JP2006189259A - Method and apparatus for detecting state of piping - Google Patents

Method and apparatus for detecting state of piping Download PDF

Info

Publication number
JP2006189259A
JP2006189259A JP2004381533A JP2004381533A JP2006189259A JP 2006189259 A JP2006189259 A JP 2006189259A JP 2004381533 A JP2004381533 A JP 2004381533A JP 2004381533 A JP2004381533 A JP 2004381533A JP 2006189259 A JP2006189259 A JP 2006189259A
Authority
JP
Japan
Prior art keywords
pipe
pressure
piping
state detection
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004381533A
Other languages
Japanese (ja)
Inventor
Masamitsu Sudo
政光 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP2004381533A priority Critical patent/JP2006189259A/en
Publication of JP2006189259A publication Critical patent/JP2006189259A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piping state detecting method capable of efficiently processing data by enhancing the reliability of the data using a relatively simple constitution, and to provide a detector for state of piping. <P>SOLUTION: The abnormality of a piping system, including a plurality of the branched pipes 13 and 14 respectively connected to a liquid container 12 and the confluent piping 15 of them, is detected. The liquid in the liquid container 12 is sucked in the confluent piping 15 by the suction pump 11, the branched pipes 13 and 14 are controlled so as to be opened and closed by solenoid valves 16 and 17, the pressures in the branched pipes 13 and 14 are measured by pressure sensors 18 and 19, and abnormality of the piping system is decided on the basis of the output data of the pressure sensors 18 and 19. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動分析装置等において検体の分析に使用された反応容器等を洗浄する際、特にその洗浄装置の配管状態、すなわち配管系の詰まり等を検出する配管状態検出方法および装置に関する。   The present invention relates to a piping state detection method and apparatus for detecting a piping state of a cleaning device, that is, a clogging of a piping system, etc., particularly when cleaning a reaction vessel or the like used for analysis of a sample in an automatic analyzer or the like.

この種の自動分析装置では、血液等の分析に使用された反応容器を洗浄するための容器洗浄装置を備えている。反応容器は所定の反応ラインを搬送される過程で洗浄して、つぎの分析のために再利用することができる。   This type of automatic analyzer includes a container cleaning device for cleaning a reaction container used for analyzing blood or the like. The reaction vessel can be washed in the course of being conveyed through a predetermined reaction line and reused for the next analysis.

たとえば、特許文献1に記載のノズル詰まり検知装置では、ノズルとシリンジを接続する分注流路に設けた圧力測定器でノズル洗浄時の洗浄水の吐出圧力を測定し、これをDCアンプで増幅し、A/D変換器でデジタル変換し、波形分析回路に入力する。この波形分析回路で吐出圧力波形から負圧ピーク値と残圧値を検出し、これらの大きさよりCPUでノズルの詰まり検知とその度合が判断される。   For example, in the nozzle clogging detection device described in Patent Document 1, the discharge pressure of cleaning water during nozzle cleaning is measured with a pressure measuring device provided in a dispensing flow path connecting the nozzle and the syringe, and this is amplified by a DC amplifier. Then, it is digitally converted by an A / D converter and input to a waveform analysis circuit. The waveform analysis circuit detects the negative pressure peak value and the residual pressure value from the discharge pressure waveform, and the CPU detects the clogging of the nozzle and determines its degree from these magnitudes.

また、特許文献2に記載の容器洗浄装置は、吸引ノズルの吸引圧力を検知する圧力センサと、センサ液吐出弁の制御信号と圧力センサの出力信号とに基づき洗浄液吐出弁が動作してから、出力信号がピークに達するまでの時間を予め決められた判定基準時間と比較して吸引異常を判別するようになっている。   The container cleaning device described in Patent Document 2 operates after the cleaning liquid discharge valve operates based on the pressure sensor that detects the suction pressure of the suction nozzle, the control signal of the sensor liquid discharge valve, and the output signal of the pressure sensor. The time until the output signal reaches the peak is compared with a predetermined determination reference time to determine the suction abnormality.

また、特許文献3に記載の洗浄液吸引ノズルの閉塞検出機構では、吸引ノズル部の複数個のノズルの各2個ずつを1組とし、各ノズル部の負圧力を差圧圧力スイッチに導入し、該スイッチで一定の圧力差以上でピストンが右または左に移動し、透過型光電スイッチの光軸が遮光するものを用い、1個以上のピストンの移動を検出し、系統別流体系の制御を可能にしている。   Further, in the blocking detection mechanism of the cleaning liquid suction nozzle described in Patent Document 3, two of each of the plurality of nozzles of the suction nozzle part are set as one set, and the negative pressure of each nozzle part is introduced into the differential pressure switch, With this switch, the piston moves to the right or left with a certain pressure difference or more and the optical axis of the transmissive photoelectric switch is shielded, and the movement of one or more pistons is detected to control the fluid system by system. It is possible.

特開平6−109745号公報JP-A-6-109745 特開平6−265558号公報JP-A-6-265558 実開平5−94767号公報Japanese Utility Model Publication No. 5-94767

しかしながら、従来のたとえばオーバーフローセルを用いる分析装置では、ノズル洗浄廃液系の異常検出自体を行っていなかったため、洗浄系のトラブルに起因する分析データの信頼性が問題となる場合があった。すなわち、装置起動時等に洗浄動作を確認したとしても、分析処理中の異常についてはこれを検出していなかった。   However, in the conventional analyzer using, for example, an overflow cell, since the abnormality detection of the nozzle cleaning waste liquid system itself is not performed, the reliability of the analysis data due to the trouble of the cleaning system may be a problem. That is, even if the cleaning operation is confirmed at the time of starting up the apparatus, no abnormality is detected in the analysis process.

また、検出を行おうとしても、複数の配管系各々に市販の高価な流量計を使用するのは実用的ではない。さらに、光を用いた検出方法では、配管が透明である必要があったり、配管系が汚れてくると正確に検出することができない等の問題があった。   Even if detection is to be performed, it is not practical to use a commercially available expensive flow meter for each of the plurality of piping systems. Furthermore, in the detection method using light, there is a problem that the pipe needs to be transparent, or cannot be accurately detected if the pipe system becomes dirty.

本発明はかかる実情に鑑み、比較的簡素な構成にてデータの信頼性を高め、効率よく処理し得る配管状態検出方法および装置を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a piping state detection method and apparatus that can increase the reliability of data with a relatively simple configuration and can efficiently process the data.

本発明による配管状態検出方法は、液体容器にそれぞれ接続された複数の分岐配管とそれらの合流配管とを含む配管系の異常を検出する配管状態検出方法であって、前記合流配管にて吸引ポンプを作動するとともに、各分岐配管を開閉制御し、吸引前後における各分岐配管の圧力を測定し、それらの圧力変動状態により配管系の異常を検出するようにしたことを特徴とする。   The pipe state detection method according to the present invention is a pipe state detection method for detecting an abnormality of a pipe system including a plurality of branch pipes connected to a liquid container and their joint pipes, and a suction pump is used in the joint pipe. And the opening / closing control of each branch pipe, the pressure of each branch pipe before and after the suction is measured, and the abnormality of the pipe system is detected based on the pressure fluctuation state.

また、本発明の配管状態検出方法において、複数の前記分岐配管の圧力を測定し、圧力の振幅の大なるいずれか一方の分岐配管を異常と判定することを特徴とする。   In the pipe state detection method of the present invention, the pressure of a plurality of the branch pipes is measured, and any one of the branch pipes having a large pressure amplitude is determined to be abnormal.

また、本発明の配管状態検出方法において、前記合流配管と複数の前記分岐配管それぞれとにおける吸引前後の圧力を測定し、各測定圧力値およびそれらの圧力変動状態に基づき各前記分岐配管の異常を判定することを特徴とする。   Further, in the pipe state detection method of the present invention, the pressure before and after the suction in each of the merged pipe and each of the plurality of branch pipes is measured, and abnormality of each branch pipe is determined based on each measured pressure value and the pressure fluctuation state thereof. It is characterized by determining.

また、本発明の配管状態検出方法において、各測定圧力値の平均値および振幅を求め、それらがそれぞれ所定値以上であるか否かにより各前記分岐配管の異常を判定することを特徴とする。   The pipe state detection method of the present invention is characterized in that an average value and an amplitude of each measured pressure value are obtained, and abnormality of each of the branch pipes is determined based on whether or not they are each a predetermined value or more.

また、本発明の配管状態検出方法において、前記吸引ポンプ、各分岐配管を開閉制御する電磁弁および吸引口を含む前記配管系の異常を検出することを特徴とする。   In the pipe state detection method of the present invention, an abnormality of the pipe system including the suction pump, an electromagnetic valve that controls opening and closing of each branch pipe, and a suction port is detected.

また、本発明による配管状態検出装置は、液体容器にそれぞれ接続された複数の分岐配管とそれらの合流配管とを含む配管系の異常を検出する配管状態検出装置であって、前記合流配管にて前記液体容器内の液体を吸引する吸引ポンプと、各前記分岐配管を開閉制御する開閉弁と、各前記分岐配管内の圧力を測定する圧力センサと、前記圧力センサの出力データに基づき前記配管系の異常を判定する判定手段とを備えたことを特徴とする。   The pipe state detection device according to the present invention is a pipe state detection device for detecting an abnormality of a pipe system including a plurality of branch pipes connected to a liquid container and their merging pipes. A suction pump for sucking the liquid in the liquid container, an on-off valve for controlling the opening and closing of each branch pipe, a pressure sensor for measuring the pressure in each branch pipe, and the piping system based on output data of the pressure sensor And determining means for determining the abnormality.

また、本発明の配管状態検出装置において、前記合流配管内の圧力を測定する圧力センサをさらに備えたことを特徴とする。   The pipe state detection apparatus of the present invention further includes a pressure sensor for measuring the pressure in the merged pipe.

本発明によれば、この種の自動分析装置等に適用して、極めて簡単に配管トラブルを検出することができる。これにより分析装置の処理速度を落とすことなく、データの信頼性を向上させることができる。装置の構成が簡素であるため、既存設備を複雑化することはなく、さらにコスト的にも極めて有利である。   According to the present invention, it is possible to detect a piping trouble very easily by applying to this type of automatic analyzer. Thereby, the reliability of data can be improved without reducing the processing speed of the analyzer. Since the configuration of the apparatus is simple, it does not complicate existing equipment and is extremely advantageous in terms of cost.

以下、図面に基づき、本発明による配管状態検出方法および装置の好適な実施の形態を説明する。
(第1の実施形態)
図1は、この実施形態における本発明装置の概略構成を示している。ここで、本実施形態においてたとえば自動分析装置は、検体等の分析に使用された反応容器を洗浄するための容器洗浄装置を備える。この容器洗浄装置において、反応容器は所定の反応ラインまたは所定の反応セルを搬送される過程で洗浄されるものとする。
Hereinafter, preferred embodiments of a pipe state detection method and apparatus according to the present invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 shows a schematic configuration of the apparatus of the present invention in this embodiment. Here, in the present embodiment, for example, the automatic analyzer includes a container cleaning device for cleaning the reaction container used for analyzing the specimen or the like. In this container cleaning apparatus, the reaction container is cleaned in the course of being conveyed through a predetermined reaction line or a predetermined reaction cell.

すなわち、図1において自動分析装置で検体等の分析に使用された反応容器100(被洗浄容器)は、容器洗浄装置において洗浄液タンク101から供給される洗浄液102によって洗浄される。この洗浄液供給系では洗浄液タンク101の洗浄液102をポンプ103によって、2つの反応容器100に吐出する。各配管104,105において反応容器100とポンプ103の間には電磁弁106,107が配置され、洗浄液102の供給を制御するようになっている。   That is, in FIG. 1, the reaction vessel 100 (container to be cleaned) used for analysis of a sample or the like by the automatic analyzer is cleaned by the cleaning liquid 102 supplied from the cleaning liquid tank 101 in the container cleaning apparatus. In this cleaning liquid supply system, the cleaning liquid 102 in the cleaning liquid tank 101 is discharged to the two reaction vessels 100 by the pump 103. In each of the pipes 104 and 105, electromagnetic valves 106 and 107 are disposed between the reaction vessel 100 and the pump 103 to control the supply of the cleaning liquid 102.

洗浄後、反応容器100に溜まった洗浄液は、洗浄液廃液系を介して廃液される。この実施形態では特に洗浄液廃液系において、本発明の配管状態検出装置10を適用し、各反応容器100の洗浄液をポンプ11によって吸引し、廃液タンク12に廃液するものとする。通常、この種の洗浄装置では洗浄液供給系よりも、不純物等が混在する洗浄液廃液系において配管詰まり等のトラブルが生じ易い。また、本実施形態では洗浄液廃液系は、2分岐して構成され、各反応容器100の洗浄液を廃液する。   After cleaning, the cleaning liquid accumulated in the reaction vessel 100 is drained through the cleaning liquid waste liquid system. In this embodiment, it is assumed that the pipe state detection device 10 of the present invention is applied, particularly in the cleaning liquid waste system, and the cleaning liquid in each reaction vessel 100 is sucked by the pump 11 and discharged into the waste liquid tank 12. Normally, in this type of cleaning apparatus, troubles such as clogging of piping are more likely to occur in a cleaning liquid waste liquid system in which impurities and the like are mixed than in a cleaning liquid supply system. Further, in this embodiment, the cleaning liquid waste liquid system is constituted by two branches, and the cleaning liquid of each reaction vessel 100 is waste liquid.

この実施形態では各反応容器100にそれぞれ接続された配管(分岐配管)13,14は、ポンプ11の手前で合流して合流配管15となる。各配管13,14において、反応容器100と配管分岐点との間に電磁弁(SV1,SV2)16,17が配置され、洗浄液の吸引を制御するようになっている。また、各配管13,14内の圧力は、圧力センサ(P1,P2)18,19によって検知されるようになっている。なお、各配管13,14の先端には吸引ノズル(図示せず)が装着されており、各吸引ノズルと電磁弁16,17の間に圧力センサ18,19が配置される。 In this embodiment, the pipes (branch pipes) 13 and 14 respectively connected to each reaction vessel 100 are joined before the pump 11 to become a joining pipe 15. In each of the pipes 13 and 14, electromagnetic valves (SV 1 and SV 2 ) 16 and 17 are arranged between the reaction vessel 100 and the pipe branch point to control the suction of the cleaning liquid. Further, the pressure in each of the pipes 13 and 14 is detected by pressure sensors (P 1 , P 2 ) 18 and 19. A suction nozzle (not shown) is attached to the tip of each pipe 13, 14, and pressure sensors 18, 19 are disposed between each suction nozzle and the electromagnetic valves 16, 17.

ここで図2は、この実施形態に係る自動分析装置の要部概略構成を示している。この自動分析装置は、前述した反応容器100内で所定のシーケンスに従って検体等の分析処理を行い、分析後、その処理に使用された反応容器100を洗浄するようになっている。自動分析装置に備えた容器洗浄装置の特に洗浄液廃液系において、圧力センサ18,19の出力データが判定回路108に送出され、制御部109はその判定結果に基づき、配管状態検出装置10自体および装置全体を駆動制御する。   Here, FIG. 2 shows a schematic configuration of a main part of the automatic analyzer according to this embodiment. This automatic analyzer performs an analysis process on a sample or the like in the aforementioned reaction container 100 according to a predetermined sequence, and after the analysis, the reaction container 100 used for the process is washed. The output data of the pressure sensors 18 and 19 is sent to the determination circuit 108, particularly in the cleaning liquid waste system of the container cleaning device provided in the automatic analyzer, and the control unit 109 determines the piping state detection device 10 itself and the device based on the determination result. Drive control of the whole.

なお、自動分析装置において、その機能上必要なセンサ類110からの出力データが、演算・判定回路111に送出される。制御部109は、その判定結果に基づき、あるいは入力操作部112の操作により、必要に応じて出力部113でアラーム等を作動させるようになっている。制御部109はまた、ポンプ11や電磁弁16,17の作動制御を行う。   In the automatic analyzer, output data from the sensors 110 necessary for the function is sent to the arithmetic / judgment circuit 111. The control unit 109 activates an alarm or the like at the output unit 113 as necessary based on the determination result or by the operation of the input operation unit 112. The control unit 109 also controls the operation of the pump 11 and the electromagnetic valves 16 and 17.

第1の実施形態において、洗浄液タンク101の洗浄液102は、ポンプ103によって2つの反応容器100に吐出される。その後、電磁弁16,17を開き、ポンプ11を作動させることで、各反応容器100に溜まった洗浄液は、ポンプ11によって吸引され、廃液タンク12に廃液される。その際、本発明では特にポンプ11による吸引前後で、圧力センサ18,19によって各配管13,14内の圧力を検知する。これらの圧力データから圧力変動状態により配管系の異常を検出する。   In the first embodiment, the cleaning liquid 102 in the cleaning liquid tank 101 is discharged to the two reaction vessels 100 by the pump 103. Thereafter, by opening the solenoid valves 16 and 17 and operating the pump 11, the cleaning liquid accumulated in each reaction vessel 100 is sucked by the pump 11 and is discharged into the waste liquid tank 12. At this time, in the present invention, the pressure in each of the pipes 13 and 14 is detected by the pressure sensors 18 and 19 particularly before and after the suction by the pump 11. From these pressure data, an abnormality in the piping system is detected according to the pressure fluctuation state.

すなわち、本実施形態のように2つの配管13,14を持つ場合、吸引前後の圧力を観測すると、配管詰まりが生じている配管の圧力変動の振幅が大きくなる。たとえば図3は配管13,14の吸引ノズルの状態と、配管圧力の振幅値との関係を示している。パターンAのように、各配管13,14における吸引前後の圧力P1,P2の振幅が略等しい場合には、配管13,14の吸引ノズルは共に正常であると判定される。なお、図3において「正常」は○印で、「異常」は×印でそれぞれ示す。 That is, when the two pipes 13 and 14 are provided as in the present embodiment, the pressure fluctuation amplitude of the pipe in which the pipe is clogged increases when the pressure before and after the suction is observed. For example, FIG. 3 shows the relationship between the state of the suction nozzles of the pipes 13 and 14 and the amplitude value of the pipe pressure. When the amplitudes of the pressures P 1 and P 2 before and after suction in the pipes 13 and 14 are substantially equal as in the pattern A, it is determined that the suction nozzles of the pipes 13 and 14 are both normal. In FIG. 3, “normal” is indicated by a circle, and “abnormal” is indicated by a cross.

これに対してパターンBあるいはパターンCのように、吸引前後でいずれか一方の圧力P1,P2の振幅が大きい場合、その振幅が大きい方の配管13,14の吸引ノズルに詰まりが生じており、異常と判定される。さらに、パターンDのように吸引前後で両方とも圧力P1,P2の振幅に変化がない場合、配管13,14の吸引ノズル双方に詰まりが生じており、異常と判定される。 On the other hand, when the amplitude of one of the pressures P 1 and P 2 is large before and after suction as in pattern B or pattern C, the suction nozzles of the pipes 13 and 14 having the larger amplitude are clogged. It is determined as abnormal. Further, when there is no change in the amplitudes of the pressures P 1 and P 2 before and after the suction as in the pattern D, both the suction nozzles of the pipes 13 and 14 are clogged, and it is determined as abnormal.

このように自動分析装置の分析のサイクルタイム内で各配管13,14内の圧力を検知することにより、極めて簡単に配管トラブルを検出することができる。したがって、分析装置の処理速度を落とすことなく、データの信頼性を向上させることができる。装置の構成が簡素であるため、既存設備を複雑化することはなく、さらにコスト的にも極めて有利である。   In this way, by detecting the pressure in each of the pipes 13 and 14 within the analysis cycle time of the automatic analyzer, a pipe trouble can be detected very easily. Therefore, it is possible to improve data reliability without reducing the processing speed of the analyzer. Since the configuration of the apparatus is simple, it does not complicate existing equipment and is extremely advantageous in terms of cost.

(第2の実施形態)
つぎに、本発明の第2の実施形態を説明する。なお、第1の実施形態と実質的に同一または対応する部材には、同一符号を用いるものとする。
図4は、第2の実施形態における本発明装置の概略構成を示している。第2の実施形態でも洗浄液廃液系において、本発明の配管状態検出装置20を適用し、各反応容器100の洗浄液をポンプ11によって吸引し、廃液タンク12に廃液するものとする。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The same reference numerals are used for members that are substantially the same as or correspond to those in the first embodiment.
FIG. 4 shows a schematic configuration of the device of the present invention in the second embodiment. Also in the second embodiment, in the cleaning liquid waste system, the pipe state detection device 20 of the present invention is applied, and the cleaning liquid in each reaction vessel 100 is sucked by the pump 11 and discharged into the waste liquid tank 12.

この実施形態では各反応容器100にそれぞれ接続された配管13,14,21は、ポンプ11の手前で合流する。各配管13,14,21において、反応容器100と配管分岐点との間に電磁弁(SV1,SV2,SV3)16,17,22が配置され、洗浄液の吸引を制御するようになっている。また、各配管13,14,21内の圧力は、圧力センサ(P1,P2,P3)18,19,23によって検知されるようになっている。さらに、合流配管15内の圧力は、圧力センサ(Pa)24によって検知される。 In this embodiment, the pipes 13, 14, and 21 connected to the respective reaction vessels 100 join before the pump 11. In each of the pipes 13, 14, and 21, electromagnetic valves (SV 1 , SV 2 , SV 3 ) 16, 17, and 22 are arranged between the reaction vessel 100 and the pipe branch point, and the suction of the cleaning liquid is controlled. ing. Further, the pressure in each of the pipes 13, 14, 21 is detected by pressure sensors (P 1 , P 2 , P 3 ) 18, 19, 23. Further, the pressure in the junction pipe 15 is detected by a pressure sensor (P a ) 24.

ここで図5は、第2の実施形態における判定回路(図2参照)の構成例を示している。各圧力センサ18,19,23および圧力センサ24の出力信号は、増幅器25によって一旦増幅され、RMS回路26および全波整流回路27にそれぞれ入力される。各圧力センサ18,19,23,24の出力データに基づき、RMS回路26ではそれぞれの測定圧力値の平均値(基本レベル圧力値)を算出し、全波整流回路27では圧力変動の振幅を算出する。   Here, FIG. 5 shows a configuration example of the determination circuit (see FIG. 2) in the second embodiment. The output signals of the pressure sensors 18, 19, 23 and the pressure sensor 24 are once amplified by the amplifier 25 and input to the RMS circuit 26 and the full-wave rectifier circuit 27, respectively. Based on the output data of each pressure sensor 18, 19, 23, 24, the RMS circuit 26 calculates the average value (basic level pressure value) of each measured pressure value, and the full-wave rectifier circuit 27 calculates the pressure fluctuation amplitude. To do.

さらに、RMS回路26の出力データは、コンパレータ28にて基準値Vref1と比較され、その比較結果により所定レベル(たとえば大気圧)に達しているか否かのレベル検出信号を得る。また、全波整流回路27の出力データは、さらにコンパレータ29にて基準値Vref2と比較され、その比較結果により所定値に達しているか否かの振幅検出信号を得る。 Further, the output data of the RMS circuit 26 is compared with the reference value V ref1 by the comparator 28, and a level detection signal as to whether or not it reaches a predetermined level (for example, atmospheric pressure) is obtained from the comparison result. Further, the output data of the full-wave rectifier circuit 27 is further compared with the reference value V ref2 by the comparator 29, and an amplitude detection signal indicating whether or not the predetermined value has been reached is obtained from the comparison result.

第2の実施形態において、各反応容器100に溜まった洗浄液は、基本的には第1の実施形態の場合と同様にポンプ11によって吸引され、廃液タンク12に廃液される。その際、本発明では合流配管15と各配管13,14,21それぞれとにおける吸引前後の圧力を測定し、各測定圧力値およびそれらの圧力変動状態に基づき各分岐配管13,14,21等の異常の有無を判定する。   In the second embodiment, the cleaning liquid accumulated in each reaction vessel 100 is basically sucked by the pump 11 and discharged into the waste liquid tank 12 as in the case of the first embodiment. At that time, in the present invention, the pressure before and after the suction in the merging pipe 15 and each of the pipes 13, 14, 21 is measured, and the branch pipes 13, 14, 21, etc. are measured based on the measured pressure values and their pressure fluctuation states. Determine if there is an abnormality.

図6は、第2の実施形態における配管状態検出方法の具体的作用を示すフローチャートである。まずステップS1において制御部(図2)からの制御信号によりポンプ11が停止(OFF)し、電磁弁16,17,22は開かれる。つぎに、ステップS2において圧力センサ24および圧力センサ18,19,23の出力信号に基づき、合流配管15および各配管13,14,21の圧力状態が判定される。すなわち、これらの配管の圧力が大気圧でなく、圧力変動(振幅)があれば、配管13,14,21すべての吸引ノズルに詰まりが生じているなど、複合的な異常が発生していると判定される。一方、圧力が大気圧で、振幅がなければ正常と判定され、ステップS3においてポンプ11が作動(ON)される。   FIG. 6 is a flowchart showing a specific operation of the pipe state detection method according to the second embodiment. First, in step S1, the pump 11 is stopped (OFF) by a control signal from the control unit (FIG. 2), and the solenoid valves 16, 17, and 22 are opened. Next, in step S2, based on the output signals of the pressure sensor 24 and the pressure sensors 18, 19, and 23, the pressure states of the merging pipe 15 and the pipes 13, 14, and 21 are determined. That is, if the pressure in these pipes is not atmospheric pressure and there is a pressure fluctuation (amplitude), there is a complex abnormality such as clogging in the suction nozzles of all the pipes 13, 14, and 21. Determined. On the other hand, if the pressure is atmospheric pressure and there is no amplitude, it is determined that the pressure is normal, and the pump 11 is activated (ON) in step S3.

ポンプ11の作動後、ステップS4において圧力センサ24および圧力センサ18,19,23の出力信号に基づき、合流配管15および各配管13,14,21の圧力状態が判定される。すなわち、これらの配管の圧力が大気圧でなく、あるいはいずれかの圧力センサ18,19,23で所定の圧力変動がなければ、ポンプ不良またはそのセンサに対応する電磁弁16,17,22の開不良あるいは吸引ノズルの詰まり、またはそれらの双方などの異常が発生していると判定される。   After the operation of the pump 11, the pressure state of the merging pipe 15 and the pipes 13, 14, 21 is determined based on the output signals of the pressure sensor 24 and the pressure sensors 18, 19, 23 in step S 4. That is, if the pressure of these pipes is not atmospheric pressure or if there is no predetermined pressure fluctuation in any of the pressure sensors 18, 19, 23, the pump is defective or the electromagnetic valves 16, 17, 22 corresponding to the sensors are opened. It is determined that an abnormality such as a defect or clogging of the suction nozzle or both of them has occurred.

一方、合流配管15および各配管13,14,21の圧力が大気圧で、図7に示されるように振幅があれば、すべての配管系において正常と判定される。つまり、このとき電磁弁16,17,22が開かれている各配管13,14,21は、大気開放されているため、ポンプ11の作動により各配管系では図7のような吸引時の脈動が生じる。   On the other hand, if the pressure of the merging pipe 15 and each of the pipes 13, 14, and 21 is atmospheric pressure and has an amplitude as shown in FIG. 7, it is determined that all pipe systems are normal. That is, at this time, the pipes 13, 14, and 21 in which the solenoid valves 16, 17, and 22 are opened are opened to the atmosphere, so that the pulsation during suction as shown in FIG. Occurs.

つぎに、3つの配管系(n=1〜3)について順に配管状態を検出する。第1の配管系(n=1)から行うものとし(ステップS5)、この場合まず、ステップS6において各電磁弁16,17,22が閉められる。n=3まで繰り返し行うが(ステップS7)、いずれの場合もステップS8において一定時間(たとえば、1秒間程度)待機し、ステップS9において圧力センサ24および圧力センサ18,19,23の出力信号に基づき、合流配管15および各配管13,14,21の圧力状態が判定される。すなわち、第1の配管系(n=1)の圧力センサ18(P1)でその出力信号に振幅があれば、対応する電磁弁16の閉不良と判定される。 Next, a piping state is detected in order about three piping systems (n = 1-3). It is assumed that the operation is performed from the first piping system (n = 1) (step S5). In this case, first, the electromagnetic valves 16, 17, and 22 are closed in step S6. The process is repeated until n = 3 (step S7). In either case, the process waits for a predetermined time (for example, about 1 second) in step S8, and in step S9, based on the output signals of the pressure sensor 24 and the pressure sensors 18, 19, and 23. The pressure state of the merging pipe 15 and the pipes 13, 14, and 21 is determined. That is, if the pressure signal 18 (P 1 ) of the first piping system (n = 1) has an amplitude in its output signal, it is determined that the corresponding solenoid valve 16 is not closed properly.

一方、合流配管15の圧力が所定の負圧(たとえば、−70kPa)で、振幅がなく、各配管13,14,21の圧力が大気圧で、振幅がなければ、すべての配管系において正常と判定される。   On the other hand, if the pressure of the merging pipe 15 is a predetermined negative pressure (for example, -70 kPa), there is no amplitude, the pressure of each pipe 13, 14, 21 is atmospheric pressure, and there is no amplitude, it is normal in all the piping systems. Determined.

つぎに、ステップS10において第1の配管系(n=1)の電磁弁16(SV1)が開かれ、ステップS11において圧力センサ24(Pa)および圧力センサ18(P1)の圧力状態が判定される。すなわち、圧力センサ24および圧力センサ18が大気圧で、振幅がなければ、第1の配管系である配管13の吸引ノズルの詰まりと判定される。 Next, in step S10, the solenoid valve 16 (SV 1 ) of the first piping system (n = 1) is opened, and in step S11, the pressure states of the pressure sensor 24 (P a ) and the pressure sensor 18 (P 1 ) are changed. Determined. That is, if the pressure sensor 24 and the pressure sensor 18 are at atmospheric pressure and there is no amplitude, it is determined that the suction nozzle of the pipe 13 which is the first pipe system is clogged.

一方、合流配管15および配管13の圧力が大気圧で、振幅がある場合、正常と判定される。その後、電磁弁16が閉められ、つぎに同様にして第2の配管系(n=2)および第3の配管系(n=3)の圧力状態の判定が繰り返され、n=3で終了する。   On the other hand, when the pressure of the merging pipe 15 and the pipe 13 is atmospheric pressure and has an amplitude, it is determined as normal. Thereafter, the solenoid valve 16 is closed, and then the determination of the pressure state of the second piping system (n = 2) and the third piping system (n = 3) is repeated in the same manner, and the process ends when n = 3. .

第2の実施形態においても自動分析装置の分析のサイクルタイム内で配管系の圧力を検知することにより、極めて簡単に配管トラブルを検出することができる。装置内の不具合箇所が正確に特定されるためメンテナンス性が向上する上、既存の配管系を大幅に変更することなく僅かな追加で対応することができ、限定された装置内スペースを有効利用し、コスト的にも極めて有利である。   Also in the second embodiment, the piping trouble can be detected very easily by detecting the pressure of the piping system within the cycle time of the analysis of the automatic analyzer. Since the location of defects in the equipment can be accurately identified, maintainability is improved, and it is possible to cope with slight additions without significantly changing the existing piping system, making effective use of the limited equipment space. It is extremely advantageous in terms of cost.

また、配管系の影響を受け難い構成であるから、制御の追加が容易である。分析サイクルの途中でトラブル検知が可能であるため、分析装置のデータの信頼性が向上し、結果的に稼働率を高める等の効果がある。   Further, since the configuration is hardly affected by the piping system, it is easy to add control. Since trouble detection is possible in the middle of an analysis cycle, the reliability of the data of the analysis apparatus is improved, and as a result, there is an effect of increasing the operating rate.

以上、本発明を種々の実施形態とともに説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
たとえば、2つあるいは3つの分岐配管を持つ配管系の例を説明したが、それ以上の分岐配管の場合にも同様に適用であり、上記各実施形態と同様な作用効果を得ることができる。また、洗浄液の場合の例を説明したが、それ以外の各種液体を取り扱う配管系に対しても同様に適用することができる。
As mentioned above, although this invention was demonstrated with various embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.
For example, although an example of a piping system having two or three branch pipes has been described, the present invention is similarly applied to a case of more branch pipes, and the same effects as those of the above embodiments can be obtained. Moreover, although the example in the case of a washing | cleaning liquid was demonstrated, it can apply similarly also to the piping system which handles other various liquids.

本発明の実施形態における装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus in embodiment of this invention. 本発明に係る自動分析装置の要部概略構成を示すブロック図である。It is a block diagram which shows the principal part schematic structure of the automatic analyzer which concerns on this invention. 本発明の実施形態における配管状態と配管圧力との関係を示す図である。It is a figure which shows the relationship between the piping state and piping pressure in embodiment of this invention. 本発明の第2の実施形態における装置の概略構成を示す図である。It is a figure which shows schematic structure of the apparatus in the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る判定回路の構成例を示す図である。It is a figure which shows the structural example of the determination circuit which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態における作用を示すフローチャートである。It is a flowchart which shows the effect | action in the 2nd Embodiment of this invention. 本発明の第2の実施形態における配管圧力の波形の例を示す図である。It is a figure which shows the example of the waveform of the piping pressure in the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10,20 配管状態検出装置
11 ポンプ
12 廃液タンク
13,14,21 分岐配管
15 合流配管
16,17,22 電磁弁
18,19,23,24 圧力センサ
10, 20 Piping state detection device 11 Pump 12 Waste liquid tank 13, 14, 21 Branch pipe 15 Merge pipe 16, 17, 22 Solenoid valve 18, 19, 23, 24 Pressure sensor

Claims (7)

液体容器にそれぞれ接続された複数の分岐配管とそれらの合流配管とを含む配管系の異常を検出する配管状態検出方法であって、
前記合流配管にて吸引ポンプを作動するとともに、各分岐配管を開閉制御し、吸引前後における各分岐配管の圧力を測定し、それらの圧力変動状態により配管系の異常を検出するようにしたことを特徴とする配管状態検出方法。
A pipe state detection method for detecting an abnormality in a piping system including a plurality of branch pipes connected to a liquid container and their combined pipes,
In addition to operating the suction pump in the merging pipe, controlling the opening and closing of each branch pipe, measuring the pressure of each branch pipe before and after suction, and detecting abnormalities in the piping system based on their pressure fluctuation state A characteristic pipe state detection method.
複数の前記分岐配管の圧力を測定し、圧力の振幅の大なるいずれか一方の分岐配管を異常と判定することを特徴とする請求項1に記載の配管状態検出方法。   The pipe state detection method according to claim 1, wherein pressures of the plurality of branch pipes are measured, and any one of the branch pipes having a large pressure amplitude is determined to be abnormal. 前記合流配管と複数の前記分岐配管それぞれとにおける吸引前後の圧力を測定し、各測定圧力値およびそれらの圧力変動状態に基づき各前記分岐配管の異常を判定することを特徴とする請求項1に記載の配管状態検出方法。   The pressure before and after the suction in each of the merging pipe and each of the plurality of branch pipes is measured, and abnormality of each branch pipe is determined based on each measured pressure value and the pressure fluctuation state thereof. The piping state detection method described. 各測定圧力値の平均値および振幅を求め、それらがそれぞれ所定値以上であるか否かにより各前記分岐配管の異常を判定することを特徴とする請求項3に記載の配管状態検出方法。   The pipe state detection method according to claim 3, wherein an average value and an amplitude of each measured pressure value are obtained, and abnormality of each branch pipe is determined based on whether or not each of them is equal to or greater than a predetermined value. 前記吸引ポンプ、各分岐配管を開閉制御する電磁弁および吸引口を含む前記配管系の異常を検出することを特徴とする請求項3または4に記載の配管状態検出方法。   The pipe state detection method according to claim 3 or 4, wherein an abnormality of the pipe system including the suction pump, an electromagnetic valve that controls opening and closing of each branch pipe, and a suction port is detected. 液体容器にそれぞれ接続された複数の分岐配管とそれらの合流配管とを含む配管系の異常を検出する配管状態検出装置であって、
前記合流配管にて前記液体容器内の液体を吸引する吸引ポンプと、各前記分岐配管を開閉制御する開閉弁と、各前記分岐配管内の圧力を測定する圧力センサと、前記圧力センサの出力データに基づき前記配管系の異常を判定する判定手段とを備えたことを特徴とする配管状態検出装置。
A pipe state detection device for detecting an abnormality in a piping system including a plurality of branch pipes connected to a liquid container and their merging pipes,
A suction pump that sucks the liquid in the liquid container through the junction pipe, an on-off valve that controls opening and closing of each branch pipe, a pressure sensor that measures the pressure in each branch pipe, and output data of the pressure sensor And a determination means for determining abnormality of the piping system based on the above.
前記合流配管内の圧力を測定する圧力センサをさらに備えたことを特徴とする請求項6に記載の配管状態検出装置。   The pipe state detection device according to claim 6, further comprising a pressure sensor that measures a pressure in the merging pipe.
JP2004381533A 2004-12-28 2004-12-28 Method and apparatus for detecting state of piping Pending JP2006189259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004381533A JP2006189259A (en) 2004-12-28 2004-12-28 Method and apparatus for detecting state of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004381533A JP2006189259A (en) 2004-12-28 2004-12-28 Method and apparatus for detecting state of piping

Publications (1)

Publication Number Publication Date
JP2006189259A true JP2006189259A (en) 2006-07-20

Family

ID=36796625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004381533A Pending JP2006189259A (en) 2004-12-28 2004-12-28 Method and apparatus for detecting state of piping

Country Status (1)

Country Link
JP (1) JP2006189259A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078379A1 (en) * 2007-12-18 2009-06-25 Olympus Corporation Cleaning apparatus, and automatic analysis apparatus
WO2010038546A1 (en) * 2008-09-30 2010-04-08 株式会社 日立ハイテクノロジーズ Automatic analyzing system
CN103185805A (en) * 2011-12-28 2013-07-03 上海丰汇医学科技有限公司 Cuvette flushing system for full automatic biochemical analyzer
WO2022244565A1 (en) * 2021-05-21 2022-11-24 株式会社日立ハイテク Automatic analysis device
JP7476077B2 (en) 2020-11-02 2024-04-30 日本電子株式会社 Automatic analysis device and automatic analysis method

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826224A (en) * 1981-08-08 1983-02-16 Tominaga Oil Pump Mfg Co Ltd Detection of abnormality in measuring in fluid measuring device
JPH04131763A (en) * 1990-09-23 1992-05-06 Horiba Ltd Liquid measuring apparatus
JPH0627120A (en) * 1992-07-08 1994-02-04 Aloka Co Ltd Dispenser with closure detection
JPH06238741A (en) * 1992-12-21 1994-08-30 Nissei Asb Mach Co Ltd Blow air supply device of blow molding machine
JPH06265558A (en) * 1993-03-16 1994-09-22 Olympus Optical Co Ltd Container cleaner
JPH0680151U (en) * 1993-04-21 1994-11-08 ユタカ産商株式会社 Pipe damage monitoring device
JPH0645255Y2 (en) * 1987-08-18 1994-11-16 オリンパス光学工業株式会社 Liquid dispensing device
JPH07294391A (en) * 1994-04-27 1995-11-10 Shimadzu Corp Dispensing device
JPH0843243A (en) * 1994-08-04 1996-02-16 Nagano Keiki Seisakusho Ltd Leakage testing device
JPH08338801A (en) * 1995-06-12 1996-12-24 Kao Corp Method for detecting clogging
JPH09257805A (en) * 1996-03-18 1997-10-03 Tosoh Corp Dispensing unit and method for discriminating its non-defective or defective
JPH11271324A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Cleaning method for probe
JP2000046846A (en) * 1998-07-24 2000-02-18 Fujirebio Inc Method for detecting clog of suction channel or suction amount insufficiency, sample liquid-sucking apparatus, and dispensing apparatus
JP2002333449A (en) * 2001-05-10 2002-11-22 Hitachi Ltd Sample dispensing apparatus and autoanalyzer using the same
JP2003224397A (en) * 2002-01-30 2003-08-08 Fuji Mach Mfg Co Ltd Inspection and cleaning method for clogging state of filter of electric component holder, and apparatus therefor
WO2003066216A1 (en) * 2002-02-04 2003-08-14 Siemens Aktiengesellschaft Microfluidic system
JP2003302410A (en) * 2002-04-09 2003-10-24 Hitachi High-Technologies Corp Reagent dispensing device
JP2003314263A (en) * 2002-04-25 2003-11-06 Toyota Motor Corp Secondary air supply system
JP2004020394A (en) * 2002-06-17 2004-01-22 Osaka Gas Co Ltd Flow meter
JP2004233086A (en) * 2003-01-28 2004-08-19 Olympus Corp Sample dispensing apparatus
JP2005051711A (en) * 2003-07-31 2005-02-24 Smk Corp Method for incorporating insulating spacer in capacitor microphone

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826224A (en) * 1981-08-08 1983-02-16 Tominaga Oil Pump Mfg Co Ltd Detection of abnormality in measuring in fluid measuring device
JPH0645255Y2 (en) * 1987-08-18 1994-11-16 オリンパス光学工業株式会社 Liquid dispensing device
JPH04131763A (en) * 1990-09-23 1992-05-06 Horiba Ltd Liquid measuring apparatus
JPH0627120A (en) * 1992-07-08 1994-02-04 Aloka Co Ltd Dispenser with closure detection
JPH06238741A (en) * 1992-12-21 1994-08-30 Nissei Asb Mach Co Ltd Blow air supply device of blow molding machine
JPH06265558A (en) * 1993-03-16 1994-09-22 Olympus Optical Co Ltd Container cleaner
JPH0680151U (en) * 1993-04-21 1994-11-08 ユタカ産商株式会社 Pipe damage monitoring device
JPH07294391A (en) * 1994-04-27 1995-11-10 Shimadzu Corp Dispensing device
JPH0843243A (en) * 1994-08-04 1996-02-16 Nagano Keiki Seisakusho Ltd Leakage testing device
JPH08338801A (en) * 1995-06-12 1996-12-24 Kao Corp Method for detecting clogging
JPH09257805A (en) * 1996-03-18 1997-10-03 Tosoh Corp Dispensing unit and method for discriminating its non-defective or defective
JPH11271324A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Cleaning method for probe
JP2000046846A (en) * 1998-07-24 2000-02-18 Fujirebio Inc Method for detecting clog of suction channel or suction amount insufficiency, sample liquid-sucking apparatus, and dispensing apparatus
JP2002333449A (en) * 2001-05-10 2002-11-22 Hitachi Ltd Sample dispensing apparatus and autoanalyzer using the same
JP2003224397A (en) * 2002-01-30 2003-08-08 Fuji Mach Mfg Co Ltd Inspection and cleaning method for clogging state of filter of electric component holder, and apparatus therefor
WO2003066216A1 (en) * 2002-02-04 2003-08-14 Siemens Aktiengesellschaft Microfluidic system
JP2003302410A (en) * 2002-04-09 2003-10-24 Hitachi High-Technologies Corp Reagent dispensing device
JP2003314263A (en) * 2002-04-25 2003-11-06 Toyota Motor Corp Secondary air supply system
JP2004020394A (en) * 2002-06-17 2004-01-22 Osaka Gas Co Ltd Flow meter
JP2004233086A (en) * 2003-01-28 2004-08-19 Olympus Corp Sample dispensing apparatus
JP2005051711A (en) * 2003-07-31 2005-02-24 Smk Corp Method for incorporating insulating spacer in capacitor microphone

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078379A1 (en) * 2007-12-18 2009-06-25 Olympus Corporation Cleaning apparatus, and automatic analysis apparatus
JP2009145295A (en) * 2007-12-18 2009-07-02 Olympus Corp Cleaning apparatus and automatic analyzer
US8968680B2 (en) 2007-12-18 2015-03-03 Beckman Coulter, Inc. Cleaning device and automatic analyzer
WO2010038546A1 (en) * 2008-09-30 2010-04-08 株式会社 日立ハイテクノロジーズ Automatic analyzing system
CN102124351A (en) * 2008-09-30 2011-07-13 株式会社日立高新技术 Automatic analyzing system
US9176156B2 (en) 2008-09-30 2015-11-03 Hitachi High-Technologies Corporation Automatic analyzer including pressure sensor for washing solution
CN103185805A (en) * 2011-12-28 2013-07-03 上海丰汇医学科技有限公司 Cuvette flushing system for full automatic biochemical analyzer
JP7476077B2 (en) 2020-11-02 2024-04-30 日本電子株式会社 Automatic analysis device and automatic analysis method
WO2022244565A1 (en) * 2021-05-21 2022-11-24 株式会社日立ハイテク Automatic analysis device

Similar Documents

Publication Publication Date Title
CN102182929B (en) Device and method for detecting pipeline blockage
JP4753770B2 (en) Method for determining presence / absence of bubbles in pipe in dispensing apparatus and dispensing apparatus
JP2000233020A (en) Washing method and washing device for blood treating device
CN103837462B (en) A kind of small-sized flow cytometer liquid-way system
SE513838C2 (en) Method and apparatus for calibrating sensing means in a system with a flowing fluid
JP2001190938A (en) Method of detecting breakage of water treating membrane
CN106706946B (en) Seawater sample distributes automatically and back purge system
JP2007315969A (en) Autoanalyzer and dispensation failure determining method of dispensing mechanism
CN106017811A (en) Automatic diaper side leakage detecting device and detecting method thereof
CN105738287A (en) Water quality analyzer
JP2006263136A (en) Liquid level detecting device and method
CN103257164B (en) Electrode clean, correction and save set and method
JP4365804B2 (en) Apparatus and method for determining clogged state in pipe
CN109580321A (en) A kind of fluid path air bubble eliminating device and method
CN202040547U (en) Pipe blockage detection device and supply system
JP2006189259A (en) Method and apparatus for detecting state of piping
JP3793477B2 (en) Dispensing device
JP2007240328A (en) Dispensing device and dispensation method
CN109199067A (en) A kind of cooking apparatus
JPH01307424A (en) Device for detecting damaged filter cloth in bag filter
JPH0627120A (en) Dispenser with closure detection
JPH0772050A (en) Gas collecting apparatus
JP5372646B2 (en) Automatic analyzer
JP7316898B2 (en) Monitoring system and monitoring method
JP2640336B2 (en) Vehicle full detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525