JP2003295470A - Method for measuring concentration of alkali developer liquid and preparation device of developer - Google Patents

Method for measuring concentration of alkali developer liquid and preparation device of developer

Info

Publication number
JP2003295470A
JP2003295470A JP2002097479A JP2002097479A JP2003295470A JP 2003295470 A JP2003295470 A JP 2003295470A JP 2002097479 A JP2002097479 A JP 2002097479A JP 2002097479 A JP2002097479 A JP 2002097479A JP 2003295470 A JP2003295470 A JP 2003295470A
Authority
JP
Japan
Prior art keywords
concentration
measuring
developing
developer
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002097479A
Other languages
Japanese (ja)
Other versions
JP4097973B2 (en
Inventor
Norio Yamaguchi
典生 山口
Norio Igarashi
軌雄 五十嵐
Yasushi Inoue
恭 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Environmental Systems and Engineering Co Ltd
Original Assignee
Panasonic Environmental Systems and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Environmental Systems and Engineering Co Ltd filed Critical Panasonic Environmental Systems and Engineering Co Ltd
Priority to JP2002097479A priority Critical patent/JP4097973B2/en
Priority to KR20030018961A priority patent/KR100916986B1/en
Priority to TW92106924A priority patent/TW200305794A/en
Publication of JP2003295470A publication Critical patent/JP2003295470A/en
Application granted granted Critical
Publication of JP4097973B2 publication Critical patent/JP4097973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • G01N31/162Determining the equivalent point by means of a discontinuity
    • G01N31/164Determining the equivalent point by means of a discontinuity by electrical or electrochemical means

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide techniques of measuring the concentration of developer so as to accurately control the concentration of the developer containing an alkali developing component and to realize an accurate and efficient developing process. <P>SOLUTION: On measuring the concentration of the developer containing an alkali developing component, the concentration of the free alkali developing component in the developer is measured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体デバイス、
液晶ディスプレイ、プリント基板等の電子部品等の製造
工程等で使用するフォトレジスト用アルカリ現像液、そ
の現像廃液又はその再生液の濃度測定、濃度管理、回収
あるいは再生方法、および濃度測定装置などに関する。
TECHNICAL FIELD The present invention relates to a semiconductor device,
The present invention relates to a concentration measurement, concentration management, recovery or regeneration method, concentration measuring device, and the like of a photoresist alkaline developer used in a manufacturing process of electronic components such as liquid crystal displays and printed circuit boards, and the like, a developing waste liquid or a regenerating liquid thereof.

【0002】[0002]

【従来の技術】半導体デバイス、液晶ディスプレイ、プ
リント基板等の電子部品等の製造工程においては、フォ
トリソグラフィー工程が実施されるのが一般的である。
フォトリソグラフィー工程は、ウェハやガラス基板等の
基板上にフォトレジストの皮膜を形成し、マスクパター
ンなどを用いてその所定部分に光等を照射し、現像液で
現像することによって微細なパターンを形成する工程で
ある。ここで、フォトレジスト類は、露光部分が現像液
に対して可溶化するポジ形フォトレジストと、逆に露光
部分が現像液に対して不溶化するネガ形フォトレジスト
に大別される。半導体デバイスや液晶ディスプレイ等の
電子部品の製造分野では主にポジ形フォトレジストが使
用され、該ポジ形フォトレジスト用の現像液としてはア
ルカリ現像液が用いられている。また、ネガ形フォトレ
ジストであっても、アルカリ現像液が用いられている場
合もある。
2. Description of the Related Art In a manufacturing process of electronic parts such as a semiconductor device, a liquid crystal display and a printed circuit board, a photolithography process is generally carried out.
In the photolithography process, a film of photoresist is formed on a substrate such as a wafer or a glass substrate, a predetermined portion is irradiated with light using a mask pattern, etc., and a fine pattern is formed by developing with a developing solution. It is a process to do. Here, the photoresists are roughly classified into a positive photoresist in which an exposed portion is solubilized in a developing solution and a negative photoresist in which an exposed portion is insoluble in a developing solution. In the field of manufacturing electronic components such as semiconductor devices and liquid crystal displays, a positive photoresist is mainly used, and an alkaline developer is used as a developer for the positive photoresist. In addition, even in the case of a negative photoresist, an alkaline developer may be used.

【0003】アルカリ現像液のアルカリ現像成分として
は、無機アルカリ、有機アルカリのいずれも使用される
が、上記半導体、液晶、プリント基板等の電子部品の製
造工程等では、水酸化テトラアルキルアンモニウム(テ
トラアルキルアンモニウムヒドロオキシド)等の有機ア
ルカリを用いたアルカリ現像液が通常使用されている。
As the alkali developing component of the alkali developing solution, both inorganic alkali and organic alkali are used. In the process of manufacturing electronic parts such as semiconductors, liquid crystals and printed boards, tetraalkylammonium hydroxide (tetraalkylammonium hydroxide) is used. Alkali developer solutions using organic alkalis such as alkylammonium hydroxide) are usually used.

【0004】また、アルカリ現像液は、空気と接触する
ことによって炭酸ガスが溶け込むと、上記アルカリ現像
成分を構成する水酸化物イオン(ヒドロオキシドイオ
ン)が消耗され、例えば、その対イオンであるアルカリ
陽イオンは炭酸水素塩や炭酸塩(以下、炭酸系塩類とも
いう。)を形成する。アルカリ現像成分は、水酸化物イ
オンとアルカリ陽イオンとが対イオンを形成して現像液
中で遊離している状態(ヒドロオキサイドの状態)で現
像活性を有している。このため、炭酸ガスの溶け込みに
よる炭酸系塩類の生成により、現像活性は減少すること
になる。アルカリ現像液は、半導体製造工程に供給され
た時点において既に若干量の炭酸系塩類を含有している
ことが多い。また、アルカリ現像液は、繰り返し使用を
経るにつれ、徐々に炭酸ガスが溶解していくため、炭酸
系塩類の濃度が増加する傾向にある。
When the carbon dioxide gas is dissolved in the alkali developing solution by contacting with air, hydroxide ions (hydroxide ions) constituting the alkali developing component are consumed. For example, the alkali ion which is the counter ion thereof is consumed. The cation forms hydrogen carbonate or carbonate (hereinafter, also referred to as carbonate). The alkali developing component has a developing activity in a state where a hydroxide ion and an alkali cation form a counter ion and are liberated in a developing solution (state of a hydroxide). For this reason, the development activity is reduced due to the formation of carbonate salts due to the dissolution of carbon dioxide gas. In many cases, the alkaline developer already contains a small amount of carbonates at the time of being supplied to the semiconductor manufacturing process. In addition, the carbon dioxide gas gradually dissolves in the alkaline developer as it is repeatedly used, so that the concentration of carbonate salts tends to increase.

【0005】近年、LSIやLCDは、微細化、高集積
化が進んでいるとともに、加工精度と生産効率の観点か
ら、現像工程で用いるフォトレジストの現像液の濃度を
正確に制御して、微細パターンを安定してかつ効率よく
現像することに対する要求が高まってきている。半導体
デバイスや液晶デバイスなどの製造工程で用いられる現
像液はアルカリ現像成分が2.38wt%の濃度で使用す
ると最も効率よく現像されることがわかっている。この
ため、この濃度の±0.002wt%程度の範囲で高精
度に希釈調整されて使用することが試みられている。
In recent years, LSIs and LCDs have been miniaturized and highly integrated, and from the viewpoint of processing accuracy and production efficiency, the concentration of the developing solution of the photoresist used in the developing process has been accurately controlled to make it fine. There is an increasing demand for stable and efficient development of patterns. It is known that the developer used in the manufacturing process of semiconductor devices, liquid crystal devices, etc. is most efficiently developed when the alkali developing component is used at a concentration of 2.38 wt%. Therefore, it has been attempted to adjust the dilution with high accuracy within a range of about ± 0.002 wt% of this concentration before use.

【0006】通常、現像工程に供給するアルカリ現像
液、アルカリ現像廃液および再生アルカリ現像液中の現
像成分、例えば、TAAHなどのアルカリ成分は、その
濃度調製工程において、pH滴定装置、電位差滴定装
置、導電率計、超音波濃度計などの測定手段によって測
定される。なかでも、導電率計や超音波濃度計は、連続
計測に好適であることから広く用いられている。
Usually, the developing components in the alkaline developing solution, the alkaline developing waste solution and the regenerated alkaline developing solution supplied to the developing process, for example, the alkaline component such as TAAH, are subjected to a pH titrator, potentiometric titrator, It is measured by a measuring means such as a conductivity meter or an ultrasonic densitometer. Among them, the conductivity meter and the ultrasonic densitometer are widely used because they are suitable for continuous measurement.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、高性能
な濃度測定手段を用いたとしても、アルカリ現像液の濃
度制御は現実には困難であった。すなわち、炭酸系塩類
を含んだアルカリ現像液について、滴定などにより全現
像成分濃度を測定し、当該濃度に基づいて、濃度管理に
用いる導電率計や超音波濃度計を校正すると、現像工程
には目的とする濃度よりも低い濃度のヒドロキシド濃度
のアルカリ現像液が供給される傾向にあった。また、煩
雑な滴定手法により遊離の現像成分(ヒドロオキシド)
濃度を測定して、この濃度に基づいて導電率計を校正し
ても、結果として、この導電率で工程をコントロールす
る結果、高いヒドロキシド濃度で現像される傾向にあっ
た。
However, even if a high-performance concentration measuring means is used, it is actually difficult to control the concentration of the alkali developing solution. That is, for an alkaline developer containing carbonates, the total developing component concentration is measured by titration, and based on the concentration, the conductivity meter and ultrasonic densitometer used for concentration control are calibrated, and There was a tendency that an alkaline developer having a hydroxide concentration lower than the target concentration was supplied. In addition, free developing components (hydroxides) can be obtained by complicated titration techniques.
Even if the concentration was measured and the conductivity meter was calibrated based on this concentration, as a result, the process was controlled by this conductivity, and as a result, development tended to occur at a high hydroxide concentration.

【0008】そこで、本発明では、アルカリ現像成分を
含む現像液の濃度を正確にコントロールし、正確でかつ
効率的な現像工程を達成するための現像液の濃度測定技
術を提供することを目的とする。さらに、アルカリ現像
成分を含む現像液の濃度管理、回収もしくは再生技術を
提供することを目的とする。
Therefore, an object of the present invention is to provide a technique for measuring the concentration of a developing solution for accurately controlling the concentration of a developing solution containing an alkaline developing component and achieving an accurate and efficient developing process. To do. Further, it is an object of the present invention to provide a technology for controlling the concentration of a developing solution containing an alkaline developing component, recovering or regenerating it.

【0009】[0009]

【課題を解決するための手段】本発明者らは、アルカリ
現像液の濃度制御の困難性について検討してみた。その
結果、アルカリ現像液の濃度測定においては、従来、炭
酸系塩類の存在については許容範囲内であって計測上問
題ないものとされていたが、今回の技術の採用により初
めて、これらの炭酸系塩類が現像活性を有する遊離のア
ルカリ現像成分の正確な濃度測定を意外にも大きく妨げ
ていた点を見出した。すなわち、アルカリ現像液の濃度
制御の困難性の原因が、アルカリ現像液が、入手の時点
で既にアルカリ現像成分の一部が炭酸系塩類に変化して
しまっている点、および使用の経過により炭酸系塩類が
増加する点、さらに、これらの炭酸系塩類を含む全現像
成分濃度を有効な現像成分濃度として測定していた点に
あることがわかった。そして、現像工程への供給に至る
までの現像液の濃度調整工程、回収工程(濃縮工程を含
む)、再生工程(希釈工程)などの各工程において、現
像液中の、ヒドロオキシドなどの遊離現像成分濃度を測
定すること、およびその手法について検討した結果、各
種被験液中の全現像成分濃度を測定するとともに、炭酸
系塩類濃度を測定することにより、炭酸系塩類の影響を
排除して、正確に遊離現像成分濃度を測定できることを
見出し、これにより、上記した課題を解決できることを
見出し、本発明を完成した。すなわち、本発明によれ
ば、以下の手段が提供される。
The present inventors examined the difficulty of controlling the concentration of an alkaline developer. As a result, when measuring the concentration of alkaline developers, it was conventionally considered that the presence of carbonates was within the permissible range and there was no problem in measurement. It was surprisingly found that salts greatly hindered accurate concentration measurement of the free alkaline developing component having developing activity. That is, it is difficult to control the concentration of the alkali developing solution because the alkali developing solution already has a part of the alkali developing component changed to carbonates at the time of acquisition, and due to the progress of use, It was found that the amount of systemic salts increased and that the total concentration of developing components including these carbonates was measured as the effective developing component concentration. Then, in each step such as the concentration adjusting step of the developing solution until the supply to the developing step, the collecting step (including the concentrating step), the regenerating step (diluting step) and the like, free development such as hydroxide in the developing solution is performed. As a result of measuring the concentration of components and the method, the total developing component concentration in various test solutions was measured, and the concentration of carbonate salts was also measured to eliminate the influence of carbonate salts, and It was found that the concentration of free developing component can be measured, and that the problems described above can be solved by this, and the present invention has been completed. That is, according to the present invention, the following means are provided.

【0010】(1)アルカリ現像成分を含有する現像液
の濃度測定方法であって、現像液中の遊離アルカリ現像
成分濃度を測定する工程、を備える、方法。 (2)アルカリ現像成分を含有する現像液の濃度測定方
法であって、現像液中の全アルカリ現像成分の濃度を測
定する工程と、現像液中の炭酸系塩類の濃度を測定する
工程、とを備える、方法。 (3)前記全アルカリ現像成分濃度を、中和滴定、電位
差滴定、導電率測定手段、位相差測定手段、および超音
波伝播速度測定手段のいずれかを用いて測定する、
(2)記載の方法。 (4)前記炭酸系塩類濃度を、二酸化炭素測定手段を用
いて測定する、(2)または(3)に記載の方法。 (5)前記二酸化炭素測定手段は、赤外線炭酸ガス検出
手段を含む、(4)記載の方法。 (6)(1)〜(5)のいずれかに記載の現像液の濃度
測定方法を実施する工程を備える、現像液の調製方法。 (7)(1)〜(5)のいずれかに記載の現像液の濃度
測定方法を実施する工程を備える、現像廃液の回収方
法。 (8)(1)〜(5)のいずれかに記載の現像液の濃度
測定方法を実施する工程を備える、現像廃液の再生方
法。 (9)アルカリ現像成分を含有する現像液の濃度管理方
法であって、遊離のアルカリ現像成分濃度を有効アルカ
リ現像成分濃度とする、方法。 (10)アルカリ現像成分を含有する現像液の濃度管理
方法であって、以下の式(1)によって求められる有効
アルカリ現像成分濃度を用いて現像液を濃度管理する方
法。 有効アルカリ現像成分濃度=全アルカリ現像成分濃度−炭酸系塩類を構成する アルカリ現像成分濃度 ・・・・・・式(1) (11)アルカリ現像成分を含有する現像液の濃度測定
装置であって、現像液中の遊離アルカリ現像成分濃度を
測定する手段、又は、現像液中の全アルカリ現像成分の
濃度を測定する手段および現像液中の炭酸系塩類の濃度
を測定する手段、を備える、装置。 (12)アルカリ現像成分を含有する現像廃液の再生装
置であって、現像液中の遊離アルカリ現像成分濃度を測
定する手段、又は、現像液中の全アルカリ現像成分の濃
度を測定する手段および現像液中の炭酸系塩類の濃度を
測定する手段、を備える、装置。
(1) A method for measuring the concentration of a developer containing an alkali developing component, which comprises the step of measuring the concentration of free alkali developing component in the developer. (2) A method for measuring the concentration of a developer containing an alkali developing component, which comprises: measuring the concentration of all alkali developing components in the developer; and measuring the concentration of carbonates in the developer. Comprising a method. (3) The total alkali developing component concentration is measured using any one of neutralization titration, potentiometric titration, conductivity measuring means, phase difference measuring means, and ultrasonic wave propagation velocity measuring means.
(2) The method described. (4) The method according to (2) or (3), wherein the carbonic acid salt concentration is measured using a carbon dioxide measuring means. (5) The method according to (4), wherein the carbon dioxide measuring means includes infrared carbon dioxide detecting means. (6) A method for preparing a developer, comprising a step of performing the method for measuring the concentration of a developer according to any one of (1) to (5). (7) A method for collecting a developer waste solution, comprising a step of performing the method for measuring the concentration of a developer according to any one of (1) to (5). (8) A method for recycling a developer waste solution, which comprises a step of performing the method for measuring the concentration of a developer according to any one of (1) to (5). (9) A method for controlling the concentration of a developer containing an alkali developing component, wherein the free alkali developing component concentration is the effective alkali developing component concentration. (10) A method for controlling the concentration of a developing solution containing an alkaline developing component, wherein the concentration of the developing solution is controlled using the effective alkaline developing component concentration obtained by the following formula (1). Effective alkali developing component concentration = total alkali developing component concentration-concentration of alkali developing component forming carbonates Formula (1) (11) A concentration measuring device for a developing solution containing an alkali developing component. An apparatus comprising: a means for measuring the concentration of free alkaline developing components in the developing solution, or a means for measuring the concentration of all alkaline developing components in the developing solution, and a means for measuring the concentration of carbonate salts in the developing solution. . (12) A device for recycling a developing waste solution containing an alkaline developing component, which is a means for measuring the concentration of free alkaline developing components in the developing solution, or a means for measuring the concentration of all alkaline developing components in the developing solution. A device for measuring the concentration of carbonates in the liquid.

【0011】これらの発明によれば、遊離現像成分濃
度、あるいは、全現像成分濃度と炭酸系塩類濃度とを測
定することにより、現像活性を発揮できる現像成分を所
望の濃度に含んだ現像液を調製することができる。この
ため、現像工程に正確に濃度コントロールされたアルカ
リ現像液を供給することができるようになる。この結
果、正確でかつ効率のよい現像工程を実施することがで
きる。また、これらの発明によれば、遊離現像成分濃
度、あるいは、全現像成分濃度と炭酸系塩類濃度とを測
定することにより、アルカリ現像成分を含有する現像液
の有する現像活性を検出することができるようになる。
According to these inventions, by measuring the concentration of free developing components, or the concentration of total developing components and the concentration of carbonates, a developing solution containing a developing component capable of exerting a developing activity in a desired concentration can be obtained. It can be prepared. Therefore, it becomes possible to supply the alkaline developer whose concentration is accurately controlled in the developing step. As a result, an accurate and efficient developing process can be carried out. Further, according to these inventions, the developing activity possessed by the developer containing the alkaline developing component can be detected by measuring the concentration of the free developing component or the concentration of the total developing component and the concentration of carbonate salts. Like

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。本発明に係るアルカリ現像成分を含
有する現像液濃度測定技術は、現像液中の遊離アルカリ
現像成分濃度を測定すること、あるいは、現像液中の全
アルカリ現像成分の濃度および現像液中の炭酸系塩類の
濃度を測定することにある。そして、この濃度測定技
術、すなわち、濃度測定方法および濃度測定装置を用い
ることにより、現像液の濃度調整(希釈)もしくは調
製、現像廃液の回収もしくは再生技術を達成することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. The technique for measuring the concentration of a developing solution containing an alkaline developing component according to the present invention is to measure the concentration of a free alkaline developing component in the developing solution, or to measure the concentration of all the alkaline developing components in the developing solution and the carbonate system in the developing solution. It is to measure the concentration of salts. By using this concentration measuring technique, that is, the concentration measuring method and the concentration measuring device, it is possible to achieve the concentration adjustment (dilution) or preparation of the developer and the recovery or regeneration technique of the developing waste liquid.

【0013】(アルカリ現像成分)アルカリ現像成分
は、各種電子部品の製造等の際に使用される有機アルカ
リであれば特に限定しないが、好ましくは、テトラアル
キルアンモニウムハイドロオキサイド(TAAH)であ
る。TAAHとしては、例えば、水酸化テトラメチルア
ンモニウム(TMAH)、水酸化テトラエチルアンモニ
ウム、水酸化テトラプロピルアンモニウム、水酸化テト
ラブチルアンモニウム、水酸化メチルトリエチルアンモ
ニウム、水酸化トリメチルエチルアンモニウム、水酸化
ジメチルジエチルアンモニウム、水酸化トリメチル(2
−ヒドロキシエチル)アンモニウム(即ち、コリン)、
水酸化トリエチル(2−ヒドロキシエチル)アンモニウ
ム、水酸化ジメチルジ(2−ヒドロキシエチル)アンモ
ニウム、水酸化ジエチルジ(2−ヒドロキシエチル)ア
ンモニウム、水酸化メチルトリ(2−ヒドロキシエチ
ル)アンモニウム、水酸化エチルトリ(2−ヒドロキシ
エチル)アンモニウム、水酸化テトラ(2−ヒドロキシ
エチル)アンモニウム等を挙げることができる。特に、
水酸化テトラメチルアルキルアンモニウムや水酸化テト
ラエチルアルキルアンモニウムである。
(Alkali Developing Component) The alkaline developing component is not particularly limited as long as it is an organic alkali used in the production of various electronic parts, but tetraalkylammonium hydroxide (TAAH) is preferable. Examples of TAAH include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, trimethylethylammonium hydroxide, dimethyldiethylammonium hydroxide, Trimethyl hydroxide (2
-Hydroxyethyl) ammonium (ie choline),
Triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide, methyltri (2-hydroxyethyl) ammonium hydroxide, ethyltri (2-hydroxy) Examples thereof include hydroxyethyl) ammonium and tetra (2-hydroxyethyl) ammonium hydroxide. In particular,
They are tetramethylalkylammonium hydroxide and tetraethylalkylammonium hydroxide.

【0014】これらのアルカリ現像成分は、ハイドロオ
キサイド、すなわち、水酸化物イオンと対イオンをな
し、現像液中においてほとんどが遊離した状態で含まれ
ている。このようなハイドロオキサイドあるいは遊離状
態が、アルカリ現像成分が現像活性を有する状態であ
る。一方、炭酸イオンあるいは炭酸水素イオンのような
弱酸と塩をつくっている状態では、同時に水酸化物イオ
ンが消費されており、本来の現像活性を発揮できない。
しかしながら、かかる塩であっても、中和滴定において
反応し、導電率を有し、また、超音波伝播速度などにも
寄与している。本明細書においては、遊離のアルカリ現
像成分とは、現像液中で遊離した状態で含まれるアルカ
リ現像成分もしくはハイドロオキサイドとして含まれる
アルカリ現像成分をいう。全アルカリ現像成分とは、現
像液中でハイドロオキサイドイオンや他の陰イオンと対
をなし得て、遊離の状態においては現像活性を有する成
分をいうものとする。具体的には、全アルカリ現像成分
は、遊離アルカリ現像成分とハイドロオキサイドイオン
以外の陰イオンと対をなすアルカリ現像成分(典型的に
は炭酸系塩類の形である)とから構成される。全アルカ
リ現像成分の量は、これらのアルカリ現像成分の総和で
ある。特に、現像原液を希釈して所定濃度の現像液を調
製する工程、現像廃液を再生使用する前の希釈などの濃
度調整工程においては、ハイドロオキサイドイオン以外
に存在しうる主要マイナスイオンは炭酸イオンや炭酸水
素イオンなどの炭酸系イオンである。したがって、全ア
ルカリ現像成分量は、遊離アルカリ現像成分と炭酸系塩
類を構成するアルカリ現像成分との総和として求めるこ
とができる。
These alkali developing components form a counter ion with hydroxide, that is, a hydroxide ion, and most of them are contained in the developer in a free state. Such a hydroxide or free state is a state in which the alkali developing component has developing activity. On the other hand, in the state of forming a salt with a weak acid such as carbonate ion or hydrogen carbonate ion, hydroxide ion is simultaneously consumed and the original developing activity cannot be exhibited.
However, even such a salt reacts in neutralization titration, has conductivity, and also contributes to ultrasonic wave propagation speed and the like. In the present specification, the free alkali developing component refers to an alkali developing component contained in the developer in a free state or an alkali developing component contained as a hydroxide. The all-alkaline developing component means a component capable of forming a pair with a hydroxide ion or other anion in a developing solution and having a developing activity in a free state. Specifically, the total alkaline developing component is composed of a free alkaline developing component and an alkaline developing component (typically in the form of carbonates) paired with anions other than hydroxide ions. The amount of all alkaline developing components is the sum of these alkaline developing components. In particular, in the step of diluting the stock solution of the developer to prepare a developer having a predetermined concentration, in the step of adjusting the concentration such as the dilution of the waste developer before reusing it, the major negative ions that may be present other than the hydroxide ions are carbonate ions and Carbonate ions such as hydrogen carbonate ions. Therefore, the total amount of the alkali developing component can be obtained as the sum of the free alkali developing component and the alkali developing component that constitutes the carbonate.

【0015】(遊離のアルカリ現像成分)遊離のアルカ
リ現像成分の濃度は直接的に測定することは困難であ
る。遊離のアルカリ現像成分は、全アルカリ現像成分と
炭酸系塩類との濃度をそれぞれ測定することによって得
ることが可能となる。この場合、全アルカリ現像成分の
濃度は、例えば、pH(中和)滴定装置、電位差滴定装
置、導電率計、位相差濃度計、超音波濃度計の各種濃度
測定手段により測定することができる。絶対的定量法で
あり、一般的に試験方法として確立している点、及び精
度の点から、pH(中和)滴定、電位差滴定などの滴定
手段を用いることが好ましい。
(Free Alkaline Developing Component) It is difficult to directly measure the concentration of the free alkaline developing component. The free alkaline developing component can be obtained by measuring the concentrations of the total alkaline developing component and the carbonate salts. In this case, the concentration of the total alkali developing component can be measured by various concentration measuring means such as a pH (neutralization) titrator, a potentiometric titrator, a conductivity meter, a phase difference densitometer, and an ultrasonic densitometer. It is an absolute quantitative method, and it is preferable to use a titration means such as pH (neutralization) titration or potentiometric titration from the viewpoint that it is generally established as a test method and the accuracy.

【0016】従来、全アルカリ現像成分及び遊離のアル
カリ現像成分は、中和滴定により同時に求めていた。す
なわち、通常の中和滴定により全アルカリ現像成分を、
また、塩化バリウムを加えて炭酸バリウムとして炭酸系
イオンを除去することで、遊離のアルカリ現像成分のみ
をそれぞれ塩酸で滴定することで定量できる。この全ア
ルカリ現像成分と遊離アルカリ現像成分の滴定は同一溶
液で連続してでも別個の溶液で分けてでもいずれでもで
きる。ところが、この方法では、空気中の炭酸ガスが滴
定操作中にアルカリ現像成分と結合し、遊離アルカリ成
分濃度が実際より低くでる傾向があり、厳密な測定では
無視できなくなる。そこで、本発明では、より精度の高
い定量をするために、全アルカリ現像成分は滴定法等で
求める一方、空気中の二酸化炭素の影響を受けない(若
しくは受けにくい)手段あるいは空気中の二酸化炭素の
影響を受けない(若しくは受けにくい)状態での測定に
より炭酸成分の濃度を求め、全アルカリ現像成分から別
に求めた炭酸塩成分の濃度を差し引いて遊離アルカリ成
分を求めることとして、従来の問題を解決している。な
お、滴定の終点決定には、pH、電位差、指示薬などが
あるが、本発明においては、炭酸塩の当量点にあたる終
点を電位差滴定で決定する方法を用いることが好まし
い。
Conventionally, the total alkali developing component and the free alkali developing component have been simultaneously determined by neutralization titration. That is, all the alkali developing components are subjected to the usual neutralization titration,
Also, by adding barium chloride to remove carbonate ions as barium carbonate, only free alkali developing components can be quantified by titrating with hydrochloric acid. The titration of the total alkaline developing component and the free alkaline developing component may be carried out continuously with the same solution or separately with separate solutions. However, in this method, carbon dioxide gas in the air is bound to the alkali developing component during the titration operation, and the concentration of the free alkali component tends to be lower than the actual concentration, which cannot be ignored in the strict measurement. Therefore, in the present invention, in order to perform a more accurate quantification, the total alkali developing component is determined by a titration method or the like, while a means that is not affected by (or is less susceptible to) carbon dioxide in air or carbon dioxide in air. The conventional problem is that the concentration of carbonic acid component is determined by the measurement without being affected by (or is less likely to be affected by), and the concentration of carbonate component obtained separately is subtracted from the total alkali developing component to obtain the free alkaline component. Has been resolved. In addition, pH, potential difference, indicator, etc. are used for determining the end point of titration, but in the present invention, it is preferable to use a method of determining the end point corresponding to the equivalent point of carbonate by potentiometric titration.

【0017】また、ライン上での連続計測が容易である
という観点からは、導電率計、超音波濃度計及び位相差
濃度計を使用することもできる。導電率計、位相差濃度
計、超音波濃度計などの測定手段を用いる場合には、他
の中和滴定、電位差滴定などの濃度測定手段により測定
された遊離アルカリ現像成分の標準液による校正と炭酸
系塩類としてのアルカリ現像成分の標準液による校正と
を行っておく必要がある。このような校正により、少な
くとも制御しようとする全アルカリ現像成分の濃度領域
内において、導電率計や超音波濃度計によって計測され
るデータと、それぞれの濃度との関係とを定め、計測デ
ータを全アルカリ現像成分(遊離アルカリ現像成分と炭
酸系塩類のアルカリ現像成分の和)の濃度に対応させる
ことができる。本発明者らによれば、たとえば、全アル
カリ現像成分あるいは遊離アルカリ現像成分濃度が2.
38wt%の近傍の導電率に関しては、炭酸系塩類は、
遊離アルカリ現像成分が有する導電率感度のおおよそ半
分の感度を有していることがわかっている。すなわち、
濃度Aの遊離アルカリ現像成分と濃度Bの炭酸系塩類ア
ルカリ現像成分とを含有している場合、導電率は、濃度
Aと濃度0.5Bとの和に比例することがわかってい
る。
From the viewpoint of easy continuous measurement on the line, a conductivity meter, an ultrasonic densitometer and a phase difference densitometer can be used. When using a measuring means such as a conductivity meter, a phase difference densitometer, an ultrasonic densitometer, etc., it is necessary to calibrate with a standard solution of the free alkali developing component measured by other neutralization titration, potentiometric titration, or other concentration measurement means. It is necessary to calibrate the alkaline developing component as a carbonate with a standard solution. By such calibration, at least within the concentration range of all the alkali developing components to be controlled, the data measured by the conductivity meter or the ultrasonic densitometer and the relationship between the respective concentrations are determined, and all the measured data are determined. It can correspond to the concentration of the alkali developing component (the sum of the free alkali developing component and the alkali developing component of carbonates). According to the present inventors, for example, the total alkali developing component or free alkali developing component concentration is 2.
For conductivity near 38 wt%, carbonates
It has been found to have a sensitivity that is approximately half that of the conductivity sensitivity of the free alkali developing component. That is,
It has been found that when a concentration A free alkali developing component and a concentration B alkali carbonate developing component are contained, the conductivity is proportional to the sum of the concentration A and the concentration 0.5B.

【0018】一方、炭酸系塩類の濃度は、上述したよう
に、空気中の二酸化炭素の影響を受けない(受けにく
い)手段、あるいは空気中の二酸化炭素の影響を受けな
い(受けにくい)状態で測定することが好ましい。空気
中の二酸化炭素の影響を受けない(受けにくい)手段と
しては、現像液中の無機炭素量あるいは二酸化炭素量を
直接測定する方法を挙げることができる。これらの手段
は、一般に、測定時間が短いか、あるいは測定雰囲気が
制限されているため、測定時点での現像液中の二酸化炭
素量を正確に測定することができる。無機炭素あるいは
二酸化炭素の測定手段としては、各種公知の手段を採用
することができるが、なかでも、一般に市販されている
炭酸ガスセンサー(非分散赤外炭酸ガス濃度計)などを
用いることが好ましい。当該センサーは、被験液に対し
て酸を添加したCO2を発生させる手段と、発生したC
2を赤外線で検出する手段、とを備えている。CO2
生手段は、リン酸などの無機強酸溶液が収容されたガス
発生セルと、被験液をセルに供給する手段と、セル内の
無機強酸にアルゴンなどの不活性ガスや空気などのキャ
リヤガスを導入する手段と、セルのヘッドスペースガス
を赤外線検出手段へ移送する手段、とを備えている。
On the other hand, as described above, the concentration of carbonic acid-based salts depends on the means that is not affected (hard to receive) by the carbon dioxide in the air, or in the state that it is not (hardly) affected by the carbon dioxide in the air. It is preferable to measure. As a method that is not (or less likely) to be affected by carbon dioxide in the air, a method of directly measuring the amount of inorganic carbon or the amount of carbon dioxide in the developer can be mentioned. Generally, these means can measure the amount of carbon dioxide in the developing solution at the time of measurement accurately because the measurement time is short or the measurement atmosphere is limited. As a means for measuring inorganic carbon or carbon dioxide, various known means can be adopted, but among them, it is preferable to use a carbon dioxide gas sensor (non-dispersive infrared carbon dioxide gas concentration meter) which is generally commercially available. . The sensor is a means for generating CO 2 by adding an acid to a test solution, and a generated C
Means for detecting O 2 by infrared rays. The CO 2 generating means is a gas generating cell containing a strong inorganic acid solution such as phosphoric acid, a means for supplying a test solution to the cell, an inert gas such as argon or a carrier gas such as air for the strong inorganic acid in the cell. And a means for transferring the headspace gas of the cell to the infrared detecting means.

【0019】このCO2発生手段において、被験液がセ
ル内に導入されると、無機強酸溶液中において炭酸系塩
類はイオンから分子状のCO2となってセルのヘッドス
ペースに移動する。さらに、キャリヤガスとともに、移
送手段を介して赤外線検手段へと移送される。赤外線検
出手段には、CO2の特性吸収波数領域に応じた赤外線
が照射されて、吸収強度からCO2濃度が測定される。
現像液中の無機炭酸あるいはCO2の濃度が、無機炭酸
塩類に由来するものと考えることができるため、これら
の濃度からアルカリ現像成分の炭酸系塩類の濃度を測定
することができる。
In this CO 2 generating means, when the test liquid is introduced into the cell, the carbonate salts in the strong inorganic acid solution become ionized into molecular CO 2 and move to the headspace of the cell. Further, it is transferred to the infrared detecting means via the transferring means together with the carrier gas. The infrared detecting device, infrared rays according to characteristic absorption wave number region of CO 2 is irradiated, CO 2 concentration is measured from the absorption intensity.
Since the concentration of inorganic carbonic acid or CO 2 in the developer can be considered to be derived from the inorganic carbonates, the concentration of the carbonate salt of the alkali developing component can be measured from these concentrations.

【0020】全アルカリ現像成分の濃度と炭酸系塩類の
濃度が求まると、遊離のアルカリ現像成分の濃度を求め
ることができる。上述のように、全アルカリ現像成分の
濃度から炭酸系塩類の濃度を差し引くことにより、遊離
アルカリ現像成分の濃度を求めることができる。また、
導電率計、位相差濃度計、超音波濃度計などによる場合
には、予め求めておいた、遊離アルカリ現像成分濃度と
炭酸系塩類の濃度と全アルカリ現像成分に相当する計測
データとの関係式に、炭酸系塩類の濃度とこれらの計測
値を導入することにより、遊離アルカリ現像成分濃度を
得ることができる。
When the concentration of the total alkali developing component and the concentration of carbonates are determined, the concentration of the free alkaline developing component can be determined. As described above, the concentration of the free alkali developing component can be obtained by subtracting the concentration of the carbonate salt from the concentration of the total alkaline developing component. Also,
When using a conductivity meter, phase difference densitometer, ultrasonic densitometer, etc., the relational expression between the free alkali developing component concentration, the concentration of carbonate salts, and the measurement data corresponding to the total alkaline developing component, which was obtained in advance. The concentration of free alkali developing component can be obtained by introducing the concentration of carbonic acid salt and the measured values thereof.

【0021】このような濃度測定工程あるいは濃度測定
手段を備えることにより、第一に、現像液の供給ライン
に、正確な現像活性を有するアルカリ現像液を提供する
ことができるようになる。このため、精度の高い現像工
程を容易に実現できるようになる。さらに、かかる濃度
測定工程あるいは濃度測定手段により、現像工程、現像
廃液の搬送ライン、回収工程、濃縮工程、再生工程、及
び最終希釈工程において、現像活性を有するアルカリ現
像成分(遊離アルカリ現像成分)の濃度を正確に測定す
ることができるようになる。この濃度に基づいて、これ
らの各種工程における濃度管理を実施することで、所望
の現像活性を有する現像液を現像工程に供給することが
できる他、現像廃液の回収工程、濃縮工程、再生工程な
どの各工程の濃度管理を的確に行うことができ、効率的
に回収・再生を実施することができる。また、液晶や半
導体基板のフォト工程での不良要因を削減できる。
By providing such a concentration measuring step or concentration measuring means, firstly, it becomes possible to provide an alkaline developing solution having an accurate developing activity to the developing solution supply line. Therefore, a highly accurate developing process can be easily realized. Further, by such a concentration measuring step or concentration measuring means, in the developing step, the developing waste liquid conveying line, the collecting step, the concentrating step, the regenerating step, and the final diluting step, the alkaline developing component (free alkaline developing component) having the developing activity is developed. It becomes possible to measure the concentration accurately. By carrying out concentration control in these various processes based on this concentration, a developer having a desired developing activity can be supplied to the developing process, and a developing waste liquid collecting process, a concentrating process, a regenerating process, etc. It is possible to precisely control the concentration of each step of, and to efficiently collect and regenerate. Further, it is possible to reduce the causes of defects in the photo process of the liquid crystal or semiconductor substrate.

【0022】表1に、アルカリ現像液(TMAH)が空
気中に放置された経過時間に応じた中和滴定法による全
アルカリ現像液成分と炭酸塩の濃度測定結果と、二酸化
炭素測定手段(赤外線炭酸ガス検出手段、以下、本法と
いう。)による炭酸塩濃度測定結果とを対比した結果を
示す。
Table 1 shows the results of measuring the concentrations of all the alkaline developer components and carbonates by the neutralization titration method according to the elapsed time after the alkaline developer (TMAH) was left in the air, and the carbon dioxide measuring means (infrared ray). The results of comparison with the measurement results of the carbonate concentration by the carbon dioxide detection means (hereinafter referred to as the present method) will be shown.

【表1】 表1に示すように、放置時間が経過しても、全アルカリ
現像成分は一定であった。また、本法による炭酸塩濃度
が大きく変化するのに対し、中和滴定法による炭酸塩濃
度は、それほど大きく変化せず、また、当初(放置時間
0)の時点において本法の結果に比較して大きな値(差
0.10wt%)を示す一方、30分経過したときに
も、本法よりもやや高い結果(差0.005wt%)を
示していた。これによれば、中和滴定時の計測時間中に
CO2が試料液中に溶け込んだことが考えられる。した
がって、この結果によって、測定操作中に二酸化炭素を
吸収することによって生成した炭酸塩を滴定していると
いう現象が裏付けられる。
[Table 1] As shown in Table 1, even if the standing time has passed, total alkali
The developing component was constant. Also, the carbonate concentration according to this method
However, the carbonate concentration by the neutralization titration method
The degree does not change so much, and at the beginning (leave time
At time 0)Of this lawLarger value compared to the result (difference
0.10 wt%) while 30 minutes have passed
Also, a slightly higher result (difference 0.005 wt%) than this method
Was showing. According to this, during the measurement time at the time of neutralization titration
CO2May have dissolved in the sample solution. did
Therefore, this result indicates that carbon dioxide should be removed during the measurement operation.
If you are titrating the carbonate produced by absorption
This phenomenon is supported.

【0023】[0023]

【発明の効果】本発明によれば、アルカリ現像成分を含
む現像液の濃度を正確にコントロールし、正確でかつ効
率的な現像工程を達成するための現像液の濃度測定技術
を提供することができる。また、この濃度測定技術に基
づいて、効率的なアルカリ現像液の濃度管理、アルカリ
現像廃液の回収もしくは再生技術を提供することができ
る。また、この管理方法を用いることにより、液晶、半
導体製造におけるフォト工程での歩留まり向上、品質向
上を図ることができる。
According to the present invention, it is possible to provide a technique for measuring the concentration of a developer for accurately controlling the concentration of a developer containing an alkaline developing component and achieving an accurate and efficient developing process. it can. Further, based on this concentration measuring technique, it is possible to provide an effective concentration control of the alkaline developing solution and a technique for recovering or regenerating the alkaline developing waste solution. Further, by using this management method, it is possible to improve the yield and quality in the photo process in manufacturing liquid crystal and semiconductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五十嵐 軌雄 石川県能美郡川北町字山田先出25 松下環 境空調エンジニアリング株式会社石川セク ション内 (72)発明者 井上 恭 石川県能美郡川北町字山田先出25 松下環 境空調エンジニアリング株式会社石川セク ション内 Fターム(参考) 2G059 AA01 BB01 CC04 EE01 GG10 HH01 KK01 2H096 AA25 AA26 AA27 GA08 LA19 5F046 LA12    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Yasuo Igarashi             25 Matsuda Tamaki             Sakai Air Conditioning Engineering Co., Ltd. Ishikawa Sek             Within the application (72) Inventor K. Inoue             25 Matsuda Tamaki             Sakai Air Conditioning Engineering Co., Ltd. Ishikawa Sek             Within the application F-term (reference) 2G059 AA01 BB01 CC04 EE01 GG10                       HH01 KK01                 2H096 AA25 AA26 AA27 GA08 LA19                 5F046 LA12

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】アルカリ現像成分を含有する現像液の濃度
測定方法であって、 現像液中の遊離アルカリ現像成分濃度を測定する工程、
を備える、方法。
1. A method for measuring the concentration of a developer containing an alkali developing component, comprising the step of measuring the concentration of free alkali developing component in the developer.
Comprising a method.
【請求項2】アルカリ現像成分を含有する現像液の濃度
測定方法であって、 現像液中の全アルカリ現像成分の濃度を測定する工程
と、 現像液中の炭酸系塩類の濃度を測定する工程、とを備え
る、方法。
2. A method for measuring the concentration of a developer containing an alkali developing component, which comprises the steps of measuring the concentration of all alkali developing components in the developer and the step of measuring the concentration of carbonate salts in the developer. , And.
【請求項3】前記全アルカリ現像成分濃度を、中和滴
定、電位差滴定、導電率測定手段、位相差測定手段、お
よび超音波伝播速度測定手段のいずれかを用いて測定す
る、請求項2に記載の方法。
3. The total alkali developing component concentration is measured using any one of neutralization titration, potentiometric titration, conductivity measuring means, phase difference measuring means, and ultrasonic wave propagation velocity measuring means. The method described.
【請求項4】前記炭酸系塩類濃度を、二酸化炭素測定手
段を用いて測定する、請求項2または3に記載の方法。
4. The method according to claim 2, wherein the carbonic acid salt concentration is measured using a carbon dioxide measuring means.
【請求項5】前記二酸化炭素測定手段は、赤外線炭酸ガ
ス検出手段を含む、請求項4に記載の方法。
5. The method according to claim 4, wherein the carbon dioxide measuring means includes infrared carbon dioxide detecting means.
【請求項6】請求項1〜5のいずれかに記載の現像液の
濃度測定方法を実施する工程を備える、現像液の調製方
法。
6. A method for preparing a developing solution, which comprises a step of carrying out the method for measuring the concentration of a developing solution according to claim 1.
【請求項7】請求項1〜5のいずれかに記載の現像液の
濃度測定方法を実施する工程を備える、現像廃液の回収
方法。
7. A method for collecting a developer waste solution, which comprises a step of carrying out the method for measuring the concentration of a developer according to claim 1.
【請求項8】請求項1〜5のいずれかに記載の現像液の
濃度測定方法を実施する工程を備える、現像廃液の再生
方法。
8. A method for recycling a developer waste solution, which comprises the step of carrying out the method for measuring the concentration of a developer according to claim 1.
【請求項9】アルカリ現像成分を含有する現像液の濃度
管理方法であって、 遊離のアルカリ現像成分濃度を有効アルカリ現像成分濃
度とする、方法。
9. A method for controlling the concentration of a developer containing an alkali developing component, wherein the free alkali developing component concentration is the effective alkali developing component concentration.
【請求項10】アルカリ現像成分を含有する現像液の濃
度管理方法であって、 以下の式(1)によって求められる有効アルカリ現像成
分濃度を用いて現像液を濃度管理する方法。 有効アルカリ現像成分濃度=全アルカリ現像成分濃度−炭酸系塩類を構成する アルカリ現像成分濃度 ・・・・・・式(1)
10. A method for controlling the concentration of a developing solution containing an alkaline developing component, wherein the concentration of the developing solution is controlled using the effective alkaline developing component concentration obtained by the following formula (1). Effective alkali developing component concentration = total alkali developing component concentration-concentration of alkaline developing components that make up carbonates ..... Formula (1)
【請求項11】アルカリ現像成分を含有する現像液の濃
度測定装置であって、 現像液中の遊離アルカリ現像成分濃度を測定する手段、
又は、 現像液中の全アルカリ現像成分の濃度を測定する手段お
よび現像液中の炭酸系塩類の濃度を測定する手段、を備
える、装置。
11. A device for measuring the concentration of a developing solution containing an alkali developing component, comprising means for measuring the concentration of free alkaline developing component in the developing solution,
Alternatively, the apparatus is provided with means for measuring the concentration of all alkali developing components in the developing solution and means for measuring the concentration of carbonate salts in the developing solution.
【請求項12】アルカリ現像成分を含有する現像廃液の
再生装置であって、 現像液中の遊離アルカリ現像成分濃度を測定する手段、
又は、 現像液中の全アルカリ現像成分の濃度を測定する手段お
よび現像液中の炭酸系塩類の濃度を測定する手段、を備
える、装置。
12. A reclaiming device for developing waste liquid containing an alkali developing component, comprising means for measuring the concentration of free alkaline developing component in the developing solution,
Alternatively, the apparatus is provided with means for measuring the concentration of all alkali developing components in the developing solution and means for measuring the concentration of carbonate salts in the developing solution.
JP2002097479A 2002-03-29 2002-03-29 Alkali developer concentration measurement method Expired - Fee Related JP4097973B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002097479A JP4097973B2 (en) 2002-03-29 2002-03-29 Alkali developer concentration measurement method
KR20030018961A KR100916986B1 (en) 2002-03-29 2003-03-26 A method for measuring a concentration of an alkali developer and a method for preparing a developer
TW92106924A TW200305794A (en) 2002-03-29 2003-03-27 Method for determining the concentration of alkaline developer and method for preparing developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097479A JP4097973B2 (en) 2002-03-29 2002-03-29 Alkali developer concentration measurement method

Publications (2)

Publication Number Publication Date
JP2003295470A true JP2003295470A (en) 2003-10-15
JP4097973B2 JP4097973B2 (en) 2008-06-11

Family

ID=29239963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097479A Expired - Fee Related JP4097973B2 (en) 2002-03-29 2002-03-29 Alkali developer concentration measurement method

Country Status (3)

Country Link
JP (1) JP4097973B2 (en)
KR (1) KR100916986B1 (en)
TW (1) TW200305794A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070351A (en) * 2003-08-22 2005-03-17 Nagase & Co Ltd Method and apparatus for supplying developing solution
JP2006189646A (en) * 2005-01-06 2006-07-20 Nagase & Co Ltd Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution
JP2007123847A (en) * 2005-09-28 2007-05-17 Semiconductor Energy Lab Co Ltd Waste liquid treatment method and apparatus
JP2017028089A (en) * 2015-07-22 2017-02-02 株式会社平間理化研究所 Constituent concentration measurement method of developing solution, and developing solution management method and device
JP2017050351A (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Carbonic acid concentration management method in resist exfoliation liquid and carbonic acid concentration managing device
JP2017069273A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Method of managing carbonic acid concentration in resist stripping liquid and carbonic acid concentration managing device
CN106596840A (en) * 2016-12-15 2017-04-26 深圳市华星光电技术有限公司 Developer alkali liquor concentration measuring method and adjusting method
CN108345184A (en) * 2017-01-23 2018-07-31 株式会社平间理化研究所 Developing apparatus
CN108344778A (en) * 2017-01-23 2018-07-31 株式会社平间理化研究所 The component concentration measuring device and developer solution managing device of developer solution
CN108345186A (en) * 2017-01-23 2018-07-31 株式会社平间理化研究所 Developer solution managing device
JP2018120901A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Development device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4097973B2 (en) * 2002-03-29 2008-06-11 松下環境空調エンジニアリング株式会社 Alkali developer concentration measurement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142781A (en) * 1991-11-19 1993-06-11 Konica Corp Treating method for waste developer of photosensitive material and automatic developing machine used in this treating method
JP2001154373A (en) * 1999-11-26 2001-06-08 Fuji Photo Film Co Ltd Method for processing photosensitive planographic printing plate
JP4097973B2 (en) * 2002-03-29 2008-06-11 松下環境空調エンジニアリング株式会社 Alkali developer concentration measurement method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070351A (en) * 2003-08-22 2005-03-17 Nagase & Co Ltd Method and apparatus for supplying developing solution
JP2006189646A (en) * 2005-01-06 2006-07-20 Nagase & Co Ltd Method for removing carbonate in resist developing solution, removing device, and method for controlling concentration of resist developing solution
JP2007123847A (en) * 2005-09-28 2007-05-17 Semiconductor Energy Lab Co Ltd Waste liquid treatment method and apparatus
JP2017028089A (en) * 2015-07-22 2017-02-02 株式会社平間理化研究所 Constituent concentration measurement method of developing solution, and developing solution management method and device
JP2017050351A (en) * 2015-08-31 2017-03-09 パナソニックIpマネジメント株式会社 Carbonic acid concentration management method in resist exfoliation liquid and carbonic acid concentration managing device
JP2017069273A (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Method of managing carbonic acid concentration in resist stripping liquid and carbonic acid concentration managing device
CN106596840A (en) * 2016-12-15 2017-04-26 深圳市华星光电技术有限公司 Developer alkali liquor concentration measuring method and adjusting method
CN106596840B (en) * 2016-12-15 2019-01-22 深圳市华星光电技术有限公司 Developer solution concentration of lye measurement method and adjusting method
CN108345184A (en) * 2017-01-23 2018-07-31 株式会社平间理化研究所 Developing apparatus
CN108344778A (en) * 2017-01-23 2018-07-31 株式会社平间理化研究所 The component concentration measuring device and developer solution managing device of developer solution
CN108345186A (en) * 2017-01-23 2018-07-31 株式会社平间理化研究所 Developer solution managing device
JP2018120901A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Development device
JP2018120895A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Developing device
JP2018120893A (en) * 2017-01-23 2018-08-02 株式会社平間理化研究所 Device for measuring component concentration of developer, and developer management device

Also Published As

Publication number Publication date
JP4097973B2 (en) 2008-06-11
TW200305794A (en) 2003-11-01
KR100916986B1 (en) 2009-09-14
KR20030078694A (en) 2003-10-08
TWI313794B (en) 2009-08-21

Similar Documents

Publication Publication Date Title
JP2003295470A (en) Method for measuring concentration of alkali developer liquid and preparation device of developer
KR101446619B1 (en) Method for regulating concentration of developing solution, apparatus for preparing the developing solution, and developing solution
EP0023758B1 (en) Stabilised developer concentrates and developers containing a quaternary alkanol ammonium hydroxide
JP2004170451A5 (en)
JP2011128455A (en) Device for measuring concentration of carbonic acid-based salt, system for controlling alkali developing solution, and method for measuring concentration of carbonic acid-based salt
JPH0451020B2 (en)
EP1517189A3 (en) Critical dimension optimisation in lithography
EP0124297A2 (en) Alkaline solution for developing positive photoresists
JPH0326827B2 (en)
JPH0612435B2 (en) Radiation-sensitive member processing method and processing apparatus therefor
JP2002057104A5 (en)
JP4366490B2 (en) Developer supply method and apparatus
EP0178496A2 (en) High contrast photoresist developer
JPH10513576A (en) Photoactive compound
JP2002107948A (en) Method for estimating alkali concentration of developing solution, and equipment therefor
Wang et al. Photobase generator and photo decomposable quencher for high-resolution photoresist applications
JP2005300421A (en) Chemical certifying method and method of manufacturing semiconductor apparatus
WO2007034949A1 (en) Method for measuring liquid immersion lithography soluble fraction in organic film
JP5637676B2 (en) Method for measuring photoresist dissolution in developer
JP2004118197A (en) Recycling method for developing solution of photoresist containing tetramethylammonium hydroxide(tmah) and system for the same
JPS61162049A (en) Treatment of photosensitive lithographic printing plate
JPH0697151A (en) Formation of etching pattern
JP2009191312A (en) Etching control device
JP2010192754A (en) Resist pattern simulation method and device
JPH11297607A (en) Pattern forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4097973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees