JP2006189337A - Fine particle measuring instrument - Google Patents

Fine particle measuring instrument Download PDF

Info

Publication number
JP2006189337A
JP2006189337A JP2005001729A JP2005001729A JP2006189337A JP 2006189337 A JP2006189337 A JP 2006189337A JP 2005001729 A JP2005001729 A JP 2005001729A JP 2005001729 A JP2005001729 A JP 2005001729A JP 2006189337 A JP2006189337 A JP 2006189337A
Authority
JP
Japan
Prior art keywords
light
noise
path space
optical path
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005001729A
Other languages
Japanese (ja)
Inventor
Kazuhiro Koizumi
和裕 小泉
Shinichi Hiramoto
伸一 平本
Takeshi Ishikura
剛 石倉
Takayuki Nakamura
貴之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005001729A priority Critical patent/JP2006189337A/en
Publication of JP2006189337A publication Critical patent/JP2006189337A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine particle measuring instrument for drastically reducing spurious counting owing to photo noise, thereby enhancing the reliability of fine particle detection. <P>SOLUTION: A photodiode 35 for photo noise detection is placed at a position where scattered light owing to fine particles is not detected on an inner wall of an optical path space 21, and at a position where it is possible to receive stray light which is a part of laser light coming from a semiconductor laser 28 and irregularly reflected by the inner wall and photo noise arising in the laser light owing to the effect of a change in ambient temperature, etc., and in the vicinity of a cylindrical lens 30, in this example. Further, a photodiode 32 for scattered light detection and the photodiode 35 for photo noise detection are connected to a noise determination part 36. The determination part 36 determines that photo noises are being detected when light signals higher than a predetermined threshold are simultaneously received by both of the photodiodes 35 and 32. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、クリーンルームなどの粉塵を管理する領域において、粉塵などの微粒子の数と大きさを計測する微粒子測定装置に関する。   The present invention relates to a fine particle measuring apparatus that measures the number and size of fine particles such as dust in an area for managing dust such as a clean room.

従来の微粒子測定装置は、気体等の流体を当該微粒子測定装置の内部に吸引して外部へ排気し、この際、内部に流れる流体に光源からのレーザ光を照射し、この照射時に流体中に含まれる微粒子での散乱光を受光素子で受光するように構成されている。そして、その受光に応じて受光素子から出力される電気信号から微粒子の数及び大きさ(粒径)を演算して求めるようになっている。   In the conventional particle measuring apparatus, a fluid such as gas is sucked into the particle measuring apparatus and exhausted to the outside. At this time, the fluid flowing inside is irradiated with laser light from a light source. The light receiving element is configured to receive scattered light from the contained fine particles. Then, the number and size (particle size) of the fine particles are calculated from the electrical signal output from the light receiving element in response to the received light.

この種の従来の微粒子測定装置の構成例を図3に断面図で示し、その説明を行う。
図3に示す従来の微粒子測定装置10は、長手方向中心線(光軸26)に沿って円柱形状に貫通する光路空間21を有する円筒形状の測定管22を有し、この測定管22の一端部に、光路空間21を外界と遮光状態に閉塞する円板部材23が固定され、この対向端に、光路空間21を外界と遮光状態に閉塞する円錐コーン形状内壁の光吸収体24が固定されている。
A configuration example of this type of conventional fine particle measuring apparatus is shown in a sectional view in FIG. 3 and will be described.
A conventional particle measuring apparatus 10 shown in FIG. 3 has a cylindrical measurement tube 22 having an optical path space 21 penetrating in a cylindrical shape along a longitudinal center line (optical axis 26), and one end of the measurement tube 22. A disk member 23 that closes the light path space 21 in the light shielding state with the outside world is fixed to the portion, and a light absorber 24 having a conical cone-shaped inner wall that closes the light path space 21 in the light shielding state with the outside world is fixed to the opposite end. ing.

また、光吸収体24の先端部の光軸26に沿って外界へ抜ける貫通穴に、光を透過する材料が嵌合又は埋め込まれて形成された光透過部25が設けられ、この光透過部25から透過した光を受光できる位置に光量制御用フォトダイオード27が配置固定されている。更に、光路空間21において、円板部材23に半導体レーザ28が固定され、このレーザ光出射側にコリメートレンズ29とシリンドリカルレンズ30とが所定間隔離して配置されている。シリンドリカルレンズ30から所定間隔離れた位置に当該レンズ30からの扁平ビーム光と気流31とが交差する状態となるように、測定管22の外面から周壁を貫通して光路空間21へ抜ける図示せぬ噴出通路及び吸引通路が対向状態に形成されている。   In addition, a light transmitting portion 25 formed by fitting or embedding a light transmitting material is provided in a through hole that extends to the outside along the optical axis 26 at the tip of the light absorber 24, and this light transmitting portion A light amount control photodiode 27 is arranged and fixed at a position where the light transmitted from 25 can be received. Further, in the optical path space 21, a semiconductor laser 28 is fixed to the disk member 23, and a collimating lens 29 and a cylindrical lens 30 are disposed on the laser light emitting side with a predetermined distance therebetween. The flat beam light from the lens 30 and the airflow 31 cross each other at a predetermined distance from the cylindrical lens 30 and pass through the peripheral wall from the outer surface of the measurement tube 22 to the optical path space 21 (not shown). The ejection passage and the suction passage are formed in an opposing state.

そして、測定管22の外面に抜ける噴出通路及び吸引通路の開口は、図示せぬ排気/吸引用のポンプに接続されており、そのポンプによって噴出通路から噴出された気体が吸引通路で吸引されることによって、光路空間21に光軸26と交差して気流31が流れるようになっている。その気流31が流れる光路空間21の内壁には、散乱光検出用フォトダイオード32が配置されている。   The openings of the ejection passage and the suction passage that pass through the outer surface of the measuring tube 22 are connected to an exhaust / suction pump (not shown), and the gas ejected from the ejection passage by the pump is sucked by the suction passage. As a result, an air flow 31 flows through the optical path space 21 across the optical axis 26. A scattered light detection photodiode 32 is disposed on the inner wall of the optical path space 21 through which the air flow 31 flows.

このような構成の微粒子測定装置10は、クリーンルーム等の粉塵を管理する領域に配置されて、次のような微粒子の測定動作を行う。
まず、ポンプが起動されると、噴出通路から噴出された気流31が光路空間21を通って吸引通路で吸引され、この後、半導体レーザ28から出射されたレーザ光がコリメートレンズ29によって平行ビーム光とされ、これが更にシリンドリカルレンズ30によって扁平ビーム光とされる。
The particle measuring apparatus 10 having such a configuration is arranged in a dust management area such as a clean room and performs the following particle measurement operation.
First, when the pump is activated, the air flow 31 ejected from the ejection passage is sucked in the suction passage through the optical path space 21, and then the laser light emitted from the semiconductor laser 28 is collimated by the collimating lens 29. This is further converted into flat beam light by the cylindrical lens 30.

この扁平ビーム光は、光路空間21を横切る気流31を交差して透過し、この透過時に気体中の微粒子で光が散乱され、この散乱光が散乱光検出用フォトダイオード32で受光される。この受光に応じて散乱光検出用フォトダイオード32から出力される電気信号が図示せぬ増幅装置によって増幅され、更に図示せぬ演算装置によって、その増幅信号の波形の振幅や幅から微粒子の数と粒径が求められる。   The flat beam light crosses and passes through an airflow 31 that traverses the optical path space 21, and at the time of transmission, light is scattered by fine particles in the gas, and the scattered light is received by the scattered light detection photodiode 32. In response to this light reception, the electrical signal output from the scattered light detection photodiode 32 is amplified by an amplifying device (not shown), and further, an arithmetic unit (not shown) calculates the number of particles from the amplitude and width of the waveform of the amplified signal. The particle size is required.

一方、気流31を透過した扁平ビーム光は、光吸収体24に照射される。扁平ビーム光の光線の一部である光線33は、光吸収体24の内壁において、レーザ光の出射方向へ向かいながら多重反射し、光吸収体24の中央部に集光する。この際、光吸収体24の内壁の反射率は低いため、光の殆どが光吸収体24の内壁で吸収され、半導体レーザ28側へは光は殆ど戻らない。   On the other hand, the flat beam light transmitted through the air flow 31 is irradiated to the light absorber 24. The light beam 33 which is a part of the light beam of the flat beam light is multiple-reflected on the inner wall of the light absorber 24 while being directed in the laser beam emission direction, and is collected at the center of the light absorber 24. At this time, since the reflectance of the inner wall of the light absorber 24 is low, most of the light is absorbed by the inner wall of the light absorber 24 and hardly returns to the semiconductor laser 28 side.

また、光源である半導体レーザ28の光量の一部をモニタリングすることにより、半導体レーザ28の出射光量を制御して安定した光が出射されるようになされている。半導体レーザ28から出射された光は、レンズ29,30を通して扁平ビーム光となり、扁平ビーム光は前述のとおり光吸収体24によってその殆どを吸収されるが、一部は光透過部25を透過して光量制御用フォトダイオード27によって受光される。   Further, by monitoring a part of the light quantity of the semiconductor laser 28 as a light source, the light quantity emitted from the semiconductor laser 28 is controlled to emit stable light. The light emitted from the semiconductor laser 28 becomes flat beam light through the lenses 29 and 30, and the flat beam light is mostly absorbed by the light absorber 24 as described above, but part of the light is transmitted through the light transmitting portion 25. And received by the light quantity control photodiode 27.

この受光に応じて光量制御用フォトダイオード27から出力される電気信号が図示せぬ増幅装置によって増幅され、更に図示せぬ演算装置によって、その増幅信号から半導体レーザ28の駆動電流が制御されることにより、半導体レーザ28の出射光が予め設定されている光量になるように制御される。
このように、半導体レーザ28の出射光量を所定の値に制御し、その出射光によって微粒子の検出によって微粒子の数と大きさを高精度に検出可能とし、更に、簡単な構造による光吸収体24で迷光を低減させて製造コストの削減を可能としている。
In response to this light reception, the electric signal output from the light quantity control photodiode 27 is amplified by an amplification device (not shown), and the driving current of the semiconductor laser 28 is controlled from the amplified signal by an arithmetic device (not shown). Thus, the light emitted from the semiconductor laser 28 is controlled to have a preset light amount.
In this way, the amount of light emitted from the semiconductor laser 28 is controlled to a predetermined value, and the number and size of the fine particles can be detected with high accuracy by detecting the fine particles using the emitted light, and the light absorber 24 having a simple structure. This makes it possible to reduce stray light and reduce manufacturing costs.

この種の従来の微粒子測定装置として、例えば特許文献1及び2に記載のものがある。
特開平8−271423号公報 特開平8−233736号公報
Examples of this type of conventional fine particle measuring apparatus include those described in Patent Documents 1 and 2, for example.
JP-A-8-271423 Japanese Patent Laid-Open No. 8-233736

上記のように、従来の微粒子測定装置においては、光源(半導体レーザ28)からの出射光が、光源側に戻ることを防ぐ迷光防止の対策が講じられ、高精度に微粒子を検出できるようになっている。
しかし、光源からの出射光は所定の角度分布を持つため、出射光の一部が測定管22の内壁及びレンズ29,30の端面などに多重反射されて発生する迷光を完全に除去することは困難である。このため、その微弱光であるが迷光が散乱光検出用フォトダイオード32で受光される。この迷光の受光によって、間接的に光源の出射光を検知していることになる。
As described above, in the conventional particle measuring apparatus, measures for preventing stray light are taken to prevent the light emitted from the light source (semiconductor laser 28) from returning to the light source side, and the particles can be detected with high accuracy. ing.
However, since the emitted light from the light source has a predetermined angular distribution, it is not possible to completely remove stray light that is generated when a part of the emitted light is multiple-reflected on the inner wall of the measuring tube 22 and the end faces of the lenses 29 and 30. Have difficulty. For this reason, stray light is received by the scattered light detection photodiode 32 although it is weak light. By receiving this stray light, the light emitted from the light source is indirectly detected.

光源が一般的な半導体レーザ等の単波長レーザの場合には、周囲温度変化などにより光源の出射光に光ノイズが発生する。この際は、散乱光検出用フォトダイオード32で定常的に受光される迷光にも光ノイズが含まれるため、光ノイズが微粒子の散乱光と同等の光量である場合には、光ノイズを微粒子として誤って検出することになる。一般に、このような光ノイズによる誤検出は偽計数と呼ばれる。高清浄度空間での微粒子測定においては、高精度な微粒子の測定が必要となるため、この偽計数が微粒子検出の信頼性を低下させるので非常に大きな問題となっている。
本発明は、このような課題に鑑みてなされたものであり、光ノイズによる偽計数を大幅に低減することができ、これによって微粒子検出の信頼性を向上させることができる微粒子測定装置を提供することを目的としている。
When the light source is a single wavelength laser such as a general semiconductor laser, optical noise is generated in the light emitted from the light source due to a change in ambient temperature. In this case, stray light that is regularly received by the scattered light detection photodiode 32 also includes optical noise. Therefore, when the optical noise has the same amount of light as the scattered light of the fine particles, the optical noise is regarded as fine particles. It will be detected by mistake. In general, such false detection due to optical noise is called false counting. In the measurement of fine particles in a high cleanliness space, it is necessary to measure fine particles with high precision, and this false counting is a very serious problem because it reduces the reliability of particle detection.
The present invention has been made in view of such a problem, and provides a particle measuring apparatus capable of greatly reducing false counting due to optical noise and thereby improving the reliability of particle detection. The purpose is that.

上記目的を達成するために、本発明の請求項1による微粒子測定装置は、長手方向に沿って直線に伸びる中空部を有する筒状部材の前記中空部を光路空間とし、この光路空間の一端に出射光が長手方向の直線に沿って放射されるように光源を配設すると共に、その光源からの出射光を平行光に変換するレンズを配設し、長手方向の直線と交差するように筒状部材の光路空間を抜けて対向する側壁を貫通する通路に流体を流し、この流体に、レンズで変換された平行光を透過させ、この透過時に流体中に含まれる微粒子での散乱光を第1の受光素子で受光し、この受光に応じて第1の受光素子から出力される電気信号から微粒子の数及び大きさを演算して求める微粒子測定装置において、前記微粒子による散乱光を検出しない位置で、且つ前記光源から出射光が乱反射した迷光並びに該出射光に発生する光ノイズを受光可能な位置に配設された第2の受光素子と、前記第1及び第2の受光素子で同時に、予め定められた閾値よりも大きいレベルの光信号が受光された際に光ノイズの検出と判定する判定手段とを備えたことを特徴とする。
この構成によれば、第1及び第2の受光素子で同時に、予め定められた閾値よりも大きいレベルの光信号が受光されている場合は、判定手段にて光ノイズが検出されていると判定される。この判定によって、第1の受光素子から出力される電気信号は微粒子として計数されない。
In order to achieve the above object, a particle measuring apparatus according to claim 1 of the present invention uses the hollow portion of a cylindrical member having a hollow portion extending linearly along the longitudinal direction as an optical path space, at one end of the optical path space. A light source is arranged so that the emitted light is radiated along a straight line in the longitudinal direction, and a lens that converts the emitted light from the light source into parallel light is arranged, and the cylinder is arranged so as to intersect the straight line in the longitudinal direction. A fluid is caused to flow through a path passing through the opposite side wall through the optical path space of the member, and the parallel light converted by the lens is transmitted through the fluid, and scattered light from the fine particles contained in the fluid is transmitted through the fluid. A position where light scattered by the fine particles is not detected in the fine particle measuring apparatus which calculates the number and size of the fine particles from an electric signal output from the first light receiving element in response to the received light. And said The second light receiving element disposed at a position capable of receiving stray light in which the emitted light is irregularly reflected from the source and optical noise generated in the emitted light, and the first and second light receiving elements are simultaneously determined in advance. And determining means for determining that optical noise is detected when an optical signal having a level greater than the threshold is received.
According to this configuration, when the first and second light receiving elements simultaneously receive an optical signal having a level higher than a predetermined threshold value, it is determined that the optical noise is detected by the determination unit. Is done. By this determination, the electric signal output from the first light receiving element is not counted as fine particles.

以上説明したように本発明によれば、光ノイズによる偽計数を大幅に低減することができ、これによって微粒子検出の信頼性を向上させることができるという効果がある。   As described above, according to the present invention, it is possible to greatly reduce the false count due to optical noise, thereby improving the reliability of particle detection.

以下、本発明の実施の形態を、図面を参照して説明する。
図1は、本発明の実施の形態に係る微粒子測定装置の構成を示す断面図である。
図1に示す微粒子測定装置20は、長手方向中心線(光軸26)に沿って円柱形状に貫通する光路空間21を有する円筒形状の測定管22を有する。
測定管22の一端部には、光路空間21を外界と遮光状態に閉塞する円板部材23が固定されている。その円板部材23の固定端と反対側の端には、光路空間21を外界と遮光状態に閉塞する光吸収体24が固定されている。この光吸収体24の内壁は、光路空間21の光軸26を中心とする円周が光軸26に沿って徐々に狭まる円錐コーン形状に形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing the configuration of a particle measuring apparatus according to an embodiment of the present invention.
A fine particle measuring apparatus 20 shown in FIG. 1 includes a cylindrical measuring tube 22 having an optical path space 21 penetrating in a cylindrical shape along a longitudinal center line (optical axis 26).
A disc member 23 is fixed to one end of the measurement tube 22 so as to block the optical path space 21 in a light-shielded state with the outside. A light absorber 24 that closes the optical path space 21 to the outside and a light-shielded state is fixed to an end opposite to the fixed end of the disk member 23. The inner wall of the light absorber 24 is formed in a conical cone shape in which the circumference around the optical axis 26 of the optical path space 21 is gradually narrowed along the optical axis 26.

また、光吸収体24の内壁には反射率を低くするために、サンドブラスト加工及び艶消し黒色塗装等の反射防止加工がなされている。光吸収体24の円錐コーン形状の内壁の先端部には、光軸26に沿って外界へ抜ける細長い円柱形状の貫通穴に、光を透過する材料が嵌合又は埋め込まれて形成された光透過部25が設けられている。更に、光透過部25から透過した光を受光できる位置に光量制御用フォトダイオード27が配置固定されている。   The inner wall of the light absorber 24 is subjected to antireflection processing such as sandblasting and matte black coating in order to reduce the reflectance. A light transmitting material formed by fitting or embedding a light transmitting material into an elongated cylindrical through hole extending to the outside along the optical axis 26 at the distal end portion of the conical cone shaped inner wall of the light absorber 24. A portion 25 is provided. Further, a light amount control photodiode 27 is arranged and fixed at a position where the light transmitted from the light transmitting portion 25 can be received.

光路空間21において、円板部材23には、半導体レーザ28が固定されている。半導体レーザ28のレーザ光出射側には所定間隔離してコリメートレンズ29が配置され、更に、コリメートレンズ29から所定間隔離れた位置にシリンドリカルレンズ30が配置されている。半導体レーザ28から出射されたレーザ光は、コリメートレンズ29によって平行ビーム光とされ、更にシリンドリカルレンズ30によって扁平ビーム光とされるようになっている。   In the optical path space 21, a semiconductor laser 28 is fixed to the disk member 23. A collimating lens 29 is arranged at a predetermined interval on the laser beam emitting side of the semiconductor laser 28, and a cylindrical lens 30 is further arranged at a predetermined distance from the collimating lens 29. Laser light emitted from the semiconductor laser 28 is converted into parallel beam light by the collimator lens 29 and further converted into flat beam light by the cylindrical lens 30.

また、シリンドリカルレンズ30から光吸収体24側に所定間隔離れた位置には、シリンドリカルレンズ30からの扁平ビーム光と気流31とが交差する状態となるように、測定管22の外面から周壁を貫通して光路空間21へ抜ける図示せぬ噴出通路及び吸引通路が対向状態に形成されている。
測定管22の外面に抜ける噴出通路及び吸引通路の開口は、図示せぬ排気/吸引用のポンプ又はファンモータに接続されており、そのポンプ又はファンモータによって噴出通路から噴出された気体が吸引通路で吸引されることによって、光路空間21に光軸26と交差して気流31が流れるようになっている。
Further, at a position spaced apart from the cylindrical lens 30 toward the light absorber 24 by a predetermined distance, the peripheral beam penetrates from the outer surface of the measuring tube 22 so that the flat beam light from the cylindrical lens 30 and the airflow 31 intersect each other. Thus, an unillustrated ejection passage and suction passage that pass through the optical path space 21 are formed in an opposing state.
The openings of the ejection passage and the suction passage that pass through the outer surface of the measuring tube 22 are connected to an exhaust / suction pump or fan motor (not shown), and the gas ejected from the ejection passage by the pump or fan motor is the suction passage. As a result, the air flow 31 flows in the optical path space 21 across the optical axis 26.

また、その気流31が流れる光路空間21の内壁には、散乱光検出用フォトダイオード32が配置されて、シリンドリカルレンズ30からの扁平ビーム光と気流31とが交差する際に、気流31中の粉塵等の微粒子で散乱した光(散乱光)が散乱光検出用フォトダイオード32で受光されるようになっている。
また、光路空間21の内壁には、本実施の形態の特徴要素である光ノイズ検出用フォトダイオード35が配置されている。即ち、微粒子による散乱光を検出しない位置で、且つ半導体レーザ28からレーザ光の一部が内壁に乱反射して発生した迷光並びに周囲温度変化等の影響によってレーザ光に発生した光ノイズを受光可能な位置、この例ではシリンドリカルレンズ30の近傍に光ノイズ検出用フォトダイオード35を設置している。つまり、その迷光並びに光ノイズは散乱光検出用フォトダイオード32でも検出される。
In addition, a scattered light detection photodiode 32 is disposed on the inner wall of the optical path space 21 through which the airflow 31 flows, and when the flat beam light from the cylindrical lens 30 and the airflow 31 intersect, dust in the airflow 31 is present. The light (scattered light) scattered by fine particles such as light is received by the scattered light detection photodiode 32.
Further, on the inner wall of the optical path space 21, an optical noise detection photodiode 35, which is a characteristic element of the present embodiment, is disposed. That is, it is possible to receive light noise generated in the laser beam at a position where the scattered light due to the fine particles is not detected and stray light generated by partly reflecting the laser beam from the semiconductor laser 28 to the inner wall and the influence of ambient temperature change, etc. An optical noise detection photodiode 35 is installed in the vicinity of the position, in this example, the cylindrical lens 30. That is, the stray light and optical noise are also detected by the scattered light detection photodiode 32.

更に、散乱光検出用フォトダイオード32及び光ノイズ検出用フォトダイオード35は、光ノイズ判定部36に接続されている。
光ノイズ判定部36は、光ノイズ検出用フォトダイオード35と散乱光検出用フォトダイオード32との双方で同時に、予め定められた閾値よりも大きいレベルの光信号が受光された際に、光ノイズが検出されていると判定するものである。
Further, the scattered light detection photodiode 32 and the optical noise detection photodiode 35 are connected to an optical noise determination unit 36.
The optical noise determination unit 36 generates optical noise when both of the optical noise detection photodiode 35 and the scattered light detection photodiode 32 simultaneously receive an optical signal having a level higher than a predetermined threshold. It is determined that it has been detected.

この判定について、図2を参照して説明する。図2の縦軸は時間、縦軸は信号レベルを示しており、受光信号S1は、散乱光検出用フォトダイオード32の受光信号である。受光信号S1において、直流成分のVdclは定常的に受光されている迷光であり、P11,P12,P13,P15は微粒字の散乱光によるパルス信号である。また、P14は、光ノイズによるノイズ信号である。   This determination will be described with reference to FIG. The vertical axis in FIG. 2 indicates time, and the vertical axis indicates the signal level. The light reception signal S1 is a light reception signal of the scattered light detection photodiode 32. In the light reception signal S1, Vdcl, which is a direct current component, is stray light that is steadily received, and P11, P12, P13, and P15 are pulse signals due to fine scattered light. P14 is a noise signal due to optical noise.

一方、受光信号S2は光ノイズ検出用フォトダイオード35の受光信号である。受光信号S2において、直流成分のVdc2は迷光成分であり、S1のVdc1とほぼ同等レベルの信号である。P21は光ノイズによるノイズ信号である。但し、光ノイズ検出用フォトダイオード35は粒子の散乱光を検出できる位置には配置されていないためP11のような散乱光によるパルス信号は検出されない。   On the other hand, the light reception signal S2 is a light reception signal of the optical noise detection photodiode 35. In the received light signal S2, the DC component Vdc2 is a stray light component, which is a signal having a level substantially equal to Vdc1 of S1. P21 is a noise signal due to optical noise. However, since the optical noise detection photodiode 35 is not arranged at a position where the scattered light of the particles can be detected, a pulse signal due to the scattered light as in P11 is not detected.

このように、光ノイズ信号P14及びP21の信号レベルは、粒子の散乱光による信号P11等の信号レベルとほぼ同じである、このため、S1のみで信号処理をした場合には、散乱光と光ノイズの区別が困難なため偽計数が発生することになる。
そこで、受光信号S1とS2の信号を比較し、両方の信号にパルス状の信号が同時に検出された場合、例えば時刻t1には検出信号P14が光ノイズであると判定する。必然的に、時刻t2のように、受光信号S1にだけ信号P11が検出されている場合は、光ノイズである判定されない。つまり、その信号P11が散乱光による信号であると判定されるようになっている。
Thus, the signal levels of the optical noise signals P14 and P21 are substantially the same as the signal level of the signal P11 or the like due to the scattered light of the particles. Therefore, when signal processing is performed only with S1, the scattered light and the light Since it is difficult to distinguish noise, a false count occurs.
Therefore, the light reception signals S1 and S2 are compared, and if a pulse-like signal is detected at the same time, for example, at time t1, it is determined that the detection signal P14 is optical noise. Inevitably, when the signal P11 is detected only in the light reception signal S1 as at time t2, it is not determined as optical noise. That is, it is determined that the signal P11 is a signal due to scattered light.

このような構成の微粒子測定装置20は、クリーンルーム等の粉塵を管理する領域に配置されて、次のような微粒子の測定動作を行う。
まず、ポンプ又はファンモータが起動されると、噴出通路から噴出された気流31が光路空間21を通って吸引通路で吸引される。この後、半導体レーザ28からレーザ光が出射されると、このレーザ光がコリメートレンズ29によって平行ビーム光とされ、平行ビーム光がシリンドリカルレンズ30によって扁平ビーム光とされる。
The fine particle measuring apparatus 20 having such a configuration is arranged in a dust management area such as a clean room and performs the following fine particle measurement operation.
First, when the pump or the fan motor is activated, the airflow 31 ejected from the ejection passage is sucked through the optical path space 21 through the suction passage. Thereafter, when laser light is emitted from the semiconductor laser 28, the laser light is converted into parallel beam light by the collimating lens 29, and the parallel beam light is converted into flat beam light by the cylindrical lens 30.

ここで、レーザ光の光量の一部をモニタリングすることにより、半導体レーザ28の出射光量を制御して安定した光が出射されるようになされている。半導体レーザ28から出射された光は、レンズ29,30を通して扁平ビーム光となり、扁平ビーム光は前述のとおり光吸収体24によってその殆どを吸収されるが、一部は光透過部25を透過して光量制御用フォトダイオード27によって受光される。この受光に応じて光量制御用フォトダイオード27から出力される電気信号が図示せぬ増幅装置によって増幅され、更に図示せぬ演算装置によって、その増幅信号から半導体レーザ28の駆動電流が制御されることにより、半導体レーザ28の出射光が予め設定されている光量になるように制御されている。   Here, by monitoring a part of the light amount of the laser light, the light amount emitted from the semiconductor laser 28 is controlled so that stable light is emitted. The light emitted from the semiconductor laser 28 becomes flat beam light through the lenses 29 and 30, and the flat beam light is mostly absorbed by the light absorber 24 as described above, but part of the light is transmitted through the light transmitting portion 25. And received by the light quantity control photodiode 27. In response to this light reception, the electric signal output from the light quantity control photodiode 27 is amplified by an amplification device (not shown), and the driving current of the semiconductor laser 28 is controlled from the amplified signal by an arithmetic device (not shown). Thus, the light emitted from the semiconductor laser 28 is controlled to have a preset light amount.

シリンドリカルレンズ30からの扁平ビーム光は、光路空間21を横切る気流31を交差して透過する。この透過時に、気体中の微粒子で光が散乱され、この散乱光が散乱光検出用フォトダイオード32で受光される。この受光に応じて散乱光検出用フォトダイオード32から出力される電気信号が図示せぬ増幅装置によって増幅され、更に図示せぬ演算装置によって、その増幅信号の波形の振幅や幅から微粒子の数と粒径が求められる。   The flat beam light from the cylindrical lens 30 crosses and passes through the airflow 31 that traverses the optical path space 21. During this transmission, light is scattered by fine particles in the gas, and this scattered light is received by the scattered light detection photodiode 32. In response to this light reception, the electrical signal output from the scattered light detection photodiode 32 is amplified by an amplifying device (not shown), and further, an arithmetic unit (not shown) calculates the number of particles from the amplitude and width of the waveform of the amplified signal. The particle size is required.

このように、散乱光検出用フォトダイオード32にて、図2の時刻t2のように受光信号S1にだけ信号P11が検出されている場合は、光ノイズ判定部36では、その信号P11が光ノイズとは判定されないので、散乱光検出用フォトダイオード32から出力される電気信号P11が演算装置によって微粒子として計数される。
一方、時刻t1のように、双方のフォトダイオード32,35で同時に、予め定められた閾値よりも大きいレベルの信号P14,P21が受光されている場合は、光ノイズ判定部36にて光ノイズが検出されていると判定される。この判定によって、散乱光検出用フォトダイオード32から出力される電気信号P14は演算装置によって微粒子として計数されない。
As described above, when the signal P11 is detected only in the light reception signal S1 at the scattered light detection photodiode 32 at time t2 in FIG. 2, the optical noise determination unit 36 determines that the signal P11 is optical noise. Therefore, the electric signal P11 output from the scattered light detection photodiode 32 is counted as fine particles by the arithmetic unit.
On the other hand, when the signals P14 and P21 having a level larger than the predetermined threshold value are simultaneously received by both the photodiodes 32 and 35 at time t1, the optical noise determination unit 36 generates optical noise. It is determined that it has been detected. By this determination, the electric signal P14 output from the scattered light detection photodiode 32 is not counted as fine particles by the arithmetic unit.

以上説明したように本実施の形態の微粒子測定装置20によれば、光ノイズ判定部36での光ノイズの判定によって、誤って光ノイズを微粒子として検出する偽計数を大幅に低減することができ、これによって微粒子検出の信頼性を向上させることができる。   As described above, according to the particle measuring apparatus 20 of the present embodiment, the false count that erroneously detects the light noise as the particles can be greatly reduced by the determination of the light noise in the light noise determination unit 36. As a result, the reliability of particle detection can be improved.

本発明の実施の形態に係る微粒子測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the fine particle measuring apparatus which concerns on embodiment of this invention. 上記実施の形態に係る微粒子測定装置の受光信号の一例を示す図である。It is a figure which shows an example of the light reception signal of the microparticle measuring apparatus which concerns on the said embodiment. 従来の微粒子測定装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional fine particle measuring apparatus.

符号の説明Explanation of symbols

20 微粒子測定装置
21 光路空間
22 測定管
23 円板部材
24 光吸収体
25 光透過部
26 光軸
27 光制御用フォトダイオード
28 半導体レーザ
29 コリメートレンズ
30 シリンドリカルレンズ
31 気流
32 散乱光検出用フォトダイオード
33 光線
35 光ノイズ検出用フォトダイオード
DESCRIPTION OF SYMBOLS 20 Fine particle measuring apparatus 21 Optical path space 22 Measuring tube 23 Disk member 24 Light absorber 25 Light transmission part 26 Optical axis 27 Light control photodiode 28 Semiconductor laser 29 Collimating lens 30 Cylindrical lens 31 Airflow 32 Scattered light detection photodiode 33 Light 35 Photodiode for optical noise detection

Claims (1)

長手方向に沿って直線に伸びる中空部を有する筒状部材の前記中空部を光路空間とし、この光路空間の一端に出射光が長手方向の直線に沿って放射されるように光源を配設すると共に、その光源からの出射光を平行光に変換するレンズを配設し、長手方向の直線と交差するように筒状部材の光路空間を抜けて対向する側壁を貫通する通路に流体を流し、この流体に、レンズで変換された平行光を透過させ、この透過時に流体中に含まれる微粒子での散乱光を第1の受光素子で受光し、この受光に応じて第1の受光素子から出力される電気信号から微粒子の数及び大きさを演算して求める微粒子測定装置において、
前記微粒子による散乱光を検出しない位置で、且つ前記光源から出射光が乱反射した迷光並びに該出射光に発生する光ノイズを受光可能な位置に配設された第2の受光素子と、
前記第1及び第2の受光素子で同時に、予め定められた閾値よりも大きいレベルの光信号が受光された際に光ノイズの検出と判定する判定手段と
を備えたことを特徴とする微粒子測定装置。
The hollow portion of the cylindrical member having a hollow portion extending linearly along the longitudinal direction is used as an optical path space, and a light source is disposed at one end of the optical path space so that emitted light is radiated along the straight line in the longitudinal direction. In addition, a lens that converts the emitted light from the light source into parallel light is disposed, and a fluid is caused to flow through a passage that passes through the opposite side wall through the optical path space of the cylindrical member so as to intersect the straight line in the longitudinal direction. The fluid passes through the parallel light converted by the lens, and the scattered light from the fine particles contained in the fluid is received by the first light receiving element at the time of transmission, and output from the first light receiving element in response to this light reception. In the fine particle measuring apparatus for calculating the number and size of the fine particles from the electric signal to be obtained,
A second light receiving element disposed at a position where light scattered by the fine particles is not detected and at a position where stray light from which the emitted light is irregularly reflected from the light source and light noise generated in the emitted light can be received;
Fine particle measurement comprising: determination means for determining that optical noise is detected when an optical signal having a level larger than a predetermined threshold value is simultaneously received by the first and second light receiving elements. apparatus.
JP2005001729A 2005-01-06 2005-01-06 Fine particle measuring instrument Pending JP2006189337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005001729A JP2006189337A (en) 2005-01-06 2005-01-06 Fine particle measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005001729A JP2006189337A (en) 2005-01-06 2005-01-06 Fine particle measuring instrument

Publications (1)

Publication Number Publication Date
JP2006189337A true JP2006189337A (en) 2006-07-20

Family

ID=36796693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005001729A Pending JP2006189337A (en) 2005-01-06 2005-01-06 Fine particle measuring instrument

Country Status (1)

Country Link
JP (1) JP2006189337A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070370A (en) * 2006-09-13 2008-03-27 Robert Bosch Gmbh Apparatus and method for measuring at least one parameter of particle within fluid
JP2012073070A (en) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd Fine particle measuring device
JP2012117882A (en) * 2010-11-30 2012-06-21 Rion Co Ltd Particle counting method
CN104198346A (en) * 2014-08-26 2014-12-10 北京绿林创新数码科技有限公司 Mobile phone controlled dust sensor monitoring system and use method thereof
JP2015025748A (en) * 2013-07-26 2015-02-05 セイコーインスツル株式会社 Dust amount detection device, and method of controlling dust amount detection device
KR20170132331A (en) * 2015-04-02 2017-12-01 파티클 머슈어링 시스템즈, 인크. Laser Noise Detection and Mitigation in Particle Counting Devices
US9885602B2 (en) 2015-12-28 2018-02-06 Panasonic Intellectual Property Management Co., Ltd. Particle sensor
JP2020176915A (en) * 2019-04-18 2020-10-29 株式会社島津製作所 Particle counting method and particle counting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110992U (en) * 1987-01-09 1988-07-16
JPH0196532A (en) * 1987-10-07 1989-04-14 Nippon Kagaku Kogyo Kk Fine particle detector by light scattering system
JPH01152247U (en) * 1988-04-12 1989-10-20
JPH034143A (en) * 1989-06-01 1991-01-10 Hitachi Electron Eng Co Ltd Variation noise removing system for laser in particulate detector
JPH034144A (en) * 1989-06-01 1991-01-10 Hitachi Electron Eng Co Ltd Variation noise removing system for laser in particulate detector
JPH05240769A (en) * 1992-02-29 1993-09-17 Horiba Ltd Particle counter
JPH08233736A (en) * 1995-02-27 1996-09-13 Nohmi Bosai Ltd Microparticle detection sensor
JPH08271423A (en) * 1995-03-31 1996-10-18 Nohmi Bosai Ltd Microparticle sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63110992U (en) * 1987-01-09 1988-07-16
JPH0196532A (en) * 1987-10-07 1989-04-14 Nippon Kagaku Kogyo Kk Fine particle detector by light scattering system
JPH01152247U (en) * 1988-04-12 1989-10-20
JPH034143A (en) * 1989-06-01 1991-01-10 Hitachi Electron Eng Co Ltd Variation noise removing system for laser in particulate detector
JPH034144A (en) * 1989-06-01 1991-01-10 Hitachi Electron Eng Co Ltd Variation noise removing system for laser in particulate detector
JPH05240769A (en) * 1992-02-29 1993-09-17 Horiba Ltd Particle counter
JPH08233736A (en) * 1995-02-27 1996-09-13 Nohmi Bosai Ltd Microparticle detection sensor
JPH08271423A (en) * 1995-03-31 1996-10-18 Nohmi Bosai Ltd Microparticle sensor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070370A (en) * 2006-09-13 2008-03-27 Robert Bosch Gmbh Apparatus and method for measuring at least one parameter of particle within fluid
JP2012073070A (en) * 2010-09-28 2012-04-12 Fuji Electric Co Ltd Fine particle measuring device
JP2012117882A (en) * 2010-11-30 2012-06-21 Rion Co Ltd Particle counting method
JP2015025748A (en) * 2013-07-26 2015-02-05 セイコーインスツル株式会社 Dust amount detection device, and method of controlling dust amount detection device
CN104198346A (en) * 2014-08-26 2014-12-10 北京绿林创新数码科技有限公司 Mobile phone controlled dust sensor monitoring system and use method thereof
KR20170132331A (en) * 2015-04-02 2017-12-01 파티클 머슈어링 시스템즈, 인크. Laser Noise Detection and Mitigation in Particle Counting Devices
JP2018513971A (en) * 2015-04-02 2018-05-31 パーティクル・メージャーリング・システムズ・インコーポレーテッド Laser noise detection and mitigation in particle counters
KR102436123B1 (en) 2015-04-02 2022-08-24 파티클 머슈어링 시스템즈, 인크. Laser Noise Detection and Mitigation in Particle Counting Instruments
US9885602B2 (en) 2015-12-28 2018-02-06 Panasonic Intellectual Property Management Co., Ltd. Particle sensor
JP2020176915A (en) * 2019-04-18 2020-10-29 株式会社島津製作所 Particle counting method and particle counting device
JP7115406B2 (en) 2019-04-18 2022-08-09 株式会社島津製作所 Particle counting method and particle counting device

Similar Documents

Publication Publication Date Title
JP2006189337A (en) Fine particle measuring instrument
JP2016224034A (en) Grain particle sensor device
US20200011779A1 (en) Highly integrated optical particle counter (opc)
US10962462B2 (en) Particulate matter-sensing sensor assembly
JP2007519906A (en) Method for evaluating scattered light signal and scattered light detector for implementing the method
KR102153640B1 (en) Optical fine dust sensor
JP2017166935A (en) Particle sensor, and electronic apparatus including the same
WO2007029480A1 (en) Particle detector
JP7261748B2 (en) Chamberless smoke detector with indoor air quality detection and monitoring
US20190080578A1 (en) Dust sensor adopting impactor
JP4987515B2 (en) smoke detector
CN107314958B (en) Laser dust concentration measuring device with self-calibration device and method
JP2017116417A (en) Photoelectric type dust sensor and air conditioner
JP6233711B2 (en) Particle measuring device
JPH1123462A (en) Smoke sensing device
JP4995608B2 (en) smoke detector
JP6505506B2 (en) Optical sensor and electronic device
JP5420437B2 (en) Powder detector
JP2006105905A (en) Particulate-measuring device
JP2005351835A (en) Fine particle measuring device
JP3780701B2 (en) Smoke detector
JPH0196532A (en) Fine particle detector by light scattering system
JPH08271424A (en) Microparticle sensor
JP2006010618A (en) Fine-particle measuring instrument
JP3193670B2 (en) Smoke detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102