JP2000145511A - Exhaust gas temperature raising device - Google Patents

Exhaust gas temperature raising device

Info

Publication number
JP2000145511A
JP2000145511A JP11345353A JP34535399A JP2000145511A JP 2000145511 A JP2000145511 A JP 2000145511A JP 11345353 A JP11345353 A JP 11345353A JP 34535399 A JP34535399 A JP 34535399A JP 2000145511 A JP2000145511 A JP 2000145511A
Authority
JP
Japan
Prior art keywords
fuel
exhaust gas
combustion
air
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11345353A
Other languages
Japanese (ja)
Inventor
Katsunori Kaneko
勝典 金子
Kazunari Kuwabara
一成 桑原
Hiromitsu Ando
弘光 安東
Toshio Shudo
登志夫 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP11345353A priority Critical patent/JP2000145511A/en
Publication of JP2000145511A publication Critical patent/JP2000145511A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To easily raise exhaust gas temperature by controlling an engine control parameter for stratified combustion at the time of an engine operation which requires the raising of exhaust gas temperature, and injecting adding fuel by a fuel injection valve during an intermediate time of an expansion stroke after main combustion or an expansion stroke after that. SOLUTION: In an ECU 23, various kinds of the quantity of engine operating state of a catalyst temperature Tcc, a cooling water temperature Tw, engine rotating speed Ne, an intake temperature Ta, and the like is read at the time of an operation of an engine 1, the catalyst temperature Tcc and a catalyst judging temperature Tcw are compared with each other, and it is judged that a catalyst 9 is in an active condition or not. In this case where this judgment is Tcc < Tcw and the catalyst 9 is in an inactive condition, the raising of exhaust gas temperature is controlled. Namely, main fuel injection is performed in a compression lean mode, and its ignition timing is also phase lag-controlled. A target air-fuel ratio is decided using leaning maps which are different according to judgment result at the time of engine cooling or after warming, a main fuel injection time is calculated, and an adding fuel injection time is found out so as to control a fuel injection valve 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼室内に直接燃
料を噴射し火花点火して層状燃焼させる筒内噴射型内燃
機関における冷機運転時等において、排気ガスを昇温さ
せ排気ガス浄化装置の早期活性化等に用いて好適な排気
昇温装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus which raises the temperature of exhaust gas during a cold operation of an in-cylinder injection type internal combustion engine in which fuel is directly injected into a combustion chamber, spark ignited and stratified combustion is performed. The present invention relates to an exhaust gas heating device suitable for early activation or the like.

【0002】[0002]

【関連する背景技術】近年、車両に搭載される火花点火
式内燃エンジンにおいて、有害排出ガス成分の低減や燃
費の向上等を図るため、旧来の吸気管噴射型に代えて燃
焼室に直接燃料を噴射する筒内噴射型のガソリンエンジ
ンが種々提案されている。筒内噴射型のガソリンエンジ
ンでは、例えば、燃料噴射弁からピストン頂部に設けた
キャビティ内に燃料を噴射することで、点火時点におい
て点火プラグの周囲に理論空燃比に近い空燃比の混合気
を生成させている。これにより、全体に希薄な空燃比で
も着火が可能となり、COやHCの排出量が減少すると
共に、アイドル運転時や低負荷走行時の燃費を大幅に向
上させることができる。
2. Related Background Art In recent years, in a spark ignition type internal combustion engine mounted on a vehicle, fuel is directly supplied to a combustion chamber in place of a conventional intake pipe injection type in order to reduce harmful exhaust gas components and improve fuel efficiency. Various direct injection gasoline engines have been proposed. In a cylinder injection type gasoline engine, for example, by injecting fuel from a fuel injection valve into a cavity provided at the top of the piston, an air-fuel mixture having an air-fuel ratio close to the stoichiometric air-fuel ratio is generated around the ignition plug at the time of ignition. Let me. This makes it possible to ignite even with a lean air-fuel ratio as a whole, thereby reducing CO and HC emissions and greatly improving fuel efficiency during idling and low-load driving.

【0003】また、このようなガソリンエンジンでは、
エンジンの運転状態、つまりエンジン負荷に応じて圧縮
行程噴射モードと吸気行程噴射モードとを切り換えるよ
うにしている。このように制御モードを切り換えること
により、低負荷運転時には、主として圧縮行程中に燃料
を噴射し、点火プラグの周囲やキャビティ内に局所的に
理論空燃比に近い混合気を形成させ、全体として希薄な
空燃比でも良好な層状燃焼が可能なようにしている(こ
の制御モードを圧縮リーンモードとも云う)。圧縮行程
噴射モードでは、全体空燃比を大きく(例えば、空燃比
40に)設定しても運転可能であるため、新気吸入空気
量や排気ガス還流量(EGR量)を多量に筒内に供給す
ることができ、これによりポンピングロスを低減させて
燃費を著しく改善することができる。このため、圧縮行
程噴射モードで運転する領域を極力拡げて燃費の改善を
図ることが望ましい。
In such a gasoline engine,
The compression stroke injection mode and the intake stroke injection mode are switched according to the operating state of the engine, that is, the engine load. By switching the control mode in this way, during low-load operation, fuel is injected mainly during the compression stroke, and a mixture near the stoichiometric air-fuel ratio is locally formed around the ignition plug or in the cavity, and as a whole, Good stratified combustion can be performed even at a low air-fuel ratio (this control mode is also called a compression lean mode). In the compression stroke injection mode, operation is possible even when the overall air-fuel ratio is set to a large value (for example, an air-fuel ratio of 40), so that a large amount of fresh air intake air and an exhaust gas recirculation amount (EGR amount) are supplied into the cylinder. As a result, the pumping loss can be reduced and the fuel efficiency can be significantly improved. For this reason, it is desirable to improve the fuel economy by expanding the range of operation in the compression stroke injection mode as much as possible.

【0004】一方、中高負荷運転時には、主として吸気
行程中に燃料を噴射し、燃焼室内に均一な空燃比の混合
気を形成させ、吸気管噴射型のガソリンエンジンと同様
に、多量の燃料を燃焼させて加速時や高速走行時に要求
される出力を確保するようにしている。このような筒内
噴射型内燃エンジンの冷機始動時や外気温度が低い環境
下での低負荷運転時等において、排気通路に配設した排
気ガス浄化装置(単に触媒とも云う)が始動後なかなか
活性化しなかったり、一旦活性化した触媒が圧縮リーン
モード運転(排気流量が多く、リーン燃焼のために排気
温度が低くなる場合がある)により冷やされて不活性に
なり易いという問題がある。このような問題に対処する
ために、排気ガス温度を昇温させて触媒を早期活性化を
図る手法が種々提案されている。
[0004] On the other hand, during medium to high load operation, fuel is injected mainly during the intake stroke to form a mixture having a uniform air-fuel ratio in the combustion chamber, and a large amount of fuel is burned in the same manner as in an intake pipe injection type gasoline engine. This ensures the required output during acceleration and high-speed running. When such an in-cylinder injection type internal combustion engine is started at a cold start or at a low load operation in an environment where the outside air temperature is low, an exhaust gas purifying device (also referred to simply as a catalyst) disposed in an exhaust passage is activated very quickly after the start. There is a problem that the catalyst that has not been activated or that has been activated is likely to be inactivated by being cooled by the compression lean mode operation (exhaust gas flow rate is high and the exhaust gas temperature may decrease due to lean combustion). In order to cope with such a problem, various methods for raising the temperature of the exhaust gas to activate the catalyst at an early stage have been proposed.

【0005】例えば、特開平4−183922号公報に
は、触媒を早期活性化させる目的で、機関の膨張行程又
は排気行程の、吸気弁が閉じている時期に燃料噴射弁を
再作動させて追加燃料の噴射を行ない、この追加燃料に
対して燃焼室内の点火プラグを再作動させて再点火させ
たり、あるいは追加燃料を排気中に混入させ排気通路内
に設けられた点火プラグにより再点火することで触媒を
加熱させ迅速に活性温度まで上昇させるという技術が提
案されている。
For example, Japanese Patent Application Laid-Open No. 4-183922 discloses a fuel injection valve which is operated again during an expansion stroke or an exhaust stroke of an engine when the intake valve is closed in order to activate the catalyst at an early stage. Inject fuel and reactivate the additional fuel by reactivating the ignition plug in the combustion chamber, or remix the additional fuel into the exhaust gas and reignite by the ignition plug provided in the exhaust passage. A technique has been proposed in which a catalyst is heated to quickly raise the temperature to an activation temperature.

【0006】この従来技術では、再燃焼させ排気を昇温
させるために燃焼室内の点火プラグを再作動させたり、
排気通路内に点火プラグを別に設けたりしているが、前
者の場合、点火制御ロジックが複雑となる上、2度目の
点火エネルギが十分に確保できないという課題があり、
さらに点火エネルギを十分に確保しようとするとイグナ
イタが大型化し、コスト高となるという課題もあり、後
者の場合、部品点数の増加やコスト増大につながるとい
う課題がある。
In this prior art, a spark plug in a combustion chamber is restarted in order to reburn and raise the temperature of exhaust gas,
Although an ignition plug is provided separately in the exhaust passage, in the former case, the ignition control logic becomes complicated, and there is a problem that the second ignition energy cannot be sufficiently secured.
Further, there is a problem that the igniter becomes large and the cost increases when trying to sufficiently secure the ignition energy. In the latter case, there is a problem that the number of parts increases and the cost increases.

【0007】また、この従来技術では、排気通路内に設
けた点火プラグを用いて再燃焼させようとしているが、
通常、筒内噴射型内燃機関では、膨張行程や排気行程に
おいて主燃料噴射による燃料はほぼ完全燃焼して筒内に
火種となる活性化学反応種が少なくなっており、しかも
自己着火性の低い燃料(例えば、ガソリン)の場合、燃焼
を成立させるには大きなエネルギ(例えば、熱,圧力,
温度等)が必要であるため、従来技術のごとく、単に膨
張行程又は排気行程時に燃料噴射弁を再作動させて追加
燃料の噴射を行ない、点火プラグを用いて再点火を行な
ったとしても十分なエネルギが与えられず、再燃焼しな
い可能性がある。このため、排気を確実に昇温させるこ
とができず、早期に触媒を活性化できないという問題が
ある。
In this prior art, re-combustion is attempted using an ignition plug provided in an exhaust passage.
Normally, in an in-cylinder injection type internal combustion engine, during the expansion stroke and the exhaust stroke, the fuel from the main fuel injection is almost completely burned, and the number of activated chemical reaction species that become the ignition in the cylinder is reduced. (Eg, gasoline), large amounts of energy (eg, heat, pressure,
Temperature, etc.), as in the prior art, it is sufficient to simply re-activate the fuel injection valve during the expansion stroke or the exhaust stroke to inject additional fuel and reignite using the spark plug. There is a possibility that no energy is given and no reburning takes place. For this reason, there is a problem that the temperature of the exhaust gas cannot be reliably raised and the catalyst cannot be activated early.

【0008】そこで、膨張行程中に追加噴射した燃料を
点火プラグを用いずに燃焼させる手法が、特開平8−1
00638号公報に提案されている。この提案は、通常
の燃料噴射(主燃焼のための燃焼噴射)の他に、膨張行
程中に追加の燃料を噴射し、この追加燃料を主燃焼の火
炎伝播により着火燃焼させ、排気ガス温度を昇温させよ
うとするものである。この手法によると、再燃焼させる
際に点火プラグを再作動させる必要がない利点があり、
また、排気ガス温度が通常よりも高くなるので、触媒が
活性化するまでの時間を短縮することができる。
Japanese Patent Laid-Open No. 8-1 discloses a method of burning fuel additionally injected during the expansion stroke without using a spark plug.
00638. This proposal, in addition to the normal fuel injection (combustion injection for the main combustion), injects additional fuel during the expansion stroke, ignites this additional fuel by the flame propagation of the main combustion, and reduces the exhaust gas temperature. It is intended to raise the temperature. According to this method, there is an advantage that it is not necessary to re-activate the ignition plug when re-burning,
Further, since the exhaust gas temperature becomes higher than usual, the time until the catalyst is activated can be shortened.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記提
案の手法では、膨張行程中の追加燃料の噴射時期は、主
燃焼の火炎の伝播(熱炎の伝播)によって確実に着火で
きる時期(上記特開平8−100638号公報にはクラ
ンク角度で10°〜80°ATDCと記載されている)に限
定されてしまうことになる。このような膨張行程の早い
時期に追加燃料を燃焼させると、発生した熱エネルギの
一部が膨張仕事に奪われてしまい、本来の目的である排
気ガス温度を十分に上昇させることができなくなる。そ
して十分な排気温度上昇率を得るには追加燃料を増加さ
せる必要があり、余分な燃料が必要になる。
However, according to the above-mentioned proposed method, the injection timing of the additional fuel during the expansion stroke is determined by the timing at which the ignition of the main combustion flame (propagation of the hot flame) can be reliably ignited (see Japanese Patent Laid-Open Publication No. No. 8-100638 describes a crank angle of 10 ° to 80 ° ATDC). If the additional fuel is burned at an early stage of such an expansion stroke, a part of the generated thermal energy is taken away by the expansion work, and the exhaust gas temperature, which is the original purpose, cannot be sufficiently increased. In order to obtain a sufficient exhaust gas temperature increase rate, it is necessary to increase additional fuel, and extra fuel is required.

【0010】本発明は、このような課題を解決するため
になされたもので、追加燃料の燃焼エネルギーを有効に
排気ガスの昇温に利用するためには、膨張行程の中期又
はそれ以降に噴射してこれを燃焼させるのがよく、追加
燃料を、追加デバイスを設けることなく、確実に燃焼さ
せて排気(排出ガス)を昇温させることができるようにし
た、排気昇温装置を提供することを目的とする。
The present invention has been made to solve such a problem. In order to effectively use the combustion energy of the additional fuel for raising the temperature of the exhaust gas, the injection is performed in the middle stage of the expansion stroke or later. It is desirable to provide an exhaust gas heating device capable of reliably burning an additional fuel without providing an additional device to raise the temperature of exhaust gas (exhaust gas). With the goal.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の本発明の排気昇温装置は、燃焼室内
に直接燃料を噴射する燃料噴射弁を備え、少なくとも圧
縮行程時に該燃焼噴射弁より燃料を噴射し火花点火して
層状燃焼を行わせる筒内噴射型内燃エンジンの排気昇温
装置において、排気昇温が要求されるエンジン運転時に
作動して、前記層状燃焼のためのエンジン制御パラメー
タを制御するエンジン制御手段と、該エンジン制御手段
の作動時に主燃焼後の前記膨張行程中期又はそれ以降の
膨張行程中に前記燃料噴射弁より追加燃料を噴射させる
追加燃料制御手段とを備えてなることを特徴とする。
According to a first aspect of the present invention, there is provided an exhaust gas heating apparatus having a fuel injection valve for directly injecting fuel into a combustion chamber, at least during a compression stroke. In an exhaust gas heating apparatus for an in-cylinder injection type internal combustion engine that injects fuel from a combustion injection valve and ignites sparks to perform stratified combustion, it operates during engine operation in which exhaust gas heating is required to perform stratified combustion. Engine control means for controlling engine control parameters, and additional fuel control means for injecting additional fuel from the fuel injection valve during the expansion stroke in the middle stage of the expansion stroke after the main combustion during the operation of the engine control means or thereafter. It is characterized by comprising.

【0012】本発明は、従来技術のように主燃焼の火炎
が到達して追加燃料を燃焼させる、或いは主燃焼の火炎
に追加燃料を噴射してこれを燃焼させる、と云った技術
的思想に基づくものではなく、以下のような知見に基づ
いてなされたものである。図1は、圧縮行程に噴射され
た主燃料の燃焼と、膨張行程中期又はそれ以降の膨張行
程中に噴射された追加燃料の燃焼(以下、これらの燃焼
を「2段燃焼」という)のプロセスを概念的に説明する
もので、図2は、クランク角度の変化に対する筒内圧の
関係を示すものである。圧縮行程中に主燃料噴射が行わ
れると(図2のクランク角度位置CA1 )、図1(a)に
示される通り、燃焼室に燃料の濃い部分とその周りの薄
い部分を有する混合気が形成される。この種の筒内噴射
型内燃エンジンでは、全体空燃比が理論空燃比より希薄
側にあるリーン混合気でも安定して燃焼が可能なよう
に、上述した、燃料濃度の濃い部分(理論空燃比近傍の
混合気)を点火プラグまわりに形成させ、その混合気の
略中央部を点火プラグで点火するようにしている(図1
(b)、図2のクランク角度位置CA2 )。
The present invention is based on the technical idea that the flame of the main combustion reaches and burns the additional fuel as in the prior art, or the additional fuel is injected into the flame of the main combustion and burned. This is not based on the following findings. FIG. 1 shows a process of combustion of main fuel injected during a compression stroke and combustion of additional fuel injected during an expansion stroke in the middle stage or later of the expansion stroke (hereinafter, these combustions are referred to as “two-stage combustion”). FIG. 2 conceptually illustrates the relationship between the in-cylinder pressure and the change in the crank angle. When the main fuel injection is performed during the compression stroke (crank angle position CA1 in FIG. 2), as shown in FIG. 1A, an air-fuel mixture having a rich portion of fuel and a thin portion around it is formed in the combustion chamber. Is done. In this type of in-cylinder injection type internal combustion engine, the above-described portion having a high fuel concentration (near the stoichiometric air-fuel ratio) is used to stably burn even a lean mixture whose overall air-fuel ratio is leaner than the stoichiometric air-fuel ratio. Is formed around the spark plug, and a substantially central portion of the mixture is ignited by the spark plug (FIG. 1).
(B), crank angle position CA2 in FIG. 2).

【0013】混合気が着火しなければ筒内圧Pe は、ピ
ストンの往復動に伴う圧力上昇が生じるだけで、クラン
ク角度の変化と共に図2の細線で示す変化をするが、化
学反応と発熱を伴って混合気が着火すると図2の太線で
示すように変化する。この点火から着火に至る現象につ
いて、図3も参照してより詳細に説明すると、ガソリン
を空気と混合して火花点火すると、発熱を伴う通常の燃
焼、すなわち熱炎反応の前段階に、発熱を伴わない前炎
反応(冷炎と云うこともあるが、炎が観測されない場合
もあるので、このように云う)が先行する。前炎反応
は、過酸化物やホルムアルデヒドといった、連鎖分枝反
応を推し進めるに有効な活性な化学反応種(例えば、C
HO、H22、OH等。これらを「前炎反応生成物」と
いう)を生成する過程であり、混合気を圧縮したり高温
に曝すことにより進行するが、通常は火花点火により放
電周りに火炎核を形成させると、この火炎核の形成をき
っかけにその周囲で前炎反応が急速に進行する(図1の
(d))。
If the air-fuel mixture does not ignite, the in-cylinder pressure Pe changes only as the pressure rises due to the reciprocation of the piston and changes as shown by the thin line in FIG. 2 with the change in the crank angle. When the air-fuel mixture ignites, the air-fuel mixture changes as shown by the thick line in FIG. The phenomenon from the ignition to the ignition will be described in more detail with reference to FIG. 3 as well. When gasoline is mixed with air and spark ignited, heat is generated in a normal combustion with heat generation, that is, before the flame reaction. An unprecedented pre-flame reaction (sometimes referred to as a cold flame, but no flame may be observed, so precedes). Preflame reactions are active chemical species (such as C and C) that are effective in driving the chain branching reaction, such as peroxides and formaldehyde.
HO, H 2 O 2, OH and the like. These are called "pre-flame reaction products"), which proceed by compressing the air-fuel mixture or exposing it to high temperatures. Usually, when a flame nucleus is formed around the discharge by spark ignition, this flame The proinflammatory reaction rapidly proceeds around the nucleus due to the formation of the nucleus (FIG. 1 (d)).

【0014】前炎反応が急速に進行するようすは図3に
より説明することができる。図3は、点火から着火に至
ることができる、燃料濃度が濃い混合気の特定の位置で
観測した前炎反応生成物濃度の変化を示している(図3
の点火から着火が生じるクランク角度位置は図2に示す
「DZ領域」に対応する)。クランク角度位置CA1 の時
点で燃料噴射されて形成された混合気は、断熱圧縮によ
って加熱され、その間僅かではあるが前炎反応生成物濃
度が増加する(図3のCA1 時点からCA2 時点)。そし
て、点火をきっかけに前炎反応生成物濃度が急速に増殖
し、その濃度がある平衡濃度INTDを超えると(図3のCA
3 時点)前炎反応速度が指数関数的に爆発的に進行し、
この時点をもって「着火」と定義され、この時点で火炎
(熱炎)が発生し(図1の(d))、「前炎反応」過程
から「熱炎反応」過程に移行する。熱炎反応が進行する
と、その位置での前炎反応生成物濃度は急激に減少し、
代わってCO2やH2O、未燃炭化水素THC(Total Hy
drocarbons)と云った最終生成物濃度(図3中破線で示
す)が急激に増加することになる。
The rapid progress of the preflame reaction can be explained with reference to FIG. FIG. 3 shows the change in the pre-flame reaction product concentration observed at a specific location in the rich fuel mixture, which can lead from ignition to ignition (FIG. 3).
The crank angle position at which ignition occurs from the ignition of (i) corresponds to the “DZ region” shown in FIG. 2). The mixture formed by fuel injection at the crank angle position CA1 is heated by adiabatic compression, during which the preflame reaction product concentration slightly increases (from CA1 to CA2 in FIG. 3). Then, the preflame reaction product concentration rapidly proliferates upon ignition, and when the concentration exceeds a certain equilibrium concentration INTD (CA in FIG. 3).
3) The preflame reaction rate explodes exponentially,
At this time, it is defined as "ignition". At this time, a flame (hot flame) is generated ((d) in FIG. 1), and the process shifts from the "pre-flame reaction" process to the "hot flame reaction" process. As the thermo-flame reaction progresses, the concentration of the pre-flame reaction product at that position sharply decreases,
Instead, CO 2 and H 2 O, unburned hydrocarbon THC (Total Hy
The final product concentration (indicated by the dashed line in FIG. 3), called drocarbons, will increase sharply.

【0015】熱炎反応が生じた位置に隣接する位置で
は、熱炎から反応熱の供給を受け前炎反応が始まり、こ
こでも急速に前炎反応生成物濃度を増し、やがて熱炎反
応が開始される。このようにして熱炎反応が開始された
領域(熱炎)が外方に順次伝播して行き(図1の
(e)、このように火炎面が伝播していく現象を「火炎
伝播」という)、火炎は燃料濃度の薄い領域と濃い領域
の境界まで達する。境界まで達すると、火炎は、燃料濃
度の薄い領域に伝播することはできず、火炎伝播は止ま
るが、薄い混合気部分に存在する燃料は濃い混合気部分
からの反応熱の供給を受けるため、緩やかであるが前炎
反応が持続される(図1の(f))。
At a position adjacent to the position where the hot flame reaction has occurred, the heat of reaction is supplied from the hot flame to start the pre-flame reaction. Here again, the concentration of the pre-flame reaction product rapidly increases, and then the hot-flame reaction starts. Is done. The region (heat flame) in which the thermal flame reaction has been started in this way sequentially propagates outward (FIG. 1 (e), and the phenomenon in which the flame surface propagates in this manner is called "flame propagation". ), The flame reaches the boundary between the low fuel concentration region and the high fuel concentration region. When the boundary is reached, the flame cannot propagate to the region with low fuel concentration, and the flame propagation stops, but the fuel present in the thin mixture portion receives the supply of reaction heat from the rich mixture portion, The pro-inflammatory reaction is sustained, albeit moderately (FIG. 1 (f)).

【0016】図4は、燃料濃度が薄い混合気部分の特定
の位置で観測した前炎反応生成物濃度変化を示してお
り、濃い混合気部分の燃焼が終わる膨張行程の中期から
後期のクランク角度位置近傍(図2の「WZ領域」)に
おいて前炎反応生成物が高濃度で持続していることを示
している。この状態において追加燃料を噴射すると、追
加燃料が筒内の高温雰囲気に曝されるため、追加燃料の
前炎反応が通常(常温)より早く進む。このため、この
反応により新たに発生した前炎生成物と主燃焼後に筒内
に残存していた前炎生成物との総和量が着火限界濃度を
超えると自己着火を開始し、特に火花点火なしで追加燃
料を燃焼させることができる。
FIG. 4 shows a change in the concentration of the pre-flame reaction product observed at a specific position in the fuel-air mixture portion where the fuel concentration is low. The crank angle in the middle to late stages of the expansion stroke in which the combustion of the fuel-rich mixture portion ends. It shows that the preflame reaction product is maintained at a high concentration near the position (“WZ region” in FIG. 2). When the additional fuel is injected in this state, the additional fuel is exposed to the high-temperature atmosphere in the cylinder, so that the preflame reaction of the additional fuel proceeds faster than usual (normal temperature). For this reason, if the total amount of the pre-flame product newly generated by this reaction and the pre-flame product remaining in the cylinder after the main combustion exceeds the ignition limit concentration, self-ignition starts, and there is no spark ignition in particular. The additional fuel can be burned.

【0017】請求項1の本発明は、このような知見に着
目してなされたもので、濃い混合気部分の燃焼が終わる
主燃焼後の膨張行程の中期又はそれ以降の膨張行程中
に、追加燃料を噴射し、筒内全体で前炎反応生成物濃度
を着火限界濃度を超える値に制御すれば(図1の
(g)、図2及び図4のCA4 時点)、点火プラグを再点
火することなく、また膨張行程前期の濃い混合気からの
熱炎の伝播(火炎伝播)に依存することなく、追加燃料
を自己着火させて燃焼させることができ、従来技術のよ
うに、火炎伝播時に追加燃料を噴射する場合に比較し、
追加燃料による発生熱エネルギーの一部が膨張仕事に奪
われることなく、確実に排気を昇温させることができ
る。更に、追加燃料を主燃焼後の高温雰囲気中に噴射す
ることが好ましい(請求項2)。
The present invention according to claim 1 has been made in view of such knowledge, and is added during the middle stage of the expansion stroke after the main combustion, in which the combustion of the rich mixture ends, or during the expansion stroke thereafter. If fuel is injected and the concentration of the preflame reaction product is controlled to a value exceeding the ignition limit concentration in the entire cylinder (at the point of (g) in FIG. 1, CA4 in FIGS. 2 and 4), the spark plug is re-ignited. The fuel can be self-ignited and burned without relying on the propagation of a hot flame (flame propagation) from a rich mixture during the first half of the expansion stroke. Compared to when fuel is injected,
The temperature of the exhaust gas can be reliably increased without a part of the heat energy generated by the additional fuel being taken away by the expansion work. Further, it is preferable to inject the additional fuel into the high-temperature atmosphere after the main combustion (claim 2).

【0018】そこで、点火時期や空燃比等のエンジン制
御パラメータを種々変化させて、濃い混合気部分の燃焼
が終わる膨張行程中期又はそれ以降の膨張行程に、燃焼
室内の前炎反応生成物濃度を残存させ、着火限界濃度を
超える値に制御するための実験データを求めた。図5
は、点火時期TRDと追加燃料の噴射タイミングを種々変
化させた場合の、排気温度と追加燃料の噴射タイミング
の関係を示している。実験条件としては、吸入空気量を
一定に保持し、主燃料噴射量を全体空燃比が30になる
ように設定し、追加燃料量を主燃料噴射量を加えて総量
で全体空燃比が理論空燃比(14.7)になるように設
定した。
Therefore, the engine control parameters such as the ignition timing and the air-fuel ratio are variously changed so that the concentration of the pre-flame reaction product in the combustion chamber is increased during the middle stage of the expansion stroke in which the combustion of the rich mixture ends and in the expansion stroke thereafter. Experimental data was obtained to allow the residual concentration to exceed the ignition limit concentration. FIG.
Shows the relationship between the exhaust gas temperature and the additional fuel injection timing when the ignition timing TRD and the additional fuel injection timing are variously changed. The experimental conditions were as follows: the intake air amount was kept constant, the main fuel injection amount was set so that the total air-fuel ratio was 30, and the additional fuel amount was added to the main fuel injection amount to make the total air-fuel ratio stoichiometric. The fuel ratio was set so as to be (14.7).

【0019】また図6は、図5と同様に、点火時期TRD
と追加燃料の噴射タイミングを種々変化させた場合の、
排気温度と追加燃料の噴射タイミングの関係を示してお
り、この場合、主燃料噴射量を全体空燃比が40になる
ように設定し、追加燃料量を主燃料噴射量を加えて総量
で全体空燃比が理論空燃比(14.7)になるように設
定し、その他の実験条件は図5と同じに設定した。すな
わち、図6に示す実験では、主燃料噴射量が図5のそれ
に比べて少なく、図1の(a)に示す濃い混合気部分が
小さくなっている。
FIG. 6 shows the ignition timing TRD similarly to FIG.
And when the injection timing of the additional fuel is variously changed,
The relationship between the exhaust temperature and the injection timing of the additional fuel is shown. In this case, the main fuel injection amount is set so that the total air-fuel ratio becomes 40, and the additional fuel amount is added to the main fuel injection amount to obtain the total amount of the total fuel. The fuel ratio was set to be the stoichiometric air-fuel ratio (14.7), and the other experimental conditions were set the same as in FIG. That is, in the experiment shown in FIG. 6, the main fuel injection amount is smaller than that in FIG. 5, and the rich mixture portion shown in FIG. 1A is smaller.

【0020】図7は、図5と同じ実験結果から、点火時
期TRDと追加燃料の噴射タイミングをパラメータにして
排気温度及び排気ガス中の未燃炭化水素量マップを示し
たものである。これらの実験結果から、追加燃料の噴射
タイミングを膨張行程の初期(クランク角度で45°AT
DC位)から中期(クランク角度で65°ATDC位)に向け
て変化させると、追加燃料が燃えずにTHC(Total Hy
drocarbons) として排出される量が増え、排気温度の上
昇も悪化する。一方、膨張行程中期以降に追加燃料を噴
射すると、クランク角度で90°〜100°付近で排気
温度のピークが得られる。即ち、膨張行程初期と膨張行
程中期以降とでは、排気温度の上昇自体はほぼ同程度で
あるが、膨張行程中期以降に追加燃料を噴射する方が膨
張仕事に奪われるエネルギが少なく、しかも、効率良く
熱エネルギに変換でき、燃費の悪化が少ないため、望ま
しい。
FIG. 7 shows a map of the exhaust gas temperature and the amount of unburned hydrocarbons in the exhaust gas using the ignition timing TRD and the injection timing of the additional fuel as parameters from the same experimental results as in FIG. Based on these experimental results, the injection timing of the additional fuel was set at the beginning of the expansion stroke (45 ° AT
When changing from the DC position to the middle stage (65 ° ATDC crank angle), THC (Total Hydraulic
The amount emitted as drocarbons) increases, and the rise in exhaust gas temperature also worsens. On the other hand, when additional fuel is injected after the middle stage of the expansion stroke, a peak of the exhaust gas temperature is obtained at around 90 ° to 100 ° in crank angle. That is, in the initial stage of the expansion stroke and after the middle stage of the expansion stroke, the rise in the exhaust gas temperature itself is almost the same, but when the additional fuel is injected after the middle stage of the expansion stroke, less energy is lost to the expansion work, and the efficiency is increased. This is desirable because it can be well converted to heat energy and the deterioration of fuel efficiency is small.

【0021】そして、これらの実験結果から、主燃料の
点火時期は、遅角すればするほど排気温度が上昇するこ
とが明らかになった。点火時期を遅角させると、燃焼が
緩慢になり、火炎伝播が遅れることになり、火炎が十分
に伝播する前に筒内圧が低下するために消炎し、結果と
して前炎反応生成物濃度が増加することになる。このた
め、追加燃料の燃焼速度が増加し、大きな昇温効果が得
られたものと考えられる。
From the results of these experiments, it has become clear that the more the ignition timing of the main fuel is retarded, the higher the exhaust gas temperature. If the ignition timing is retarded, combustion slows down, delays flame propagation, and extinguishes because the in-cylinder pressure decreases before the flame propagates sufficiently, resulting in an increase in the concentration of the preflame reaction product. Will do. For this reason, it is considered that the combustion speed of the additional fuel was increased and a large temperature raising effect was obtained.

【0022】又、図5と図6の実験結果の比較から明ら
かなように、主燃料噴射量を全体空燃比が40になるよ
うに設定すると、点火時期のリタード量の如何に関わら
ず大きな昇温効果を得ることができる。空燃比をリーン
化すると緩慢な燃焼が生じ、点火時期を遅角した場合と
同様の結果が得られるものと考えられる。これらの実験
結果は、主燃焼後の膨張行程中期又はそれ以降の膨張行
程に、燃焼室内の前炎反応生成物濃度を残存させ、追加
燃料を噴射した後に前炎反応生成物濃度が着火限界濃度
を超える値に制御するためには、点火時期の遅角、空燃
比のリーン化、その他の方法によって、主燃料の燃焼を
緩慢にすればよいことを示唆している。
As is clear from the comparison between the experimental results shown in FIGS. 5 and 6, when the main fuel injection amount is set so that the overall air-fuel ratio becomes 40, a large increase in the ignition timing is obtained regardless of the retard amount of the ignition timing. A warm effect can be obtained. It is considered that when the air-fuel ratio is made lean, slow combustion occurs, and the same result as when the ignition timing is retarded is obtained. These experimental results show that the pre-flame reaction product concentration in the combustion chamber remains in the middle stage or later of the expansion stroke after the main combustion, and the pre-flame reaction product concentration becomes the ignition limit concentration after additional fuel is injected. It is suggested that in order to control the value to exceed the value, the combustion of the main fuel should be slowed down by retarding the ignition timing, making the air-fuel ratio lean, or other methods.

【0023】又、上記実験結果からも判るように、追加
燃料の噴射タイミングは、前炎反応生成物が多くなるク
ランク角度で70〜110°ATDCに設定するのが良く、
このように設定したクランク角度を膨張行程中期又はそ
れ以降の膨張行程と定義することが出来る。そして、請
求項3の本発明は、このような知見に着目してなされた
もので、濃い混合気部分の燃焼が終わる主燃焼後の膨張
行程中のクランク角度で上死点後70〜110°に、追
加燃料を噴射し、筒内全体で前炎反応生成物濃度を着火
限界濃度を超える値に制御すれば(図1の(g)、図2
及び図4のCA4 時点)、点火プラグを再点火することな
く、また膨張行程前期の濃い混合気からの熱炎の伝播
(火炎伝播)に依存することなく、追加燃料を自己着火
させて燃焼させることができ、従来技術のように、火炎
伝播時に追加燃料を噴射する場合に比較し、追加燃料に
よる発生熱エネルギーの一部が膨張仕事に奪われること
なく、確実に排気を昇温させることができる。そして、
特に排気の昇温効果を得るにはクランク角度で80〜1
00°ATDCに設定するのが好ましい(請求項4の発
明)。
Also, as can be seen from the above experimental results, the injection timing of the additional fuel is preferably set at 70 to 110 ° ATDC at a crank angle at which the preflame reaction products increase.
The crank angle set in this way can be defined as an expansion stroke in the middle stage of the expansion stroke or later. The present invention according to claim 3 has been made in view of such knowledge, and the crank angle in the expansion stroke after the main combustion where the combustion of the rich mixture ends is 70 to 110 ° after the top dead center. In addition, by injecting additional fuel and controlling the concentration of the preflame reaction product in the entire cylinder to a value exceeding the ignition limit concentration (FIG. 1 (g), FIG.
And at the time of CA4 in FIG. 4), the additional fuel is self-ignited and burned without reignition of the spark plug and without depending on propagation of the hot flame from the rich mixture (flame propagation) in the first half of the expansion stroke. It is possible to surely raise the temperature of the exhaust gas without a part of the heat energy generated by the additional fuel being taken away by the expansion work, as compared with the case where the additional fuel is injected at the time of the flame propagation as in the prior art. it can. And
In particular, in order to obtain the effect of raising the temperature of the exhaust, the crank angle is 80 to 1
Preferably, it is set to 00 ° ATDC (the invention of claim 4).

【0024】また、上記のクランク角度で70〜110
°ATDCの膨張行程中期又はそれ以降の膨張行程中に前炎
反応生成物濃度を着火限界濃度を超えるようにするに
は、エンジン制御手段として点火時期設定手段を備えて
構成し、点火時期をクランク角度で10°BTDC〜5°AT
DCに設定するのがよく(請求項5の発明)、更に層状燃
焼(主燃焼)の安定性を考慮すると、5°BTDC〜TDC に
設定するのが好ましい。この場合、エンジン制御手段と
して空燃比設定手段を備えて構成し、層状燃焼時の空燃
比を25以上に設定すればよいが(請求項6の発明)、
層状燃焼(主燃焼)の安定性を考慮すれば、更に層状燃
焼時の空燃比を30〜40程度に設定するのがより好ま
しい。
Further, when the crank angle is in the range of 70 to 110
In order to make the concentration of the preflame reaction product exceed the ignition limit concentration during the middle or later expansion stroke of ATDC, an ignition timing setting means is provided as an engine control means, and the ignition timing is set to the crank timing. 10 ° BTDC to 5 ° AT at an angle
DC is preferably set (the invention of claim 5), and in consideration of the stability of stratified combustion (main combustion), it is preferable to set 5 ° BTDC to TDC. In this case, an air-fuel ratio setting unit may be provided as the engine control unit, and the air-fuel ratio during stratified combustion may be set to 25 or more (the invention of claim 6).
In consideration of the stability of stratified combustion (main combustion), it is more preferable to set the air-fuel ratio during stratified combustion to about 30 to 40.

【0025】しかしながら、層状燃焼時の空燃比を35
以上に設定すれば(請求項7の発明)、層状燃焼時の点
火時期を遅角させる必要がなく、空燃比の調整だけで膨
張行程中期又はそれ以降の膨張行程中の追加燃料噴射後
に前炎反応生成物濃度を着火限界濃度を超える値に制御
することができる。何れにしても、エンジン制御手段と
して、層状燃焼のための点火時期を設定する点火時期設
定手段、又は層状燃焼のための空燃比を設定する空燃比
設定手段の少なくとも一方を有し、排気昇温が要求され
るエンジン運転時に、層状燃焼の点火時期を遅角側に、
又は層状燃焼の空燃比を希薄側に制御することにより、
膨張行程中期又はそれ以降の膨張行程中(追加燃料噴射
前)に前炎反応生成物濃度を着火限界濃度近傍になるよ
うに制御することが出来る(請求項8の発明)。
However, the air-fuel ratio at the time of stratified combustion is 35
With the above setting (the invention of claim 7), it is not necessary to retard the ignition timing at the time of stratified combustion, and only by adjusting the air-fuel ratio, the pre-flame occurs after the additional fuel injection during the middle stage of the expansion stroke or the subsequent expansion stroke. The reaction product concentration can be controlled to a value exceeding the ignition limit concentration. In any case, the engine control means has at least one of an ignition timing setting means for setting an ignition timing for stratified combustion and an air-fuel ratio setting means for setting an air-fuel ratio for stratified combustion, and the When the engine operation is required, the ignition timing of the stratified combustion is retarded,
Or by controlling the air-fuel ratio of stratified combustion to the lean side,
It is possible to control the preflame reaction product concentration to be close to the ignition limit concentration during the expansion stroke in the middle stage of the expansion stroke or thereafter (before additional fuel injection) (the invention of claim 8).

【0026】請求項9の本発明は、上述のような知見に
着目してなされたもので、エンジン制御手段として、層
状燃焼のための点火時期を設定する点火時期設定手段、
又は層状燃焼のための空燃比を設定する空燃比設定手段
の一方を有することにより、排気昇温が要求されるエン
ジン運転時に、層状燃焼のためのエンジン制御パラメー
タとしての点火時期、又は空燃比の一方を制御すること
によって、膨張行程中期又はそれ以降の膨張行程中(追
加燃料噴射前)に前炎反応生成物濃度を着火限界濃度近
傍になるように制御することが出来る。そして、濃い混
合気部分の燃焼が終わる主燃焼後の膨張行程の中期又は
それ以降の膨張行程中に、追加燃料を噴射し、筒内全体
で前炎反応生成物濃度を着火限界濃度を超える値に制御
すれば(図1の(g)、図2及び図4のCA4 時点)、点
火プラグを再点火することなく、また膨張行程前期の濃
い混合気からの熱炎の伝播(火炎伝播)に依存すること
なく、追加燃料を自己着火させて燃焼させることがで
き、従来技術のように、火炎伝播時に追加燃料を噴射す
る場合に比較し、追加燃料による発生熱エネルギーの一
部が膨張仕事に奪われることなく、確実に排気を昇温さ
せることができる。
According to a ninth aspect of the present invention, there is provided an ignition timing setting means for setting an ignition timing for stratified combustion, as an engine control means.
Or, by having one of the air-fuel ratio setting means for setting the air-fuel ratio for stratified combustion, during the operation of the engine in which the exhaust gas temperature is required to rise, the ignition timing or the air-fuel ratio as an engine control parameter for stratified combustion By controlling one of them, the pre-flame reaction product concentration can be controlled to be close to the ignition limit concentration in the middle stage of the expansion stroke or during the expansion stroke thereafter (before additional fuel injection). Then, during the middle stage of the expansion stroke after the main combustion, in which the combustion of the rich mixture ends, or during the expansion stroke thereafter, additional fuel is injected, and the preflame reaction product concentration exceeds the ignition limit concentration in the entire cylinder. (G) in FIG. 1 (at time CA4 in FIGS. 2 and 4), the ignition plug is not reignited, and the propagation of the hot flame (flame propagation) from the rich mixture in the first half of the expansion stroke. It is possible to self-ignite and burn the additional fuel without depending on it, and compared to the case where the additional fuel is injected at the time of flame propagation as in the prior art, a part of the heat energy generated by the additional fuel is used for expansion work. The exhaust gas can be reliably heated without being deprived.

【0027】又、排気昇温が要求されるエンジン運転時
に、層状燃焼の点火時期を遅角側に、又は層状燃焼の空
燃比を希薄側に制御することによって、主燃焼後の膨張
行程中期又はそれ以降の膨張行程中(追加燃料噴射前)
に前炎反応生成物濃度を着火限界濃度近傍になるように
制御することが出来る(請求項10の発明)。尚、本発
明の排気昇温装置は、少なくとも圧縮行程時に該燃焼噴
射弁より燃料を噴射し火花点火して層状燃焼を行わせ
る、圧縮行程噴射モードで制御するエンジンであればよ
く、このモードに加え吸気行程噴射モードでも制御で
き、これらのモードを切り換えて制御するエンジンでも
よいことは勿論のことである。
Further, during the operation of the engine in which the temperature of the exhaust gas is required to be raised, the ignition timing of the stratified combustion is controlled to the retard side, or the air-fuel ratio of the stratified combustion is controlled to the lean side, so that the middle stage of the expansion stroke after the main combustion or During the subsequent expansion stroke (before additional fuel injection)
Further, the concentration of the preflame reaction product can be controlled so as to be near the ignition limit concentration (the invention of claim 10). Note that the exhaust gas heating device of the present invention may be any engine that is controlled in a compression stroke injection mode, in which fuel is injected from the combustion injection valve at least during a compression stroke and spark ignition is performed to perform stratified combustion. In addition, the control can be performed in the intake stroke injection mode, and the engine may be controlled by switching between these modes.

【0028】本発明の排気昇温装置は、排気ガス浄化装
置を備える内燃エンジンに適用され、排気ガス中のC
O,HC及びNOx を浄化する三元機能を有する三元触
媒や、希薄燃焼時に主にNOx を浄化するリーンNOx
触媒を備える内燃エンジンに好適に適用される。またこ
のリーンNOx 触媒の下流に、三元触媒を備えるエンジ
ンでも良く、この場合、リーンNOx 触媒でのNOx 浄
化を妨げることなく、リーンNOx 触媒で十分に浄化で
きなかったCOやHCを確実に浄化することができる点
で好ましいが、リーンNOx 触媒が三元機能を有する場
合にはリーンNOx 触媒のみ配置してもよい。
The exhaust gas temperature raising device of the present invention is applied to an internal combustion engine provided with an exhaust gas purifying device, and is provided with C in the exhaust gas.
A three-way catalyst having a three-way function for purifying O, HC and NOx, and a lean NOx for mainly purifying NOx during lean combustion
It is suitably applied to an internal combustion engine having a catalyst. An engine having a three-way catalyst downstream of the lean NOx catalyst may be used. In this case, CO and HC that could not be sufficiently purified by the lean NOx catalyst can be reliably purified without hindering NOx purification by the lean NOx catalyst. However, when the lean NOx catalyst has a three-way function, only the lean NOx catalyst may be provided.

【0029】[0029]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。図8は、車両に搭載され
た本発明に係る筒内噴射ガソリンエンジンの制御装置の
一実施形態を示す概略構成図である。図8において、符
号1は、火花点火式で、且つ、燃焼室内に燃料を直接噴
射する、自動車用筒内噴射型直列4気筒ガソリンエンジ
ン(以下、単にエンジンと記す)であり、吸気,圧縮,
膨張,排気の各行程を一作動サイクル中にそなえる内燃
エンジン、即ち4サイクルエンジンである。そして、こ
のエンジン1は、燃焼室1aを始め吸気装置やEGR装
置10等が筒内噴射専用に設計されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 8 is a schematic configuration diagram showing one embodiment of a control device for a direct injection gasoline engine according to the present invention mounted on a vehicle. In FIG. 8, reference numeral 1 denotes an in-cylinder in-cylinder in-line four-cylinder gasoline engine (hereinafter simply referred to as an engine) of a spark ignition type, which injects fuel directly into a combustion chamber.
This is an internal combustion engine that performs each expansion and exhaust stroke in one operation cycle, that is, a four-cycle engine. In the engine 1, an intake device, an EGR device 10, etc., including the combustion chamber 1a, are designed exclusively for in-cylinder injection.

【0030】エンジン1のシリンダヘッドには、各気筒
毎に点火プラグ35と共に電磁式の燃料噴射弁8も取り
付けられており、燃焼室1a内に直接燃料が噴射される
ようになっている。また、シリンダ内を摺動して往復動
するピストンの頂面には、上死点近傍で燃料噴射弁8か
らの燃料噴霧が到達する位置に、半球状のキャビティが
形成されている(図示せず)。また、このエンジン1の
理論圧縮比は、吸気管噴射型のものに比べ、高く(本実
施例では、12程度)設定されている。動弁機構として
はDOHC4弁式が採用されており、シリンダヘッドの
上部には、吸排気弁4,5をそれぞれ駆動するべく、吸
気側カムシャフトと排気側カムシャフトとが回転自在に
保持されている。
The cylinder head of the engine 1 is also provided with an electromagnetic fuel injection valve 8 together with an ignition plug 35 for each cylinder so that fuel is directly injected into the combustion chamber 1a. A hemispherical cavity is formed on the top surface of the piston that reciprocates by sliding in the cylinder at a position near the top dead center where the fuel spray from the fuel injection valve 8 reaches (see the figure). Zu). The theoretical compression ratio of the engine 1 is set higher (about 12 in this embodiment) than that of the intake pipe injection type. A DOHC 4-valve valve mechanism is employed as a valve operating mechanism. An intake-side camshaft and an exhaust-side camshaft are rotatably held above the cylinder head to drive the intake and exhaust valves 4 and 5, respectively. I have.

【0031】シリンダヘッドには、両カムシャフトの間
を抜けるようにして、略直立方向に吸気ポート2aが形
成されており、この吸気ポート2aを通過した吸気流が
燃焼室1a内で後述する逆タンブル流を発生させるよう
になっている。一方、排気ポート3aについては、通常
のエンジンと同様に略水平方向に形成されているが、斜
めに大径のEGRポート(図示せず)が分岐している。
図中、19は冷却水温Tw を検出する水温センサであ
り、21は各気筒の所定のクランク位置(本実施例で
は、5°BTDCおよび75°BTDC)でクランク角信号SG
Tを出力するクランク角センサであり、34は点火プラ
グ35に高電圧を出力する点火コイルである。尚、クラ
ンクシャフトの半分の回転数で回転するカムシャフトに
は、気筒判別信号SGCを出力する気筒判別センサ(図
示せず)が配設されており、このセンサからの信号によ
ってクランク角信号SGTがどの気筒のものかを判別す
る。
An intake port 2a is formed in the cylinder head in a substantially upright direction so as to pass through between the two camshafts, and an intake flow passing through the intake port 2a causes a reverse flow to be described later in the combustion chamber 1a. A tumble flow is generated. On the other hand, the exhaust port 3a is formed in a substantially horizontal direction similarly to a normal engine, but has a large-diameter EGR port (not shown) branched diagonally.
In the figure, reference numeral 19 denotes a water temperature sensor for detecting a cooling water temperature Tw. Reference numeral 21 denotes a crank angle signal SG at a predetermined crank position (5 ° BTDC and 75 ° BTDC in this embodiment) of each cylinder.
Reference numeral 34 denotes a crank angle sensor that outputs T, and reference numeral 34 denotes an ignition coil that outputs a high voltage to the ignition plug 35. A camshaft that rotates at half the number of revolutions of the crankshaft is provided with a cylinder discrimination sensor (not shown) that outputs a cylinder discrimination signal SGC, and the signal from this sensor generates a crank angle signal SGT. Determine which cylinder it is.

【0032】図8に示したように、吸気ポート2aに
は、サージタンク2bを有する吸気マニホールド2を介
して、エアクリーナ6a,スロットルボディ6b,ステ
ッパモータ式のアイドルスピードコントロールバルブ
(以下、アイドル調整弁という)16を具えた吸気管6
が接続している。更に、吸気管6には、スロットルボデ
ィ6bを迂回して吸気マニホールド2に吸入空気を導入
する、大径のエアバイパスパイプ50aが併設されてお
り、その管路にはリニアソレノイド式で大型のエアバイ
パスバルブ(ABV弁という)50が設けられている。
尚、エアバイパスパイプ50aは、吸気管6に準ずる流
路面積を有しており、ABV弁50の全開時にはエンジ
ン1の低中速域で要求される量の吸入気が流通可能とな
っている。一方、アイドル調整弁16は、ABV弁50
より小さい流路面積を有しており、吸入空気量を精度よ
く調整する場合にはアイドル調整弁16を使用する。
As shown in FIG. 8, an air cleaner 6a, a throttle body 6b, a stepper motor type idle speed control valve (hereinafter referred to as an idle adjustment valve) is connected to an intake port 2a via an intake manifold 2 having a surge tank 2b. Intake pipe 6 with 16)
Is connected. Further, the intake pipe 6 is provided with a large-diameter air bypass pipe 50a that bypasses the throttle body 6b and introduces intake air into the intake manifold 2. A large-diameter linear solenoid type air pipe is provided in the pipeline. A bypass valve (referred to as an ABV valve) 50 is provided.
The air bypass pipe 50a has a flow passage area similar to that of the intake pipe 6, and when the ABV valve 50 is fully opened, the required amount of intake air in the low to medium speed range of the engine 1 can flow. . On the other hand, the idle adjustment valve 16 is provided with an ABV valve 50.
It has a smaller flow passage area and uses the idle adjustment valve 16 when adjusting the intake air amount with high accuracy.

【0033】スロットルボディ6bには、流路を開閉す
るバタフライ式のスロットル弁7と共に、スロットル開
度θthを検出することでアクセル開度情報を検出するス
ロットルセンサ14と、全閉状態を検出するアイドルス
イッチ15とが備えられている。また、エアクリーナ6
aの内部には、吸気密度を求めるための吸気温センサ1
2、大気圧センサ13が配設されており、大気圧Pa 、
吸気温度Ta に対応する信号を出力する。更に、吸気管
6の入口近傍には、カルマン渦式のエアフローセンサ1
1が配設されており、一吸気行程当たりの体積空気流量
Qa に比例した渦発生信号を出力する。
The throttle body 6b includes a butterfly type throttle valve 7 for opening and closing a flow path, a throttle sensor 14 for detecting accelerator opening information by detecting a throttle opening θth, and an idle sensor for detecting a fully closed state. A switch 15 is provided. Air cleaner 6
a, an intake air temperature sensor 1 for obtaining an intake air density.
2. An atmospheric pressure sensor 13 is provided, and the atmospheric pressure Pa,
A signal corresponding to the intake air temperature Ta is output. Further, near the inlet of the intake pipe 6, a Karman vortex type air flow sensor 1 is provided.
1, which outputs a vortex generation signal proportional to the volume air flow rate Qa per intake stroke.

【0034】また、前述したEGRポートは、大径のE
GRパイプ10bを介して、スロットル弁7の下流、且
つ、吸気マニホールド2の上流に接続されており、その
管路にはステッパモータ式のEGR弁10aが配設され
ている。一方、排気ポート3aには、O2センサ17が
取付けられた排気マニホールド3が接続されており、更
に、排気ガス浄化用触媒としての排気ガス浄化用触媒コ
ンバータ(触媒)9や図示しないマフラー等を具えた排
気パイプ(排気通路)3bが接続されている。O2セン
サ17は、排ガス中の酸素濃度を検出して、検出信号を
出力する。また、触媒9の下流側部分には、触媒若しく
はその近傍の温度(以下これを触媒温度と云う)Tccを
検出する触媒温度センサ(高温センサ)26が取り付けら
れている。そして、燃焼室1aから排気マニホールド3
に排出された排気ガスは、触媒コンバータ9で排気ガス
中のCO,HC,NOx の3つの有害成分が浄化された
後、マフラで消音されて大気側へ放出されるようになっ
ている。特に、本エンジンは、空燃比を燃料希薄側(リ
ーン側)にしながら節約運転を行なえるエンジンであ
り、リーン運転時には、通常の三元触媒だけでは排気ガ
ス中のNOx を十分に浄化できないため、触媒9は、リ
ーンNOx 触媒9aと三元触媒9bとを組み合わせたも
のになっている。つまり、リーンNOx 触媒9aの下流
に、理論空燃比下で排出ガス中のCO,HC及びNOx
を浄化可能な三元機能を有する三元触媒9bを備えるよ
うにしている。これは、三元触媒9bをりーンNOx 触
媒9aの上流に配置してリーンNOx 触媒9aでのNO
x 浄化を妨げることのないようにしながら、リーンNO
x 触媒で十分に浄化できなかったCOやHCを確実に浄
化することができるようにするためである。なお、リー
ンNOx 触媒が三元機能を有する場合にはリーンNOx
触媒を1つだけ配置してもよい。
The above-mentioned EGR port has a large-diameter EGR port.
It is connected downstream of the throttle valve 7 and upstream of the intake manifold 2 via a GR pipe 10b, and a stepper motor type EGR valve 10a is disposed in the pipeline. On the other hand, the exhaust port 3a is connected to an exhaust manifold 3 to which an O 2 sensor 17 is attached, and further includes an exhaust gas purifying catalytic converter (catalyst) 9 as an exhaust gas purifying catalyst, a muffler (not shown), and the like. The exhaust pipe (exhaust passage) 3b provided is connected. The O 2 sensor 17 detects the oxygen concentration in the exhaust gas and outputs a detection signal. A catalyst temperature sensor (high temperature sensor) 26 for detecting the temperature of the catalyst or its vicinity (hereinafter referred to as the catalyst temperature) Tcc is attached to the downstream side of the catalyst 9. And, from the combustion chamber 1a, the exhaust manifold 3
After the three harmful components of CO, HC and NOx in the exhaust gas are purified by the catalytic converter 9, the exhaust gas discharged to the muffler is silenced by a muffler and discharged to the atmosphere side. In particular, this engine is an engine that can perform economizing operation while keeping the air-fuel ratio on the lean side (lean side). During lean operation, the normal three-way catalyst alone cannot sufficiently purify NOx in exhaust gas. The catalyst 9 is a combination of a lean NOx catalyst 9a and a three-way catalyst 9b. That is, downstream of the lean NOx catalyst 9a, CO, HC and NOx
Is provided with a three-way catalyst 9b having a three-way function capable of purifying the catalyst. This is because the three-way catalyst 9b is arranged upstream of the lean NOx catalyst 9a, and the NOx in the lean NOx catalyst 9a is reduced.
x Lean NO while not hindering purification
x This is to ensure that CO and HC that could not be sufficiently purified by the catalyst can be purified. When the lean NOx catalyst has a three-way function, the lean NOx
Only one catalyst may be provided.

【0035】車体後部には、図示しない燃料タンクが設
置されている。そして、燃料タンクに貯留された燃料
は、電動式の低圧燃料ポンプで吸い上げられ、低圧フィ
ードパイプを介して、エンジン1側に送給される。エン
ジン1側に送給された燃料は、シリンダヘッドに取り付
けられた高圧燃料ポンプ(これらは図示されない)によ
り、高圧フィードパイプとデリバリパイプとを介して、
各燃料噴射弁8に送給される。
A fuel tank (not shown) is provided at the rear of the vehicle body. Then, the fuel stored in the fuel tank is sucked up by an electric low-pressure fuel pump and sent to the engine 1 side through a low-pressure feed pipe. The fuel supplied to the engine 1 is supplied to a high-pressure fuel pump (not shown) attached to a cylinder head via a high-pressure feed pipe and a delivery pipe.
The fuel is supplied to each fuel injection valve 8.

【0036】車室内には、ECU(電子制御ユニット)
23が設置されており、このECU23には図示しない
入出力装置,制御プログラムや制御マップ等の記憶に供
される記憶装置(ROM,RAM,不揮発性RAM
等),中央処理装置(CPU),タイマカウンタ等が具
えられ、エンジン1の総合的な制御を行っている。EC
U23の入力側には、作動時にエンジン1の負荷となる
エアコン装置、パワーステアリング装置、自動変速装置
等の作動状況を検出するスイッチ類、等が夫々接続さ
れ、各検出信号をECU23に供給している。尚、EC
U23には、上述した各種のセンサ類やスイッチ類の他
に、図示しない多数のスイッチやセンサ類が入力側に接
続されており、出力側にも各種警告灯や機器類等が接続
されている。
An ECU (electronic control unit) is provided in the vehicle interior.
The ECU 23 has an input / output device (not shown) and a storage device (ROM, RAM, non-volatile RAM) for storing control programs, control maps, and the like.
Etc.), a central processing unit (CPU), a timer counter, and the like, and perform overall control of the engine 1. EC
On the input side of U23, switches for detecting the operating status of an air conditioner, a power steering device, an automatic transmission, and the like, which are loads on the engine 1 at the time of operation, are respectively connected, and each detection signal is supplied to the ECU 23. I have. In addition, EC
In U23, in addition to the various sensors and switches described above, a number of switches and sensors (not shown) are connected to the input side, and various warning lights and devices are also connected to the output side. .

【0037】ECU23は、上述した各種センサ類及び
スイッチ類からの入力信号に基づき、燃料噴射モードや
燃料噴射量を始めとして、燃料噴射終了時期、点火時期
やEGRガスの導入量等を決定し、燃料噴射弁8、点火
コイル34,EGR弁10a等を駆動制御する。次に、
エンジン1の通常制御、即ち、後述する排気昇温制御を
行わない場合の制御について簡単に説明する。
The ECU 23 determines the fuel injection mode, the fuel injection amount, the fuel injection end timing, the ignition timing, the amount of EGR gas introduced, etc., based on the input signals from the various sensors and switches described above. The drive control of the fuel injection valve 8, the ignition coil 34, the EGR valve 10a and the like is performed. next,
The normal control of the engine 1, that is, the control when the exhaust gas temperature raising control described later is not performed will be briefly described.

【0038】冷機時のエンジン始動において、ECU2
3は、吸気行程噴射モードを選択し、比較的リッチな空
燃比となるように燃料を噴射する。これは、冷機時には
燃料の気化率が低いため、圧縮行程噴射モードで噴射を
行った場合、失火や未燃燃料の排出が避けられないため
である。また、ECU23は、始動時にはABV弁50
を閉鎖するため、燃焼室1aへの吸入空気はスロットル
弁7の隙間やアイドル調整弁16から供給される。尚、
アイドル調整弁16とABV弁50とはECU23によ
り一元管理されており、スロットル弁7を迂回する吸入
空気(バイパスエア)の必要導入量に応じてそれぞれの
開弁量が決定される。
When the engine is started when the engine is cold, the ECU 2
3 selects an intake stroke injection mode and injects fuel so as to have a relatively rich air-fuel ratio. This is because the fuel has a low vaporization rate during a cold period, and therefore, when injection is performed in the compression stroke injection mode, misfires and discharge of unburned fuel are inevitable. The ECU 23 also sets the ABV valve 50 at the time of starting.
Is closed, the intake air to the combustion chamber 1a is supplied from the gap of the throttle valve 7 and the idle adjustment valve 16. still,
The idle adjustment valve 16 and the ABV valve 50 are centrally managed by the ECU 23, and the respective valve opening amounts are determined according to the required introduction amount of intake air (bypass air) bypassing the throttle valve 7.

【0039】始動後冷却水温TW が所定値に上昇するま
では、ECU23は、始動時と同様に吸気行程噴射モー
ドを選択して燃料を噴射すると共に、ABV弁50も継
続して閉鎖する。また、エアコン等の補機類の負荷の増
減に応じたアイドル回転数の制御は、吸気管噴射型と同
様にアイドル調整弁16(必要に応じてABV弁50も
開弁される)によって行われる。更に、所定サイクルが
経過してO2センサ17が活性温度に達すると、ECU
23は、O2センサ17の出力電圧に応じて空燃比フィ
ードバック制御を開始し、有害排出ガス成分を触媒9に
より浄化させる。このように、冷機時においては、吸気
管噴射型と略同様の燃料噴射制御が行われるが、吸気ポ
ート壁面への燃料滴の付着等がないため、制御の応答性
や精度は高くなる。
Until the cooling water temperature TW rises to a predetermined value after the start, the ECU 23 selects the intake stroke injection mode and injects the fuel in the same manner as at the time of the start, and also continuously closes the ABV valve 50. In addition, the control of the idle speed according to the increase or decrease of the load of the auxiliary equipment such as the air conditioner is performed by the idle adjustment valve 16 (the ABV valve 50 is also opened as necessary) as in the intake pipe injection type. . Further, when a predetermined cycle elapses and the O 2 sensor 17 reaches the activation temperature,
23 starts the air-fuel ratio feedback control according to the output voltage of the O 2 sensor 17 and purifies the harmful exhaust gas component by the catalyst 9. As described above, when the engine is cold, substantially the same fuel injection control as that of the intake pipe injection type is performed, but since there is no attachment of fuel droplets to the intake port wall surface, control responsiveness and accuracy are improved.

【0040】エンジン1の暖機が終了すると、ECU2
3は、スロットル開度θth等から得た目標筒内有効圧
(目標負荷)Pe とエンジン回転数(回転速度)Ne と
に基づき、図9の燃料噴射制御マップから現在の燃料噴
射制御領域を検索し、燃料噴射モードと燃料噴射量とを
決定して燃料噴射弁8を駆動する他、ABV弁50やE
GR弁45の開弁制御等も行う。
When the warm-up of the engine 1 is completed, the ECU 2
3 retrieves the current fuel injection control area from the fuel injection control map of FIG. 9 based on the target in-cylinder effective pressure (target load) Pe obtained from the throttle opening θth and the like and the engine speed (rotation speed) Ne. In addition to determining the fuel injection mode and the fuel injection amount to drive the fuel injection valve 8, the ABV valve 50 and the E
Valve opening control of the GR valve 45 is also performed.

【0041】例えば、アイドル運転時等の低負荷・低回
転運転時には図9中斜線で示す圧縮行程噴射リーン域と
なるため、ECU23は、圧縮行程噴射モードを選択す
ると共にABV弁50及びEGR弁10aを運転状態に
応じて開弁し、リーンな空燃比(本実施例では、20〜40
程度)となるように燃料を噴射する。この時点では燃料
の気化率が上昇すると共に、図10に示したように吸気
ポート2aから流入した吸気流が矢印で示す逆タンブル
流80を形成するため、燃料噴霧81がピストンのキャ
ビティ内に保存される。その結果、点火時点において点
火プラグ35の周囲には理論空燃比近傍の混合気が形成
されることになり、全体として極めてリーンな空燃比
(例えば、全体空燃比で50程度)でも着火が可能とな
る。これにより、COやHCの排出が極く少量になると
共に、排気ガスの還流によってNOxの排出量も低く抑
えられる。そして、ABV弁50及びEGR弁10aを
開弁することによるポンピングロスの低減も相俟って燃
費が大幅に向上する。そして、負荷の増減に応じたアイ
ドル回転数の制御は、燃料噴射量を増減させることによ
り行うため、制御応答性も非常に高くなる。
For example, during low-load / low-speed operation such as idling operation, the compression stroke injection lean region shown by hatching in FIG. 9 is selected, so that the ECU 23 selects the compression stroke injection mode and sets the ABV valve 50 and the EGR valve 10a. The valve is opened according to the operating state to obtain a lean air-fuel ratio (20 to 40 in this embodiment).
Inject fuel so that At this time, the fuel vaporization rate increases, and the intake air flowing from the intake port 2a forms a reverse tumble flow 80 indicated by an arrow as shown in FIG. 10, so that the fuel spray 81 is stored in the piston cavity. Is done. As a result, an air-fuel mixture in the vicinity of the stoichiometric air-fuel ratio is formed around the ignition plug 35 at the time of ignition, and it is possible to ignite even with an extremely lean air-fuel ratio as a whole (for example, about 50 in overall air-fuel ratio). Become. As a result, the emission of CO and HC becomes extremely small, and the emission of NOx is also reduced by the recirculation of exhaust gas. In addition, the pumping loss is reduced by opening the ABV valve 50 and the EGR valve 10a, and the fuel efficiency is greatly improved. And, since the control of the idle speed according to the increase or decrease of the load is performed by increasing or decreasing the fuel injection amount, the control response becomes very high.

【0042】尚、圧縮行程噴射モードにおいては、噴射
弁8から噴射された燃料噴霧が前述した逆タンブル流に
乗って、点火プラグ35に到達しなければならないし、
到達して点火時点までに燃料が蒸発して点火容易な混合
気が形成されていなければならない。平均空燃比が20
以下になると点火プラグ35近傍において局所的にオー
バリッチな混合気が生成されて所謂リッチ失火が生じる
一方、40以上になると希薄限界を超えてやはり失火
(所謂リーン失火)が生じ易くなる。このため、後述す
るように燃料噴射開始及び終了のタイミングや点火のタ
イミングが正確に制御されると共に、平均空燃比が20
〜40の範囲になるように設定され、この範囲を超える
場合には、後述する吸気行程噴射モードに切り換えられ
る。
In the compression stroke injection mode, the fuel spray injected from the injection valve 8 must ride on the reverse tumble flow and reach the spark plug 35,
The fuel must evaporate by the time it reaches and ignites to form a mixture that is easy to ignite. Average air-fuel ratio is 20
If it is less than the above, an over-rich mixture is locally generated near the spark plug 35 to cause a so-called rich misfire. On the other hand, if it is 40 or more, the mixture exceeds the lean limit and misfire (so-called lean misfire) tends to occur. Therefore, as described later, the timing of starting and ending the fuel injection and the timing of the ignition are accurately controlled, and the average air-fuel ratio is set to 20%.
The range is set to be within a range from 40 to 40. If the range is exceeded, the mode is switched to the intake stroke injection mode described later.

【0043】また、低中速走行時は、その負荷状態やエ
ンジン回転速度Ne に応じて、図9中の吸気行程噴射モ
ードによるリーン域あるいはストイキオフィードバック
域(理論空燃比フィードバック制御域)となるため、E
CU23は、吸気行程噴射モードを選択すると共に、所
定の空燃比となるように燃料を噴射する。すなわち、吸
気行程噴射モードのリーン域では、比較的リーンな空燃
比(例えば、20〜23程度)となるようにABV弁5
0の開弁量と燃料噴射量とを制御し、ストイキオフィー
ドバック域(S−FB域)では、ABV弁50とEGR
弁10aとを開閉制御すると共に(但し、EGR弁10
aを開閉制御するのは、ストイキオフィードバック域の
特定の領域のみで行われる)、O2センサ17の出力電
圧に応じて空燃比フィードバック制御を行う。図11に
示したように吸気ポート2aから流入した吸気流が逆タ
ンブル流80を形成するため、燃料噴射開始時期又は終
了時期を調整することにより吸気行程噴射モードのリー
ン域(吸気リーン域)においても、逆タンブルによる乱
れの効果でリーンな空燃比でも着火が可能となる。尚、
ストイキオフィードバック域では、比較的高い圧縮比に
より大きな出力が得られると共に、有害排出ガス成分が
触媒9により浄化される。
When the vehicle is running at low to medium speeds, a lean region or a stoichiometric feedback region (a stoichiometric air-fuel ratio feedback control region) based on the intake stroke injection mode in FIG. 9 is used depending on the load state and the engine speed Ne. Therefore, E
The CU 23 selects the intake stroke injection mode and injects fuel so as to have a predetermined air-fuel ratio. That is, in the lean region of the intake stroke injection mode, the ABV valve 5 is controlled so as to have a relatively lean air-fuel ratio (for example, about 20 to 23).
In the stoichiometric feedback range (S-FB range), the ABV valve 50 and the EGR are controlled.
Control the opening and closing of the EGR valve 10a.
a is controlled only in a specific region of the stoichiometric feedback range), and the air-fuel ratio feedback control is performed according to the output voltage of the O 2 sensor 17. As shown in FIG. 11, since the intake air flowing from the intake port 2a forms the reverse tumble flow 80, the fuel injection start timing or the end timing is adjusted to adjust the fuel injection in the lean region (intake lean region) of the intake stroke injection mode. In addition, it is possible to ignite even at a lean air-fuel ratio due to the effect of turbulence due to reverse tumble. still,
In the stoichiometric feedback range, a large output is obtained with a relatively high compression ratio, and harmful exhaust gas components are purified by the catalyst 9.

【0044】そして、急加速時や高速走行時は図9中の
オープンループ制御域となるため、ECU23は、吸気
行程噴射モードを選択すると共にABV弁50を閉鎖
し、スロットル開度θthやエンジン回転速度Ne 等に応
じて、比較的リッチな空燃比となるように燃料を噴射す
る。この際には、圧縮比が高いことや吸気流が逆タンブ
ル流80を形成することの他、吸気ポート2aが燃焼室
1aに対して略直立しているため、慣性効果によっても
高い出力が得られる。
The ECU 23 selects the intake stroke injection mode and closes the ABV valve 50 at the time of rapid acceleration or high-speed running, so that the ECU 23 selects the intake stroke injection mode, and sets the throttle opening θth and engine speed. Fuel is injected so as to have a relatively rich air-fuel ratio according to the speed Ne and the like. At this time, in addition to the high compression ratio and the fact that the intake flow forms the reverse tumble flow 80, a high output can be obtained by the inertia effect because the intake port 2a is substantially upright with respect to the combustion chamber 1a. Can be

【0045】更に、中高速走行中の惰行運転時は図9中
の燃料カット域となるため、ECU23は、燃料噴射を
完全に停止する。これにより、燃費が向上すると同時
に、有害排出ガス成分の排出量も低減される。尚、燃料
カットは、エンジン回転速度Ne が復帰回転速度より低
下した場合や、運転者がアクセルペダルを踏み込んだ場
合には即座に中止される。
Further, during coasting operation during mid-high speed running, the fuel cut-off region shown in FIG. 9 is set, so that the ECU 23 completely stops fuel injection. As a result, the fuel efficiency is improved, and the emission amount of the harmful exhaust gas component is reduced. The fuel cut is immediately stopped when the engine rotation speed Ne falls below the return rotation speed or when the driver steps on the accelerator pedal.

【0046】次に、本発明に係る排気昇温制御手順につ
いて、図12に示すフローチャートを参照して説明す
る。図12に示す排気昇温制御ルーチンは、上述した通
常の制御が実行されている間、クランク角センサ21か
らクランク角信号SGTが出力される毎に繰り返し実行
される。
Next, the exhaust gas temperature raising control procedure according to the present invention will be described with reference to the flowchart shown in FIG. The exhaust gas temperature raising control routine shown in FIG. 12 is repeatedly executed every time the crank angle signal SGT is output from the crank angle sensor 21 while the above-described normal control is being executed.

【0047】ECU23は、先ずステップS10におい
て、触媒温度Tcc、冷却水温Tw 、吸入空気流量Qa 、
スロットル開度θth、エンジン回転数Ne 、大気圧Pa
、吸気温Ta 等の各種エンジン運転状態量を読み込
む。そして、ステップS12に進み、触媒温度Tccと触
媒判別温度Tcwを比較することによって触媒9が活性状
態にあるか否かを判別する。この触媒判別温度Tcwは、
触媒活性目標温度であって、触媒活性下限温度に応じて
定められ、例えば、触媒活性下限温度にある所定温度を
加えた値として設定することができる。この触媒活性下
限温度は、本実施形態にかかるリーンNOx 触媒では4
00度程度である。尚、この判別には、触媒温度だけで
はなく、後述の排気昇温制御を禁止する条件が成立して
いるか否かの判別を加えるようにしてもよいことは勿論
のことである。例えば、始動直後にエンジン回転数Ne
が所定回転数を超えるまでの期間又はエンジン回転数が
安定する一定時間(例えば4秒程度)は排気昇温制御を
禁止させたり、また、排気昇温制御中に空気量調整手段
(例えば、スロットル弁)の開度に変化があった場合に
は制御を禁止させても良い。特に後者の場合、空気量調
整手段が開方向に変化したとき、加速の要求に伴い燃料
噴射量が増加され排ガス温度が本発明の制御なしで上昇
し得るためであり、また空気量調整手段が閉方向に変化
したときには、燃料カット制御となるため、基本的に排
気昇温制御は行えないので禁止する。
First, in step S10, the ECU 23 determines the catalyst temperature Tcc, the cooling water temperature Tw, the intake air flow rate Qa,
Throttle opening θth, engine speed Ne, atmospheric pressure Pa
And various engine operating state quantities such as the intake air temperature Ta. Then, the process proceeds to step S12 to determine whether the catalyst 9 is in the active state by comparing the catalyst temperature Tcc with the catalyst determination temperature Tcw. This catalyst determination temperature Tcw is
The catalyst activity target temperature is determined according to the catalyst activity lower limit temperature, and can be set as, for example, a value obtained by adding a predetermined temperature to the catalyst activity lower limit temperature. This catalyst activity lower limit temperature is 4 in the lean NOx catalyst according to the present embodiment.
It is about 00 degrees. It is needless to say that the determination may include not only the catalyst temperature but also a determination as to whether or not a condition for inhibiting the exhaust gas temperature increase control described later is satisfied. For example, immediately after starting, the engine speed Ne
During a period until the engine speed exceeds a predetermined rotational speed or during a certain period of time (for example, about 4 seconds) during which the engine rotational speed stabilizes, or the air amount adjusting means (for example, throttle If there is a change in the opening of the valve, the control may be prohibited. In particular, in the latter case, when the air amount adjusting means changes in the opening direction, the fuel injection amount is increased in accordance with the request for acceleration, and the exhaust gas temperature can increase without the control of the present invention. When the direction changes to the closing direction, the fuel cut control is performed, so that the exhaust gas temperature rise control cannot be performed basically.

【0048】触媒温度Tccが触媒判別温度Tcwより高い
場合、或いは排気昇温制御禁止条件が成立している場合
には、触媒9は活性状態にあると判別して(ステップS
12の判別結果が「Y」の場合)、ステップS14に進
む。このステップでは上述した通常の制御が実行され、
主燃料噴射だけが行われ、追加噴射は行わない。従っ
て、エンジン運転状態に応じて前述した圧縮行程噴射モ
ード制御又は吸気行程噴射モード制御が実行される。
If the catalyst temperature Tcc is higher than the catalyst determination temperature Tcw, or if the exhaust gas temperature rise control prohibition condition is satisfied, it is determined that the catalyst 9 is in the active state (step S).
If the result of the determination in step 12 is “Y”, the flow proceeds to step S14. In this step, the normal control described above is executed,
Only the main fuel injection is performed and no additional injection is performed. Therefore, the above-described compression stroke injection mode control or intake stroke injection mode control is executed according to the engine operating state.

【0049】触媒温度Tccが触媒判別温度Tcwより低い
場合、或いは排気昇温制御禁止条件が不成立の場合に
は、触媒9は不活性状態にあると判別して(ステップS
12の判別結果が「N」の場合)、以下の排気昇温制御
が実行される。この排気昇温制御は、主燃料噴射を圧縮
リーンモードで行い、その点火時期も遅角制御される。
より詳細には、先ずステップS16において、点火時期
TRDをリタードマップから読み出す。排気昇温制御の主
燃料噴射の点火時期は、前述した図5乃至図7の実験結
果と類似の実験データから、触媒温度Tcc、目標排気温
度、冷却水温度Tw 等に応じて読み出され、更に大気圧
Pa や吸気温度Ta に応じて吸気密度補正が行われる。
何れにしても、点火時期TRDは、クランク角度で10°
BTDC〜5°ATDCの範囲内の適宜値に設定される。
If the catalyst temperature Tcc is lower than the catalyst determination temperature Tcw, or if the exhaust gas temperature rise control prohibition condition is not satisfied, it is determined that the catalyst 9 is in an inactive state (step S).
When the result of the determination in step 12 is "N"), the following exhaust gas temperature raising control is executed. In the exhaust gas temperature raising control, the main fuel injection is performed in the compression lean mode, and the ignition timing is also retarded.
More specifically, first, in step S16, the ignition timing TRD is read from the retard map. The ignition timing of the main fuel injection of the exhaust gas temperature raising control is read from the experimental data similar to the experimental results of FIGS. 5 to 7 according to the catalyst temperature Tcc, the target exhaust temperature, the cooling water temperature Tw, and the like. Further, the intake air density is corrected according to the atmospheric pressure Pa and the intake air temperature Ta.
In any case, the ignition timing TRD is 10 ° in crank angle.
It is set to an appropriate value within the range of BTDC to 5 ° ATDC.

【0050】次に、ステップS18において冷却水温度
Tw が所定の判別温度Twoより小であるか否かを判別す
る。図5と図6の比較から、2段燃焼を行う場合には、
主燃料噴射時の空燃比は40程度に大きい値に設定する
のが昇温効果上有利であるが、冷却水温度Tw が判別温
度Two(例えば、50℃)より低いエンジン冷機時には
(ステップS18の判別結果が肯定「Y」の場合)、主
燃料噴射時の安定燃焼が優先され、ステップS20にお
いて、目標空燃比AFをリーン化第1マップから読み出
す。一方、冷却水温度Tw が判別温度Two以上の場合に
は(ステップS18の判別結果が否定「N」の場合)、
不安定燃焼の虞はなくステップS22において、目標空
燃比AFをリーン化第2マップから読み出す。
Next, at step S18, it is determined whether or not the cooling water temperature Tw is lower than a predetermined determination temperature Two. From the comparison between FIG. 5 and FIG. 6, when performing two-stage combustion,
It is advantageous in terms of the temperature increase effect that the air-fuel ratio at the time of the main fuel injection is set to a value as large as about 40, but when the cooling water temperature Tw is lower than the determination temperature Two (for example, 50 ° C.) when the engine is cold (step S18). If the determination result is affirmative "Y"), the stable combustion at the time of the main fuel injection is prioritized, and in step S20, the target air-fuel ratio AF is read from the lean first map. On the other hand, when the cooling water temperature Tw is equal to or higher than the determination temperature Two (when the determination result in step S18 is negative “N”),
There is no fear of unstable combustion, and in step S22, the target air-fuel ratio AF is read from the lean second map.

【0051】従って、リーン化第1マップから読み出さ
れる目標空燃比は、リーン化第2マップから読み出され
るものより、同一のエンジン運転状態量で比べて小さい
値に設定され、前述したとおり、点火プラグ35近傍に
形成される混合気の局所的な空燃比が安定燃焼に最適な
値(理論空燃比)になるように設定されている。このた
め、水温に応じた(主燃料噴射時の燃焼状態に応じた)
目標空燃比の設定がし易くなるというメリットがある。
Therefore, the target air-fuel ratio read from the lean first map is set to a smaller value than the one read from the lean second map at the same engine operating state quantity. The local air-fuel ratio of the air-fuel mixture formed near 35 is set so as to be an optimum value (theoretical air-fuel ratio) for stable combustion. Therefore, according to the water temperature (according to the combustion state at the time of main fuel injection)
There is an advantage that the target air-fuel ratio can be easily set.

【0052】第1及び第2マップから目標空燃比を読み
出すエンジン運転状態量としては、例えば、エンジン回
転数Ne と目標平均有効圧Pe が用いられ、これらのパ
ラメータ値Ne とPe により、予め実験的に求められ、
エンジン1の暖機状態に応じたマップ値(AF=f(P
e ,Ne ))が設定され、前述したECU23の記憶装
置に記憶されている。目標平均有効圧Pe は、運転者が
望むエンジン出力と相関しており、スロットル開度θth
とエンジン回転数Ne に応じて目標平均有効圧マップか
ら読み出すことができる。
As the engine operation state quantity for reading the target air-fuel ratio from the first and second maps, for example, the engine speed Ne and the target average effective pressure Pe are used. Required to
A map value (AF = f (P
e, Ne)) are set and stored in the storage device of the ECU 23 described above. The target average effective pressure Pe is correlated with the engine output desired by the driver, and the throttle opening θth
And the target average effective pressure map in accordance with the engine speed Ne.

【0053】次いで、ステップS24において、読み出
した目標空燃比AFを用いて主燃料噴射時間(燃料噴射
弁8の開弁時間)Tinjmを次式(M1)により演算する。 Tinjm=K×(Qa ×γ/AF)×(Kwt×...)×Kg +TDEC...(M1) ここに、Kwt、Kaf... 等はエンジン水温Tw 等に応じ
て設定される各種補正係数であり、エンジン運転状態に
応じて設定される。Kg は、噴射弁8のゲイン補正係
数、TDEC は、無効時間補正値であり、目標平均有効圧
Pe とエンジン回転数Neとに応じて設定される。K
は、燃料量を開弁時間に変換する変換係数であり、定数
である。
Next, in step S24, the main fuel injection time (opening time of the fuel injection valve 8) Tinjm is calculated by the following equation (M1) using the read target air-fuel ratio AF. Tinjm = K × (Qa × γ / AF) × (Kwt × ...) × Kg + TDEC ... (M1) Here, Kwt, Kaf ..., etc. are various values set according to the engine coolant temperature Tw, etc. This is a correction coefficient and is set according to the engine operating state. Kg is a gain correction coefficient of the injection valve 8, and TDEC is an invalid time correction value, which is set according to the target average effective pressure Pe and the engine speed Ne. K
Is a conversion coefficient for converting the fuel amount into the valve opening time, and is a constant.

【0054】主燃料噴射時間Tinjmの演算が終わると次
ステップS26において追加燃料の噴射時間Tinjaを次
式(M2)により演算する。追加燃料噴射量は、主燃焼後の
気筒内に残存する酸素量に応じて設定される。すなわ
ち、主燃焼噴射量及び追加燃料噴射量を加えた1サイク
ル当たり全燃料噴射量と、1気筒1サイクル当たりの吸
入空気量Qa とで求められる空燃比が運転状態に合わせ
た目標空燃比(例えば、エンジン回転数1500rpm で
主燃焼の安定化を図った場合には若干、理論空燃比より
希薄側(例えば15程度)が好ましい)になるように設
定して、排気昇温が最大になるように設定される。
When the calculation of the main fuel injection time Tinjm is completed, in the next step S26, the injection time Tinja of the additional fuel is calculated by the following equation (M2). The additional fuel injection amount is set according to the amount of oxygen remaining in the cylinder after the main combustion. That is, the air-fuel ratio obtained from the total fuel injection amount per cycle, which is the sum of the main combustion injection amount and the additional fuel injection amount, and the intake air amount Qa per cylinder, is equal to the target air-fuel ratio (for example, When the main combustion is stabilized at an engine speed of 1500 rpm, the temperature is set to be slightly leaner than the stoichiometric air-fuel ratio (for example, about 15) so as to maximize the exhaust gas temperature rise. Is set.

【0055】 Tinja=K×Qa ×γ((1/理論AF)−(1/AF))×(Kwt×...) ×Kg +TDEC ...(M2) このように、主燃焼噴射量と追加燃料噴射量の演算が終
わると、ステップS28において主燃料噴射と点火を行
う。主燃料噴射は圧縮行程に行われるが、ステップS1
6において設定した点火時期TRDに応じ、最も安定して
点火ができる時期に混合気が点火プラグ35近傍の好適
位置に到達できるように、主燃料噴射の開始時期を決定
するのが好ましい。従って、本実施形態では、主燃料噴
射開始時期が点火時期TRDの関数として設定されてお
り、圧縮行程の設定した主燃料噴射開始時期に燃料噴射
弁8を開弁駆動して主燃料の噴射を開始している。
Tinja = K × Qa × γ ((1 / theoretical AF) − (1 / AF)) × (Kwt × ...) × Kg + TDEC (M2) Thus, the main combustion injection amount and When the calculation of the additional fuel injection amount is completed, main fuel injection and ignition are performed in step S28. The main fuel injection is performed during the compression stroke.
According to the ignition timing TRD set in 6, it is preferable to determine the start timing of the main fuel injection so that the air-fuel mixture can reach a suitable position near the ignition plug 35 at the timing when ignition can be performed most stably. Therefore, in the present embodiment, the main fuel injection start timing is set as a function of the ignition timing TRD, and the fuel injection valve 8 is driven to open at the main fuel injection start timing set in the compression stroke to inject the main fuel. Has started.

【0056】次いで、ステップS30に進み、膨張行程
中期の所定の時期に追加燃料の噴射が行われる。追加燃
料の噴射開始時期は、図5乃至図7に示されるような実
験結果から、膨張行程中期である、例えばクランク角度
90°ATDCに固定してもよいが、大気圧Pa や吸気温度
Ta 等の環境条件に応じ、昇温効率が最大となる時期を
考慮して設定されている。このような追加燃料噴射開始
時期は、予め実験的に設定されCPU23の前述の記憶
装置に記憶させておけばよい。
Next, the routine proceeds to step S30, where additional fuel is injected at a predetermined time in the middle stage of the expansion stroke. From the experimental results shown in FIGS. 5 to 7, the injection start timing of the additional fuel may be fixed at the middle stage of the expansion stroke, for example, at a crank angle of 90 ° ATDC, but the atmospheric pressure Pa, the intake air temperature Ta, etc. Are set in consideration of the environmental conditions described in (1) and (2) above, taking into account the time when the temperature raising efficiency becomes maximum. Such additional fuel injection start timing may be set experimentally in advance and stored in the above-described storage device of the CPU 23.

【0057】ECU23が、このように設定した追加燃
料噴射開始時期の到来を待って、燃料噴射弁8を開弁駆
動し、追加燃料の噴射を行うと、その噴射時点では、主
燃料噴射によって燃焼室1a内に形成された希薄混合気
部分に前炎反応生成物が、着火限界近傍の濃度で存在し
ており、筒内の高温雰囲気に噴射された追加燃料から発
生する前炎反応生成物との総量が着火限界を超えて自己
着火し、追加燃料の燃焼が開始される。追加燃料による
発生熱エネルギは、その一部が膨張仕事に奪われること
なく、確実に排気を昇温させる。
When the ECU 23 waits for the arrival of the additional fuel injection start timing set as described above, drives the fuel injection valve 8 to open the valve, and performs the injection of the additional fuel. A pre-flame reaction product is present in a lean mixture portion formed in the chamber 1a at a concentration near the ignition limit, and the pre-flame reaction product generated from the additional fuel injected into the high-temperature atmosphere in the cylinder. Self-ignition exceeds the ignition limit, and combustion of additional fuel is started. The heat energy generated by the additional fuel surely raises the temperature of the exhaust gas without a part of the heat energy being taken away by the expansion work.

【0058】尚、上述の実施形態の排気昇温制御では、
追加燃料の噴射量は、主燃料噴射量を加えた全体噴射量
が1気筒1サイクル当たりの全体空燃比が運転状態に合
わせた目標空燃比になるように設定したが、追加燃料の
噴射量は、このような設定方法には限定されず、場合に
よっては、1気筒1サイクル当たりの全体空燃比が理論
空燃比より小さくなっても大きくなってもよく、また、
再燃焼可能な一定の噴射量として設定するようにしても
よい。
In the exhaust gas temperature raising control of the above embodiment,
The injection amount of the additional fuel is set such that the total injection amount including the main fuel injection amount is equal to the target air-fuel ratio in accordance with the operating state, while the total air-fuel ratio per one cylinder is equal to the operating state. However, the present invention is not limited to such a setting method. In some cases, the total air-fuel ratio per one cylinder cycle may be smaller or larger than the stoichiometric air-fuel ratio.
You may make it set as a fixed injection amount which can be reburned.

【0059】また、上述の実施形態の排気昇温制御で
は、主燃料の点火時期を遅角して緩慢燃焼をさせ、膨張
行程中期或いはそれ以降に、前炎反応生成物濃度が着火
限界濃度近傍の濃度に制御したが、別の実施形態では、
主燃料の点火時期を通常運転時に比較して遅角すること
をせず、主燃焼の空燃比を35以上に希薄化(リーン
化)するだけで緩慢燃焼をさせ、膨張行程中期或いはそ
れ以降に、前炎反応生成物濃度が着火限界濃度近傍の濃
度に制御することもできる。
In the exhaust gas temperature raising control of the above-described embodiment, the ignition timing of the main fuel is retarded to cause slow combustion, and in the middle of the expansion stroke or later, the concentration of the preflame reaction product becomes close to the ignition limit concentration. , But in another embodiment,
The ignition timing of the main fuel is not retarded as compared with the normal operation, and the air-fuel ratio of the main combustion is leaned (lean) to 35 or more to cause slow combustion, and in the middle or later stage of the expansion stroke Alternatively, the pre-flame reaction product concentration can be controlled to a concentration near the ignition limit concentration.

【0060】更に、追加の燃料噴射を行なう場合、噴射
は必ずしも1回で行う必要はなく、複数回に分割して行
ってもよい。更にまた、追加燃料噴射は、全気筒に対し
て行うようにしてもよいが、特定の気筒にだけ行うよう
にしてもよい。また、上述の実施形態では、触媒温度セ
ンサ2 6を設け、このセンサ26によって触媒温度Tcc
を検出し、その検出結果に基づいて触媒9の昇温が必要
であるか否かを判定して排気昇温制御を行うか否かを判
断しているが、運転状態を検出する各種センサからの信
号に基づいて触媒温度を推定し、その推定結果により排
気昇温制御を行うか否かを判断しても良い。また、制御
の簡素化を図るために、始動時のエンジン温度(冷却水
温)が設定温度以下であるかを検出する始動時のエンジ
ン温度検出手段、又は、始動からの経過時間(始動時の
水温等に応じて設定される可変又は固定の所定時間)に
達するまでの時間を検出する経過時間検出手段からの出
力に基づいて排気昇温制御を行なうようにしてもよい。
Further, when performing additional fuel injection, injection need not always be performed once, but may be performed a plurality of times. Furthermore, the additional fuel injection may be performed for all cylinders, or may be performed only for a specific cylinder. In the above-described embodiment, the catalyst temperature sensor 26 is provided, and the catalyst temperature Tcc
It is determined whether or not the temperature of the catalyst 9 needs to be raised based on the detection result to determine whether or not to perform the exhaust gas temperature raising control. The catalyst temperature may be estimated based on the above signal, and it may be determined whether or not to perform the exhaust gas temperature increase control based on the estimation result. Further, in order to simplify the control, an engine temperature detecting means at the start which detects whether the engine temperature (cooling water temperature) at the start is equal to or lower than a set temperature, or an elapsed time from the start (the water temperature at the start) (Variable or fixed predetermined time set in accordance with the above), the exhaust gas temperature raising control may be performed based on the output from the elapsed time detecting means for detecting the time until the time reaches the predetermined time.

【0061】更に、排気昇温制御を行う運転状態を特定
しておき、例えば、始動直後(始動後のエンジン回転数
が所定回転数を超えたとき、又は始動後のエンジン回転
数が安定する一定時間を経過したとき)、定常走行時
(層状燃焼時でスロットル開度の変化が小さいとき)、
又は燃料カット後の復帰アイドル時のように触媒は不活
性状態になり得る特定運転状態のときに、所定時間、排
気昇温制御を行うように設定しても良い。
Further, an operation state in which the exhaust gas temperature raising control is performed is specified, for example, immediately after the engine is started (when the engine speed after the start exceeds a predetermined engine speed, or when the engine speed after the start is stable, the engine speed is kept constant). When the time has passed), during steady running (when the change in throttle opening is small during stratified combustion),
Alternatively, the exhaust gas temperature raising control may be set to be performed for a predetermined time in a specific operation state in which the catalyst may be in an inactive state, for example, at the time of a return idle after the fuel cut.

【0062】また、本実施形態では、触媒が不活性状態
の場合、その後、水温に応じて第1マップ又は第2マッ
プより目標空燃比を読み出して燃料噴射量等を設定する
ようにしているが、特にマップを用いずに水温情報に基
づいて主噴射と副噴射の噴射量比を可変設定するように
しても良い。即ち、水温が低ければ主噴射の噴射量を増
大させ、燃焼の安定化を図り、水温が高ければ副噴射の
噴射量を増大させて触媒活性に至るまでの総時間の短縮
化を図るようにしても良い。
In this embodiment, when the catalyst is in an inactive state, the target air-fuel ratio is read from the first map or the second map according to the water temperature, and the fuel injection amount and the like are set. In particular, the injection amount ratio between the main injection and the sub injection may be variably set based on the water temperature information without using a map. That is, if the water temperature is low, the injection amount of the main injection is increased to stabilize combustion, and if the water temperature is high, the injection amount of the sub-injection is increased to shorten the total time until the catalyst is activated. May be.

【0063】[0063]

【発明の効果】以上詳述したように、請求項1記載の本
発明の排気昇温装置によれば、排気昇温が要求されるエ
ンジン運転時に、層状燃焼のためのエンジン制御パラメ
ータを制御し、主燃焼後の膨張行程中期又はそれ以降の
膨張行程中に燃料噴射弁より追加燃料を噴射することに
よって、従来技術の膨張行程初期の火炎伝播時に追加燃
料を噴射する場合のように主燃焼の火炎が到達して追加
燃料を燃焼させたり、或いは主燃焼の火炎に追加燃料を
噴射して燃焼させることなく、筒内で自己着火させるよ
うにしたので、従来技術に比べて、追加燃料による発生
熱エネルギの一部が膨張仕事に奪われることなく、確実
に排気ガスを昇温させることができる。
As described above in detail, according to the exhaust gas temperature raising apparatus of the present invention, the engine control parameters for stratified combustion are controlled during the operation of the engine requiring the exhaust gas temperature raising. By injecting additional fuel from the fuel injection valve during the middle stage of the expansion stroke after the main combustion or during the expansion stroke thereafter, it is possible to perform the main combustion as in the case where the additional fuel is injected at the time of flame propagation at the beginning of the expansion stroke of the prior art. Since the flame reaches and burns the additional fuel, or the fuel of the main combustion is not self-ignited in the cylinder without injecting and burning the additional fuel, the fuel is generated by the additional fuel compared to the conventional technology. Exhaust gas can be reliably heated without a part of thermal energy being taken away by expansion work.

【0064】更に、請求項2記載の本発明の排気昇温装
置の追加燃料制御手段のように、追加燃料を主燃焼後の
高温雰囲気中に噴射することによって、追加燃料の前炎
反応が進み、特に火花点火なしで追加燃料を燃焼させる
ことができる。請求項3記載の本発明の排気昇温装置に
よれば、排気昇温が要求されるエンジン運転時に、層状
燃焼のためのエンジン制御パラメータを制御し、膨張行
程中のクランク角度で上死点後70゜〜110゜に燃料
噴射弁より追加燃料を噴射することによって、従来技術
の膨張行程初期の火炎伝播時に追加燃料を噴射する場合
のように主燃焼の火炎が到達して追加燃料を燃焼させた
り、或いは主燃焼の火炎に追加燃料を噴射して燃焼させ
ることなく、筒内で自己着火させるようにしたので、従
来技術に比べて、追加燃料による発生熱エネルギの一部
が膨張仕事に奪われることなく、確実に排気ガスを昇温
させることができる。
Further, by injecting the additional fuel into the high-temperature atmosphere after the main combustion as in the additional fuel control means of the exhaust gas heating apparatus of the present invention, the pre-flame reaction of the additional fuel proceeds. Additional fuel can be burned, especially without spark ignition. According to the third aspect of the present invention, the engine control parameters for the stratified combustion are controlled during the operation of the engine in which the exhaust temperature is required to be raised, and after the top dead center at the crank angle during the expansion stroke. By injecting the additional fuel from the fuel injection valve at 70 ° to 110 °, the main combustion flame reaches and burns the additional fuel as in the case of the prior art in which the additional fuel is injected at the beginning of the expansion stroke flame propagation. Or the self-ignition in the cylinder without injecting additional fuel into the flame of the main combustion and burning it, compared to the prior art, a part of the heat energy generated by the additional fuel is taken for expansion work. The temperature of the exhaust gas can be surely raised without being affected.

【0065】請求項4記載の本発明の排気昇温装置の追
加燃料制御手段のように、追加燃料の噴射開始時期を膨
張行程中のクランク角度で上死点後80゜〜100゜と
することによって、より高い排気の昇温効果を得ること
ができる。請求項5記載の本発明の排気昇温装置のエン
ジン制御手段は、点火時期をクランク角度で10°BTDC
〜5°ATDCに設定する点火時期設定手段を備えて構成さ
れるので、主燃料の点火時期を遅角させ、これを緩慢燃
焼させることができ、膨張行程中期又はそれ以降の膨張
行程中に燃焼室内に残存する前炎反応生成物濃度を火濃
度限界値近傍に制御することができる。このため、追加
燃料の噴射により筒内で自己着火が可能となり、排気を
昇温することができる。
As in the additional fuel control means of the exhaust gas heating apparatus of the present invention, the injection start timing of the additional fuel is set at 80 ° to 100 ° after the top dead center at the crank angle during the expansion stroke. Thereby, a higher exhaust gas temperature increasing effect can be obtained. According to a fifth aspect of the present invention, the engine control means of the exhaust gas temperature raising apparatus according to the fifth aspect of the present invention comprises:
The ignition timing of the main fuel can be retarded and the combustion can be slowed down because the ignition timing is set to about 5 ° ATDC. The concentration of the pre-flame reaction product remaining in the room can be controlled near the fire concentration limit value. Therefore, self-ignition becomes possible in the cylinder by the injection of the additional fuel, and the temperature of the exhaust gas can be increased.

【0066】その際、請求項6記載の本発明の排気昇温
装置のエンジン制御手段のように、層状燃焼時の空燃比
を25以上に設定する空燃比設定手段を備えて構成し
て、主燃料を緩慢燃焼させることができる。請求項7記
載の本発明の排気昇温装置のエンジン制御手段は、層状
燃焼時の空燃比を35以上に設定する空燃比設定手段を
備えて構成されるので、主燃料の点火時期を遅角させな
くても、空燃比の制御だけで主燃料を緩慢燃焼させるこ
とができ、膨張行程中期又はそれ以降の膨張行程中に燃
焼室内に残存する前炎反応生成物濃度を火濃度限界値近
傍に制御することができる。
At this time, like the engine control means of the exhaust gas heating apparatus according to the present invention, an air-fuel ratio setting means for setting the air-fuel ratio during stratified combustion to 25 or more is provided. The fuel can be burned slowly. The engine control means of the exhaust gas temperature raising apparatus according to the present invention is provided with air-fuel ratio setting means for setting the air-fuel ratio during stratified combustion to 35 or more, so that the ignition timing of the main fuel is retarded. Even without this, the main fuel can be slowly burned only by controlling the air-fuel ratio, and the pre-flame reaction product concentration remaining in the combustion chamber during the middle stage of the expansion stroke or the subsequent expansion stroke is brought close to the fire concentration limit value. Can be controlled.

【0067】請求項8記載の本発明の排気昇温装置のエ
ンジン制御手段は、層状燃焼のための点火時期を設定す
る点火時期設定手段、又は層状燃焼のための空燃比を設
定する空燃比設定手段の少なくとも一方を有し、点火時
期設定手段が、層状燃焼のための点火時期を遅角側に設
定する一方、空燃比設定手段が、層状燃焼のための空燃
比を希薄側に設定するので、排気昇温が要求されるエン
ジン運転時に、層状燃焼の点火時期を遅角側に、又は層
状燃焼の空燃比を希薄側に制御して主燃料を緩慢燃焼さ
せることができ、主燃焼後の膨張行程中期又はそれ以降
の膨張行程中に燃焼室内に残存する前炎反応生成物濃度
を火濃度限界値近傍に制御することができる。これによ
り、追加燃料噴射後に自己着火が可能になり、排気を昇
温することができる。
According to another aspect of the present invention, the engine control means of the exhaust gas heating apparatus of the present invention includes an ignition timing setting means for setting an ignition timing for stratified combustion or an air-fuel ratio setting for setting an air-fuel ratio for stratified combustion. Since the ignition timing setting means sets the ignition timing for stratified combustion on the retard side while the air-fuel ratio setting means sets the air-fuel ratio for stratified combustion on the lean side, At the time of engine operation in which exhaust temperature rise is required, the ignition timing of stratified combustion can be retarded, or the air-fuel ratio of stratified combustion can be controlled to be lean, so that the main fuel can be burned slowly. The concentration of the preflame reaction product remaining in the combustion chamber during the middle stage of the expansion stroke or thereafter can be controlled near the fire concentration limit value. Thereby, self-ignition becomes possible after the additional fuel injection, and the temperature of the exhaust gas can be increased.

【0068】請求項9記載の本発明の排気昇温装置によ
れば、層状燃焼のための点火時期を設定する点火時期設
定手段、又は層状燃焼のための空燃比を設定する空燃比
設定手段の一方を有し、排気昇温が要求されるエンジン
運転時に、層状燃焼のためのエンジン制御パラメータと
しての点火時期、又は空燃比の一方を制御して主燃料を
緩慢燃焼させることができ、主燃焼後の膨張行程中期又
はそれ以降の膨張行程中に燃焼室内に残存する前炎反応
生成物濃度を火濃度限界値近傍に制御することができ
る。そして層状燃焼のためのエンジン制御パラメータの
制御中に、主燃焼後の膨張行程中期又はそれ以降の膨張
行程中に燃料噴射弁より追加燃料を噴射することによっ
て、従来技術の膨張行程初期の火炎伝播時に追加燃料を
噴射する場合のように主燃焼の火炎が到達して追加燃料
を燃焼させたり、或いは主燃焼の火炎に追加燃料を噴射
して燃焼させることなく、筒内で自己着火させるように
したので、従来技術に比べて、追加燃料による発生熱エ
ネルギの一部が膨張仕事に奪われることなく、確実に排
気ガスを昇温させることができる。
According to the exhaust gas temperature raising apparatus of the present invention, the ignition timing setting means for setting the ignition timing for stratified combustion or the air-fuel ratio setting means for setting the air-fuel ratio for stratified combustion is provided. When the engine is operated, which requires an exhaust temperature rise, the main fuel can be slowly burned by controlling one of the ignition timing or the air-fuel ratio as an engine control parameter for the stratified combustion, It is possible to control the concentration of the preflame reaction product remaining in the combustion chamber during the middle stage of the later expansion stroke or the subsequent expansion stroke to a value close to the fire concentration limit value. Then, during the control of the engine control parameters for stratified combustion, additional fuel is injected from the fuel injection valve during the middle stage of the expansion stroke after the main combustion or during the subsequent expansion stroke, whereby the flame propagation in the early stage of the expansion stroke of the prior art is performed. Sometimes, as in the case of injecting additional fuel, the flame of the main combustion reaches and burns the additional fuel, or the self-ignition in the cylinder without injecting and burning the additional fuel to the flame of the main combustion. Therefore, compared with the related art, it is possible to surely raise the temperature of the exhaust gas without a part of the heat energy generated by the additional fuel being taken away by the expansion work.

【0069】請求項10記載の本発明の排気昇温装置の
エンジン制御手段は、点火時期設定手段が、層状燃焼の
点火時期を遅角側に設定する一方、空燃比設定手段が、
層状燃焼の空燃比を希薄側に設定することによって、排
気昇温が要求されるエンジン運転時に、層状燃焼のため
の点火時期を遅角側に、又は層状燃焼のための空燃比を
希薄側に制御して主燃料を緩慢燃焼させることができ、
主燃焼後の膨張行程中期又はそれ以降の膨張行程中に燃
焼室内に残存する前炎反応生成物濃度を火濃度限界値近
傍に制御することができる。これにより、追加燃料噴射
後に自己着火が可能になり、排気を昇温することができ
る。
According to a tenth aspect of the present invention, the engine control means of the exhaust gas temperature raising device sets the ignition timing of the stratified combustion to the retard side while the air-fuel ratio setting means sets the ignition timing of the stratified combustion to the retard side.
By setting the air-fuel ratio of the stratified combustion to the lean side, the ignition timing for the stratified combustion is retarded or the air-fuel ratio for the stratified combustion is set to the lean side during an engine operation in which the exhaust gas temperature is required to rise. Control to make the main fuel burn slowly,
The concentration of the pre-flame reaction product remaining in the combustion chamber during the middle stage of the expansion stroke after the main combustion or during the expansion stroke thereafter can be controlled near the fire concentration limit value. Thereby, self-ignition becomes possible after the additional fuel injection, and the temperature of the exhaust gas can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧縮行程に噴射された主燃料の燃焼と、膨張行
程中期又はそれ以降の膨張行程中に噴射された追加燃料
の燃焼のプロセスを概念的に説明する行程図である。
FIG. 1 is a stroke diagram conceptually illustrating a process of combustion of main fuel injected in a compression stroke and combustion of additional fuel injected in an expansion stroke in a middle stage or later of an expansion stroke.

【図2】本発明の排気昇温制御時の、クランク角度の変
化に対する筒内圧の関係を示すグラフである。
FIG. 2 is a graph showing a relationship between a change in a crank angle and an in-cylinder pressure during an exhaust gas temperature increase control according to the present invention.

【図3】図2の破線円DZで示す、燃焼室内の主燃料燃
焼領域で生じる前炎反応生成物濃度変化を示すグラフで
ある。
FIG. 3 is a graph showing a change in a concentration of a preflame reaction product generated in a main fuel combustion region in a combustion chamber, which is indicated by a broken circle DZ in FIG. 2;

【図4】図2の破線円WZで示す、燃焼室内の追加燃料
燃焼領域で生じる前炎反応生成物濃度変化を示すグラフ
である。
FIG. 4 is a graph showing a change in concentration of a preflame reaction product occurring in an additional fuel combustion region in a combustion chamber, which is indicated by a broken circle WZ in FIG.

【図5】点火時期TRDを種々変化させた場合の、排気温
度と追加燃料の噴射タイミングの関係を示すグラフであ
り、主燃料噴射量を、空燃比で30に設定した場合の実
験結果データを示す。
FIG. 5 is a graph showing the relationship between the exhaust gas temperature and the injection timing of the additional fuel when the ignition timing TRD is variously changed, and shows the experimental result data when the main fuel injection amount is set to 30 in the air-fuel ratio. Show.

【図6】点火時期TRDを種々変化させた場合の、排気温
度と追加燃料の噴射タイミングの関係を示す、図5と同
種のグラフであり、主燃料噴射量を、空燃比で40に設
定した場合の実験結果データを示す。
FIG. 6 is a graph similar to FIG. 5 showing the relationship between the exhaust gas temperature and the injection timing of the additional fuel when the ignition timing TRD is variously changed, and the main fuel injection amount is set to 40 in the air-fuel ratio. The experimental result data in the case is shown.

【図7】図5と同じ実験結果から、点火時期TRDと追加
燃料の噴射タイミングをパラメータにして排気温度及び
排気ガス中の未燃炭化水素量を示したマップ図である。
FIG. 7 is a map diagram showing the exhaust temperature and the amount of unburned hydrocarbons in the exhaust gas, using the ignition timing TRD and the additional fuel injection timing as parameters, from the same experimental results as in FIG.

【図8】本発明の排気昇温装置に係るエンジン制御装置
の概略構成図である。
FIG. 8 is a schematic configuration diagram of an engine control device according to the exhaust gas heating device of the present invention.

【図9】エンジン筒内平均有効圧Peとエンジン回転数
Neとに応じて規定され、圧縮行程噴射リーン運転域、
吸気行程噴射リーン運転域、同ストイキオフィードバッ
ク運転域等を示すエンジン制御モードマップである。
FIG. 9 is defined in accordance with the average effective pressure Pe in the cylinder of the engine and the engine speed Ne, and shows a compression stroke injection lean operating range;
4 is an engine control mode map showing an intake stroke injection lean operation region, a stoichiometric feedback operation region, and the like.

【図10】本発明に係る筒内噴射型火花点火式内燃エン
ジンの圧縮行程噴射モードにおける燃料噴射形態を示す
説明図である。
FIG. 10 is an explanatory diagram showing a fuel injection mode in a compression stroke injection mode of the direct injection spark ignition type internal combustion engine according to the present invention.

【図11】本発明に係る筒内噴射型火花点火式内燃エン
ジンの吸気行程噴射モードにおける燃料噴射形態を示す
説明図である。
FIG. 11 is an explanatory diagram showing a fuel injection mode in an intake stroke injection mode of the direct injection spark ignition type internal combustion engine according to the present invention.

【図12】本発明に係る排気昇温制御手順を説明するた
めのフローチャートである。
FIG. 12 is a flowchart for explaining an exhaust gas temperature rise control procedure according to the present invention.

【符号の説明】[Explanation of symbols]

1 筒内噴射型火花点火式内燃エンジン 1a 燃焼室 7 スロットル弁 8 燃料噴射弁 9 排気ガス浄化装置(触媒) 11 エアフローセンサ 12 吸気温センサ 13 大気圧センサ 14 スロットルセンサ 19 冷却水温度センサ 21 クランク角センサ(エンジン回転数センサ) 23 電子制御装置(ECU)(エンジン制御手段、追
加燃料制御手段) 35 点火プラグ
DESCRIPTION OF SYMBOLS 1 In-cylinder injection spark ignition type internal combustion engine 1a Combustion chamber 7 Throttle valve 8 Fuel injection valve 9 Exhaust gas purification device (catalyst) 11 Air flow sensor 12 Intake temperature sensor 13 Atmospheric pressure sensor 14 Throttle sensor 19 Cooling water temperature sensor 21 Crank angle Sensor (engine speed sensor) 23 Electronic control unit (ECU) (engine control means, additional fuel control means) 35 Spark plug

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/36 ZAB F01N 3/36 ZABR F02B 17/00 ZAB F02B 17/00 ZABF F02D 41/02 ZAB F02D 41/02 ZAB 301 301A 41/34 ZAB 41/34 ZABH 43/00 301 43/00 301J 301B 301E 45/00 301 45/00 301G F02P 5/15 F02P 5/15 B (72)発明者 安東 弘光 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内 (72)発明者 首藤 登志夫 東京都港区芝五丁目33番8号 三菱自動車 工業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/36 ZAB F01N 3/36 ZABR F02B 17/00 ZAB F02B 17/00 ZABF F02D 41/02 ZAB F02D 41 / 02 ZAB 301 301A 41/34 ZAB 41/34 ZABH 43/00 301 43/00 301J 301B 301E 45/00 301 45/00 301G F02P 5/15 F02P 5/15 B (72) Inventor Hiromitsu Ando Tokyo Metropolitan Port 5-33-8 Shiba-ku, Mitsubishi Motors Industry Co., Ltd. (72) Inventor Toshio Shuto 5-33-8 Shiba, Minato-ku, Tokyo Mitsubishi Motors Corporation

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 燃焼室内に直接燃料を噴射する燃料噴射
弁を備え、少なくとも圧縮行程時に該燃焼噴射弁より燃
料を噴射し火花点火して層状燃焼を行わせる筒内噴射型
内燃エンジンの排気昇温装置において、 排気昇温が要求されるエンジン運転時に作動して、前記
層状燃焼のためのエンジン制御パラメータを制御するエ
ンジン制御手段と、 該エンジン制御手段の作動時に主燃焼後の前記膨張行程
中期又はそれ以降の膨張行程中に前記燃料噴射弁より追
加燃料を噴射させる追加燃料制御手段とを備えてなるこ
とを特徴とする排気昇温装置。
A fuel injection valve for injecting fuel directly into a combustion chamber, wherein at least at the time of a compression stroke, fuel is injected from the combustion injection valve and spark ignition is performed to perform stratified combustion. A temperature control device that operates during an engine operation that requires an exhaust gas temperature rise to control an engine control parameter for the stratified combustion; and a middle stage of the expansion stroke after the main combustion during the operation of the engine control device. Or an additional fuel control device for injecting additional fuel from the fuel injection valve during an expansion stroke thereafter.
【請求項2】 該追加燃料制御手段は、該追加燃料を主
燃焼後の高温雰囲気中に噴射することを特徴とする、請
求項1記載の排気昇温装置。
2. The exhaust gas heating apparatus according to claim 1, wherein said additional fuel control means injects said additional fuel into a high-temperature atmosphere after main combustion.
【請求項3】 燃焼室内に直接燃料を噴射する燃料噴射
弁を備え、少なくとも圧縮行程時に該燃焼噴射弁より燃
料を噴射し火花点火して層状燃焼を行わせる筒内噴射型
内燃エンジンの排気昇温装置において、 排気昇温が要求されるエンジン運転時に作動して、前記
層状燃焼のためのエンジン制御パラメータを制御するエ
ンジン制御手段と、 該エンジン制御手段の作動時に前記膨張行程中のクラン
ク角度で上死点後70゜〜110゜に前記燃料噴射弁よ
り追加燃料を噴射開始させる追加燃料制御手段とを備え
てなることを特徴とする排気昇温装置。
3. An in-cylinder injection type internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber and injecting fuel from the combustion injection valve at least during a compression stroke to perform stratified combustion by spark ignition. In the warming device, an engine control means that operates during operation of an engine that requires an exhaust gas temperature increase to control engine control parameters for the stratified combustion; and a crank angle during the expansion stroke during operation of the engine control means. An exhaust gas heating device comprising: additional fuel control means for starting injection of additional fuel from the fuel injection valve at 70 ° to 110 ° after the top dead center.
【請求項4】 前記追加燃料制御手段は、追加燃料の噴
射開始時期を前記膨張行程中のクランク角度で上死点後
80゜〜100゜とすることを特徴とする、請求項3記
載の排気昇温装置。
4. The exhaust gas according to claim 3, wherein the additional fuel control means sets the injection start timing of the additional fuel to 80 ° to 100 ° after the top dead center at the crank angle during the expansion stroke. Heating device.
【請求項5】 前記エンジン制御手段は、点火時期をク
ランク角度で10°BTDC〜5°ATDCに設定する点火時期
設定手段を備えてなることを特徴とする、請求項3記載
の排気昇温装置。
5. An exhaust gas heating device according to claim 3, wherein said engine control means includes an ignition timing setting means for setting an ignition timing in a crank angle of 10 ° BTDC to 5 ° ATDC. .
【請求項6】 前記エンジン制御手段は、層状燃焼時の
空燃比を25以上に設定する空燃比設定手段を備えてな
ることを特徴とする、請求項5記載の排気昇温装置。
6. The exhaust gas heating apparatus according to claim 5, wherein said engine control means includes air-fuel ratio setting means for setting an air-fuel ratio during stratified combustion to 25 or more.
【請求項7】 前記エンジン制御手段は、層状燃焼時の
空燃比を35以上に設定する空燃比設定手段を備えてな
ることを特徴とする、請求項1又は3記載の排気昇温装
置。
7. The exhaust gas heating apparatus according to claim 1, wherein said engine control means includes air-fuel ratio setting means for setting an air-fuel ratio during stratified combustion to 35 or more.
【請求項8】 前記エンジン制御手段は、前記層状燃焼
のための点火時期を設定する点火時期設定手段、又は前
記層状燃焼のための空燃比を設定する空燃比設定手段の
少なくとも一方を有し、 前記点火時期設定手段が、層状燃焼のための点火時期を
遅角側に設定する一方、前記空燃比設定手段が、層状燃
焼のための空燃比を希薄側に設定することを特徴とす
る、請求項1又は3記載の排気昇温装置。
8. The engine control means has at least one of an ignition timing setting means for setting an ignition timing for the stratified combustion, and an air-fuel ratio setting means for setting an air-fuel ratio for the stratified combustion, The ignition timing setting means sets the ignition timing for stratified combustion to a retard side, while the air-fuel ratio setting means sets the air-fuel ratio for stratified combustion to a lean side. Item 4. The exhaust gas heating apparatus according to Item 1 or 3.
【請求項9】 燃焼室内に直接燃料を噴射する燃料噴射
弁を備え、少なくとも圧縮行程時に該燃焼噴射弁より燃
料を噴射し火花点火して層状燃焼を行わせる筒内噴射型
内燃エンジンの排気昇温装置において、 前記層状燃焼のための点火時期を設定する点火時期設定
手段、又は前記層状燃焼のための空燃比を設定する空燃
比設定手段の一方を有し、排気昇温が要求されるエンジ
ン運転時に作動して、前記層状燃焼のためのエンジン制
御パラメータとしての点火時期又は空燃比の一方を制御
するエンジン制御手段と、 該エンジン制御手段の作動時に主燃焼後の前記膨張行程
中期又はそれ以降の膨張行程中に前記燃料噴射弁より追
加燃料を噴射させる追加燃料制御手段とを備えることを
特徴とする排気昇温装置。
9. An in-cylinder injection type internal combustion engine having a fuel injection valve for directly injecting fuel into a combustion chamber, wherein fuel is injected from the combustion injection valve at least during a compression stroke and spark ignition is performed to perform stratified combustion. An engine requiring one of an ignition timing setting means for setting an ignition timing for the stratified combustion and an air-fuel ratio setting means for setting an air-fuel ratio for the stratified combustion, An engine control unit that operates during operation to control one of an ignition timing and an air-fuel ratio as an engine control parameter for the stratified combustion; and, during or after the expansion stroke after main combustion during operation of the engine control unit. An additional fuel control means for injecting additional fuel from the fuel injection valve during the expansion stroke of the exhaust gas.
【請求項10】 前記点火時期設定手段が、層状燃焼の
ための点火時期を遅角側に設定する一方、前記空燃比設
定手段が、層状燃焼のための空燃比を希薄側に設定する
することを特徴とする、請求項9記載の排気昇温装置。
10. The ignition timing setting means sets the ignition timing for stratified combustion to a retard side, while the air-fuel ratio setting means sets the air-fuel ratio for stratified combustion to a lean side. The exhaust gas heating device according to claim 9, wherein:
JP11345353A 1996-10-24 1999-12-03 Exhaust gas temperature raising device Pending JP2000145511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11345353A JP2000145511A (en) 1996-10-24 1999-12-03 Exhaust gas temperature raising device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11345353A JP2000145511A (en) 1996-10-24 1999-12-03 Exhaust gas temperature raising device

Publications (1)

Publication Number Publication Date
JP2000145511A true JP2000145511A (en) 2000-05-26

Family

ID=18376032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11345353A Pending JP2000145511A (en) 1996-10-24 1999-12-03 Exhaust gas temperature raising device

Country Status (1)

Country Link
JP (1) JP2000145511A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327639A (en) * 2001-04-27 2002-11-15 Toyota Motor Corp Warm-up control device of internal combustion engine
JP2007100528A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Control device of internal combustion engine
JP2012112314A (en) * 2010-11-25 2012-06-14 Toyota Motor Corp Internal combustion engine control device
JP2015121183A (en) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 Control device of engine
CN112065544A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065545A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065547A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065548A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of nano-scale particulate monocyclic aromatic hydrocarbon substances of gasoline engine
CN112065551A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
CN112065546A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065549A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
CN112065550A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in gasoline engine nano-scale particles

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327639A (en) * 2001-04-27 2002-11-15 Toyota Motor Corp Warm-up control device of internal combustion engine
JP2007100528A (en) * 2005-09-30 2007-04-19 Honda Motor Co Ltd Control device of internal combustion engine
JP2012112314A (en) * 2010-11-25 2012-06-14 Toyota Motor Corp Internal combustion engine control device
JP2015121183A (en) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 Control device of engine
CN112065547A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065545A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in nano-scale particles of diesel engine
CN112065544A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
CN112065546A (en) * 2020-09-04 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of diesel engine
WO2022047842A1 (en) * 2020-09-04 2022-03-10 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in nano-scale particulate matter of diesel engine
CN112065548A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of nano-scale particulate monocyclic aromatic hydrocarbon substances of gasoline engine
CN112065551A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of monocyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
CN112065549A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in micron-sized particles of gasoline engine
CN112065550A (en) * 2020-09-15 2020-12-11 常熟理工学院 Method for reducing content of polycyclic aromatic hydrocarbon substances in gasoline engine nano-scale particles

Similar Documents

Publication Publication Date Title
JP3052856B2 (en) Exhaust heating device
JP3257423B2 (en) Exhaust heating device
JP3325231B2 (en) Control device for in-cylinder injection engine
JP3613018B2 (en) In-cylinder injection engine control device
JP3325230B2 (en) Method and apparatus for warming up a catalyst in a direct injection engine
JP3963144B2 (en) Control device for spark ignition engine
EP1245815B1 (en) Direct-injection spark-ignition engine with a turbo-charging device, engine control method , and computer-readable storage medium therefor
JPH11336574A (en) Control device for internal combustion engine
JP2003083124A (en) Control device for spark ignition type direct injection engine
JP2000073820A (en) Control device for cylinder injection type engine
JP2001248481A (en) Control device for direct cylinder injection type engine
JP3933386B2 (en) Variable valve timing control device for internal combustion engine
JP2000145511A (en) Exhaust gas temperature raising device
JP3257430B2 (en) Exhaust heating device
JP4038989B2 (en) In-cylinder internal combustion engine
JP4253984B2 (en) Diesel engine control device
JP3743499B2 (en) Exhaust temperature raising device
JP2001182601A (en) Early warm-up control device for exhaust emission control catalyst
JP3771101B2 (en) Control device for internal combustion engine
JP2002295287A (en) Spark ignition type direct injection engine equipped with turbo supercharger
JP3931244B2 (en) Internal combustion engine
JP3726580B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2003222049A (en) Spark ignition type direct injection engine
JP3613020B2 (en) In-cylinder injection engine control device
JP2005299408A (en) Device for raising temperature of engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040623