Ca:0.0005〜0.01%、(c)La:0.002〜0.02%,Ce:0.0003〜0.0050%,Mg:0.0005〜0.0030%およびZr:0.002〜0.02よりなる群から選ばれる1種または2種以上、等を含有することも有効であり、これら含有される成分に応じて高張力鋼板の特性を更に向上させることができる。   In the low yield ratio high tensile strength steel sheet of the present invention, (a) V: 0.005 to 0.10%, (b) Ca: 0.0005 to 0.01%, (c) La: 0.0. One or more selected from the group consisting of 002 to 0.02%, Ce: 0.0003 to 0.0050%, Mg: 0.0005 to 0.0030%, and Zr: 0.002 to 0.02. , Etc. are also effective, and the characteristics of the high-tensile steel sheet can be further improved depending on the components contained.

本発明の高張力鋼板は、低降伏比で予熱を必要とせず、且つ約100KJ/mmまでもの大入熱溶接を施しても平均70J以上の高HAZ靭性を確保でき、歪み速度の大きな地震に対しても溶接継手部の脆性破壊を防止でき、しかもガス切断割れの欠陥を内在せず、音響異方性も小さいので、超高層建築物の主要溶接構造部材として極めて信頼性の高い、薄鋼板でも適用できる引張強度590MPa級高張力鋼板である。   The high-strength steel sheet of the present invention does not require preheating at a low yield ratio, and can ensure high HAZ toughness of an average of 70 J or higher even when subjected to large heat input welding up to about 100 KJ / mm, and is suitable for earthquakes with large strain rates. For this reason, it is possible to prevent brittle fracture of welded joints, and it has no gas cutting crack defect and has low acoustic anisotropy, so it is a highly reliable thin steel plate as a main welded structural member for high-rise buildings. However, it is a high-tensile steel plate with a tensile strength of 590 MPa that can be applied.

超高層建築物に供せられる引張強さ590MPa級高張力鋼板に対して、従来の降伏比80%以下の塑性変形能に加えて、溶接継手の厚肉化に対応して、溶接入熱50〜100KJ/mmの超大入熱化を実現すると共に、大地震のように大きい歪み速度を有する外力に抵抗するために、溶接継手の全部位において、ダイアフラム溶接部に対する溶接施工指針に示される平均15J以上より遥かに高位な平均70J以上の要求靭性が要望されるようになってきた。   In addition to the conventional plastic deformability with a yield ratio of 80% or less, the weld heat input of 50 for the 590 MPa class high strength steel plate used for super high-rise buildings, corresponding to the thickening of welded joints. In order to realize an extremely large heat input of up to 100 KJ / mm and to resist an external force having a large strain rate such as a large earthquake, an average of 15 J shown in the welding construction guideline for the diaphragm welded portion in all parts of the welded joint A demanded toughness of 70 J or more, which is much higher than the above, has been demanded.

一方、橋梁の場合においても、大入熱溶接化に加えて、溶接継手部を従来の放射線透過試験から超音波斜角探傷試験に切り替わる趨勢にあることから、高層建築物の場合と同様に、横波に対する音響異方性が小さいことが求められるようになっている。   On the other hand, in the case of bridges, in addition to the large heat input welding, since there is a tendency to switch the welded joint part from the conventional radiation transmission test to the ultrasonic oblique flaw detection test, as in the case of high-rise buildings, The acoustic anisotropy with respect to the transverse wave is required to be small.

本発明者らが、建築用590MPa級高張力鋼板において低降伏比、音響異方性が小さいことに加え、約100KJ/mmまでものエレクトロスラグ溶接が施された強度部材において、溶接熱影響部に平均70J以上の靭性を持たせることについて鋭意検討した。   In the strength member subjected to electroslag welding of up to about 100 KJ / mm in addition to the low yield ratio and small acoustic anisotropy in the 590 MPa class high-tensile steel sheet for construction, We have intensively studied to provide an average toughness of 70 J or more.

その結果、1350〜1400℃に昇温した後、冷却速度の極めて小さい熱影響部に対してはTiNによる結晶粒粗大化の抑制効果に加えて、(i)溶融線近傍の熱影響部の結晶粒界へのフェライト析出および粒界からのフェライトサイドプレートの生成を抑制すること、更には(ii)同結晶粒内を微細ベイナイト組織にすることが有効であることを知見した。   As a result, after heating to 1350-1400 ° C., in addition to the effect of suppressing grain coarsening by TiN for the heat affected zone with a very low cooling rate, (i) crystals in the heat affected zone in the vicinity of the melting line It has been found that it is effective to suppress the precipitation of ferrite at the grain boundaries and the formation of ferrite side plates from the grain boundaries, and (ii) to make the inside of the crystal grains a fine bainite structure.

そして上記(i)に対しては、冷却速度が極めて小さい場合においても、固溶Bを結晶粒界に偏析させることが効果的であることが判明した。またそのためには、BNの生成を抑制するためにフリーNをTiで固定すると共に、Ar3変態点を上昇させるMoを無添加とし、Ar3変態点を低下させるCrを積極的に適量添加することが有効であることが分かった。 For (i) above, it has been found that it is effective to segregate the solid solution B at the grain boundaries even when the cooling rate is extremely low. For that purpose, in order to suppress the formation of BN, free N is fixed with Ti, Mo which raises the Ar 3 transformation point is not added, and an appropriate amount of Cr which lowers the Ar 3 transformation point is positively added. Was found to be effective.

また上記(ii)に対しては、前記(2)式で規定される炭素当量CENを0.27〜0.33%に制御すると共に、構成するCを極低化し、加えてNbを無添加とすることによって、熱影響部の旧オーステナイト結晶粒内のミクロ組織を大傾角化させた微細ベイナイトブロックの集合体とできることが効果的であることが判明した。また上記CENが0.27〜0.33%の範囲では、小入熱溶接時の予熱フリー化も実現できることも分かった。尚、これらの方策による母材の強度低下を補償するために、ε−Cu相による析出強化を積極的に活用する必要がある。 In addition to the above (ii), the carbon equivalent CE N defined by the above formula (2) is controlled to 0.27 to 0.33%, and the constituent C is made extremely low, and Nb is not added. It has been proved that it is effective to be an aggregate of fine bainite blocks in which the microstructure in the prior austenite crystal grains in the heat-affected zone is increased in inclination by the addition. It was also found that when the CE N is in the range of 0.27 to 0.33%, preheating free at the time of small heat input welding can be realized. In addition, in order to compensate for the strength reduction of the base material due to these measures, it is necessary to actively utilize precipitation strengthening due to the ε-Cu phase.

ところで、析出強化が発現するCuを過剰添加すると、ガス切断時に溶融した低融点のCuやCu合金が選択的に結晶粒界に侵入することによって、約0.2mm深さに及ぶヘアクラックが多数発生することから、Cu含有量を0.5〜0.95%に制限すると共に、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]を1以上として、溶融時に共晶化させて、凝固温度の高温化を図ることで割れ感受性を小さくする必要がある。   By the way, when Cu that exhibits precipitation strengthening is excessively added, a low melting point Cu or Cu alloy melted at the time of gas cutting selectively penetrates into the crystal grain boundary, so that there are many hair cracks extending to a depth of about 0.2 mm. Therefore, the Cu content is limited to 0.5 to 0.95%, and the ratio [Ni] / [Cu] of the Ni content [Ni] and the Cu content [Cu] is set to 1 or more to melt. Sometimes it is necessary to reduce the susceptibility to cracking by eutecticizing and increasing the solidification temperature.

また、母材の音響異方性については、日本建築学会の「鋼構造建築溶接部の超音波検査基準」の付則表1にあるSTBとの音速比がないと判定される範囲を満足させるためには、母材の旧オーステナイト粒径の平均アスペクト比(圧延方向の平均粒径/板厚方向の平均粒径)が1〜1.2の範囲に制御するによって実現できる。   In addition, the acoustic anisotropy of the base material satisfies the range in which it is determined that there is no sound velocity ratio with STB in Appendix Table 1 of “Ultrasonic Inspection Standards for Steel Structure Building Welds” of the Architectural Institute of Japan. Can be realized by controlling the average aspect ratio of the prior austenite grain size of the base material (average grain size in the rolling direction / average grain size in the plate thickness direction) to a range of 1 to 1.2.

更に、薄肉化につれて高くなる降伏比を低減(80%以下)させる方策として、前記特許文献5に開示されたようなベイナイト基地に島状マルテンサイト相を分散させたミクロ組織では、目標とする降伏比を達成し得なかったのに対し、擬ポリゴナルフェライト・擬似パーライトとC(炭素)の二相分離化を促進させた基地に、島状マルテンサイトを分散させることによって、薄肉化に伴う旧オーステナイト粒の微細化に起因する降伏比の上昇代を吸収し得るような低降伏比が実現できることを見出した。尚、擬ポリゴナルフェライトとはポリゴナル化が不完全なままフェライト変態が完了した相であり、擬似パーライトとは非平衡な状態でパーライト変態が完了した相を意味する。   Furthermore, as a measure to reduce (80% or less) the yield ratio that increases as the thickness is reduced, in a microstructure in which island-like martensite phases are dispersed in a bainite base as disclosed in Patent Document 5, the target yield is obtained. Ratio could not be achieved, but by dispersing island martensite in the base that promoted the two-phase separation of pseudopolygonal ferrite, pseudopearlite and C (carbon), It was found that a low yield ratio that can absorb the increase in yield ratio due to the refinement of austenite grains can be realized. Pseudopolygonal ferrite is a phase in which ferrite transformation is completed with incomplete polygonalization, and pseudopearlite means a phase in which pearlite transformation is completed in a non-equilibrium state.

以上の方策を総合して適用することによって、50〜100KJ/mmの大入熱溶接が施されてもvEで平均70J以上を有し、且つガス切断割れ感受性のない建築用590MPa級高性能鋼(SA440)に適合した鋼板が得られることを見出し、本発明を完成するに至った。 By applying the above measures in a comprehensive manner, even if a large heat input welding of 50 to 100 KJ / mm is applied, it has an average of 70 J or higher in vE 0 and is not susceptible to gas-cutting cracking. The present inventors have found that a steel plate suitable for steel (SA440) can be obtained, and have completed the present invention.

以下に、本発明の特性を得るための化学組成およびミクロ組織の限定理由を、その経緯に沿って説明する。   The reason for limiting the chemical composition and the microstructure for obtaining the characteristics of the present invention will be described below along the background.

本発明者らは、前記CEN値が約0.30%の一定となるようにMn含有量を可変にして調整した5鋼種(0.035C−1.45Mn−0.95Cu−1Ni−0.7Cr−0.015Ti−0.0012B−0.0040N系の基本鋼,0.4Mo添加鋼,0.01Nb添加鋼,0.4Mo−0.01Nb添加鋼および0.05C系鋼)のスキンプレート材と、SN490B−TMC(0.14C−0.3Si−1.25Mn−0.008Nb−0.012Ti系,60mm厚)のダイアフラム材を組合せし、ギャップ25mmを設けて入熱100KJ/mmのエレクトロスラグ溶接を行ない、溶接継手部のスキンプレート側の熱影響部(HAZ)の靭性(切欠き位置:大入熱溶接HAZで最も低靭性を示すボンド+0.5mm)を比較調査した(後記表4,7の実験No.2〜6参照)。 The inventors of the present invention have five steel types (0.035C-1.45Mn-0.95Cu-1Ni-0.0) adjusted with the Mn content variable so that the CE N value is constant at about 0.30%. 7Cr-0.015Ti-0.0012B-0.0040N-based basic steel, 0.4Mo-added steel, 0.01Nb-added steel, 0.4Mo-0.01Nb-added steel, and 0.05C-based steel) skin plate material And a SN490B-TMC (0.14C-0.3Si-1.25Mn-0.008Nb-0.012Ti system, 60 mm thick) diaphragm material, with a gap of 25 mm and an electroslag with a heat input of 100 KJ / mm Welding and comparing the toughness of the heat affected zone (HAZ) on the skin plate side of the welded joint (notch position: bond showing the lowest toughness in high heat input welding HAZ + 0.5 mm) Was 査 (see experiment No.2~6 of the following Table 4, 7).

この結果から、上記CEN値が約0.30%と同レベルを示す化学成分組成であっても、Mo無添加,Nb無添加,Cr増量およびC低減によって、夫々大入熱HAZ靭性を大幅に向上させること、およびこれらの要件を複合化させることにより、最もHAZ靭性が低くなるボンド+0.5mm位置近傍においても、vE70J以上を初めて保証できることが分かる。また、MoおよびNbの無添加による強度低下をCuの析出強化とMn,Crによる固溶強化によって補償できることも分かる。 From this result, even if the chemical component composition shows the same level as the CE N value of about 0.30%, the large heat input HAZ toughness is greatly increased by adding no Mo, no Nb, adding Cr, and reducing C. It can be seen that, by combining these requirements and combining these requirements, vE 0 70J or more can be guaranteed for the first time even in the vicinity of the bond +0.5 mm position where the HAZ toughness is lowest. It can also be seen that the strength reduction due to the absence of addition of Mo and Nb can be compensated by precipitation strengthening of Cu and solid solution strengthening by Mn and Cr.

また、大入熱溶接HAZ靭性が高位な鋼種(後記表1の鋼種B)を基本成分として、CuやNiの含有量を変化させてLPガス(LPG)切断によって、ガス切断面から鋼板表面に平行方向に進展する割れの最大深さを比較調査した(後記表7の実験No.2,7〜16参照)。   In addition, steel grade with high heat input welding HAZ toughness (steel grade B in Table 1 below) is used as a basic component, and the content of Cu and Ni is changed to LP gas (LPG) cutting from the gas cut surface to the steel plate surface. The maximum depth of cracks extending in the parallel direction was comparatively investigated (see Experiment Nos. 2 and 7 to 16 in Table 7 below).

この結果から、Cu含有量が0.95%以下でかつ、前記比[Ni]/[Cu]を1.0以上に制御することにより、ガス切断割れ感受性が小さくなることが判明したのである。   From this result, it has been found that by controlling the Cu content to 0.95% or less and the ratio [Ni] / [Cu] to 1.0 or more, the sensitivity to gas cutting cracks is reduced.

更に、本発明者は、0.035C−1.45Mn−0.95Cu−1Ni−0.7Cr−0.015Ti−0.0012B−0.0040N系の基本成分(後記表1の鋼種B)のC含有量を変化させた鋼種を用い、連続鋳造スラブを1050〜1100℃に加熱後、44mm厚に900℃で熱間圧延後、930℃に加熱後空冷し(焼ならし)、引き続き840℃での焼入れ処理(Q’処理)と500℃での焼戻し処理(T処理)を実施して、強度,降伏比およびミクロ組織および100KJ/mmでのHAZ靭性に及ぼすC含有量の影響を調査した(後記表7の実験No.2,6,17〜21参照)。   Further, the present inventor has found that the basic component of the 0.035C-1.45Mn-0.95Cu-1Ni-0.7Cr-0.015Ti-0.0012B-0.0040N system (steel type B in Table 1 below) is C. Using steel grades with different contents, the continuous cast slab was heated to 1050-1100 ° C, hot-rolled to 44mm thickness at 900 ° C, heated to 930 ° C and then air-cooled (normalized), and subsequently at 840 ° C. Quenching treatment (Q ′ treatment) and tempering treatment (T treatment) at 500 ° C. were conducted to investigate the effect of C content on strength, yield ratio and microstructure and HAZ toughness at 100 KJ / mm ( (See Experiment No. 2, 6, 17-21 in Table 7 below).

この結果から、C:0.015%以上で降伏比80%以下と強度を両立できることが分かったのである。また、これらの鋼種における大入熱HAZ靭性の調査結果から、vEで平均70J以上を確保するためには、C含有量の上限を0.045%とする必要があることが分かった。 From this result, it was found that when C: 0.015% or more, the yield ratio is 80% or less and the strength is compatible. Moreover, from the investigation results of the high heat input HAZ toughness in these steel types, it was found that the upper limit of the C content needs to be 0.045% in order to ensure an average of 70 J or more at vE 0 .

次に、本発明の高張力鋼板における化学成分組成の限定理由について説明する。まず本発明では、上記のようにC:0.015〜0.045%、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および上記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まないものとする必要があるが、これら元素の範囲限定理由は、次の通りである。   Next, the reason for limiting the chemical component composition in the high-tensile steel sheet of the present invention will be described. First, in the present invention, as described above, C: 0.015 to 0.045%, Si: 0.4% or less (including 0%), Mn: 0.8 to 1.6%, Cr: 0.5 ~ 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, Cu: 0.5 to 0.95%, Ni: 0.7 to 5.0% (however, Ni The ratio [Ni] / [Cu] ≧ 1) of the content [Ni] and the Cu content [Cu], Ti: 0.005 to 0.03% and N satisfying the above formula (1) Although it is necessary to substantially not contain Nb and Mo, the reasons for limiting the ranges of these elements are as follows.

C:0.015〜0.045%
Cは擬ポリゴナルフェライト相および擬似パーライト相を形成させて高張力鋼の強度と低降伏比の確保に有効な元素であり、0.015%以上含有させる必要がある。しかしながら、Cを過剰に含有させると、ベイナイト相を形成して降伏比を上昇させると共に耐溶接低温割れ性を劣化させ、また大入熱溶接HAZで島状マルテンサイト相を増大させて靭性を劣化させることになる。こうしたことから、その上限は0.045%とする必要がある。尚、母材強度と大入熱溶接HAZ靭性の両立の観点から、好ましい下限は0.02%であり、好ましい上限は0.04%である。
C: 0.015-0.045%
C is an element effective for ensuring the strength and low yield ratio of high-tensile steel by forming a pseudo-polygonal ferrite phase and a pseudo-pearlite phase, and needs to be contained in an amount of 0.015% or more. However, if C is contained excessively, a bainite phase is formed to increase the yield ratio and the weld cold cracking resistance is deteriorated, and the island-like martensite phase is increased by high heat input welding HAZ to deteriorate toughness. I will let you. For these reasons, the upper limit needs to be 0.045%. In addition, from a viewpoint of coexistence of base material strength and high heat input welding HAZ toughness, a preferable lower limit is 0.02%, and a preferable upper limit is 0.04%.

Si:0.4%以下(0%を含む)
Siは脱酸剤および強化元素として有効な元素であるが、過剰に含有させると大入熱溶接HAZでの島状マルテンサイト相を増加させて靭性を劣化させる。こうしたことから、その上限を0.4%とし、また含有量はできるだけ少ない方が良いことからその下限を0%とする。Siを含まない場合には、脱酸はMn,Al,Ti等で任意に代替可能である。尚、Si含有量の好ましい上限は0.3%である。
Si: 0.4% or less (including 0%)
Si is an effective element as a deoxidizer and strengthening element. However, if excessively contained, it increases the island-like martensite phase in the high heat input welding HAZ and deteriorates toughness. For these reasons, the upper limit is set to 0.4%, and the lower content is preferably as low as possible, so the lower limit is set to 0%. When Si is not included, deoxidation can be arbitrarily replaced with Mn, Al, Ti, or the like. In addition, the preferable upper limit of Si content is 0.3%.

Mn:0.8〜1.6%
Mnはフェライト変態を低温,長時間側に移行させ、擬ポリゴナルフェライト相を形成させて鋼板を強化するのに有効な元素である。そのためには、Mnは0.8%以上含有させる必要がある。しかしながらMnを過剰に含有させると、母材および大入熱溶接HAZの靭性の劣化および耐溶接低温割れ性の劣化を引き起こすので上限を1.6%とする。Mn含有量の好ましい下限は1.0%であり、好ましい上限は1.5%である。
Mn: 0.8 to 1.6%
Mn is an element effective for strengthening the steel sheet by transferring the ferrite transformation to a low temperature for a long time to form a pseudopolygonal ferrite phase. For that purpose, it is necessary to contain 0.8% or more of Mn. However, if Mn is contained excessively, the toughness of the base metal and the high heat input weld HAZ and the deterioration of the weld cold crack resistance are caused, so the upper limit is made 1.6%. The minimum with preferable Mn content is 1.0%, and a preferable upper limit is 1.5%.

Cr:0.5〜1.3%
Crは焼入性を向上させることによって、擬ポリゴナルフェライト相の形成および同一強度レベル比較での降伏比の低減に有効な元素である。また、大入熱溶接HAZの粒界へのポリゴナルフェライト相の析出を抑制して、低温でベイナイト相を形成させ易くして靭性向上に有効である。こうした効果を発揮させるためには、Crは0.5%以上含有させる必要がある。しかしながら、Crを過剰に含有させると大入熱溶接HAZでの島状マルテンサイト相の増大を招くことから、その上限は1.3%とする必要がある。尚、Cr含有量の好ましい下限は0.6%であり、好ましい上限は1.1%である。
Cr: 0.5 to 1.3%
Cr is an element effective for forming a pseudo-polygonal ferrite phase and reducing the yield ratio compared with the same strength level by improving hardenability. Moreover, precipitation of the polygonal ferrite phase at the grain boundaries of the high heat input welding HAZ is suppressed, and a bainite phase is easily formed at a low temperature, which is effective in improving toughness. In order to exert such an effect, it is necessary to contain 0.5% or more of Cr. However, if Cr is excessively contained, the island-like martensite phase is increased in the high heat input welding HAZ, so the upper limit needs to be 1.3%. In addition, the minimum with preferable Cr content is 0.6%, and a preferable upper limit is 1.1%.

sol.Al:0.08%(0%を含む)
sol.Al(可溶能Al)は脱酸に有効な元素であるが、大入熱溶接HAZでTiオキサイドを核とする粒内のベイナイトを形成させることで靭性を向上させるには、含有量はできるだけ少ない方がよく、下限を0%とする。その場合の脱酸はMn,Si,Ti等で任意に代替可能である。またsol.Alは、TiによるN固定を補うことによって母材の焼入性確保に有効に作用するが、過剰に含有されると非金属介在物を増加させて靭性劣化を招くことになる。こうしたことから、sol.Alを含有させるときにはその上限を0.08%とする必要がある。尚、sol.Alの好ましい上限は0.06%程度である。
sol. Al: 0.08% (including 0%)
sol. Al (soluble ability Al) is an element effective for deoxidation, but in order to improve toughness by forming intragranular bainite with Ti oxide as the core in high heat input welding HAZ, the content can be as much as possible. Less is better and the lower limit is 0%. In this case, deoxidation can be arbitrarily replaced with Mn, Si, Ti, or the like. Also, sol. Al effectively works to secure the hardenability of the base material by supplementing N fixation with Ti, but if it is excessively contained, it increases nonmetallic inclusions and causes toughness deterioration. Therefore, sol. When Al is contained, the upper limit needs to be 0.08%. In addition, sol. A preferable upper limit of Al is about 0.06%.

B:0.0004〜0.003%
Bは焼入性を向上させて焼ならし時の低冷却速度でもポリゴナル形態のフェライト変態を抑制し、擬ポリゴナルフェライトの生成を促進するため、母材強度の向上に有効である。またBはNと結合してBNを形成し、このBNは粒内ベイナイト変態核として作用するため、大入熱溶接HAZの粒界フェライト相の生成抑制と微細な粒内ベイナイト相の生成による靭性向上に有効に作用する。そのためには、Bは0.0004%以上含有させる必要がある。しかしながら、Bを過剰に含有させると鋼の焼入性が高くなり過ぎて、島状マルテンサイト相を増加させ、母材および大入熱溶接HAZの靭性を劣化させると共に、耐溶接低温割れ性を劣化させる。こうしたことから、B含有量の上限は0.003%とする必要がある。尚、B含有量の好ましい下限は0.006%、好ましい上限は0.002%である。
B: 0.0004 to 0.003%
B improves the hardenability and suppresses the ferrite transformation of polygonal form even at a low cooling rate during normalization, and promotes the formation of pseudopolygonal ferrite, and is therefore effective in improving the strength of the base material. In addition, B combines with N to form BN, and this BN acts as an intragranular bainite transformation nucleus. Therefore, toughness due to the suppression of the formation of intergranular ferrite phase and the formation of fine intragranular bainite phase in high heat input HAZ. It works effectively for improvement. For that purpose, B needs to be contained in an amount of 0.0004% or more. However, when B is contained excessively, the hardenability of the steel becomes too high, the island-like martensite phase is increased, the toughness of the base metal and the high heat input welding HAZ is deteriorated, and the resistance to welding cold cracking is reduced. Deteriorate. For these reasons, the upper limit of the B content needs to be 0.003%. In addition, the minimum with preferable B content is 0.006%, and a preferable upper limit is 0.002%.

Cu:0.5〜0.95%
Cuは固溶強化およびε−Cu相のクラスターの析出により、母材の強度を向上させるのに有効な元素である。これらの効果を発揮させるためには、Cuは0.5%以上含有させる必要がある。しかしながら、Cuを過剰に含有させると、ガス切断面にCu濃縮相を形成し、熱膨張時に旧オーステナイト粒界に侵入して割れを誘発させることから、その上限を0.95%とする。Cu含有量の好ましい下限は0.7%であり、好ましい上限は0.9%である。
Cu: 0.5 to 0.95%
Cu is an element effective for improving the strength of the base material by solid solution strengthening and precipitation of clusters of ε-Cu phase. In order to exhibit these effects, it is necessary to contain Cu 0.5% or more. However, if Cu is excessively contained, a Cu-concentrated phase is formed on the gas cut surface and enters the prior austenite grain boundary during thermal expansion to induce cracking, so the upper limit is made 0.95%. The minimum with preferable Cu content is 0.7%, and a preferable upper limit is 0.9%.

Ni:0.7〜5.0%
Niは、焼入性を向上させると共に、母材および大入熱溶接HAZの基地の靭性を向上させる元素であり、これらの効果を作用させるには、0.7%以上含有させる必要がある。しかしながら、Niを過剰に含有させると、焼入性が高くなり過ぎて島状マルテンサイト相が増加して靭性劣化を招くばかりか不経済でもあるので、その上限を5.0%とする。尚、Ni含有量の好ましい下限は0.9%であり、好ましい上限は3%である。
Ni: 0.7-5.0%
Ni is an element that improves the hardenability and improves the toughness of the base material and the base of the high heat input welding HAZ, and in order to exert these effects, it is necessary to contain 0.7% or more. However, if Ni is contained excessively, the hardenability becomes too high and the island-like martensite phase increases, leading to deterioration of toughness and also being uneconomical, so the upper limit is made 5.0%. In addition, the minimum with preferable Ni content is 0.9%, and a preferable upper limit is 3%.

但し、[Ni]/[Cu]≧1
本発明の高張力鋼においては、Ni含有量[Ni]とCuの含有量[Cu]の比[Ni]/[Cu]で1以上とする必要がある。こうした要件を満足させることによって、ガス切断面に濃縮するCu−Ni合金相の融点を高温化でき、高温割れを防止できる。
However, [Ni] / [Cu] ≧ 1
In the high-tensile steel of the present invention, the ratio [Ni] / [Cu] of the Ni content [Ni] and the Cu content [Cu] needs to be 1 or more. By satisfying these requirements, the melting point of the Cu—Ni alloy phase concentrated on the gas cut surface can be increased, and hot cracking can be prevented.

Ti:0.005〜0.03%
Tiは固溶NをTiNとして固定して固溶B量を増加させ、母材の焼入性を向上させるのに有効な元素である。またTi脱酸でTi酸化物を生成させる場合には、大入熱溶接HAZにおいて粒内ベイナイト相の生成核として作用して靭性を向上させる。こうした効果を発揮させるためには、Ti含有量は0.005%以上とする必要がある。しかしながら、Tiを過剰に含有させるとTiCの析出によって母材およびHAZの靭性を劣化させるので、その上限を0.03%とする。尚、Ti含有量の好ましい下限は0.008%であり、好ましい上限は0.02%である。
Ti: 0.005 to 0.03%
Ti is an element effective for fixing solid solution N as TiN, increasing the amount of solid solution B, and improving the hardenability of the base material. Further, when Ti oxide is generated by Ti deoxidation, it acts as a nucleus for formation of an intragranular bainite phase in high heat input welding HAZ and improves toughness. In order to exert such effects, the Ti content needs to be 0.005% or more. However, when Ti is excessively contained, the toughness of the base metal and the HAZ is deteriorated by precipitation of TiC, so the upper limit is made 0.03%. In addition, the minimum with preferable Ti content is 0.008%, and a preferable upper limit is 0.02%.

N:前記(1)式を満足する量
大入熱溶接HAZにおいて靭性を高位に確保するためには、旧オーステナイト粒内にTiNを微細析出させること、およびBNを複合的に析出させることで、粒内ベイナイトの生成核となすことが有効である。こうした観点から、N含有量の下限を(Tiの化学量論的当量)−0.001%とし、その上限をTiとBの化学量論的当量の総量とした。これを超えると、固溶NによるHAZの靭性劣化や母材の焼入性低下を惹き起こすことになる。
N: In order to ensure high toughness in the high heat input welding HAZ that satisfies the above formula (1) , fine precipitation of TiN in the prior austenite grains and composite precipitation of BN, It is effective to form the nuclei of intragranular bainite. From such a viewpoint, the lower limit of the N content was (Ti stoichiometric equivalent) −0.001%, and the upper limit was the total amount of Ti and B stoichiometric equivalents. Exceeding this will cause toughness degradation of the HAZ due to the solute N and a decrease in the hardenability of the base metal.

Nb:実質的に含まない
Nbは固溶して焼入性を向上させるが、大入熱溶接HAZにおいて旧オーステナイト粒内に板状の粗大な上部ベイナイト相を形成させ、結晶方位が揃うことになるので破壊経路の障壁とならず、靭性を大きく劣化させる。こうした観点から、本発明の高張力鋼においては実質的に含有しないことが必要である。尚、「実質的に含まない」とは、不純物程度(例えば、0.005%以下)として混入することは許容する趣旨である。
Nb: Nb not substantially contained improves the hardenability by solid solution, but forms a plate-like coarse upper bainite phase in the prior austenite grains in the high heat input welding HAZ, and the crystal orientation is aligned. Therefore, it does not become a barrier for the fracture path and greatly deteriorates the toughness. From such a viewpoint, it is necessary that the high-tensile steel of the present invention is not substantially contained. Note that “substantially free” means that it is allowed to be mixed as an impurity (for example, 0.005% or less).

Mo:実質的に含まない
Moは焼入性を向上させて強度向上に有効な元素であるが、Ar3変態点を上昇させて大入熱溶接HAZで高温ベイナイト相や島状マルテンサイト相の生成を促進させて靭性を劣化させる。こうした観点から、本発明の高張力鋼においては実質的に含有しないことが必要である。尚、「実質的に含まない」とは、不純物程度(例えば、0.05%以下)として混入することは許容する趣旨である。
Mo: Mo which is substantially not contained is an element effective for improving the hardenability and improving the strength. However, the Ar 3 transformation point is raised to increase the high-temperature bainite phase or the island martensite phase in the high heat input welding HAZ. Promotes formation and degrades toughness. From such a viewpoint, it is necessary that the high-tensile steel of the present invention is not substantially contained. Note that “substantially does not contain” means that it is allowed to be mixed as an impurity (for example, 0.05% or less).

本発明の低降伏比高張力鋼板には、必要によって、(a)V:0.005〜0.10%、(b)Ca:0.0005〜0.01%、(c)La:0.002〜0.02%,Ce:0.0003〜0.0050%,Mg:0.0005〜0.0030%およびZr:0.002〜0.02%よりなる群から選ばれる1種または2種以上、等を含有することも有効であるが、これらの成分を含有させるときの範囲限定理由は、次の通りである。   In the low yield ratio high tensile strength steel sheet of the present invention, (a) V: 0.005 to 0.10%, (b) Ca: 0.0005 to 0.01%, (c) La: 0.0. One or two selected from the group consisting of 002 to 0.02%, Ce: 0.0003 to 0.0050%, Mg: 0.0005 to 0.0030% and Zr: 0.002 to 0.02% Although it is effective to contain the above, the reasons for limiting the range when these components are contained are as follows.

V:0.005〜0.10%
Vは母材強度の向上に有効な元素である。こうした効果を発揮させるためには、Vは0.005%以上含有させることが好ましいが、0.10%を超えて過剰に含有させると大入熱溶接HAZ靭性が低下することになる。尚、V含有量のより好ましい下限は0.03であり、より好ましい上限は0.06%である。
V: 0.005-0.10%
V is an element effective for improving the base material strength. In order to exert such an effect, it is preferable to contain V in an amount of 0.005% or more. However, if it is contained in excess of 0.10%, the high heat input welding HAZ toughness is lowered. In addition, the more preferable minimum of V content is 0.03, and a more preferable upper limit is 0.06%.

Ca:0.0005〜0.01%
CaはSをCaSとして固定すると共に、粒状の非金属介在物として形態を制御することにより、板厚中央部に存在するS偏析部に柱角継手溶接時に発生するZ方向引張応力が作用する場合においても、絞りおよび靭性を向上させて、偏析部からの破壊を防止するのに有効である。また、[O]と化合してCaOとして、大入熱溶接後のベイナイト変態の核を旧オーステナイト粒内に分散させて、ベイナイトブロックサイズを微細化させて大入熱HAZ靭性を向上させる作用も発揮する。これらの効果を発揮させるためには、Caは0.0005%以上含有させることが好ましいが、0.01%を超えて過剰に含有させてもこれらの効果は飽和するばかりか、母材の靭性が却って劣化する。尚、Ca含有量のより好ましい下限は0.01%であり、より好ましい上限は0.05%である。
Ca: 0.0005 to 0.01%
When Ca fixes S as CaS and controls the form as granular non-metallic inclusions, the Z-direction tensile stress generated during column angle joint welding acts on the S segregated portion in the center of the plate thickness Is effective in improving drawing and toughness and preventing breakage from the segregated portion. Moreover, it combines with [O] to form CaO, and the core of bainite transformation after high heat input welding is dispersed in the prior austenite grains, and the bainite block size is refined to improve the high heat input HAZ toughness. Demonstrate. In order to exert these effects, Ca is preferably contained in an amount of 0.0005% or more. However, if the Ca content exceeds 0.01%, these effects are not only saturated but also the toughness of the base material. However, it deteriorates. In addition, the more preferable minimum of Ca content is 0.01%, and a more preferable upper limit is 0.05%.

La:0.002〜0.02%、Ce:0.0003〜0.0050%、Mg:0.0005〜0.0030%およびZr:0.002〜0.02%よりなる群から選ばれる1種または2種以上
LaおよびCeは希土類元素(REM)の1種であり、硫化物としてSを固定し、偏析部の絞りおよび靭性を向上させるのに有効に作用する。またCe、MgおよびZrは、大入熱溶接後の冷却時においてCeO2、MgO、ZrO2の低融点酸化物を旧オーステナイト粒内に析出させて、それを核にベイナイト変態するため、ベイナイトブロックを微細化させて、破壊経路を複雑化させることにより、大入熱溶接HAZ靭性を向上させる。La,Ce,Mg,Zrが上記各下限よりも少ない場合にはこれらの効果が発揮されず、上限よりも多くなると過剰な非金属介在物の存在により、母材靭性を却って劣化させることになる。より好ましい下限は夫々La:0.005%、Ce:0.0005%、Mg:0.001%、Zr0.005%であり、より好ましい上限は夫々La:0.01%、Ce:0.002%、Mg:0.0020%、Zr0.01%である。
1 selected from the group consisting of La: 0.002-0.02%, Ce: 0.0003-0.0050%, Mg: 0.0005-0.0030% and Zr: 0.002-0.02% The seeds or two or more kinds of La and Ce are one kind of rare earth elements (REM), and effectively act to fix S as a sulfide and improve the drawing and toughness of the segregation part. In addition, Ce, Mg and Zr precipitate CeO 2 , MgO and ZrO 2 low melting point oxides in the prior austenite grains during cooling after high heat input welding, and bainite transformation is performed using the bainite block. The high heat input HAZ toughness is improved by refining and complicating the fracture path. When La, Ce, Mg, and Zr are less than the above lower limits, these effects are not exhibited. When the La, Ce, Mg, and Zr are more than the upper limits, the presence of excessive nonmetallic inclusions deteriorates the base metal toughness. . More preferable lower limits are La: 0.005%, Ce: 0.0005%, Mg: 0.001%, and Zr 0.005%, respectively, and more preferable upper limits are La: 0.01% and Ce: 0.002. %, Mg: 0.0020%, Zr 0.01%.

本発明の高張力鋼板において、上記成分の他は、Feおよび不可避的不純物からなるものであるが、その特性を阻害しない程度の微量成分(許容成分)も含み得るものであり、こうした高張力鋼板も本発明の範囲に含まれるものである。   In the high-tensile steel sheet of the present invention, in addition to the above components, it consists of Fe and inevitable impurities, but it can also contain a trace amount component (allowable component) to the extent that it does not impede its properties. Are also included in the scope of the present invention.

本発明の高張力鋼板においては、上記(2)式で規定されるCE値、平均アスペクト比(主圧延方向/板厚方向の平均粒径比)、擬ポリゴナルフェライトや島状マルテンサイト相の割合、および組織中のε−Cu相のクラスターの分散率、等も適切な範囲に制御する必要があるが、これらの範囲限定理由は、次の通りである。 In high-tensile steel sheet of the present invention, CE N value defined by equation (2) above, the average aspect ratio (major rolling direction / thickness direction of the average particle size ratio), pseudo polygonal ferrite and island martensite phase The proportion of the ε-Cu phase in the structure and the dispersion ratio of the clusters in the structure need to be controlled within an appropriate range. The reasons for limiting these ranges are as follows.

CE N :0.27〜0.33%
上記(2)式で規定されるCENは、溶接HAZの硬化性を表現する炭素当量である。このCENの値が0.27%未満では、厚肉材では引張強さ590MPa級を満足できなくなる。またCENの値が0.33%を超えると、耐溶接低温割れ性が劣化して、予熱が必要となるばかりでなく、島状マルテンサイト相が増加して大入熱溶接HAZの靭性が低位となり、入熱100KJ/mmで目標とする平均vE:70Jを安定して確保することが困難となる。よって、本発明の高張力鋼においては、上記(2)式で規定されるCEN値が0.27〜0.33%の範囲内とする必要がある。尚、CEN値の好ましい下限は0.28%であり、好ましい上限は0.32%である。
CE N : 0.27 to 0.33%
CE N defined by the above formula (2) is a carbon equivalent expressing the curability of the welded HAZ. When the CE N value is less than 0.27%, the thick material cannot satisfy the tensile strength of 590 MPa class. Also the value of CE N exceeds 0.33%, the resistance to weld cold cracking resistance deteriorates, preheating not only necessary, toughness high heat-input welding HAZ island martensite phase is increased It becomes low and it becomes difficult to stably secure the target average vE 0 : 70 J at a heat input of 100 KJ / mm. Therefore, in the high-tensile steel of the present invention, the CE N value defined by the above equation (2) needs to be in the range of 0.27 to 0.33%. The preferable lower limit of the CE N value is 0.28%, and the preferable upper limit is 0.32%.

板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向/板厚方
向の平均粒径比):1.0〜1.2
板厚方向断面における旧オーステナイト粒径のアスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.2を超えると、結晶方位が特定の方向に配向した、いわゆる集合組織が多く形成されるため,音響異方性が「日本建築学会の鋼構造建築溶接部の超音波検査規準」の付則表1にあるSTBとの音速比がないと判定される範囲(例えば、板厚25mm超えを公称屈折角70°の探触子で探傷する場合、0.995≦V/VSTB≦1.015)を超えることになり、超音波探傷試験で欠陥位置を正しく表示できなくなり、施工上問題となる。従って、旧オーステナイトの平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.0から1.2までの範囲に制御する必要がある。好ましくは、平均アスペクトを1.0〜1.1の範囲内とするのが良い。
Average aspect ratio of prior austenite grain size in the cross section in the thickness direction (main rolling direction / thickness direction)
Average particle size ratio): 1.0 to 1.2
When the aspect ratio of the prior austenite grain size in the cross section in the thickness direction (average grain size in the main rolling direction / average grain size in the thickness direction) exceeds 1.2, the so-called texture in which the crystal orientation is oriented in a specific direction Therefore, the range in which the acoustic anisotropy is determined to have no sound speed ratio with the STB in Appendix Table 1 of “The Ultrasonic Inspection Standard for Steel Structure Building Welds of the Architectural Institute of Japan” When flaw detection is performed with a probe having a nominal refraction angle of 70 ° with a thickness exceeding 25 mm, it exceeds 0.995 ≦ V / V STB ≦ 1.015), and the defect position cannot be correctly displayed in the ultrasonic flaw detection test. It becomes a construction problem. Therefore, it is necessary to control the average aspect ratio of the prior austenite (average particle size in the main rolling direction / average particle size in the plate thickness direction) in the range of 1.0 to 1.2. Preferably, the average aspect is in the range of 1.0 to 1.1.

10〜40体積%の擬ポリゴナルフェライト、0.5〜3.5体積%の島状マルテンサイト相、および残部が擬似パーライト相からなる組織を有し、この組織中には4×10 20 〜26×10 20 個/m 3 のε−Cu相クラスターが分散したものであること
本発明に係る高張力鋼において、低CENで降伏比(降伏強度/引張強度×100%)の薄肉材(例えば、板厚45mm未満)が耐震設計の観点から建築の主要部材に要求される降伏比80%以下を具備させるには、ベイナイト相よりもC(炭素)の二相分離化を促進させた場合に発現する擬ポリゴナルフェライト相・擬似パーライト相からなる基地を基本とすることに加えて、基地中により硬質の島状マルテンサイト相を微細分散させる必要がある。島状マルテンサイト相の分散率が0.5体積%未満の場合には、降伏比が80%を超えることになる。一方、島状マルテンサイト相の分散率が3.5体積%を超える場合には、降伏比が80%以下となるものの、母材の靭性が低位となる。従って、島状マルテンサイトを0.5〜3.5体積%とする必要がある。好ましくは1〜3体積%とするのが良い。
It has a structure composed of 10 to 40% by volume of pseudopolygonal ferrite, 0.5 to 3.5% by volume of island-like martensite phase, and the balance consisting of pseudo-pearlite phase, and this structure contains 4 × 10 20 to in high-tensile steel 26 × 10 20 atoms / m 3 of epsilon-Cu phase clusters according to the present invention that is obtained by dispersing, thin material yield ratio at a low CE N (yield strength / tensile strength × 100%) ( For example, in order to provide a yield ratio of 80% or less, which is required for main building components from the viewpoint of seismic design, the plate thickness is less than 45 mm. In addition to being based on a matrix composed of a pseudo-polygonal ferrite phase and a pseudo-pearlite phase that are manifested in the matrix, it is necessary to finely disperse the hard island martensite phase in the matrix. When the dispersion ratio of the island-like martensite phase is less than 0.5% by volume, the yield ratio exceeds 80%. On the other hand, when the dispersion ratio of the island-like martensite phase exceeds 3.5% by volume, the toughness of the base material is low although the yield ratio is 80% or less. Therefore, it is necessary to make island-like martensite 0.5 to 3.5 volume%. Preferably it is 1 to 3 volume%.

また基地中の擬ポリゴナルフェライト相が10体積%未満になると、降伏比が高くなり、40体積%を超えると引張強度が低くなる。こうしたことから、基地中の擬ポリゴナルフェライト相の割合は10〜40体積%の範囲とする必要がある。   If the pseudopolygonal ferrite phase in the matrix is less than 10% by volume, the yield ratio increases, and if it exceeds 40% by volume, the tensile strength decreases. For these reasons, the ratio of the pseudo-polygonal ferrite phase in the matrix needs to be in the range of 10 to 40% by volume.

本発明の鋼板の組織は、上記のように擬ポリゴナルフェライト相、擬似パーライト相および島状マルテンサイト相からなるものである(従って、擬似パーライト相の存在率は56.5〜89.5体積%の範囲)。こうした鋼板において、低CENで引張強さ:590MPa以上を確保するには、上記基地中に時効によるε−Cu相の析出強化を加える必要がある。ε−Cu相のクラスターが4×1020個/m3未満で分散すると引張強度が不足する。一方、ε−Cu相のクラスターが26×1020個/m3を超えて存在すると靭性が劣化する傾向を呈するようになると共に、ガス切断時に低融点のCu合金を多量に形成するようになってガス切断面に粒界割れを引き起こす。従って、組織(基地)中にε−Cu相のクラスターを4×1020〜26×1020個/m3分散させる必要がある。好ましくは7×1020〜22×1020個/m3である。 The structure of the steel sheet of the present invention is composed of a pseudopolygonal ferrite phase, a pseudopearlite phase and an island-like martensite phase as described above (therefore, the abundance of the pseudopearlite phase is 56.5 to 89.5 volumes). % Range). In such a steel sheet, in order to secure a tensile strength of 590 MPa or more with low CE N , it is necessary to add precipitation strengthening of the ε-Cu phase by aging in the base. If the ε-Cu phase clusters are dispersed at less than 4 × 10 20 / m 3 , the tensile strength is insufficient. On the other hand, if the number of ε-Cu phase clusters exceeds 26 × 10 20 / m 3 , the toughness tends to deteriorate, and a large amount of low melting point Cu alloy is formed during gas cutting. Causing intergranular cracking on the gas cut surface. Therefore, it is necessary to disperse 4 × 10 20 to 26 × 10 20 clusters / m 3 of ε-Cu phase clusters in the organization (base). Preferably from 7 × 10 20 ~22 × 10 20 atoms / m 3.

本発明の鋼板を製造するには、基本的には連鋳法あるいは造塊法により作製されたスラグを用いて、熱間圧延−冷却−熱処理の通常の方法により製造できるが、上記の各要件を満足させるためには、圧延温度域をオーステナイト(γ)未再結晶温度より高温とし、その後焼きならし処理(N処理)を行い、更に二相域焼入れ、焼戻しの熱処理をすれば良い。即ち、旧オーステナイト粒径の平均アスペクト比は圧延温度域によって制御でき、擬ポリゴナルフェライトの分率は圧延後の焼ならしおよびその後のQ’処理によって制御でき、島状マルテンサイト相やε−Cu相のクラスターの分散率は、圧延或は二相域熱処理の冷却速度や焼戻し温度等によって制御できる。   In order to produce the steel sheet of the present invention, it can basically be produced by a normal method of hot rolling-cooling-heat treatment using slag produced by a continuous casting method or an ingot-making method. In order to satisfy the above, the rolling temperature range should be higher than the austenite (γ) non-recrystallization temperature, and then the normalizing treatment (N treatment) may be performed, followed by two-phase quenching and tempering heat treatment. That is, the average aspect ratio of the prior austenite grain size can be controlled by the rolling temperature range, and the fraction of pseudopolygonal ferrite can be controlled by normalization after rolling and subsequent Q ′ treatment, and the island-like martensite phase and ε− The dispersion rate of the Cu phase clusters can be controlled by the cooling rate or tempering temperature of rolling or two-phase region heat treatment.

本発明の高張力鋼板は、板厚が45mm未満の比較的薄い鋼板を想定したものであり、こうした薄鋼板においても、低い降伏比(80%以下)が実現できるものであるが、本発明で対象とする高張力鋼板の厚さは45mm未満のものに限らず、板厚が45mm以上となるような厚鋼板においても有効に適用できるものであり、こうした鋼板であっても上記のような各特性を満足したものとなる。   The high-tensile steel plate of the present invention is assumed to be a relatively thin steel plate having a thickness of less than 45 mm. Even in such a thin steel plate, a low yield ratio (80% or less) can be realized. The thickness of the target high-tensile steel plate is not limited to a thickness of less than 45 mm, and can be effectively applied to a thick steel plate having a thickness of 45 mm or more. It satisfies the characteristics.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に徴して設計変形することはいずれも本発明の技術的範囲に含まれるものである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and any design modifications may be made in accordance with the gist of the present invention. It is included in the range.

下記表1〜3に示す化学成分組成の鋼を用い、下記表4〜6に示す製造条件にて鋼板を製造した。尚、表1〜3には、本発明で規定する(1)式の範囲、CEの値および[Ni]/[Cu]の値についても示した。また、表4〜6中、QはAc3点以上の温度からなる再加熱焼入れ、Nは焼きならしの際の加熱温度(Ac3点以上の温度)、Q’は二相域(Ac1点以上Ac3点未満)からの焼入れ、TはAc点未満の温度での焼戻しを夫々示す。 Steel sheets having chemical composition compositions shown in Tables 1 to 3 below were used to manufacture steel sheets under the manufacturing conditions shown in Tables 4 to 6 below. Incidentally, in Table 1-3, the specified range is (1) in the present invention, also shown for the values of the values and [Ni] / [Cu] of CE N. In Tables 4 to 6, Q is reheating and quenching at a temperature of Ac 3 point or higher, N is a heating temperature during normalization (temperature of Ac 3 point or higher), and Q ′ is a two-phase region (Ac 1 quenching from Ac less than 3 points) or more points, T is respectively show tempering at temperatures below Ac 1 point.

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

得られた各鋼板について、旧オーステナイト(γ)粒径のアスペクト比、島状マルテンサイトの体積率、基地組織(第2相種類および割合、ベース)、ε−Cu相クラスターの個数等を下記の方法によって測定した。   About each obtained steel plate, the aspect ratio of prior austenite (γ) grain size, the volume ratio of island martensite, the base structure (second phase type and ratio, base), the number of ε-Cu phase clusters, etc. are as follows: Measured by method.

[旧オーステナイト(γ)粒径のアスペクト比]
主圧延方向の板厚断面における旧オーステナイト粒界は、(5ml塩酸+1gピクリン酸+100mlエタノール)からなる腐食液を用いて現出させ、主圧延方向の平均粒径と板厚方向の平均粒径を測定して、それらの比を平均アスペクト比として求めた。
[Aspect ratio of former austenite (γ) particle size]
The prior austenite grain boundaries in the plate thickness section in the main rolling direction are revealed using a corrosive solution consisting of (5 ml hydrochloric acid + 1 g picric acid + 100 ml ethanol), and the average grain size in the main rolling direction and the average grain size in the plate thickness direction are determined. Measurements were taken to determine their ratio as the average aspect ratio.

[島状マルテンサイトの体積率]
島状マルテンサイト相は、主圧延方向および主圧延方向に直角方向の板厚断面を、レペラー試薬を用いて現出させて撮影し、画像解析装置によって分率(体積率)を算出した。
[Volume ratio of island martensite]
The island-like martensite phase was photographed by exposing the main rolling direction and the plate thickness section perpendicular to the main rolling direction using a repeller reagent, and the fraction (volume ratio) was calculated by an image analyzer.

[基地組織]
基地相はおよび第2相種類は、光学顕微鏡によって判断し、析出相の割合は画像解析処理によって算出した。
[Base organization]
The base phase and the second phase type were determined by an optical microscope, and the ratio of the precipitated phase was calculated by image analysis processing.

[ε−Cu相のクラスターの個数]
ε−Cu相のクラスターについては、板厚断面から薄膜を採取して、分析電子顕微鏡を用いて、ε−Cu相の固定および本クラスター分布の撮影を行ない、画像解析装置によって単位面積当りの個数を算出した。
[Number of clusters of ε-Cu phase]
For ε-Cu phase clusters, a thin film is taken from the cross section of the plate thickness, the ε-Cu phase is fixed and the distribution of this cluster is photographed using an analytical electron microscope, and the number per unit area is measured by an image analyzer. Was calculated.

また得られた各鋼板について、ガス切断割れ感受性、音響異方性、母材の引張特性(降伏強度,引張強度,降伏比)、母材靭性、耐溶接低温割れ性および大入熱溶接HAZ靭性について夫々下記の方法によって評価した。   In addition, for each steel plate obtained, gas cutting crack sensitivity, acoustic anisotropy, base material tensile properties (yield strength, tensile strength, yield ratio), base material toughness, weld cold crack resistance and high heat input weld HAZ toughness Each was evaluated by the following methods.

[ガス切断割れ感受性]
鉄骨製作過程において鋼板切断に汎用されるLPガスの板厚に応じた適正切断条件(例えば、100mm厚の場合、#5火口)で酸素圧:0.6MPa(6kgf/cm2)、LPガス圧:0.06MPa(0.6kgf/cm2)、切断速度:210mm/分で切断した後、切断面に直角な方向の断面を光学顕微鏡観察して、切断表面からの最大割れ深さを測定した。「割れ無し」を合格とした。
[Gas cutting crack sensitivity]
Oxygen pressure: 0.6 MPa (6 kgf / cm 2 ), LP gas pressure under appropriate cutting conditions (for example, # 5 crater in the case of 100 mm thickness) according to the plate thickness of LP gas widely used for steel plate cutting in the steel frame manufacturing process : 0.06 MPa (0.6 kgf / cm 2 ), cutting speed: 210 mm / min. After cutting, the cross section perpendicular to the cut surface was observed with an optical microscope, and the maximum crack depth from the cut surface was measured. . “No crack” was accepted.

[音響異方性]
日本建築学会の鋼構造建築溶接部の超音波検査規準に定義されたSTB音速比(V/VSTB)を主圧延方向(L方向)および主圧延方向に直角方向(C方向)について測定し、付則表1に従ってSTBとの音速差の有無の判定を行った。付則表1のV/VSTBの範囲を合格とした。例えば板厚:25mm超えを公称屈折角度70°の探傷子で探傷する場合、0.995≦V/VSTB≦1.015を音響異方性がないものと判定した。
[Acoustic anisotropy]
STB sound velocity ratio (V / V STB ) defined in the ultrasonic inspection standard for steel structure building welds of the Architectural Institute of Japan was measured in the main rolling direction (L direction) and the direction perpendicular to the main rolling direction (C direction). The presence or absence of a difference in sound velocity from STB was determined according to Appendix Table 1. The range of V / V STB in Appendix Table 1 was considered acceptable. For example, when flaw detection is performed with a flaw having a plate thickness of more than 25 mm and a nominal refraction angle of 70 °, 0.995 ≦ V / V STB ≦ 1.015 is determined to have no acoustic anisotropy.

[母材の引張特性]
鋼板のt/4(tは板厚)からC方向(圧延方向に対して直角の方向)にJIS Z 22014号試験片を採取してJIS Z 2241の要領で引張試験を行ない、降伏強度(0.2%耐力:σ0.2)、引張強度(TS)、降伏比(降伏強度/引張強度×100%:YR)を測定した。降伏強度σ0.2:440〜540MPa、引張強度TS:590〜740MPaおよび降伏比YR:80%以下を合格とした。
[Tensile properties of base material]
A specimen of JIS Z 22014 was taken from t / 4 (t is the thickness) of the steel sheet in the C direction (perpendicular to the rolling direction) and subjected to a tensile test in accordance with JIS Z 2241, yield strength (0 0.2 % proof stress: σ 0.2 ), tensile strength (TS), yield ratio (yield strength / tensile strength × 100%: YR) were measured. Yield strength σ 0.2 : 440 to 540 MPa, tensile strength TS: 590 to 740 MPa, and yield ratio YR: 80% or less were accepted.

[母材靭性]
鋼板のt/4からL方向(圧延方向)にJIS Z 2202 4号試験片を採取してJIS Z 2242に準拠して衝撃試験を行ない、破面遷移温度(vTrs)を測定した。vTrsが−20℃以下を目標として合格とした。
[Base material toughness]
A test piece of JIS Z 2202 No. 4 was collected in the L direction (rolling direction) from t / 4 of the steel sheet, and an impact test was performed according to JIS Z 2242 to measure the fracture surface transition temperature (vTrs). The target was vTrs of −20 ° C. or less.

[耐溶接低温割れ性]
JIS Z 3158のy形溶接割れ試験法に従い、入熱量:1.7KJ/mmで被覆アーク溶接を行ない、ルート割れ防止予熱温度を測定した。25℃以下を合格とした。
[Weld cold crack resistance]
According to the JIS Z 3158 y-type weld crack test method, covered arc welding was performed at a heat input of 1.7 KJ / mm, and the root crack prevention preheating temperature was measured. 25 degrees C or less was set as the pass.

[大入熱溶接HAZ靭性]
入熱量100KJ/mmのエレクトロスラグ溶接により、柱・ダイアフラム溶接継手を作製して、柱(スキンプレート)側から、吸収エネルギーが最も低位となることが多いとされるボンド+0.5mm位置にZ−T方向の切欠きを入れたシャルピー衝撃試験片(JIS Z 2204 4号)をn=3で採取し、0℃における平均衝撃吸収エネルギーvEを求めた。平均70J以上を合格とした。
[Large heat input welding HAZ toughness]
A column / diaphragm welded joint is manufactured by electroslag welding with a heat input of 100 KJ / mm. From the column (skin plate) side, the absorbed energy is said to be the lowest in most cases. A Charpy impact test piece (JIS Z 2204 No. 4) with a notch in the T direction was taken at n = 3, and an average impact absorption energy vE 0 at 0 ° C. was determined. An average of 70 J or more was accepted.

これらの結果を、下記表7〜9に示すが、これらの結果から、次のように考察できる。まず、実験No.1は従来型の中C系のSA440鋼であり、CENが高いため、溶接低温割れ防止予熱温度が100℃と高く、入熱量100KJ/mmのエレクトロスラグ溶接のHAZ靭性も低位である。 These results are shown in Tables 7 to 9 below, and can be considered as follows from these results. First, experiment no. 1 is a conventional C-based SA440 steel in, for CE N is high, weld cold cracking prevention preheating temperature as high as 100 ° C., HAZ toughness of electroslag welding heat input 100 kJ / mm is also low.

実験No.2は本発明の基本成分系であり、母材の強靭性は目標を満足し、溶接性は予熱不要と良好であり、入熱量100KJ/mmものエレクトロスラグ溶接のHAZ靭性も目標平均70J以上を十分満足するものである。   Experiment No. 2 is the basic component system of the present invention, the toughness of the base material satisfies the target, the weldability is good as it does not require preheating, and the HAZ toughness of electroslag welding with a heat input of 100 KJ / mm also exceeds the target average of 70 J or more. Satisfied enough.

実験No.3〜6のものは、実験No.2と同CENであるものの、それぞれ0.4Mo系、0.01Nb系、0.4Mo−0.01Nb系、0.05C系であり、大入熱HAZ靭性が低位である。 Experiment No. 3 to 6 are those of Experiment No. 2 and CE N, but 0.4Mo, 0.01Nb, 0.4Mo-0.01Nb, and 0.05C, respectively, and high heat input HAZ toughness is low.

実験No.7〜12のものは、Niを1%と一定とした上で、Cu量を変化させてNi/Cu比を変化させたものである(表1の鋼種H〜L)。また、実験No.13〜16は、Cu:0.95%とした上で、Ni量を変化させたものである。Cu:0.95%を超えたもの(実験No.7,8)は、Ni/Cu比が1以下であってもガス切断割れ感受性を有することが分かる。また、Cuが0.5%未満のもの(実験No.11)では、降伏強度および引張強度が目標値を下回っている。   Experiment No. Nos. 7 to 12 are obtained by changing the Ni / Cu ratio by changing the amount of Cu while keeping Ni constant at 1% (steel types H to L in Table 1). In addition, Experiment No. Nos. 13 to 16 are obtained by changing the Ni amount after setting Cu: 0.95%. It can be seen that Cu: exceeding 0.95% (Experiment Nos. 7 and 8) has gas cut cracking sensitivity even when the Ni / Cu ratio is 1 or less. In the case where Cu is less than 0.5% (Experiment No. 11), the yield strength and the tensile strength are lower than the target values.

実験No.17〜20は、C量を除いて本発明成分で一定とし、C量のみ変化させたものである(表1の鋼種R〜U)。C量が0.015%未満のもの(実験No.17)では、降伏強度、引張強度とも目標値を下回っていることが分かる。   Experiment No. Nos. 17 to 20 are constant in the composition of the present invention except for the C amount, and only the C amount is changed (steel types R to U in Table 1). It can be seen that when the C content is less than 0.015% (Experiment No. 17), both the yield strength and the tensile strength are below the target values.

実験No.21は、母材のミクロ組織を構成する島状マルテンサイトの体積率が本発明で規定する範囲を下回ったものであり、降伏比が目標値(80%以下)を満足しないことが分かる。   Experiment No. No. 21 shows that the volume ratio of the island-like martensite constituting the microstructure of the base material falls below the range defined in the present invention, and the yield ratio does not satisfy the target value (80% or less).

実験No.22,23は母材の旧オーステナイト粒のアスペクト比(主圧延方向の粒径/板厚方向の粒径)を変化させたものであり、アスペクト比が1.2を超えると、音響異方性を有するようになる。   Experiment No. 22 and 23 are obtained by changing the aspect ratio (grain size in the main rolling direction / grain size in the plate thickness direction) of the prior austenite grains of the base material. When the aspect ratio exceeds 1.2, the acoustic anisotropy is obtained. Will have.

実験No.24〜26はSi量以外本発明で規定する範囲内とし(表1の鋼種V〜X)、Si量のみ変化させたものである。Siが0.4%を超えると(実験No.26)、島状マルテンサイト体積率が増大して、降伏比が目標値を上回り、母材靭性は目標値を満足しない。   Experiment No. 24 to 26 are within the range defined by the present invention except the Si amount (steel types V to X in Table 1), and only the Si amount is changed. When Si exceeds 0.4% (Experiment No. 26), the volume ratio of island martensite increases, the yield ratio exceeds the target value, and the base material toughness does not satisfy the target value.

実験No.27,28,30,31は、Mn量を除いて本発明で規定する範囲内とし、Mn量のみ変化させたものである(表1の鋼種Y,Zおよび表2の鋼種A1,B1)。Mnが1.6%を超えてCENが0.33%を上回る実験No.31のものでは(鋼種B1)、降伏比が高く、耐溶接低温割れ性、大入熱HAZ靭性とも目標値を下回ることが分かる。 Experiment No. Nos. 27, 28, 30, and 31 are within the range defined by the present invention except for the amount of Mn, and only the amount of Mn is changed (Steel types Y and Z in Table 1 and Steel types A1 and B1 in Table 2). Experiment No. with Mn exceeding 1.6% and CE N exceeding 0.33%. In the case of No. 31 (steel type B1), it can be seen that the yield ratio is high and both the weld cold crack resistance and the high heat input HAZ toughness are below the target values.

実験No.29は、鋼種Bを用いてQ―Q’―T処理したものであり、板厚44mmでも降伏比が80%以下を満足しないものとなっている。   Experiment No. No. 29 is obtained by Q-Q'-T treatment using steel type B, and the yield ratio does not satisfy 80% or less even when the plate thickness is 44 mm.

実験No.32〜36は、Cr量以外本発明で規定する範囲内とし、Cr量のみ変化させたものである(表2の鋼種C1〜G1)。Crは同一引張強度比較で降伏比の低減に有効に作用するものの、Cr量が1.3%を超え、CENも0.33%を上回る実験No.36のものでは(鋼種G1)、母材靭性、耐溶接低温割れ性および大入熱HAZ靭性が目標値を満足しない。 Experiment No. 32 to 36 are within the range defined by the present invention except for the Cr amount, and only the Cr amount is changed (steel types C1 to G1 in Table 2). Although Cr acts effectively to reduce the yield ratio by the same tensile strength compared, experiment Cr content exceeds 1.3%, CE N also exceed 0.33% No. In the case of 36 (steel type G1), the base metal toughness, the weld cold crack resistance and the high heat input HAZ toughness do not satisfy the target values.

実験No.37〜40はAl量以外本発明で規定する範囲内とし、Al量のみ変化させたものである(表2の鋼種H1〜K1)。Alが0.08%超えの実験No.40のものでは(鋼種K1)、母材靭性が目標値を下回ることが分かる。   Experiment No. 37 to 40 are within the range defined in the present invention except the amount of Al, and only the amount of Al is changed (steel types H1 to K1 in Table 2). Experiment No. with Al over 0.08%. In the case of 40 (steel type K1), it can be seen that the base metal toughness is lower than the target value.

実験No.41〜44は、B量を除いて本発明で規定する範囲内とし、B含有量を変えたものである(表2の鋼種L1〜O1)。B量が0.003%を超えた実験No.44のものでは(鋼種O1)、降伏強度、降伏比が目標値を上回り、母材靭性、耐溶接低温割れ性、大入熱溶接HAZ靭性が目標値を満足しないことが分かる。   Experiment No. Nos. 41 to 44 are within the range defined in the present invention except for the B amount, and the B content is changed (steel types L1 to O1 in Table 2). Experiment No. B amount exceeding 0.003% In the case of No. 44 (steel type O1), it can be seen that the yield strength and yield ratio exceed the target values, and the base metal toughness, welding cold crack resistance, and high heat input weld HAZ toughness do not satisfy the target values.

実験No.45〜47は、Ni量を除いて本発明で規定する範囲内とし、Ni量を上限
側に変化させたものである(表2の鋼種P1〜R1)。Ni量が5%を超えた実験No.47のものでは(鋼種R1)、母材靭性および耐溶接低温割れ性に劣っている。
Experiment No. Nos. 45 to 47 are within the range defined in the present invention excluding the Ni amount, and the Ni amount is changed to the upper limit side (steel types P1 to R1 in Table 2). Experiment No. with Ni amount exceeding 5%. In 47 (steel type R1), the base metal toughness and the resistance to welding cold cracking are inferior.

実験No.48〜51は、TiNの量バランスを変化させたものである(表2の鋼種S1〜V1)。実験No.48のTi無添加のものでは、降伏強度および大入熱溶接HAZ靭性が目標値を下回る。また実験No.51のものでは、N含有量が本発明で規定する(1)式の上限を上回っており(鋼種V1)、母材靭性および大入熱溶接HAZ靭性が目標値を下回ることになる。   Experiment No. Nos. 48 to 51 are obtained by changing the TiN amount balance (steel types S1 to V1 in Table 2). Experiment No. In the case where 48 Ti is not added, the yield strength and the high heat input HAZ toughness are lower than the target values. In addition, Experiment No. In No. 51, the N content exceeds the upper limit of the formula (1) defined in the present invention (steel type V1), and the base metal toughness and the high heat input welding HAZ toughness are lower than the target values.

実験No.52〜55は、V量を除いて本発明で規定する範囲内とし、V量を変化させたものである(表2の鋼種W1〜Z1)。実験No.55のものでは、V量が0.10%を超えたものであり(鋼種Z1)、大入熱HAZ靭性が目標値を下回っていることが分かる。   Experiment No. 52 to 55 are within the range defined by the present invention except for the V amount, and the V amount is changed (steel types W1 to Z1 in Table 2). Experiment No. In No. 55, the amount of V exceeded 0.10% (steel type Z1), and it can be seen that the high heat input HAZ toughness is below the target value.

実験No.56〜59は、本発明の基本成分をベースにCa含有量を変化させたものである(表3の鋼種A2〜D2)。Ca量が0.01%を超えると(実験No.59)、大入熱溶接HAZ靭性が劣化する傾向を呈し、目標値を満足しないことが分かる。   Experiment No. Nos. 56 to 59 are obtained by changing the Ca content based on the basic components of the present invention (steel types A2 to D2 in Table 3). When the Ca content exceeds 0.01% (Experiment No. 59), it can be seen that the high heat input welding HAZ toughness tends to deteriorate and does not satisfy the target value.

実験No.60〜63は、本発明の基本成分に希土類元素であるLaの量を変化させて含有させたものである(表3の鋼種E2〜H2)。La含有量が0.02%を超えると(実験No.63)、大入熱HAZ靭性が却って劣化して目標値を下回ることが分かる。   Experiment No. 60 to 63 are those in which the basic component of the present invention contains the amount of La, which is a rare earth element, changed (steel types E2 to H2 in Table 3). When the La content exceeds 0.02% (Experiment No. 63), it can be seen that the high heat input HAZ toughness deteriorates and falls below the target value.

実験No.64〜67は、本発明の基本成分をベースにMg含有量を変化させたものである(表3の鋼種I2〜L2)。Mgが0.0030%を超えると(実験No.67)、大入熱溶接HAZ靭性が却って劣化して、目標値を下回る。   Experiment No. Nos. 64 to 67 are obtained by changing the Mg content based on the basic components of the present invention (steel types I2 to L2 in Table 3). If Mg exceeds 0.0030% (Experiment No. 67), the high heat input welding HAZ toughness deteriorates and falls below the target value.

実験No.68〜71は、Caの添加に加えて、Ce量を変化させて含有させたものである(表3の鋼種M2〜P2)。Ceが0.0050%を超えた実験No.71のものでは、大入熱溶接HAZ靭性が却って劣化して、目標値を下回っていることが分かる。   Experiment No. Nos. 68 to 71 are obtained by changing the Ce amount in addition to the addition of Ca (steel types M2 to P2 in Table 3). Experiment No. with Ce over 0.0050%. In the case of No. 71, it can be seen that the high heat input welding HAZ toughness deteriorates and falls below the target value.

実験No.72、73は、Ca添加をベースにZr量を変化させて本発明範囲内で添加したものであり、母材の強靭性、耐溶接低温割れ性、大入熱溶接HAZ靭性とも目標値を満足することが分かる。   Experiment No. Nos. 72 and 73 are added within the scope of the present invention by changing the amount of Zr based on the addition of Ca, and satisfy the target values for the toughness of the base metal, resistance to cold cracking at welding, and high heat input welding HAZ toughness. I understand that

実験No.74,75は40mm厚、または20厚のN−Q’−T材の本発明例でエレクトロスラグのダイアフラム材には60mm厚のSN490B(0.16%C−0.34%Si−1.34%Mn−0.034%V系)を使用したもので、全ての特性において目標値を満足する。   Experiment No. 74 and 75 are examples of the present invention of an NQ'-T material having a thickness of 40 mm or 20 mm, and the electroslag diaphragm material is SN490B (0.16% C-0.34% Si-1.34) having a thickness of 60 mm. % Mn-0.034% V system) and satisfy the target values in all characteristics.

実験No.76は、実験No.75と同一の化学成分組成の20mm厚材に、圧延後Q−Q’−T処理を加えたものであり、基地がベイナイト相となって降伏比YRが80%を超えるものとなる。   Experiment No. 76 is an experiment no. A 20 mm thick material having the same chemical composition as 75 is subjected to a Q-Q'-T treatment after rolling. The base becomes a bainite phase and the yield ratio YR exceeds 80%.

実験No.77は実験No.75と同一の化学成分組成の20mm厚材に、圧延後Q’−T熱処理を施したものであり、実験No.75の圧延後N−Q’−T熱処理を加えたものに比べて、降伏比がやや上昇し、母材靭性がやや劣化するものの、目標値を十分満足するものとなる。   Experiment No. 77 is Experiment No. A 20 mm thick material having the same chemical composition as that of No. 75 was subjected to Q'-T heat treatment after rolling. Although the yield ratio is slightly increased and the base material toughness is slightly deteriorated as compared with that obtained by applying N-Q'-T heat treatment after 75 rolling, the target value is sufficiently satisfied.

これらの結果から明らかなように、本発明で規定する要件を満足した高張力鋼板においては、母材の強靭性,降伏比が目標値を満足し、ガス切断割れ感受性および音響異方性がない。しかも、耐溶接割れ性が良好で、大入熱溶接HAZ靭性は全て部位においてvEが平均70J以上を有することが分かる。尚、柱同士の1RUNサブマージ溶接の角継手においてもエレクトロスラグ溶接と同等の大入熱溶接であるため、HAZ靭性もあらゆる部位において平均70J以上を確保できることは言うまでもなく、溶接方法を問わず、本発明鋼の特性を満足できるものである。尚、本発明の高張力鋼板のガス切断性については、実施例には示していないが、いずれもWES2801(1980)の2級以上を十分満足するガス切断面の品質を有するものであった。 As is clear from these results, in the high-tensile steel sheet that satisfies the requirements specified in the present invention, the toughness and yield ratio of the base material satisfy the target values, and there is no gas cutting cracking susceptibility and acoustic anisotropy. . In addition, it can be seen that the weld cracking resistance is good, and the high heat input weld HAZ toughness has an average vE 0 of 70 J or more in all the parts. It should be noted that, even in a 1RUN submerged welding corner joint between columns, since it is a high heat input welding equivalent to electroslag welding, it is needless to say that the average HAZ toughness can be secured at 70J or higher in any part. The characteristics of the invention steel can be satisfied. In addition, although it does not show in the Example about the gas cutting property of the high-tensile steel plate of this invention, all had the quality of the gas cutting surface which fully satisfied the 2nd grade or more of WES2801 (1980).

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

Figure 2007031796
Figure 2007031796

Claims (4)

C:0.015〜0.045%(質量%の意味、以下同じ)、Si:0.4%以下(0%を含む)、Mn:0.8〜1.6%、Cr:0.5〜1.3%、sol.Al:0.08%以下(0%を含む)、B:0.0004〜0.003%、Cu:0.5〜0.95%、Ni:0.7〜5.0%(但し、Ni含有量[Ni]とCu含有量[Cu]の比[Ni]/[Cu]≧1)、Ti:0.005〜0.03%および下記(1)式を満足するNを夫々含有すると共に、実質的にNbおよびMoを含まず、且つ下記(2)式で示されるCE値が0.27〜0.33%の範囲内にあり、残部がFeおよび不可避的不純物からなる化学成分組成を有し、板厚方向断面における旧オーステナイト粒径の平均アスペクト比(主圧延方向の平均粒径/板厚方向の平均粒径)が1.0〜1.2であると共に、10〜40体積%の擬ポリゴナルフェライト、0.5〜3.5体積%の島状マルテンサイト相、残部が擬似パーライト相の組織を有し、この組織中には4×1020〜26×1020個/m3のε−Cu相クラスターが分散したものであることを特徴とする低降伏比高張力鋼板。
[Ti]×14.0/47.9−0.001≦[N]≦[Ti]×14.0/47.9+[B]×14.0/10.8 ‥(1)
但し、[Ti],[N],および[B]は、夫々Ti,NiおよびBの含有量(質量%)を示す。
CE=[C]+A(c)・{[Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5[B]}
‥(2)
但し、A(c)= 0.75+0.25・tanh{20([C]-0.12)}であり、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo],[Nb],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,Nb,VおよびBの含有量(質量%)を示す。
C: 0.015-0.045% (meaning of mass%, the same applies hereinafter), Si: 0.4% or less (including 0%), Mn: 0.8-1.6%, Cr: 0.5 ~ 1.3%, sol. Al: 0.08% or less (including 0%), B: 0.0004 to 0.003%, Cu: 0.5 to 0.95%, Ni: 0.7 to 5.0% (however, Ni The ratio [Ni] / [Cu] ≧ 1) of the content [Ni] and the Cu content [Cu], Ti: 0.005 to 0.03% and N satisfying the following formula (1) , substantially free of Nb and Mo, and CE N value represented by the following formula (2) is in the range of 0.27 to 0.33%, the chemical composition and the balance being Fe and unavoidable impurities The average aspect ratio of the prior austenite grain size in the cross section in the thickness direction (average grain size in the main rolling direction / average grain size in the thickness direction) is 1.0 to 1.2, and 10 to 40 volumes. % Pseudo-polygonal ferrite, 0.5 to 3.5% by volume of an island-like martensite phase, the balance having a pseudo-pearlite phase structure, Low yield ratio high-strength steel sheet, characterized in that the in the tissue in which 4 × 10 20 ~26 × 10 20 atoms / m 3 of epsilon-Cu phase clusters are dispersed.
[Ti] × 14.0 / 47.9−0.001 ≦ [N] ≦ [Ti] × 14.0 / 47.9 + [B] × 14.0 / 10.8 (1)
However, [Ti], [N], and [B] indicate the contents (mass%) of Ti, Ni, and B, respectively.
CE N = [C] + A (c) · {[Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 [B]}
(2)
However, A (c) = 0.75 + 0.25 · tanh {20 ([C] -0.12)}, and [C], [Si], [Mn], [Cu], [Ni], [Cr], [ Mo], [Nb], [V] and [B] indicate the contents (mass%) of C, Si, Mn, Cu, Ni, Cr, Mo, Nb, V and B, respectively.
更に、V:0.005〜0.10%を含有するものである請求項1に記載の低降伏比高張力鋼板。   Furthermore, the low yield ratio high-tensile steel sheet according to claim 1, which contains V: 0.005 to 0.10%. 更に、Ca:0.0005〜0.01%を含有するものである請求項1または2に記載の低降伏比高張力鋼板。   Furthermore, the low yield ratio high-tensile steel sheet according to claim 1 or 2, which contains Ca: 0.0005 to 0.01%. 更に、La:0.002〜0.02%,Ce:0.0003〜0.0050%,Mg:0.0005〜0.0030%およびZr:0.002〜0.02%よりなる群から選ばれる1種または2種以上を含有するものである請求項1〜3のいずれかに記載の低降伏比高張力鋼板。   Further, selected from the group consisting of La: 0.002-0.02%, Ce: 0.0003-0.0050%, Mg: 0.0005-0.0030% and Zr: 0.002-0.02% The low yield ratio high-tensile steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains one or more kinds.
JP2005219596A 2005-07-28 2005-07-28 Low yield ratio high strength steel sheet Active JP4485427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219596A JP4485427B2 (en) 2005-07-28 2005-07-28 Low yield ratio high strength steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219596A JP4485427B2 (en) 2005-07-28 2005-07-28 Low yield ratio high strength steel sheet

Publications (2)

Publication Number Publication Date
JP2007031796A true JP2007031796A (en) 2007-02-08
JP4485427B2 JP4485427B2 (en) 2010-06-23

Family

ID=37791401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219596A Active JP4485427B2 (en) 2005-07-28 2005-07-28 Low yield ratio high strength steel sheet

Country Status (1)

Country Link
JP (1) JP4485427B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024228A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
WO2011040624A1 (en) * 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
CN105506507A (en) * 2014-09-26 2016-04-20 鞍钢股份有限公司 Economical low-yield-ratio structural steel and manufacturing method thereof
JP2016514211A (en) * 2013-03-13 2016-05-19 シティー、ユニバーシティー、オブ、ホンコンCity University Of Hong Kong Copper-rich nanocluster reinforced ultra high strength ferritic steel and method for producing the same
KR101799202B1 (en) 2016-07-01 2017-11-20 주식회사 포스코 High-strength steel sheet having excellent low yield ratio property and low temperature toughness and method for manufacturing the same
CN111101071A (en) * 2020-02-25 2020-05-05 湖南华菱涟源钢铁有限公司 High-strength weathering steel and production method thereof
CN112522568A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Fire-resistant weather-resistant steel plate/belt and manufacturing method thereof
CN112522638A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Fire-resistant weather-resistant steel plate/belt and production method thereof
JP7506306B2 (en) 2019-06-17 2024-06-26 日本製鉄株式会社 High-strength steel plate for large heat input welding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160835A (en) * 2001-11-26 2003-06-06 Kobe Steel Ltd High-tension thick steel plate superior in weldability and uniform elongation
JP2005036295A (en) * 2003-07-17 2005-02-10 Kobe Steel Ltd Low yield ratio high tensile strength steel sheet excellent in gas cutting crack resistance and high heat input welded joint toughness and low in acoustic anisotropy
JP2006193810A (en) * 2005-01-17 2006-07-27 Kobe Steel Ltd Method for producing low yield ratio high tensile strength steel sheet having excellent gas cutting crack resistance and high heat input welded joint toughness and reduced acoustic anisotropy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160835A (en) * 2001-11-26 2003-06-06 Kobe Steel Ltd High-tension thick steel plate superior in weldability and uniform elongation
JP2005036295A (en) * 2003-07-17 2005-02-10 Kobe Steel Ltd Low yield ratio high tensile strength steel sheet excellent in gas cutting crack resistance and high heat input welded joint toughness and low in acoustic anisotropy
JP2006193810A (en) * 2005-01-17 2006-07-27 Kobe Steel Ltd Method for producing low yield ratio high tensile strength steel sheet having excellent gas cutting crack resistance and high heat input welded joint toughness and reduced acoustic anisotropy

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024228A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
WO2011040624A1 (en) * 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP2011094231A (en) * 2009-09-30 2011-05-12 Jfe Steel Corp Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same
CN102549189A (en) * 2009-09-30 2012-07-04 杰富意钢铁株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
CN102549189B (en) * 2009-09-30 2013-11-27 杰富意钢铁株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
US8778096B2 (en) 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
JP2019094568A (en) * 2013-03-13 2019-06-20 シティー、ユニバーシティー、オブ、ホンコンCity University Of Hong Kong Ultrahigh strength ferritic steel strengthened by cu-rich nanoclusters, and method of manufacturing the same
JP2016514211A (en) * 2013-03-13 2016-05-19 シティー、ユニバーシティー、オブ、ホンコンCity University Of Hong Kong Copper-rich nanocluster reinforced ultra high strength ferritic steel and method for producing the same
CN105506507A (en) * 2014-09-26 2016-04-20 鞍钢股份有限公司 Economical low-yield-ratio structural steel and manufacturing method thereof
KR101799202B1 (en) 2016-07-01 2017-11-20 주식회사 포스코 High-strength steel sheet having excellent low yield ratio property and low temperature toughness and method for manufacturing the same
JP7506306B2 (en) 2019-06-17 2024-06-26 日本製鉄株式会社 High-strength steel plate for large heat input welding
CN112522568A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Fire-resistant weather-resistant steel plate/belt and manufacturing method thereof
CN112522638A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Fire-resistant weather-resistant steel plate/belt and production method thereof
CN111101071A (en) * 2020-02-25 2020-05-05 湖南华菱涟源钢铁有限公司 High-strength weathering steel and production method thereof

Also Published As

Publication number Publication date
JP4485427B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP4485427B2 (en) Low yield ratio high strength steel sheet
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP5733484B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP2008261046A (en) High-tensile steel excellent in weldability and plastic deformability, and cold-formed steel pipe formed therefrom
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5618037B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP5045073B2 (en) Non-tempered high-tensile steel plate with low yield ratio and method for producing the same
JP2004300567A (en) High tensile steel sheet and its manufacturing method
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP4025263B2 (en) Low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld toughness and low acoustic anisotropy
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4868762B2 (en) High-strength, high-toughness bainite non-tempered steel sheet with small acoustic anisotropy
JP3734692B2 (en) Non-refining type low yield ratio high tensile strength steel sheet with low acoustic anisotropy and excellent weldability
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP4610351B2 (en) Method for producing low yield ratio high strength steel sheet with excellent gas cut crack resistance and high heat input weld joint toughness and low acoustic anisotropy
JP4354754B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness
JP2016156032A (en) H-shaped steel for low temperature and method for producing the same
JP7506305B2 (en) High-strength steel plate for large heat input welding
JP4646719B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100324

R150 Certificate of patent or registration of utility model

Ref document number: 4485427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4