JP2006189646A - Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution - Google Patents

Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution Download PDF

Info

Publication number
JP2006189646A
JP2006189646A JP2005001703A JP2005001703A JP2006189646A JP 2006189646 A JP2006189646 A JP 2006189646A JP 2005001703 A JP2005001703 A JP 2005001703A JP 2005001703 A JP2005001703 A JP 2005001703A JP 2006189646 A JP2006189646 A JP 2006189646A
Authority
JP
Japan
Prior art keywords
resist
carbonate
resist developer
tmah
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005001703A
Other languages
Japanese (ja)
Inventor
Takamichi Umeeda
孝道 梅枝
Yoshiya Kitagawa
悌也 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Nagase CMS Technology Co Ltd
Original Assignee
Nagase and Co Ltd
Nagase CMS Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase and Co Ltd, Nagase CMS Technology Co Ltd filed Critical Nagase and Co Ltd
Priority to JP2005001703A priority Critical patent/JP2006189646A/en
Priority to TW094145600A priority patent/TW200627092A/en
Priority to KR1020060001237A priority patent/KR20060080884A/en
Priority to CNA2006100057185A priority patent/CN1800990A/en
Publication of JP2006189646A publication Critical patent/JP2006189646A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/06Silver salts
    • G03F7/063Additives or means to improve the lithographic properties; Processing solutions characterised by such additives; Treatment after development or transfer, e.g. finishing, washing; Correction or deletion fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/3021Imagewise removal using liquid means from a wafer supported on a rotating chuck
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for removing carbonates from a resist developing solution containing TMAH (tetramethylammonium hydroxide) and carbonates, and to provide a method for controlling the concentration of a resist developing solution. <P>SOLUTION: The method for removing carbonates in the resist developing solution includes a filtration step of filtering a resist developing solution containing TMAH and carbonates through an NF (nano filtration) membrane. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レジスト現像液中の炭酸塩を除去する方法、装置及びレジスト現像液の濃度管理方法に関する。   The present invention relates to a method and apparatus for removing carbonate in a resist developer and a method for managing the concentration of a resist developer.

従来より、電子デバイスの製造においてフォトリソグラフィー法が多く利用される。このフォトリソグラフィー法では、フォトレジストに所定の光パターンを露光して潜像を形成した後、このフォトレジストを現像してパターニングする工程が行われる。通常、このような現像には、水酸化テトラメチルアンモニウム(以下、TMAHという)を含むレジスト現像液が用いられる(例えば、特許文献1,2参照)。
特開平5−11458号公報 特開平5−40345号公報
Conventionally, a photolithography method is often used in the manufacture of electronic devices. In this photolithography method, a predetermined optical pattern is exposed on the photoresist to form a latent image, and then the photoresist is developed and patterned. Usually, a resist developer containing tetramethylammonium hydroxide (hereinafter referred to as TMAH) is used for such development (see, for example, Patent Documents 1 and 2).
JP-A-5-11458 JP-A-5-40345

レジスト現像液の中のTMAHはレジストの現像に伴って消耗するために使用時間の経過と共にレジスト現像液の現像性能の劣化が起こる。近年では、レジスト現像液の導電率が一定になるようにTMAHをレジスト現像液に随時補充することによってレジスト現像液中のTMAHの濃度を一定にし、レジスト現像液の現像性能を維持しつつレジスト現像液を長寿命化することがおこなわれている。したがって、レジスト現像液は空気等の雰囲気ガスと長時間接触する傾向がある。   Since TMAH in the resist developer is consumed as the resist is developed, the development performance of the resist developer deteriorates with the passage of time. In recent years, TMAH is replenished to the resist developer as needed so that the conductivity of the resist developer is constant, so that the concentration of TMAH in the resist developer is kept constant, while maintaining the development performance of the resist developer. The life of the liquid has been extended. Therefore, the resist developer tends to come into contact with an atmospheric gas such as air for a long time.

ところが、発明者らが検討したところ、TMAHを含むレジスト現像液が長時間空気等の雰囲気ガスと接触すると、このレジスト現像液に雰囲気中の二酸化炭素が溶け込み、レジスト現像液中に種々の炭酸塩、例えば、TMA(テトラメチルアンモニウム)の炭酸塩等が蓄積することが判明した。   However, the inventors have examined that when the resist developer containing TMAH comes into contact with an atmospheric gas such as air for a long time, carbon dioxide in the atmosphere dissolves in the resist developer, and various carbonates are contained in the resist developer. For example, it has been found that carbonates of TMA (tetramethylammonium) and the like accumulate.

そして、レジスト現像液中にこのような炭酸塩が蓄積してくると、レジストの現像性能に悪影響を及ぼす可能性がある。また、TMAの炭酸塩はレジスト現像液中で一部解離するため、TMAの炭酸塩はレジスト現像液の導電率を増加させる。したがって、レジスト現像液の導電率を一定に維持するようにレジスト現像液にTMAHを補充したとしても、レジスト現像液のTMAHの濃度を精度良く制御することが困難となる場合がある。   If such carbonates accumulate in the resist developer, the development performance of the resist may be adversely affected. Further, since TMA carbonate is partially dissociated in the resist developer, the TMA carbonate increases the conductivity of the resist developer. Therefore, even if the resist developer is supplemented with TMAH so as to keep the conductivity of the resist developer constant, it may be difficult to accurately control the concentration of TMAH in the resist developer.

したがって、レジスト現像液から炭酸塩を除去する必要が生じている。   Therefore, it is necessary to remove the carbonate from the resist developer.

本発明は、上記課題に鑑みてなされたものであり、TMAH及び炭酸塩を含むレジスト現像液から炭酸塩を除去する方法、装置及びレジスト現像液の濃度管理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a method, an apparatus, and a resist developer concentration management method for removing carbonate from a resist developer containing TMAH and carbonate.

本発明者らが鋭意検討したところ、TMAH及び炭酸塩を含むレジスト現像液をNF膜で濾過すると、レジスト現像液中の炭酸塩を非透過側に除去できることを見出し、本発明に想到するに至った。   As a result of intensive studies by the present inventors, it has been found that if a resist developer containing TMAH and carbonate is filtered through an NF film, the carbonate in the resist developer can be removed to the non-permeating side, and the present invention has been conceived. It was.

本発明にかかるレジスト現像液中の炭酸塩の除去方法は、TMAH(水酸化テトラメチルアンモニウム)及び炭酸塩を含むレジスト現像液をNF膜で濾過する濾過工程を備える。   The method for removing carbonate in a resist developer according to the present invention includes a filtration step of filtering a resist developer containing TMAH (tetramethylammonium hydroxide) and carbonate through an NF membrane.

本発明に係るレジスト現像液中の炭酸塩の除去装置は、TMAH及び炭酸塩を含むレジスト現像液をNF膜で濾過する濾過手段を備える。   The apparatus for removing carbonate in a resist developer according to the present invention includes a filtering means for filtering a resist developer containing TMAH and carbonate through an NF film.

本発明によれば、NF膜でTMAH及び炭酸塩を含むレジスト現像液を濾過することにより、透過液中の炭酸塩濃度が濾過前のレジスト現像液に比べて十分に低減される。   According to the present invention, by filtering the resist developer containing TMAH and carbonate with an NF film, the carbonate concentration in the permeate is sufficiently reduced compared to the resist developer before filtration.

このような効果が得られる理由としては、例えば、水(分子量約18)やTMAH(分子量約91)は上述の分画分子量のNF膜を容易に通過できる一方、炭酸塩、例えば、TMA(テトラメチルアンモニウム)の炭酸塩(分子量約208)は構造も立体構造になっていると予測され、その構造及び分子量の増加によりNF膜を通過することが相対的に困難であることが挙げられる。   The reason why such an effect is obtained is that, for example, water (molecular weight of about 18) and TMAH (molecular weight of about 91) can easily pass through the above-mentioned NF membrane of the molecular weight cut off, while carbonates such as TMA (tetra Methylammonium) carbonate (molecular weight of about 208) is also predicted to have a three-dimensional structure, and it is relatively difficult to pass through the NF membrane due to the increase in the structure and molecular weight.

ここで、NF膜の分画分子量は500〜1500であることが好ましく、700〜1000であることがより好ましい。   Here, the molecular weight cutoff of the NF film is preferably 500 to 1500, and more preferably 700 to 1000.

本発明に係るレジスト現像液の濃度管理方法は、上述の何れかに記載のレジスト現像液中の炭酸塩の除去方法を用いてレジスト現像液の炭酸塩を除去する工程と、炭酸塩が除去されたレジスト現像液のTMAH濃度を導電率計により測定する濃度測定工程と、を備える。   The resist developer concentration management method according to the present invention includes a step of removing carbonate in a resist developer using the method for removing carbonate in a resist developer as described above, and the carbonate is removed. And a concentration measuring step of measuring the TMAH concentration of the resist developer with a conductivity meter.

炭酸塩はレジスト現像液中において一部解離するので、炭酸塩の存在は導電率計を用いたTMAH濃度の測定において精度を悪化させるが、本発明によれば、炭酸塩が予め除去されるのでレジスト現像液のTMAHの濃度を精度良く測定できる。   Since carbonate is partially dissociated in the resist developer, the presence of carbonate deteriorates accuracy in the measurement of TMAH concentration using a conductivity meter. However, according to the present invention, carbonate is removed in advance. The concentration of TMAH in the resist developer can be accurately measured.

本発明によれば、レジスト現像液から効率よく炭酸塩を除去することができる。   According to the present invention, carbonate can be efficiently removed from a resist developer.

以下、図面を参照しながら本発明の好適な実施形態を説明する。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本実施形態にかかる現像システム10を示すフロー図である。   FIG. 1 is a flowchart showing a development system 10 according to the present embodiment.

この現像システム10は、感光したレジストをレジスト現像液により現像するレジスト現像装置12と、現像に用いたレジスト現像液を再生するレジスト現像液再生装置14と、を有している。   The developing system 10 includes a resist developing device 12 that develops the exposed resist with a resist developer, and a resist developer reproducing device 14 that regenerates the resist developer used for development.

レジスト現像装置12は、公知の方法により露光されたレジストをレジスト現像液により現像する装置であり、従来公知のレジスト現像装置12を用いることができる。   The resist developing device 12 is a device for developing a resist exposed by a known method with a resist developer, and a conventionally known resist developing device 12 can be used.

現像対象となるレジストとしては、感光性樹脂材料であればよく、例えば、ノボラック樹脂等のマトリクス樹脂及びナフトキノンジアジド等の感光剤を含む従来公知のポジ型レジスト組成物や、アルカリ可溶性樹脂、光酸発生剤、架橋剤及び色素を含有する従来公知のネガ型レジスト組成物等を使用することができる。   The resist to be developed may be a photosensitive resin material. For example, a conventionally known positive resist composition containing a matrix resin such as a novolak resin and a photosensitizer such as naphthoquinone diazide, an alkali-soluble resin, a photoacid, and the like. A conventionally known negative resist composition containing a generator, a crosslinking agent and a pigment can be used.

このようなレジストを現像するレジスト現像液として、TMAH(水酸化テトラメチルアンモニウム)を含むアルカリ性のレジスト現像液を用いる。具体的には、例えば、TMAHを0.4〜3.0質量%含むものがレジスト現像液として好適に用いられる。   As a resist developer for developing such a resist, an alkaline resist developer containing TMAH (tetramethylammonium hydroxide) is used. Specifically, for example, a resist developer containing 0.4 to 3.0% by mass of TMAH is suitably used.

続いて、レジスト現像液再生装置14について説明する。このレジスト現像液再生装置14は、レジスト現像装置12で用いられたレジスト現像液から炭酸塩を除去すると共にレジスト現像液のTMAH濃度を調整する装置である。レジスト現像液再生装置14は、主として、リザーバタンク20、複数の濾過器30A,30B,30C,30D、及び、調整タンク50を備えている。   Next, the resist developer reproducing apparatus 14 will be described. The resist developer regenerating apparatus 14 is an apparatus that removes carbonate from the resist developer used in the resist developer 12 and adjusts the TMAH concentration of the resist developer. The resist developer regeneration device 14 mainly includes a reservoir tank 20, a plurality of filters 30 </ b> A, 30 </ b> B, 30 </ b> C, 30 </ b> D, and an adjustment tank 50.

リザーバタンク20は、レジスト現像装置12から排出された使用済みのレジスト現像液を貯留する槽である。レジスト現像装置12から排出されたレジスト現像液は、ポンプ22を有するラインL10を介してリザーバタンク20に貯留される。   The reservoir tank 20 is a tank that stores used resist developer discharged from the resist developing device 12. The resist developer discharged from the resist developing device 12 is stored in the reservoir tank 20 via a line L10 having a pump 22.

濾過器(濾過手段)30A〜30Dは、リザーバタンク20に貯留されたレジスト現像液を濾過する装置である。この濾過器30A〜30DはそれぞれNF膜40を有しており、入口iから流入した被濾過対象であるレジスト現像液を、NF膜40を透過した透過液と、NF膜40を透過しない非透過液とに分離し、透過液を透過液出口pから、非透過液を非透過液出口uからそれぞれ排出する。   Filters (filtering means) 30 </ b> A to 30 </ b> D are devices that filter the resist developer stored in the reservoir tank 20. Each of the filters 30A to 30D has an NF film 40. The resist developer that is to be filtered flowing in from the inlet i is passed through the NF film 40 and the non-permeate that does not pass through the NF film 40. Then, the permeate is discharged from the permeate outlet p and the non-permeate is discharged from the non-permeate outlet u.

このNF膜40は、分画分子量が200〜2000程度の分離膜である。特に、炭酸塩を効率よく分離すべく、分画分子量が500〜1500であることが好ましく、分画分子量が700〜1000であることがより好ましい。   This NF membrane 40 is a separation membrane having a fractional molecular weight of about 200 to 2,000. In particular, in order to efficiently separate the carbonate, the molecular weight cut off is preferably 500 to 1500, and the molecular weight cut off is more preferably 700 to 1000.

ここで、分画分子量は透過阻止率が約90%となる分子量として定義でき、例えば、5%のショ糖溶液(ショ糖の分子量約342)や0.1%染料溶液(染料の分子量約626)等を用いて測定した透過率曲線から擬似測定できる。   Here, the molecular weight cut off can be defined as a molecular weight with a permeation blocking rate of about 90%. For example, a 5% sucrose solution (sucrose molecular weight of about 342) or a 0.1% dye solution (dye molecular weight of about 626). ) And the like can be used for pseudo measurement from the transmittance curve.

続いて、濾過器30A〜30Dの接続関係について詳述する。リザーバタンク20は、ポンプ24及びポンプ26を直列に有するラインL12を介して、濾過器30Aの入口iに接続されている。   Next, the connection relationship between the filters 30A to 30D will be described in detail. The reservoir tank 20 is connected to the inlet i of the filter 30A via a line L12 having a pump 24 and a pump 26 in series.

濾過器30Aの非透過液出口uは、ラインL14を介して濾過器30Bの入口iに接続されている。濾過器30Bの非透過液出口uは、さらに、ラインL16を介して濾過器30Cの入口iに接続され、濾過器30Cの非透過液出口uは、さらに、ラインL18を介して濾過器30Dの入口iに接続されている。   The non-permeate outlet u of the filter 30A is connected to the inlet i of the filter 30B via a line L14. The non-permeate outlet u of the filter 30B is further connected to the inlet i of the filter 30C via the line L16, and the non-permeate outlet u of the filter 30C is further connected to the filter 30D via the line L18. Connected to inlet i.

また、濾過器30Dの非透過液出口uはラインL20を介して、ラインL12におけるポンプ24とポンプ26との間に接続されている。   The non-permeate outlet u of the filter 30D is connected between the pump 24 and the pump 26 in the line L12 via the line L20.

ラインL20からは、さらに、バルブV2を有するラインL22が分岐しており、このラインL22にはドレインタンク32が接続されている。   A line L22 having a valve V2 further branches from the line L20, and a drain tank 32 is connected to the line L22.

各濾過器30A〜30DにおけるNF膜40の透過液出口pは、それぞれラインL30を介して調整タンク50に接続されている。   The permeate outlet p of the NF membrane 40 in each of the filters 30A to 30D is connected to the adjustment tank 50 via a line L30.

調整タンク50は、ポンプ52を有するラインL40によってレジスト現像装置12と接続されている。   The adjustment tank 50 is connected to the resist developing device 12 by a line L40 having a pump 52.

この調整タンク50には、バルブV50を有するラインL50を介してレジスト現像原液供給系60が接続され、バルブV52を有するラインL52を介して現像新液供給系62が接続され、バルブV54を有するラインL54を介して純水供給系64が接続されている。   A resist developing solution supply system 60 is connected to the adjustment tank 50 via a line L50 having a valve V50, a developing new solution supply system 62 is connected via a line L52 having a valve V52, and a line having a valve V54. A pure water supply system 64 is connected via L54.

レジスト現像原液供給系60は、TMAHが所定の高濃度、例えば20wt%とされたレジスト現像液を調整タンク50に供給するものであり、レジスト現像新液供給系62は、TMAHがレジスト現像装置12で用いるべき濃度に予め設定されたレジスト現像液を調整タンク50に供給するものであり、純水供給系64は純水を調整タンク50に供給するものである。   The resist developing stock solution supplying system 60 supplies a resist developing solution having a predetermined high concentration of TMAH, for example, 20 wt%, to the adjustment tank 50, and the resist developing new solution supplying system 62 is a TMAH using the resist developing device 12. A resist developing solution set in advance to a concentration to be used is supplied to the adjustment tank 50, and a pure water supply system 64 supplies pure water to the adjustment tank 50.

バルブV50、バルブV52、及びバルブV54は制御装置80に接続され、制御装置80は各流量を制御する。   The valve V50, the valve V52, and the valve V54 are connected to the control device 80, and the control device 80 controls each flow rate.

さらに、調整タンク50には、攪拌翼72を有する攪拌器70が設けられると共に、調整タンク50内のレジスト現像液の導電率を測定する導電率計74が設けられている。   Further, the adjustment tank 50 is provided with a stirrer 70 having a stirring blade 72 and a conductivity meter 74 for measuring the conductivity of the resist developer in the adjustment tank 50.

この導電率計74は制御装置80に接続されており、制御装置80は、導電率計74が測定した導電率に基づいて、調整タンク50内のレジスト現像液のTMAH濃度が所定の濃度(例えば、2.38wt%)となるように各流量を制御する。   The conductivity meter 74 is connected to a control device 80. The control device 80 determines that the TMAH concentration of the resist developer in the adjustment tank 50 is a predetermined concentration (for example, based on the conductivity measured by the conductivity meter 74). Each flow rate is controlled to be 2.38 wt%).

続いて、本実施形態にかかる現像システムによるレジスト現像方法について説明する。   Next, a resist development method using the development system according to the present embodiment will be described.

あらかじめ、調整タンク50において、TMAHが所定の濃度、例えば、2.38wt%となるレジスト現像液を調整しておく。この工程は公知であるので詳細は省略するが、レジスト現像原液供給系60、レジスト現像新液供給系62、及び純水供給系64から各液を所定の比率で調整タンク50内に供給することにより容易に行える。   In advance, in the adjustment tank 50, a resist developer having a predetermined concentration of TMAH, for example, 2.38 wt% is adjusted. Although this process is well known and will not be described in detail, each solution is supplied into the adjustment tank 50 from the resist developing stock solution supply system 60, the resist development new solution supply system 62, and the pure water supply system 64 at a predetermined ratio. This can be done easily.

そして、調整タンク50内のレジスト現像液を、ポンプ52によってレジスト現像装置12に供給し、レジスト現像装置12ではこのレジスト現像液を用いて露光済みのレジストを現像する。   Then, the resist developing solution in the adjustment tank 50 is supplied to the resist developing device 12 by the pump 52, and the resist developing device 12 develops the exposed resist using the resist developing solution.

レジストの現像が進むにつれて、レジスト現像液中のTMAHが消耗していく。また、雰囲気中の二酸化炭素がレジスト現像液に溶解しレジスト現像液中のTMAH等の成分と反応して種々の炭酸塩を形成する。例えば、炭酸塩としては、TMAHの陽イオンすなわちテトラメチルアンモニウム(TMA)イオンの炭酸塩である(TMA)COが挙げられる。(TMA)COの分子量は約208である。 As the development of the resist proceeds, TMAH in the resist developer is consumed. Further, carbon dioxide in the atmosphere dissolves in the resist developer and reacts with components such as TMAH in the resist developer to form various carbonates. For example, the carbonate includes (TMA) 2 CO 3 which is a cation of TMAH, that is, a carbonate of tetramethylammonium (TMA + ) ion. (TMA) 2 CO 3 has a molecular weight of about 208.

これに加えて、レジストの現像に伴い、レジスト現像液には溶解レジストも蓄積する。   In addition, with the development of the resist, the dissolved resist also accumulates in the resist developer.

このようにして、TMAHが消耗し、炭酸塩や溶解レジストが蓄積したレジスト現像液は、ポンプ22によりリザーバタンク20に貯留された後、ポンプ24及びポンプ26を介して濾過器30Aに供給される。ここで、ポンプ24やポンプ26によって、レジスト現像液は所定の圧力で濾過器30Aに供給される。   In this way, the resist developer in which TMAH is consumed and carbonate and dissolved resist are accumulated is stored in the reservoir tank 20 by the pump 22, and then supplied to the filter 30A via the pump 24 and the pump 26. . Here, the resist developer is supplied to the filter 30A at a predetermined pressure by the pump 24 and the pump 26.

濾過器30Aにおいて、レジスト現像液中の炭酸塩(たとえば、分子量約208の(TMA)CO)や溶解レジストはNF膜40を透過しにくいため、炭酸塩や溶解レジストの大部分はラインL14を介して濾過器30Bに供給される。一方、レジスト現像液中の水(分子量約18)やTMAH(分子量約91)はNF膜40を十分に透過できるので、NF膜40前後の圧力差に応じてこれら水及びTMAHがNF膜40を透過してラインL30を介して調整タンク50に到達し、一方濃縮液側では、透過されなかった水及びTMAHが、NF膜40を透過できなかった炭酸塩や溶解レジストと共に濾過器30Bに供給される。 In the filter 30A, carbonate (for example, (TMA) 2 CO 3 having a molecular weight of about 208) or dissolved resist in the resist developer hardly permeate the NF film 40, so that most of the carbonate and dissolved resist are line L14. Is supplied to the filter 30B. On the other hand, water (molecular weight of about 18) and TMAH (molecular weight of about 91) in the resist developer can sufficiently permeate the NF film 40, so that these water and TMAH pass through the NF film 40 according to the pressure difference before and after the NF film 40. Permeate and reach the adjustment tank 50 via the line L30. On the other hand, on the concentrate side, water and TMAH that have not been permeated are supplied to the filter 30B together with carbonates and dissolved resist that have not been able to permeate the NF membrane 40. The

濾過器30Bにおいても、炭酸塩や溶解レジストはNF膜40を透過しにくいので主としてラインL16を介して濾過器30Cに供給される一方、水やTMAHはNF膜40を透過してラインL30を介して調整タンク50に供給される。   Also in the filter 30B, carbonate and dissolved resist are difficult to permeate the NF film 40, and thus are mainly supplied to the filter 30C via the line L16, while water and TMAH permeate the NF film 40 and pass through the line L30. To the adjustment tank 50.

同様にして、濾過器30Bからの非透過液は、濾過器30C及び濾過器30Dの各NF膜40でさらに濾過され、水及びTMAHがラインL30を介して調整タンク50に供給される一方、炭酸塩、溶解レジスト、水及びTMAHを含む非透過液がラインL20を介してラインL12にリサイクルされる。   Similarly, the non-permeated liquid from the filter 30B is further filtered by the NF membranes 40 of the filter 30C and the filter 30D, and water and TMAH are supplied to the adjustment tank 50 through the line L30, while carbonic acid is added. A non-permeate containing salt, dissolved resist, water and TMAH is recycled to line L12 via line L20.

また、濾過器30Dからの非透過液の一部はラインL22を介してドレインタンク32に排出され、例えば、NF膜40の非透過側の炭酸塩濃度やレジスト濃度等が高くなりすぎないようにされている。   Further, a part of the non-permeate liquid from the filter 30D is discharged to the drain tank 32 via the line L22, so that, for example, the carbonate concentration, resist concentration, etc. on the non-permeate side of the NF film 40 are not too high. Has been.

調整タンク50においては、透過したレジスト現像液、すなわち、主として水及びTMAHを含む透過液の導電率が導電率計74によって測定され、TMAHの濃度を所定の設定値に戻すように、現像原液、現像新液及び水が、単独で、又は、任意の組合せで調整タンクに供給され、さらにこの液が攪拌翼72によって攪拌されて所望のTMAH濃度のレジスト現像液が再生される。そして、このようにして再生されたレジスト現像液は、ラインL40を介してレジスト現像装置12に戻される。   In the adjustment tank 50, the conductivity of the permeated resist developer, that is, the permeate mainly containing water and TMAH is measured by the conductivity meter 74, and the developing stock solution is set so that the concentration of TMAH is returned to a predetermined set value. A new developer and water are supplied to the adjustment tank alone or in any combination, and this solution is further stirred by the stirring blade 72 to regenerate a resist developer having a desired TMAH concentration. Then, the resist developer regenerated in this way is returned to the resist developing device 12 via the line L40.

このようなシステムによれば、レジスト現像装置12での現像作業によって炭酸塩や溶解レジストが蓄積した使用済みのレジスト現像液をNF膜40で濾過するので、透過液から炭酸塩や溶解レジストを除去することができる。そして、この透過液が調整タンク50を介してレジスト現像装置12に戻りレジスト現像液として用いられるので、炭酸塩や溶解レジスト等の増加に伴うレジスト現像液の現像性能の劣化等を抑制できる。   According to such a system, the used resist developing solution in which carbonate and dissolved resist are accumulated by the developing operation in the resist developing device 12 is filtered through the NF film 40, so that the carbonate and dissolved resist are removed from the permeated solution. can do. Then, since this permeate returns to the resist developing device 12 via the adjustment tank 50 and is used as the resist developer, it is possible to suppress the deterioration of the developing performance of the resist developer accompanying an increase in carbonate or dissolved resist.

さらに、調整タンク50において、炭酸塩等が除去された濾過液中のTMAH濃度が導電率計74により測定される。炭酸塩はレジスト現像液中において一部がイオン化してしまうので調整タンク50内に炭酸塩が多量に存在すると導電率計を用いたTMAH濃度の測定を妨害する。しかしながら、本発明によれば、導電率の測定前に炭酸塩が予め除去されるので、レジスト現像液のTMAH濃度を精度良く測定できる。したがって、制御装置80による調整タンク50内のTMAH濃度の調整や管理が精度良く行え、これを再利用するレジスト現像装置12における現像をより好適に行える。   Further, in the adjustment tank 50, the TMAH concentration in the filtrate from which carbonates and the like have been removed is measured by the conductivity meter 74. Since carbonate is partially ionized in the resist developer, the presence of a large amount of carbonate in the adjustment tank 50 hinders measurement of the TMAH concentration using a conductivity meter. However, according to the present invention, since the carbonate is removed in advance before the measurement of the conductivity, the TMAH concentration of the resist developer can be accurately measured. Therefore, the control device 80 can adjust and manage the TMAH concentration in the adjustment tank 50 with high accuracy, and more preferably develop in the resist developing device 12 that reuses the TMAH concentration.

なお、本発明は上記実施形態に限定されず種々の変形が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible.

例えば、上記実施形態では複数の濾過器30A〜30Dを直列に接続しているが、濾過器は単数でも動作可能であり、また、複数の濾過器を並列に接続することも可能である。   For example, although the plurality of filters 30A to 30D are connected in series in the above embodiment, a single filter can be operated, and a plurality of filters can be connected in parallel.

続いて、実施例に基づいて本発明の有用性を示す。ここでは、図2に示すように、一つの濾過装置30Aに対して、現像に使用済みのレジスト現像液を、ラインL100を介して供給し、濾過装置30AからラインL104を介して透過液が排出され、非透過液の一部がライン102を介してラインL100にリサイクルされ、非透過液の残りがラインL103を介して排出される装置とした。ここで、ラインL100の入り口に供給されるレジスト現像液の流量をQin、ラインL104の出口から排出されるレジスト現像液の流量をQper、ラインL102を介してラインL100にリサイクルされるレジスト現像液の流量をQr、ラインL103を介して排出されるレジスト現像液の流量をQoutとする。   Subsequently, the usefulness of the present invention will be shown based on examples. Here, as shown in FIG. 2, the resist developer used for development is supplied to one filtration device 30A via a line L100, and the permeate is discharged from the filtration device 30A via a line L104. In this case, a part of the non-permeated liquid is recycled to the line L100 via the line 102, and the rest of the non-permeated liquid is discharged via the line L103. Here, the flow rate of the resist developer supplied to the inlet of the line L100 is Qin, the flow rate of the resist developer discharged from the outlet of the line L104 is Qper, and the resist developer that is recycled to the line L100 via the line L102. Let Qr be the flow rate, and Qout be the flow rate of the resist developer discharged via the line L103.

ここで、NF膜40の分画分子量は1000とした。   Here, the molecular weight cut off of the NF film 40 was 1000.

実施例1では、TMAHを2.38%含むレジスト現像液を用いてノボラック系レジストを現像した使用済みレジスト現像液をラインL100の入り口にQinとして供給した。実施例2では、TMAHを2.379%含むレジスト現像液を用いてノボラック系レジストを現像した使用済みレジスト現像液をラインL100の入り口にQinとして供給した。また、実施例3では、TMAHを0.471%含むレジスト現像液を用いてアクリル系レジストを現像した使用済みレジスト現像液をラインL100の入り口にQinとして供給した。   In Example 1, a used resist developer obtained by developing a novolak resist using a resist developer containing 2.38% of TMAH was supplied as Qin to the entrance of the line L100. In Example 2, a used resist developer obtained by developing a novolak resist using a resist developer containing 2.379% TMAH was supplied as Qin to the entrance of the line L100. In Example 3, a used resist developer obtained by developing an acrylic resist using a resist developer containing 0.471% TMAH was supplied as Qin to the entrance of the line L100.

そして、濾過が定常に達した後における各フローQin,Qout,Qper,Qrの流量及び濃度を図3の表に示す。ここで、炭酸イオン濃度はイオンクロマトにより、失活TMAH濃度及び活性TMAH濃度は塩酸滴定により、溶解レジスト濃度は乾燥重量法によりそれぞれ求めた。炭酸塩の形成は炭酸イオンの増加として現れると共に、失活TMAHの増加としても現れると考えられる。なお、TMAHの失活には、炭酸塩の形成の他レジストとの反応も寄与すると考えられる。   The flow rate and concentration of each flow Qin, Qout, Qper, Qr after the filtration reaches a steady state are shown in the table of FIG. Here, the carbonate ion concentration was determined by ion chromatography, the deactivated TMAH concentration and the active TMAH concentration were determined by hydrochloric acid titration, and the dissolved resist concentration was determined by the dry weight method. It is thought that the formation of carbonate appears as an increase in carbonate ions and also as an increase in deactivated TMAH. In addition, it is thought that reaction with a resist other than formation of carbonate contributes to the deactivation of TMAH.

図3より明らかなように、透過液Qperの炭酸イオン濃度や失活TMAH濃度は、供給液Qinの各濃度よりもかなり低下する一方、非透過排出液Qoutの炭酸イオン濃度や失活TMAH濃度はかなり上昇していた。また、溶解レジストについても炭酸イオン濃度と同等の傾向を示した。一方、活性TMAH濃度は、Qin,Qper,Qoutの間でそれほど変化しなかった。   As apparent from FIG. 3, the carbonate ion concentration and the deactivated TMAH concentration of the permeate Qper are considerably lower than the respective concentrations of the supply liquid Qin, while the carbonate ion concentration and the deactivated TMAH concentration of the non-permeate discharge liquid Qout are It had risen considerably. The dissolved resist also showed a tendency similar to the carbonate ion concentration. On the other hand, the active TMAH concentration did not change so much between Qin, Qper, and Qout.

図1は、本発明の実施形態に係るレジスト現像システムの概略フロー図である。FIG. 1 is a schematic flow diagram of a resist development system according to an embodiment of the present invention. 図2は、実施例における濾過フローを示すフロー図である。FIG. 2 is a flowchart showing a filtration flow in the embodiment. 図3は、実施例1〜3における各フロー流量や濃度を示す表である。FIG. 3 is a table showing each flow rate and concentration in Examples 1 to 3.

符号の説明Explanation of symbols

40…NF膜、74…導電率計、30A,30B,30C,30D…濾過装置(濾過手段)、14…炭酸塩の除去装置。
DESCRIPTION OF SYMBOLS 40 ... NF film | membrane, 74 ... Conductivity meter, 30A, 30B, 30C, 30D ... Filtration apparatus (filtration means), 14 ... Carbonate removal apparatus.

Claims (4)

水酸化テトラメチルアンモニウム及び炭酸塩を含むレジスト現像液をNF膜で濾過する濾過工程を備える、レジスト現像液中の炭酸塩の除去方法。   A method for removing carbonate in a resist developer, comprising a filtration step of filtering a resist developer containing tetramethylammonium hydroxide and carbonate through an NF film. 前記NF膜の分画分子量は、500〜1500である請求項1に記載のレジスト現像液中の炭酸塩の除去方法。   The method for removing carbonate in a resist developer according to claim 1, wherein the molecular weight cutoff of the NF film is 500 to 1500. 請求項1又は2に記載のレジスト現像液中の炭酸塩の除去方法を用いて前記レジスト現像液の炭酸塩を除去する工程と、
前記炭酸塩が除去されたレジスト現像液の水酸化テトラメチルアンモニウム濃度を導電率計により測定する濃度測定工程と、
を備えるレジスト現像液の濃度管理方法。
Removing the carbonate in the resist developer using the method for removing carbonate in the resist developer according to claim 1 or 2,
A concentration measurement step of measuring the tetramethylammonium hydroxide concentration of the resist developer from which the carbonate has been removed, with a conductivity meter;
A resist developer concentration management method comprising:
水酸化テトラメチルアンモニウム及び炭酸塩を含むレジスト現像液をNF膜で濾過する濾過手段を備える、レジスト現像液中の炭酸塩の除去装置。



An apparatus for removing carbonate in a resist developer, comprising a filtering means for filtering a resist developer containing tetramethylammonium hydroxide and carbonate through an NF film.



JP2005001703A 2005-01-06 2005-01-06 Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution Pending JP2006189646A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005001703A JP2006189646A (en) 2005-01-06 2005-01-06 Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution
TW094145600A TW200627092A (en) 2005-01-06 2005-12-21 Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution
KR1020060001237A KR20060080884A (en) 2005-01-06 2006-01-05 Method of removing the carbonate in a resist developer, devices for removing the same and method of managing the concentration of the resist developer
CNA2006100057185A CN1800990A (en) 2005-01-06 2006-01-06 Elimination method of carbonate in resists development liquid, elimination apparatus and concentration control method of resists development liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001703A JP2006189646A (en) 2005-01-06 2005-01-06 Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution

Publications (1)

Publication Number Publication Date
JP2006189646A true JP2006189646A (en) 2006-07-20

Family

ID=36796922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001703A Pending JP2006189646A (en) 2005-01-06 2005-01-06 Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution

Country Status (4)

Country Link
JP (1) JP2006189646A (en)
KR (1) KR20060080884A (en)
CN (1) CN1800990A (en)
TW (1) TW200627092A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588859A (en) * 2014-11-11 2016-05-18 长濑微电子科技有限公司 Analyzer and analyzing method
CN106552517A (en) * 2015-09-30 2017-04-05 东京应化工业株式会社 Barrier filter and filter method, photoetching medicinal liquid purify the manufacture method and Resist patterns forming method of product

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852978B (en) * 2006-11-30 2019-03-22 三菱化学工程株式会社 Concentration regulating method, modulating device and the developer solution of developer solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142460A (en) * 1991-02-13 1994-05-24 Dainippon Seito Kk Method for pulverizing oligosaccharide
JPH11192481A (en) * 1998-01-05 1999-07-21 Japan Organo Co Ltd Regeneration of waste photoresist developer and apparatus therefor
JP2000155426A (en) * 1998-11-24 2000-06-06 Japan Organo Co Ltd Apparatus for recovering and reutilizing regenerated developer from used photoresist developer
JP2003295470A (en) * 2002-03-29 2003-10-15 Matsushita Environment Airconditioning Eng Co Ltd Method for measuring concentration of alkali developer liquid and preparation device of developer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142460A (en) * 1991-02-13 1994-05-24 Dainippon Seito Kk Method for pulverizing oligosaccharide
JPH11192481A (en) * 1998-01-05 1999-07-21 Japan Organo Co Ltd Regeneration of waste photoresist developer and apparatus therefor
JP2000155426A (en) * 1998-11-24 2000-06-06 Japan Organo Co Ltd Apparatus for recovering and reutilizing regenerated developer from used photoresist developer
JP2003295470A (en) * 2002-03-29 2003-10-15 Matsushita Environment Airconditioning Eng Co Ltd Method for measuring concentration of alkali developer liquid and preparation device of developer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588859A (en) * 2014-11-11 2016-05-18 长濑微电子科技有限公司 Analyzer and analyzing method
JP2016090541A (en) * 2014-11-11 2016-05-23 ナガセテクノエンジニアリング株式会社 Analyzer and analysis method
CN106552517A (en) * 2015-09-30 2017-04-05 东京应化工业株式会社 Barrier filter and filter method, photoetching medicinal liquid purify the manufacture method and Resist patterns forming method of product

Also Published As

Publication number Publication date
CN1800990A (en) 2006-07-12
KR20060080884A (en) 2006-07-11
TW200627092A (en) 2006-08-01

Similar Documents

Publication Publication Date Title
KR100441197B1 (en) Process and equipment for recovering developer from photoresist development waste and reusing it
JP2002062667A (en) Method of manufacturing photoresist composition decreased in amount of particulate
JP2005136374A (en) Semiconductor manufacturing apparatus and pattern formation method using the same
KR20100037037A (en) System for continuously using resist stripper liquid based on nanofiltration
WO2006080250A1 (en) Immersion exposure system, and recycle method and supply method of liquid for immersion exposure
KR100386438B1 (en) Apparatus and method for recovering photoresist developers and strippers
US20070084793A1 (en) Method and apparatus for producing ultra-high purity water
JP2006189646A (en) Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution
KR20010071297A (en) Apparatus and method for recovering photoresist developers and strippers
JP2006239649A (en) Water supply device for boiler
TWI264618B (en) Developer regeneration unit
JP3758011B2 (en) Equipment for recovering and reusing recycled developer from photoresist developer waste
JP3355837B2 (en) Method for regenerating developer for photosensitive material and apparatus for developing photosensitive material
JP2002253931A (en) Method and apparatus for manufacturing regenerated tetraalkylammonium hydroxide
JP5211431B2 (en) Development device
JP2004101999A (en) Apparatus for recycling and supplying developer solution
JP2006210751A (en) Thinner recycling supply apparatus
JP2020014995A (en) Forward osmosis treatment method and forward osmosis treatment device
JP2009279540A (en) Filter and manufacturing method for composition for electronic material
JP4736124B2 (en) Development device
JPH11169852A (en) Pure water producing device
JP3832267B2 (en) Method for producing photoresist liquid product with reduced number of fine particles
JP2005173402A (en) Regenerating apparatus for photoresist development fluid waste
JP2004298680A (en) Method for treating used photoresist developer
JP2010087191A (en) Exposure device and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713