JP2006183667A - Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine - Google Patents

Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine Download PDF

Info

Publication number
JP2006183667A
JP2006183667A JP2006014318A JP2006014318A JP2006183667A JP 2006183667 A JP2006183667 A JP 2006183667A JP 2006014318 A JP2006014318 A JP 2006014318A JP 2006014318 A JP2006014318 A JP 2006014318A JP 2006183667 A JP2006183667 A JP 2006183667A
Authority
JP
Japan
Prior art keywords
catalyst
fuel
internal combustion
combustion engine
combustion control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006014318A
Other languages
Japanese (ja)
Other versions
JP2006183667A5 (en
Inventor
Noboru Tokuyasu
昇 徳安
Toshiji Nogi
利治 野木
Takuya Shiraishi
拓也 白石
Yoichi Iiboshi
洋一 飯星
Minoru Osuga
大須賀  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006014318A priority Critical patent/JP2006183667A/en
Publication of JP2006183667A publication Critical patent/JP2006183667A/en
Publication of JP2006183667A5 publication Critical patent/JP2006183667A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/125
    • Y02T10/146

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for a cylinder injection type internal combustion engine capable of reducing an activation time for a catalyst while reducing the exhaust amount of unburned HC in starting the cylinder injection type internal combustion engine and less exhausting unburned HC even in an operating period ranging from a cranking to a combustion control for activating the catalyst. <P>SOLUTION: This cylinder injection type internal combustion engine comprises a fuel injection valve injecting a fuel directly into a cylinder and the catalyst for purifying exhaust gases in an exhaust pipe. The internal combustion engine comprises at least two types of combustion control patterns for earlier activating the catalyst and switches the combustion control pattern based on the temperature of the catalyst. Also, stratified combustion can be realized from the start of the engine by optimizing the structure of the cylinder injection internal combustion engine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃焼室内に燃料を直接噴射する筒内噴射式内燃機関において、特に始動時における触媒の早期活性化方法に関する。   The present invention relates to a method for early activation of a catalyst in a cylinder injection internal combustion engine in which fuel is directly injected into a combustion chamber, particularly at the time of starting.

これまでに、排気および燃費規制の強化に伴い、始動時における触媒の早期活性化の技術が提案されている。特に筒内噴射式内燃機関に関する技術に関しては次のようなものが提案されている。   So far, with the strengthening of exhaust gas and fuel efficiency regulations, a technique for early activation of the catalyst at the time of starting has been proposed. In particular, the following technologies have been proposed for technologies related to the cylinder injection internal combustion engine.

従来の筒内噴射式内燃機関における触媒を早期活性化に関する技術は、特開平8−100638号公報に開示された膨張行程の初期から中期に追加燃料噴射を行い、この追加燃料を主燃焼の火炎伝播によって着火させて排気温度を上昇させ、触媒を暖機する方法が提案されている。   The technology relating to the early activation of the catalyst in the conventional in-cylinder injection type internal combustion engine is that the additional fuel injection is performed from the initial stage to the middle stage of the expansion stroke disclosed in Japanese Patent Application Laid-Open No. 8-100368, and this additional fuel is used as the main combustion flame. There has been proposed a method of warming up the catalyst by raising the exhaust temperature by igniting by propagation.

その他にも特開平11−294157号公報には、膨張行程中に追加燃料を噴射し、排気マニホールドに設けた容積部で排気を滞留させ、燃え残った追加燃料を前記容積部内で再燃焼させることで、未燃HCを低減しつつ、排気温度を上昇し、触媒を暖機する方法が提案されている。   In addition, Japanese Patent Application Laid-Open No. 11-294157 discloses that additional fuel is injected during the expansion stroke, the exhaust is retained in a volume provided in the exhaust manifold, and the remaining fuel remaining is reburned in the volume. Thus, a method for warming up the catalyst by increasing the exhaust temperature while reducing unburned HC has been proposed.

特開平8−100638号公報JP-A-8-1000063 特開平11−294157号公報Japanese Patent Laid-Open No. 11-294157

ところで、膨張行程の初期から中期に追加燃料を噴射する場合は、追加噴射された燃料は燃焼室から燃焼しながら排出される。追加燃料噴射をTDC付近、すなわち膨張行程初期で行うと燃焼室から排出される未燃HCは低減する傾向がある。したがって、排気温度は高くなる。しかし、この場合は追加燃料が燃料噴射弁から噴射された直後に着火し、酸素を取りこみながら燃焼するためスモークが大量に発生してしまう。また追加燃料を膨張行程の中期に噴射した場合は、主燃焼による火炎が残っていないため、追加燃料を確実に着火,燃焼させることが困難で、その結果未燃HCが増加してしまい、排気温度も十分に上昇しないため触媒が活性化するまでに時間がかかってしまう。一方、膨張行程中に追加燃料噴射を行い、排気マニホールドに設けた容積部で未燃HCを再燃焼させる方法は、未燃HCを低減しつつ、高温の排気を触媒に供給できる。しかし、この方法においては、容積部の温度が所定の温度に達していないと、十分な残存酸素と未燃HCが存在しても、容積部内で、再燃焼しない。すなわち、容積部が所定の温度に達するまでに時間を介し、その間燃焼室から排出された未燃HCは大気にそのまま放出されてしまう。   By the way, when the additional fuel is injected from the initial stage to the middle stage of the expansion stroke, the additionally injected fuel is discharged while burning from the combustion chamber. If additional fuel injection is performed near TDC, that is, at the beginning of the expansion stroke, unburned HC discharged from the combustion chamber tends to decrease. Therefore, the exhaust temperature becomes high. However, in this case, the additional fuel is ignited immediately after being injected from the fuel injection valve, and burns while taking in oxygen, so that a large amount of smoke is generated. In addition, when the additional fuel is injected in the middle of the expansion stroke, it is difficult to reliably ignite and burn the additional fuel because no flame remains due to the main combustion, resulting in an increase in unburned HC and exhaust gas. Since the temperature does not rise sufficiently, it takes time until the catalyst is activated. On the other hand, the method of performing additional fuel injection during the expansion stroke and recombusting the unburned HC in the volume provided in the exhaust manifold can supply high temperature exhaust gas to the catalyst while reducing the unburned HC. However, in this method, if the temperature of the volume part does not reach a predetermined temperature, even if sufficient residual oxygen and unburned HC exist, recombustion does not occur in the volume part. That is, over time until the volume reaches a predetermined temperature, unburned HC discharged from the combustion chamber is discharged into the atmosphere as it is.

本発明は、前記点に鑑みてなされたものであって、その目的とするところは、触媒が活性化するまでの未燃HCを低減しつつ、さらなる触媒の活性化時間の短縮化を図ることにある。   The present invention has been made in view of the above points, and its object is to further reduce the activation time of the catalyst while reducing unburned HC until the catalyst is activated. It is in.

前記目的を達成すべく、本発明になる筒内噴射式内燃機関及びその始動時における燃焼制御方法は、本質的には、筒内に直接燃料を噴射する燃料噴射弁と、排気管内に排気中のHC成分によって活性化させ髏G媒を備えている。そして前記触媒を早期活性化するための燃焼制御パターンを少なくとも2種有し、前記燃焼制御パターンを触媒温度に基づいて切り換えることを特徴としている。   In order to achieve the above object, a cylinder injection internal combustion engine according to the present invention and a combustion control method at the time of start-up are essentially a fuel injection valve for directly injecting fuel into a cylinder, and exhaust gas in an exhaust pipe. It is activated by the HC component of and has a soot G medium. And it has at least 2 types of combustion control patterns for activating the said catalyst at an early stage, It is characterized by switching the said combustion control pattern based on catalyst temperature.

また、冷却水温によっても燃焼制御することを提案するもので、好ましくは、水温に基づき燃焼制御方法を選択する手段を有し、水温が所定温度より低い場合で成層始動可能領域ではない場合は燃料噴射を吸気行程に行い、均質燃焼とし、水温が所定温度より高い場合で、成層燃焼が可能な領域では燃料噴射を圧縮行程に行い成層燃焼とする。   In addition, it is proposed that combustion control is also performed based on the cooling water temperature. Preferably, there is a means for selecting a combustion control method based on the water temperature, and if the water temperature is lower than the predetermined temperature and is not in the stratified startable region, the fuel Injecting is performed in the intake stroke, homogeneous combustion is performed, and when the water temperature is higher than a predetermined temperature, fuel injection is performed in the compression stroke and stratified combustion is performed in a region where stratified combustion is possible.

また、好ましくは、始動時から燃料を圧縮行程に噴射する、すなわち成層燃焼を行うものである。   Preferably, fuel is injected from the start to the compression stroke, that is, stratified combustion is performed.

そして、本発明の具体的な態様としては、筒内に直接燃料を噴射する燃料噴射弁と、排気中のHC成分によって活性化する触媒を備えた筒内噴射式内燃機関において、触媒を早期活性化するための2つの燃焼制御パターンを有し、触媒温度が所定値に達すると第2の燃焼制御パターンを実行し、この第2の燃焼制御パターンは圧縮行程と膨張行程に燃料を噴射する2回噴射制御であることを特徴としている。   As a specific aspect of the present invention, in a cylinder injection internal combustion engine including a fuel injection valve that directly injects fuel into a cylinder and a catalyst that is activated by an HC component in exhaust gas, the catalyst is activated early. The second combustion control pattern is executed when the catalyst temperature reaches a predetermined value, and the second combustion control pattern injects fuel in the compression stroke and the expansion stroke. It is characterized by the double injection control.

前記の態様において、好ましくは、運転条件に応じて第1の燃料噴射を圧縮行程、第2の燃料噴射を膨張行程初期に行い、触媒温度が所定値に達すると前記第2の燃料噴射を膨張行程中期以降に切り換えを行う方法である。   In the above aspect, preferably, the first fuel injection is performed in the compression stroke and the second fuel injection is performed in the initial stage of the expansion stroke according to the operating conditions, and the second fuel injection is expanded when the catalyst temperature reaches a predetermined value. This is a method of switching after the middle of the process.

前記の態様において、好ましくは、空気と燃料を独立に制御及び噴射可能な燃料噴射弁を適応したものである。   In the above aspect, preferably, a fuel injection valve capable of independently controlling and injecting air and fuel is applied.

前記の態様において、好ましくは、筒内圧力の変化に対する形状変化の少ない噴霧形成が可能な燃料噴射弁を適応したものである。   In the above aspect, preferably, a fuel injection valve capable of forming a spray with little change in shape with respect to a change in in-cylinder pressure is applied.

前記の態様において、好ましくは、触媒温度が所定値に達するまでの2回噴射において、第2の燃料噴射を複数回に分割して筒内に燃料噴射する方法である。   In the above aspect, the second fuel injection is preferably divided into a plurality of times and injected into the cylinder in two injections until the catalyst temperature reaches a predetermined value.

前記の態様において、好ましくは、触媒温度が所定値に達するまでの2回噴射制御において、排気中の酸素濃度に応じて追加燃料量を変化させる方法である。   In the above aspect, it is preferable that the amount of additional fuel is changed in accordance with the oxygen concentration in the exhaust gas in the two-time injection control until the catalyst temperature reaches a predetermined value.

このような構成及び燃焼制御方法により、始動時における未燃HCの排出を低減しつつ、さらなる触媒の活性化時間を短縮することができる。   With such a configuration and the combustion control method, it is possible to further reduce the activation time of the catalyst while reducing the discharge of unburned HC at the time of starting.

本発明は、機関の始動時に触媒の温度や冷却水の温度に基づいて第1燃焼制御と、第2燃焼制御を切り換えることにより、触媒の活性化時間の大幅な短縮が可能である。その結果、触媒活性化のため燃焼制御期間中に排出される未燃HCを低減することができる。   In the present invention, the activation time of the catalyst can be greatly shortened by switching between the first combustion control and the second combustion control based on the temperature of the catalyst and the temperature of the cooling water at the start of the engine. As a result, unburned HC discharged during the combustion control period for catalyst activation can be reduced.

以下、本発明の実施形態について図面に基づき説明する。図1は、本発明の実施形態における筒内噴射式内燃機関の斜視概念断面図であり、内燃機関本体1の各気筒は、下部にシリンダブロック2を備えると共に、前記シリンダブロック2の上部にシリンダヘッド3を配置している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective sectional view of a cylinder injection internal combustion engine according to an embodiment of the present invention. Each cylinder of the internal combustion engine body 1 includes a cylinder block 2 at a lower portion and a cylinder at an upper portion of the cylinder block 2. A head 3 is arranged.

前記シリンダブロック2の内部には、ピストン4が上下摺動可能に配置され、前記シリンダブロック2と前記ピストン4との間の空間は、燃焼室5として形成されている。シリンダヘッド3は、ペントルーフとなっており、前記シリンダヘッド3には、燃焼室5に開口する二本の吸気管6と二本の排気管7が接続形成され、前記各吸気管6には各々吸気弁8が、前記各排気管7には各々排気弁9が前記シリンダヘッド3との接続部に配置されている。なお、ピストン4の冠面形状については、代表例としてフラットなものを示しているが、特に制約はない。   Inside the cylinder block 2, a piston 4 is slidably arranged, and a space between the cylinder block 2 and the piston 4 is formed as a combustion chamber 5. The cylinder head 3 is a pent roof, and two intake pipes 6 and two exhaust pipes 7 that open to the combustion chamber 5 are connected to the cylinder head 3. An intake valve 8 is disposed in each exhaust pipe 7, and an exhaust valve 9 is disposed at a connection portion with the cylinder head 3. In addition, about the crown surface shape of piston 4, although the flat thing is shown as a typical example, there is no restriction | limiting in particular.

前記吸気弁8近傍の燃焼室側面には、燃料を直接機関の気筒内に噴射する燃料噴射弁10が配設され、その噴口を燃焼室5に向けて位置している。前記燃料噴射弁10は、噴霧燃料に旋回力を与えて所定の噴霧角の円錐形状なるような噴口の形状を有する高圧旋回燃料噴射弁である。前記シリンダヘッド3の天井部中心位置には、点火プラグ11が配設されている。   A fuel injection valve 10 for injecting fuel directly into the cylinder of the engine is disposed on the side surface of the combustion chamber in the vicinity of the intake valve 8, and its injection port is located toward the combustion chamber 5. The fuel injection valve 10 is a high-pressure swirl fuel injection valve having a nozzle shape that gives a swirl force to the sprayed fuel to form a conical shape with a predetermined spray angle. A spark plug 11 is disposed at the center position of the ceiling of the cylinder head 3.

前記吸気弁8と前記排気弁9は、シリンダヘッド3の上部に配置されたカムシャフト
(図示省略)により上下方向に移動して、前記シリンダヘッド3に形成された吸気管6と排気管7との連通弁孔を開閉する。前記ピストン4は、前記シリンダブロック2の下部に回転自在に軸支されたクランク軸(図示省略)にコンロッド12を介して連動連結され、機関の稼働により前記ピストン4が前記シリンダブロック2内を上下するのに伴って、前記クランク軸を回転駆動する。
The intake valve 8 and the exhaust valve 9 are moved up and down by a camshaft (not shown) disposed at the upper part of the cylinder head 3, and an intake pipe 6 and an exhaust pipe 7 formed on the cylinder head 3. Open and close the communication valve hole. The piston 4 is connected to a crankshaft (not shown) rotatably supported at the lower portion of the cylinder block 2 via a connecting rod 12, and the piston 4 moves up and down in the cylinder block 2 by the operation of the engine. Accordingly, the crankshaft is rotationally driven.

図2は、本発明の実施形態における筒内噴射式内燃機関のシステム構成図を示す。図1で説明した構成の筒内噴射式内燃機関において、排気管7の下流側には排気浄化装置13が設けられており、排気浄化装置の上流側の排気管7には、排気中の酸素濃度を検出する酸素濃度センサ14が設けられ、排気浄化装置13内には触媒温度センサ15が設けられている。前記排気浄化装置13内は、三元触媒13aとNOx触媒13bが備えられている。また三元触媒13aとNOx触媒13bが独立に設けられた構成の場合は、例えば三元触媒13aとNOx触媒13bの上流側と下流側の排気管7にそれぞれ排気温度センサを設けておき、触媒前後の排気温度から触媒温度を推定してもよい。   FIG. 2 shows a system configuration diagram of the direct injection internal combustion engine in the embodiment of the present invention. In the cylinder injection internal combustion engine having the configuration described with reference to FIG. 1, an exhaust purification device 13 is provided on the downstream side of the exhaust pipe 7, and oxygen in the exhaust is provided in the exhaust pipe 7 on the upstream side of the exhaust purification device. An oxygen concentration sensor 14 for detecting the concentration is provided, and a catalyst temperature sensor 15 is provided in the exhaust purification device 13. The exhaust purification device 13 includes a three-way catalyst 13a and a NOx catalyst 13b. In the case where the three-way catalyst 13a and the NOx catalyst 13b are provided independently, for example, exhaust temperature sensors are provided in the exhaust pipes 7 on the upstream side and the downstream side of the three-way catalyst 13a and the NOx catalyst 13b, respectively. The catalyst temperature may be estimated from the front and rear exhaust temperatures.

ECU16には、機関回転数,空気量,水温,アクセルポジションなどの信号などが入力されており、触媒温度推定手段と始動時の燃焼制御手段、具体的には燃料噴射制御部と点火時期制御部を備えている。前記燃料噴射制御部には機関出力を得るための主燃料噴射制御部と触媒13a,13bを活性化させるための追加燃料噴射制御部が備えられており、運転条件に応じて燃料噴射タイミング及び燃料噴射量が設定される。   The ECU 16 receives signals such as the engine speed, the air amount, the water temperature, and the accelerator position, and the like. The catalyst temperature estimating means and the starting combustion control means, specifically the fuel injection control part and the ignition timing control part. It has. The fuel injection control unit includes a main fuel injection control unit for obtaining engine output and an additional fuel injection control unit for activating the catalysts 13a and 13b. The fuel injection timing and the fuel are determined according to operating conditions. An injection amount is set.

図3に本発明の実施形態における始動時の燃焼制御方法の概要を説明する。機関が始動し、触媒が所定温度Tsに到達すると触媒を活性化するための第1の燃焼制御を行う。前記第1燃焼制御が行われている間は、触媒が十分な活性状態にないため、燃焼室から未燃HCが極力排出されないような燃焼を行わなければならない。さらに触媒温度が上昇し、触媒の活性化領域の下限値Tc(250℃〜300℃程度)に到達すると、第2燃焼制御に切り換える。触媒温度がTc以上になると、燃焼室から排出された未燃HCが、触媒内で反応し始める。当然のことながら排気中には未燃HCを燃焼させるのに見合った残存酸素が必要不可欠であるが、主燃焼を成層燃焼とすることによりシリンダ内に十分な空気を吸入することで対応することができる。第2燃焼制御は触媒温度が触媒の活性化領域の上限値Teに達すると終了する。触媒温度と浄化率の関係は図4に示すとおりである。触媒温度が200℃〜250℃程度までは浄化率が0に近く、未燃HCを浄化するのが困難である。すなわち、機関から排出される未燃HCを低減しつつ、いかに早く触媒温度を200℃〜250℃以上にするかが、触媒活性化時間の短縮における重要なポイントである。また浄化率が100%に近づくのは、触媒温度が約500℃であるため、前記Teは500℃付近に設定するのが望ましい。なお、第1燃焼制御手段の開始については、触媒温度ではなく始動後のタイマに基づいて行うようにしてもよい。   FIG. 3 illustrates an outline of the combustion control method at the start in the embodiment of the present invention. When the engine is started and the catalyst reaches a predetermined temperature Ts, the first combustion control for activating the catalyst is performed. While the first combustion control is being performed, since the catalyst is not in a sufficiently active state, combustion must be performed so that unburned HC is not discharged as much as possible from the combustion chamber. When the catalyst temperature further rises and reaches the lower limit value Tc (about 250 ° C. to 300 ° C.) of the activation region of the catalyst, switching to the second combustion control is performed. When the catalyst temperature becomes equal to or higher than Tc, unburned HC discharged from the combustion chamber starts to react in the catalyst. As a matter of course, residual oxygen that is commensurate with burning unburned HC is indispensable in the exhaust, but this can be dealt with by inhaling sufficient air into the cylinder by using stratified combustion as the main combustion. Can do. The second combustion control ends when the catalyst temperature reaches the upper limit value Te of the activation region of the catalyst. The relationship between the catalyst temperature and the purification rate is as shown in FIG. When the catalyst temperature is about 200 ° C. to 250 ° C., the purification rate is close to 0, and it is difficult to purify unburned HC. That is, how quickly the catalyst temperature is set to 200 ° C. to 250 ° C. or more while reducing the unburned HC discharged from the engine is an important point in shortening the catalyst activation time. Further, the reason why the purification rate approaches 100% is that the catalyst temperature is about 500 ° C., therefore, it is desirable to set Te to around 500 ° C. Note that the start of the first combustion control means may be performed based on a timer after starting instead of the catalyst temperature.

図5に本発明の実施形態における制御フローチャートを示す。まずステップ101で、排気管に設けた触媒温度センサ15により触媒温度Ctを設定する。S102でCt<Tsの場合は第1燃焼制御を行わず、再度、ステップ101で触媒温度Ctを計測する。前記動作を繰り返した後、触媒温度Ct≧Tsとなるとステップ103で第1燃焼制御を開始する。次へ進みステップ104で触媒温度Ct≧Tsとなるまでの間、第1燃焼制御を行う。ステップ104で触媒温度Ct≧Tsが成立すると、ステップ105で第2燃焼制御を開始する。そして、ステップ105で触媒温度Ct≧Teとなるまでの間、第2燃焼制御を行い、ステップ106で触媒温度Ct≧Teとなったら本発明の燃焼制御を終了する。   FIG. 5 shows a control flowchart in the embodiment of the present invention. First, in step 101, the catalyst temperature Ct is set by the catalyst temperature sensor 15 provided in the exhaust pipe. If Ct <Ts in S102, the first combustion control is not performed, and the catalyst temperature Ct is measured again in step 101. After the above operation is repeated, the first combustion control is started in step 103 when the catalyst temperature Ct ≧ Ts. Next, the first combustion control is performed until the catalyst temperature Ct ≧ Ts in step 104. When the catalyst temperature Ct ≧ Ts is established at step 104, the second combustion control is started at step 105. Then, the second combustion control is performed until the catalyst temperature Ct ≧ Te in step 105, and when the catalyst temperature Ct ≧ Te is satisfied in step 106, the combustion control of the present invention is terminated.

ところで、筒内噴射式内燃機関の成層燃焼時はピストン冠面に設けられたキャビティに向けて燃料を噴射し、燃料噴霧をキャビティでガイドして、点火プラグへ搬送するものが一般的である。このようなコンセプトにおいては、燃料をピストンに衝突させるため、ピストン冠面に燃料を液膜付着する。特に始動時においては、ピストンや燃焼室壁面が冷えているため、壁面付着燃料の気化が不十分となり、燃焼の安定領域が縮小される課題がある。これらの課題に対して本発明では、図6に示すとおり、始動時の水温により第1燃焼制御手段を選択するようになっている。始動時の水温がTw以上(成層燃焼実現可能領域)の場合は、第1燃焼制御パターンとして、第1燃料噴射を圧縮行程、追加燃料である第2燃料噴射を膨張行程に行い、追加燃料による後燃えにより排気温度を上昇させ、触媒温度を上昇させる。一方、始動時の水温がTw以下の場合は、図15に示す如く第1燃料噴射を吸気行程で行い、均質リーン燃焼に加え点火時期をTDC近傍にまでリタードすることにより前記同様の効果を得る。   By the way, at the time of stratified combustion of an in-cylinder internal combustion engine, it is common to inject fuel into a cavity provided on the piston crown surface, guide fuel spray through the cavity, and convey it to a spark plug. In such a concept, in order to cause the fuel to collide with the piston, the liquid film adheres to the piston crown surface. Particularly at the time of start-up, since the piston and the combustion chamber wall surface are cooled, there is a problem that the fuel adhering to the wall surface is insufficiently vaporized and the stable region of combustion is reduced. With respect to these problems, in the present invention, as shown in FIG. 6, the first combustion control means is selected according to the water temperature at the start. When the water temperature at start-up is equal to or higher than Tw (stratified combustion feasible region), as the first combustion control pattern, the first fuel injection is performed in the compression stroke, and the second fuel injection, which is additional fuel, is performed in the expansion stroke. The exhaust temperature is raised by afterburning, and the catalyst temperature is raised. On the other hand, when the water temperature at the start is equal to or lower than Tw, the first fuel injection is performed in the intake stroke as shown in FIG. 15, and the ignition timing is retarded to near TDC in addition to the homogeneous lean combustion, thereby obtaining the same effect as described above. .

次に、始動時の水温がTw以上の場合について、具体的に説明する。   Next, the case where the water temperature at the time of starting is equal to or higher than Tw will be specifically described.

図7に、本発明の代表的な実施形態における燃料噴射制御方法を示す。この実施例では、触媒温度がTc前後において、共に第1燃料噴射時期は圧縮行程で行い、引き続く第2燃料噴射は触媒温度がTcに達するまでは膨張行程の初期に、触媒温度がTcに達した後は膨張行程の中期以降に切り換える制御方法である。第1燃焼制御として、第1燃料噴射を圧縮行程に行い、第2燃料噴射を膨張行程初期に行う燃焼メカニズムを図8に基づき説明する。圧縮行程に噴射された第1の燃料は、その後の点火により燃焼する。膨張行程の初期に噴射される第2の燃料は、前記第1の燃焼の火炎伝播により着火される。よって第2燃料噴射を行うときは燃焼室内が非常に高温となっており、第2噴射燃料は、燃焼室内の残存酸素と十分に混ざることなく、噴射直後から酸素を取り込みながら燃焼する。これを拡散燃焼と言うが、このような燃焼形態の場合、酸化不足によりスモークが大量に発生する。図9に第2燃料噴射時期を変化させた場合の排気温度、未燃HC及びスモークの特性を示す。排気温度は40degATDC から遅らせるほど低下し、対して未燃HCは増加する一方である。70degATDC 付近では、主燃焼の火炎が残っていないため、第2噴射燃料に着火しなくなると考ええられる。またスモークは、40degATDC より前で急激に増加してしまう。   FIG. 7 shows a fuel injection control method in a representative embodiment of the present invention. In this embodiment, when the catalyst temperature is around Tc, the first fuel injection timing is performed in the compression stroke, and the subsequent second fuel injection is at the beginning of the expansion stroke until the catalyst temperature reaches Tc, and the catalyst temperature reaches Tc. After that, the control method is switched after the middle stage of the expansion stroke. As the first combustion control, a combustion mechanism for performing the first fuel injection in the compression stroke and performing the second fuel injection in the initial stage of the expansion stroke will be described with reference to FIG. The first fuel injected in the compression stroke is combusted by subsequent ignition. The second fuel injected at the beginning of the expansion stroke is ignited by the flame propagation of the first combustion. Therefore, when the second fuel injection is performed, the combustion chamber is very hot, and the second injected fuel is burned while taking in oxygen immediately after injection without being sufficiently mixed with the residual oxygen in the combustion chamber. This is called diffusion combustion. In the case of such a combustion mode, a large amount of smoke is generated due to insufficient oxidation. FIG. 9 shows the exhaust temperature, unburned HC, and smoke characteristics when the second fuel injection timing is changed. The exhaust gas temperature decreases as it is delayed from 40 degATDC, while the unburned HC increases. In the vicinity of 70 degATDC, since the main combustion flame does not remain, it is considered that the second injected fuel does not ignite. Smoke increases rapidly before 40 degATDC.

そこで本実施例では、前記課題である未燃HC及びスモークの低減を図りながら、かつ排気温度を上昇させるための具体的な改良案をも提案するものであり、この改良案を図10,図11を用いて説明する。   Therefore, in this embodiment, a specific improvement plan for raising the exhaust temperature while reducing the unburned HC and smoke, which are the above-mentioned problems, is also proposed. This improvement plan is shown in FIGS. 11 will be used for explanation.

図10は、膨張行程初期に噴射する第2噴射燃料の最適な噴霧形態について示したものである。図中(a)は、空気と燃料を独立に制御可能な燃料噴射弁を適応した場合について示したものである。第1燃料を圧縮行程に噴射し、点火プラグ周りに集中して形成された混合気に点火プラグにより着火する。ここで言う第1燃料は燃料だけであっても、空気と燃料が混合されたものであっても特に問題はない。前記燃料噴射弁の適応は第2燃料噴射時に効果を発揮する。膨張行程初期に噴射される第2噴射燃料を、あらかじめ空気と燃料とが混合された状態で燃焼室に供給することが可能となるため、第2噴射燃料による燃焼形態を予混合燃焼とすることができる。すなわち、課題であるスモークを大幅に低減できると共に、第2噴射時期を最適化することにより燃焼室から排出される未燃HCも低減できる。したがって、第2燃料噴射を膨張行程の初期に行っても、未燃HCとスモークを低減しつつ、排気の昇温により触媒を活性化することが可能である。図16にこの燃料噴射弁160の一例の要部を示す。当該噴射弁160は、弁体161と弁座162の下流に噴孔163を有し、当該噴孔163の下流に空気との混合室164を有する。この混合室164には空気導入孔165より、空気が導入され混合室164で計量済燃料と混合され、噴孔166から筒内に供給される。また(b)は、圧力変化による形状変化の少ない燃料噴霧を噴射可能な燃料噴射弁を用いた場合について示したものである。第2燃料を噴射する時の燃焼室内は第1の燃焼により高圧になっている。そこで、前記燃料噴射弁を用いた場合は、第2燃料噴霧が燃焼室内の圧力により影響しづらいため、第1噴射燃料の噴霧形状と類似した噴霧を形成することができる。したがって、燃料噴霧が縮小することなく、燃焼室内の残存酸素の利用率が向上し、未燃HCを低減することができるため、(a)と同様に未燃HCとスモークを低減しつつ、排気の昇温により触媒を活性化することが可能である。   FIG. 10 shows an optimum spray form of the second injected fuel injected in the initial stage of the expansion stroke. In the figure, (a) shows a case where a fuel injection valve capable of independently controlling air and fuel is applied. The first fuel is injected in the compression stroke, and the air-fuel mixture formed around the spark plug is ignited by the spark plug. There is no particular problem whether the first fuel here is fuel alone or a mixture of air and fuel. The adaptation of the fuel injection valve is effective during the second fuel injection. Since the second injected fuel injected at the beginning of the expansion stroke can be supplied to the combustion chamber in a state where air and fuel are mixed in advance, the combustion mode by the second injected fuel is set to premixed combustion. Can do. That is, smoke that is a problem can be significantly reduced, and unburned HC discharged from the combustion chamber can be reduced by optimizing the second injection timing. Therefore, even if the second fuel injection is performed at the initial stage of the expansion stroke, the catalyst can be activated by increasing the temperature of the exhaust gas while reducing unburned HC and smoke. FIG. 16 shows an essential part of an example of the fuel injection valve 160. The injection valve 160 has an injection hole 163 downstream of the valve body 161 and the valve seat 162, and an air mixing chamber 164 downstream of the injection hole 163. Air is introduced into the mixing chamber 164 through the air introduction hole 165, mixed with the metered fuel in the mixing chamber 164, and supplied into the cylinder from the injection hole 166. Further, (b) shows a case where a fuel injection valve capable of injecting a fuel spray with little shape change due to a pressure change is used. The combustion chamber when the second fuel is injected is at a high pressure due to the first combustion. Therefore, when the fuel injection valve is used, the second fuel spray is less likely to be affected by the pressure in the combustion chamber, so that a spray similar to the spray shape of the first injected fuel can be formed. Therefore, since the utilization rate of the residual oxygen in the combustion chamber can be improved without reducing the fuel spray and the unburned HC can be reduced, the exhaust gas can be reduced while reducing the unburned HC and smoke as in (a). It is possible to activate the catalyst by raising the temperature.

図17(c)に当該噴射弁170の一例を示す。この噴射弁170は噴口171の先端部が、噴口171の中心で段階状172にカットされており、切り取られた側173がプラグに対面する様に取り付けられている。このように構成された噴射弁170が取付けられたエンジンを図17(a)に示す。このエンジンでは燃料噴霧は図示の如く、プラグ側に偏向されピストン側のペネトレーションが短く、さらに燃料量が少ない。燃料噴霧をA−A線で断面すると図17(b)のように見える。中央の線は階段状172にカットされたカット面を示す線である。   An example of the injection valve 170 is shown in FIG. The injection valve 170 is attached so that the tip end of the injection hole 171 is cut into a stepped shape 172 at the center of the injection hole 171 and the cut side 173 faces the plug. FIG. 17A shows an engine to which the thus configured injection valve 170 is attached. In this engine, as shown in the figure, the fuel spray is deflected to the plug side, the piston side penetration is short, and the amount of fuel is small. When the fuel spray is sectioned along the line AA, it looks as shown in FIG. The center line is a line indicating a cut surface cut into a stepped shape 172.

このような噴霧は噴霧内外の圧力が同じになるので燃焼室内の圧力が高くなっても噴霧の形状が変形し難い利点がある。   Such spray has the advantage that the pressure inside and outside the spray is the same, so that the shape of the spray is not easily deformed even when the pressure in the combustion chamber increases.

また第2燃料噴射の制御により、第2燃料噴射を膨張行程の初期に行っても、未燃HCとスモークを低減しつつ、排気の昇温により触媒を活性化することのできる方法について説明する。図11は、膨張行程初期に第2燃料噴射を行う場合の最適な燃焼噴射方法を示す。具体的には、触媒温度がTcに到達するまでの第1燃焼制御の第2噴射燃料を2回以上に分割して噴射する方法である。第2噴射燃料を2回以上に分割して噴射することにより、図10の(b)で説明したように残存酸素の利用率が向上するため、未燃HCとスモークを低減しつつ、排気の昇温により触媒の活性化を図る。   Further, a description will be given of a method capable of activating the catalyst by raising the temperature of the exhaust gas while reducing the unburned HC and smoke even when the second fuel injection is performed at the initial stage of the expansion stroke by controlling the second fuel injection. . FIG. 11 shows an optimum combustion injection method in the case where the second fuel injection is performed at the initial stage of the expansion stroke. Specifically, it is a method in which the second injected fuel of the first combustion control until the catalyst temperature reaches Tc is divided and injected twice or more. By dividing and injecting the second injected fuel into two or more times, the utilization rate of the remaining oxygen is improved as described in FIG. 10B, so that the unburned HC and smoke are reduced while the exhaust gas is reduced. The catalyst is activated by raising the temperature.

次に最適な第2燃焼制御方法について説明する。ここで言う第2燃焼制御とは、図11の膨張行程中期以降に第2燃料噴射を行う方法のことである。図3で説明したとおり、前記第2燃焼制御を開始する時の触媒温度は250℃〜300℃に達している。以降における未燃HCは触媒内で反応し始めるが、その発熱量は残存酸素量により大きく影響を受ける。排気中の残存酸素量が燃焼室から排出された未燃HC量に対して十分な量を含まない場合は、前記未燃HCが触媒内で燃焼しきれず、触媒下流の排気管に排出される。そこで、本実施例では、排気中の酸素濃度に基づいて第2燃料噴射パルス幅を設定するようにする。具体的には図12に示すとおり、排気中の酸素濃度が濃いと第2燃料噴射パルス幅を長くする。これにより、残存酸素量に適した燃料を触媒に供給することが可能となり触媒内で確実に未燃HCを燃やすことができる。水温が低く主燃焼の設定A/Fをリッチにせざるを得ない場合を想定すると、好ましくは図10の(a)で説明したような空気と燃料を独立に制御可能な燃料噴射弁を適応し、排気行程中に空気だけを燃焼室に供給して、触媒を活性化するのに必要な燃料量に適した排気中の酸素量を確保する。   Next, the optimum second combustion control method will be described. The second combustion control here is a method of performing the second fuel injection after the middle stage of the expansion stroke in FIG. As described in FIG. 3, the catalyst temperature when starting the second combustion control has reached 250 ° C. to 300 ° C. Thereafter, unburned HC begins to react in the catalyst, but the amount of generated heat is greatly influenced by the amount of residual oxygen. If the amount of residual oxygen in the exhaust gas does not include the amount of unburned HC discharged from the combustion chamber, the unburned HC cannot be burned in the catalyst and is discharged to the exhaust pipe downstream of the catalyst. . Therefore, in this embodiment, the second fuel injection pulse width is set based on the oxygen concentration in the exhaust gas. Specifically, as shown in FIG. 12, when the oxygen concentration in the exhaust gas is high, the second fuel injection pulse width is lengthened. As a result, fuel suitable for the amount of residual oxygen can be supplied to the catalyst, and unburned HC can be reliably burned in the catalyst. Assuming that the water temperature is low and the main combustion setting A / F must be made rich, it is preferable to apply a fuel injection valve capable of independently controlling air and fuel as described in FIG. During the exhaust stroke, only air is supplied to the combustion chamber to ensure the amount of oxygen in the exhaust suitable for the amount of fuel required to activate the catalyst.

以上のような構成及び燃焼制御方法により、従来と比べ大幅に触媒の活性化時間を短縮することが実現できる。   With the above-described configuration and combustion control method, it is possible to significantly reduce the activation time of the catalyst as compared with the conventional case.

ところが、クランキングから第1燃焼制御を開始するまでの運転期間においては、触媒が活性化していないため燃焼室から排出される未燃HCは、浄化されることなく大気へ放出される。   However, in the operation period from the cranking to the start of the first combustion control, the catalyst is not activated, so the unburned HC discharged from the combustion chamber is released to the atmosphere without being purified.

そこで本発明は、筒内噴射式内燃機関における触媒の活性化時間の短縮を図る燃焼制御方法だけではなく、クランキングから第1燃焼制御を開始するまでの運転期間に排出される未燃HCの低減を実現するのに最適な筒内噴射式内燃機関を提案する。   Therefore, the present invention is not only a combustion control method for shortening the activation time of the catalyst in the direct injection internal combustion engine, but also the unburned HC discharged in the operation period from the cranking to the start of the first combustion control. The present invention proposes an in-cylinder injection internal combustion engine that is optimal for realizing reduction.

図13に本発明の実施形態における最適な筒内噴射式内燃機関の斜視概念断面図を示す。基本的には図1に示した構成であるが、吸気弁8の上流側の吸気管6内には、前記吸気管6の吸入流路を上下に二分割する整流板17が各々配置されており、前記整流板17の上流には、分流弁18が配置されている。前記分流弁18は、弁軸が回動することにより、弁体が真下から真横までの90度の角度範囲で位置移動するように配置されている。前記分流弁18の開閉により燃焼室5内に生成されるタンブル流19の速度を調節する。さらにピストン4の冠面には、前記タンブル流19を整流及び保存性を向上するための湾曲の溝を形成する。   FIG. 13 is a perspective conceptual cross-sectional view of an optimal direct injection internal combustion engine in the embodiment of the present invention. Basically, the configuration shown in FIG. 1 is provided. In the intake pipe 6 on the upstream side of the intake valve 8, a rectifying plate 17 that divides the intake flow path of the intake pipe 6 into two parts is arranged. A flow dividing valve 18 is disposed upstream of the flow straightening plate 17. The diversion valve 18 is arranged so that the valve body moves in an angle range of 90 degrees from right below to right next as the valve shaft rotates. The speed of the tumble flow 19 generated in the combustion chamber 5 is adjusted by opening and closing the diversion valve 18. Further, a curved groove is formed on the crown surface of the piston 4 to improve the rectification and storage stability of the tumble flow 19.

このような構成の筒内噴射式内燃機関を用いることにより、燃料噴射弁10から噴射された燃料は、あらかじめ燃焼室に形成されてタンブル流19により点火プラグ周辺に搬送され、クランキングから成層燃焼を実現することができる。その結果図14に示すとおり、均質燃焼時と比べ大幅に未燃HCの排気量を低減することができる。なお、機関回転数が吹き上がるまでの期間においては、燃焼室内に吸入される空気量が少ないため、燃料噴霧の一部が点火プラグ方向に噴射されるような噴霧を噴射する燃料噴射弁を用いるのが望ましい。   By using the in-cylinder injection type internal combustion engine having such a configuration, the fuel injected from the fuel injection valve 10 is formed in the combustion chamber in advance and is transported around the spark plug by the tumble flow 19, and stratified combustion is performed from cranking. Can be realized. As a result, as shown in FIG. 14, the amount of unburned HC exhaust can be greatly reduced compared to the homogeneous combustion. Note that during the period until the engine speed increases, the amount of air taken into the combustion chamber is small, and therefore a fuel injection valve that injects a spray in which part of the fuel spray is injected in the direction of the spark plug is used. Is desirable.

以上の説明から理解されるように、本実施例では、未燃HC及びスモークを低減しつつ、排気温度を上昇する第1燃焼制御と、未燃HCを触媒に供給して触媒内で燃焼させる第2燃焼制御を触媒温度に基づき最適なタイミングで切り換えることにより、触媒の活性化時間の大幅な短縮が可能である。   As understood from the above description, in this embodiment, the first combustion control for increasing the exhaust temperature while reducing the unburned HC and smoke, and supplying the unburned HC to the catalyst and burning it in the catalyst. By switching the second combustion control at an optimum timing based on the catalyst temperature, the activation time of the catalyst can be greatly shortened.

また、本実施例では、始動から成層燃焼を実現することが可能であるため、クランキングから触媒活性化のため燃焼制御を行うまでの運転期間に排出される未燃HCを低減することができる。   Further, in this embodiment, since it is possible to realize stratified combustion from start-up, it is possible to reduce unburned HC discharged during the operation period from cranking to performing catalyst control for catalyst activation. .

本発明の実施形態における筒内噴射式内燃機関の斜視概念断面図。1 is a perspective conceptual sectional view of a direct injection internal combustion engine in an embodiment of the present invention. 本発明の実施形態における筒内噴射式内燃機関のシステム構成。1 is a system configuration of a direct injection internal combustion engine according to an embodiment of the present invention. 本発明の実施形態における始動時の燃焼制御方法の概要。The outline | summary of the combustion control method at the time of start in embodiment of this invention. 触媒温度と浄化率の関係。Relationship between catalyst temperature and purification rate. 本発明の実施形態における制御フローチャートを示す。The control flowchart in embodiment of this invention is shown. 本発明の実施形態における始動時の水温を考慮した燃焼制御方法の概要。The outline of the combustion control method in consideration of the water temperature at the time of starting in the embodiment of the present invention. 本発明の代表的な実施形態における燃料噴射制御方法。The fuel-injection control method in representative embodiment of this invention. 圧縮行程と膨張行程初期の2回噴射時における燃焼メカニズム。Combustion mechanism at the time of two injections in the initial stage of the compression stroke and the expansion stroke. 本発明の実施形態における第2燃料噴射時期を変化させた場合の排気温度、未燃HC及びスモークの特性。The exhaust gas temperature, unburned HC, and smoke characteristics when the second fuel injection timing is changed in the embodiment of the present invention. 本発明の実施形態における膨張行程初期に噴射する第2噴射燃料の最適な形態。The optimal form of the 2nd injection fuel injected in the expansion stroke initial stage in embodiment of this invention. 本発明の実施形態における膨張行程初期に第2燃料噴射を行う場合の一例としての燃焼噴射方法。The combustion injection method as an example in the case of performing 2nd fuel injection in the expansion stroke initial stage in embodiment of this invention. 本発明の実施形態における排気中の酸素濃度と第2燃料噴射パルス幅の関係。The relationship between the oxygen concentration in exhaust_gas | exhaustion and the 2nd fuel injection pulse width in embodiment of this invention. 本発明の実施形態における最適な筒内噴射式内燃機関の斜視概念断面図。1 is a perspective conceptual cross-sectional view of an optimal in-cylinder injection internal combustion engine in an embodiment of the present invention. 始動時における均質燃焼時と成層燃焼時に燃焼室から排出される未燃HC排出量。Unburned HC emissions discharged from the combustion chamber during homogeneous combustion and stratified combustion at start-up. 本発明の他の実施例を示すタイムチャート。The time chart which shows the other Example of this invention. 空気アシスト式燃料噴射弁の一例を示す図面。Drawing which shows an example of an air assist type fuel injection valve. (a)圧力変化の影響を受け難い噴射弁を用いた場合のシステムを示す図面。(b)噴霧の形状を示す断面図。(c)噴射弁の要部断面図。(A) Drawing which shows a system at the time of using the injection valve which is hard to receive to the influence of a pressure change. (B) Sectional drawing which shows the shape of spraying. (C) Main part sectional drawing of an injection valve.

符号の説明Explanation of symbols

1…内燃機関本体、2…シリンダブロック、3…シリンダヘッド、4…ピストン、5…燃焼室、6…吸気管、7…排気管、8…吸気弁、9…排気弁、10…燃料噴射弁、11…点火プラグ、12…コンロッド、13…排気浄化装置、13a…三元触媒、13b…NOx触媒、14…酸素濃度センサ、15…触媒温度センサ、16…ECU、17…整流板、18…分流弁、19…タンブル流。

DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine main body, 2 ... Cylinder block, 3 ... Cylinder head, 4 ... Piston, 5 ... Combustion chamber, 6 ... Intake pipe, 7 ... Exhaust pipe, 8 ... Intake valve, 9 ... Exhaust valve, 10 ... Fuel injection valve 11 ... Spark plug, 12 ... Connecting rod, 13 ... Exhaust gas purification device, 13a ... Three-way catalyst, 13b ... NOx catalyst, 14 ... Oxygen concentration sensor, 15 ... Catalyst temperature sensor, 16 ... ECU, 17 ... Rectifying plate, 18 ... Split valve, 19 ... Tumble flow.

Claims (12)

筒内に直接燃料を噴射する燃料噴射弁と、排気ガス中のHCにより活性化する触媒とを有する筒内噴式内燃機関において、前記触媒が排ガス中のHCで活性化できる温度条件になるまでの機関の燃焼制御パターンと、それ以後の機関の燃焼制御パターンとを異ならしめたことを特徴とする筒内噴射式内燃機関。   In a cylinder injection internal combustion engine having a fuel injection valve that directly injects fuel into a cylinder and a catalyst that is activated by HC in exhaust gas, the temperature of the catalyst is such that the catalyst can be activated by HC in exhaust gas. An in-cylinder internal combustion engine characterized in that a combustion control pattern of the engine is different from a combustion control pattern of the engine thereafter. 未燃HCにより活性化する触媒を備えた内燃機関の燃焼制御方法において、前記触媒が排気ガス中の未燃HCを浄化可能な温度に達するまでは、未燃HCの排出が少なく且つ排気温度の高い燃焼制御パターンを実行し、前記触媒が排気ガス中の未燃HCを浄化可能な温度に達した後は、触媒に供給する未燃HCを含んだ排気ガスを排出する別の燃焼制御を実行する筒内噴射式内燃機関における始動時の燃焼制御方法。   In a combustion control method for an internal combustion engine having a catalyst that is activated by unburned HC, until the catalyst reaches a temperature at which the unburned HC in the exhaust gas can be purified, there is little emission of unburned HC and the exhaust temperature After a high combustion control pattern is executed and the catalyst reaches a temperature at which the unburned HC in the exhaust gas can be purified, another combustion control for discharging the exhaust gas containing unburned HC to be supplied to the catalyst is executed. Combustion control method at start-up in an in-cylinder injection internal combustion engine. 筒内に直接燃料を噴射する燃料噴射弁と、排気ガス中のHCにより活性化する触媒を備えた筒内噴射式内燃機関における始動時の燃焼制御方法おいて、前記触媒を早期活性化するための燃焼制御パターンを少なくとも2種類有し、前記燃焼制御パターンを触媒温度に基づいて切り換えることを特徴とする筒内噴射式内燃機関における始動時の燃焼制御方法。   In order to activate the catalyst early in a combustion control method at start-up in a cylinder injection internal combustion engine having a fuel injection valve for directly injecting fuel into a cylinder and a catalyst activated by HC in exhaust gas A combustion control method at the time of start-up in a direct injection internal combustion engine, characterized by having at least two types of combustion control patterns and switching the combustion control patterns based on a catalyst temperature. 筒内に直接燃料を噴射する燃料噴射弁と、排気ガス中のHCにより活性化する触媒とを備え、且つ燃焼行程に2回燃料を噴射する機能と、機関の冷却水温に基づき燃焼制御パターンを切換える機能とを有するものにおいて、水温が所定温度触媒の温度が所定値になるまでより低い場合は吸気行程で1回だけ燃料を噴射し、且つ点火時期を上死点近傍まで遅角し、水温が所定温度より高い場合は最初に圧縮行程で燃料噴射し、次の噴射を膨張行程で実行する様構成したことを特徴とする筒内噴射式内燃機関の始動時の燃焼制御方法。   A fuel injection valve that directly injects fuel into the cylinder, a catalyst that is activated by HC in the exhaust gas, and a function that injects fuel twice during the combustion stroke, and a combustion control pattern based on the cooling water temperature of the engine In the case where the water temperature is lower than the predetermined temperature until the temperature of the catalyst reaches a predetermined value, the fuel is injected only once in the intake stroke, and the ignition timing is retarded to near the top dead center. A combustion control method at the start of a direct injection internal combustion engine, characterized in that when the temperature is higher than a predetermined temperature, the fuel is injected first in the compression stroke and the next injection is executed in the expansion stroke. 筒内に直接燃料を噴射する燃料噴射弁と、排気ガス中のHCにより活性化する触媒とを備えたものにおいて、前記触媒の温度が所定値に達するまでは、前記噴射弁により、圧縮行程と膨張行程の前半で2回に分けて燃料を噴射し、前記触媒の温度が所定温度に達した後は前記噴射弁により圧縮行程と膨張行程の後半で2回に分けて燃料を噴射することを特徴とする筒内噴射式内燃機関における始動時の燃焼制御方法。   In a fuel injection valve that directly injects fuel into a cylinder and a catalyst that is activated by HC in exhaust gas, until the temperature of the catalyst reaches a predetermined value, the injection valve The fuel is injected twice in the first half of the expansion stroke, and after the temperature of the catalyst reaches a predetermined temperature, the fuel is injected in two steps in the second half of the compression stroke and the expansion stroke. A combustion control method at the time of start-up in a cylinder injection internal combustion engine which is characterized. 請求項5記載のものにおいて、前記触媒の温度が所定値に達するまでは、前記噴射弁により圧縮行程と膨張行程の前半で2回に分けて燃料を噴射し、且つ、膨張行程の前半での噴射を2回に分けて噴射することを特徴とする筒内噴射式内燃機関における始動時の燃焼制御方法。   6. The fuel according to claim 5, wherein fuel is injected in two parts in the first half of the compression stroke and the expansion stroke until the temperature of the catalyst reaches a predetermined value, and in the first half of the expansion stroke. A combustion control method at the time of start-up in a direct injection internal combustion engine, characterized in that the injection is performed in two portions. クランキング時に燃料を圧縮行程で噴射すると共に成層燃焼運転を行うことを特徴とする請求項1乃至6のいずれかに記載の筒内噴射式内燃機関における始動時の燃焼制御方法。   7. The combustion control method at the start of a direct injection internal combustion engine according to any one of claims 1 to 6, wherein fuel is injected in a compression stroke at the time of cranking and stratified combustion operation is performed. 筒内に直接燃料を噴射する燃料噴射弁と、排気管内に排気を浄化するための触媒を備えた筒内噴射式内燃機関において、触媒を早期活性化するための2種類の燃焼制御パターンを有し、触媒温度が所定値に達すると触媒活性化の為の燃焼制御パターンで燃焼制御し、当該燃焼制御では圧縮行程と膨張行程に燃料を2回に分けて噴射することを特徴する筒内噴射式内燃機関における始動時の燃焼制御方法。   An in-cylinder injection internal combustion engine having a fuel injection valve that directly injects fuel into a cylinder and a catalyst for purifying exhaust gas in an exhaust pipe has two types of combustion control patterns for early activation of the catalyst. When the catalyst temperature reaches a predetermined value, combustion control is performed with a combustion control pattern for activating the catalyst, and in the combustion control, fuel is injected in two steps in a compression stroke and an expansion stroke. Combustion control method at start-up in the internal combustion engine. 筒内に直接燃料を噴射する燃料噴射弁と、排気管内に排気中の未燃HCを浄化する触媒を備えたものにおいて、触媒温度が所定値以下の間は第1の燃料噴射を圧縮行程、第2の燃料噴射を膨張行程初期に行い、触媒温度が所定値に達すると前記第2の燃料噴射を膨張行程中期以降に切り換えることを特徴とする筒内噴射式内燃機関における始動時の燃焼制御方法。   A fuel injection valve that directly injects fuel into the cylinder and a catalyst that purifies unburned HC in the exhaust in the exhaust pipe. Combustion control at start-up in a direct injection internal combustion engine characterized in that the second fuel injection is performed in the initial stage of the expansion stroke, and the second fuel injection is switched after the middle stage of the expansion stroke when the catalyst temperature reaches a predetermined value. Method. 請求項1乃至6,8及び9のいずれかに記載されたものにおいて、前記燃料噴射弁は、燃料計量部下流位置に空気導入口が設けられており、当該導入口から供給される空気と混合された混合気が筒内に噴射される様構成されていることを特徴とする筒内噴射式内燃機関及び、筒内噴射式内燃機関における始動時の燃焼制御方法。   10. The fuel injection valve according to claim 1, wherein the fuel injection valve is provided with an air inlet at a downstream position of the fuel metering unit, and is mixed with air supplied from the inlet. An in-cylinder injection internal combustion engine, and a combustion control method at start-up in the in-cylinder injection internal combustion engine, characterized in that the mixed gas mixture is injected into the cylinder. 請求項1乃至6,8及び9のいずれかに記載されたものにおいて、筒内圧力の変化に対する形状変化割合の少ない燃料噴霧パターンを有する燃料噴射弁を用いることを特徴とする筒内噴射式内燃機関及び筒内噴射式内燃機関における始動時の燃焼制御方法。   10. An in-cylinder injection internal combustion engine according to claim 1, wherein a fuel injection valve having a fuel spray pattern having a small shape change ratio with respect to a change in in-cylinder pressure is used. Combustion control method at start-up in engine and direct injection internal combustion engine. 請求項5乃至9のいずれかに記載のものにおいて、触媒温度が所定値に達するまでの2回噴射制御において、2回目の噴射としての排気中の酸素濃度に応じて変化させることを特徴とする筒内噴射式内燃機関における始動時の燃焼制御方法。
In the thing in any one of Claims 5 thru | or 9, it changes according to the oxygen concentration in exhaust_gas | exhaustion as a 2nd injection in the 2nd injection control until a catalyst temperature reaches predetermined value, It is characterized by the above-mentioned. A combustion control method at start-up in a direct injection internal combustion engine.
JP2006014318A 2006-01-23 2006-01-23 Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine Pending JP2006183667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006014318A JP2006183667A (en) 2006-01-23 2006-01-23 Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006014318A JP2006183667A (en) 2006-01-23 2006-01-23 Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000097819A Division JP2001280184A (en) 2000-03-30 2000-03-30 Direct injection type internal combustion engine and combustion control method in starting in direct injection type internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006183667A true JP2006183667A (en) 2006-07-13
JP2006183667A5 JP2006183667A5 (en) 2006-11-16

Family

ID=36736929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006014318A Pending JP2006183667A (en) 2006-01-23 2006-01-23 Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2006183667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113176A (en) * 2011-11-28 2013-06-10 Mazda Motor Corp Control device of spark ignition type gasoline engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013113176A (en) * 2011-11-28 2013-06-10 Mazda Motor Corp Control device of spark ignition type gasoline engine

Similar Documents

Publication Publication Date Title
JP4427744B2 (en) Direct fuel injection internal combustion engine operation method
JP3414303B2 (en) Control device for direct injection spark ignition type internal combustion engine
JP4689723B2 (en) Method for cold operation of a spark ignition internal combustion engine
EP3093471B1 (en) Control apparatus and control method for an internal combustion engine
JP3052856B2 (en) Exhaust heating device
US9932916B2 (en) Combustion control apparatus for internal combustion engine
US20060075741A1 (en) Exhaust emission control apparatus and method for internal combustion engine
JP2004176593A (en) Diesel engine
JP2004531667A (en) Method for increasing exhaust gas temperature of spark ignition direct injection internal combustion engine
JP2001280184A (en) Direct injection type internal combustion engine and combustion control method in starting in direct injection type internal combustion engine
WO2010035342A1 (en) Fuel injection control device for internal-combustion engine
JP2002070558A (en) Compression self-ignition type gasoline internal combustion engine
JP2003090239A (en) Internal combustion engine of cylinder direct injection type
JP3952710B2 (en) Compression self-ignition internal combustion engine
JP2015021389A (en) Fuel injection control device
JP2000145511A (en) Exhaust gas temperature raising device
JP2008196318A (en) Fuel injection control device of cylinder direct-injection internal combustion engine
JP2009243360A (en) Engine combustion control device
JP2006183667A (en) Cylinder injection type internal combustion engine and combustion control method in starting cylinder injection type internal combustion engine
JP3726580B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2008274789A (en) Control system for direct injection engine
JP2005146917A (en) Control device for engine
JP3743499B2 (en) Exhaust temperature raising device
JP2001082211A (en) Control device for direct injection spark-ignition type internal combustion engine
JP4967691B2 (en) Control unit for gasoline engine

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428