JP2001182601A - Early warm-up control device for exhaust emission control catalyst - Google Patents

Early warm-up control device for exhaust emission control catalyst

Info

Publication number
JP2001182601A
JP2001182601A JP36582799A JP36582799A JP2001182601A JP 2001182601 A JP2001182601 A JP 2001182601A JP 36582799 A JP36582799 A JP 36582799A JP 36582799 A JP36582799 A JP 36582799A JP 2001182601 A JP2001182601 A JP 2001182601A
Authority
JP
Japan
Prior art keywords
reduced
exhaust gas
cylinder
cylinder operation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP36582799A
Other languages
Japanese (ja)
Inventor
Yoshihiro Majima
摩島  嘉裕
Yukihiro Yamashita
山下  幸宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP36582799A priority Critical patent/JP2001182601A/en
Priority to US09/729,855 priority patent/US6560959B2/en
Publication of JP2001182601A publication Critical patent/JP2001182601A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0255Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus to accelerate the warming-up of the exhaust gas treating apparatus at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/08Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having multiple-spark ignition, i.e. ignition occurring simultaneously at different places in one engine cylinder or in two or more separate engine cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PROBLEM TO BE SOLVED: To early warm up a catalyst through the combustion heat of afterburning by generating the afterburning within an exhaust pipe without providing an ignition device in the exhaust pipe. SOLUTION: Cylinder-reducing running is conducted at the time of early warming up control for a catalyst, wherein ignition timing is spark-delayed to control a rich component such as HC, CO, etc., in exhaust gas so as to be raized to combustible exhaust gas temperature in an exhaust pipe 16, and also fuel injection to a partial cylinder is stopped, and the engine 11 is operated by remaining cylinders (running cylinder) that is cylinder-reduced running. Consequently the rich component in high- temperature exhaust gas exhausted from the running cylinders in mixed with oxygen in unburnt air exhaust from the injection-stopped cylinder, to generate after burning in the pipe 16 on the upstream side of a catalyst 17, to warm up a catalyst 17 by the burning heat of the afterburning. In the cylinder-reduced running, the air-fuel ratio of mixed air to be supplied to the respective running cylinders is controlled to nearby a theoretical air-fuel ratio or to a lean side slightly, and also plural time ignition (multiple ignition) is made in one time combustion stroke in the respective running cylinders.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排ガス
を浄化する触媒を早期に暖機する排ガス浄化用触媒の早
期暖機制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an early warm-up control device for an exhaust gas purifying catalyst for quickly warming up a catalyst for purifying exhaust gas of an internal combustion engine.

【0002】[0002]

【従来の技術】近年の一般的なガソリンエンジン車は、
排気管に三元触媒を設置して、排ガス中のHC(炭化水
素)、CO(一酸化炭素)、NOx(窒素酸化物)等を
浄化するようにしている。しかし、始動直後の冷機時に
は、三元触媒が活性温度まで昇温しておらず、未活性状
態であるため、三元触媒で排ガスを十分に浄化すること
ができず、排気エミッションが悪くなる。
2. Description of the Related Art In recent years, general gasoline engine vehicles have
A three-way catalyst is provided in the exhaust pipe to purify HC (hydrocarbon), CO (carbon monoxide), NOx (nitrogen oxide) and the like in the exhaust gas. However, at the time of cooling immediately after the start, the three-way catalyst has not been heated to the activation temperature and is in an inactive state, so that the exhaust gas cannot be sufficiently purified by the three-way catalyst and the exhaust emission deteriorates.

【0003】この対策として、近年、冷間始動時に点火
遅角制御等の触媒早期暖機制御を実行して排ガスの温度
を高めることで、触媒を早期に活性温度にまで暖機する
ことが知られているが、最近、触媒暖機性能を更に高め
るために、特開平9−96216号公報に示すように、
触媒早期暖機制御時にエンジンの一部の気筒(以下「噴
射停止気筒」という)ヘの燃料噴射を停止して排ガス中
の酸素濃度(未燃空気量)を増加させると共に、残りの
運転気筒ヘの燃料噴射量を増量して排ガス中のHC,C
O等のリッチ成分を増加させ、排気管に設けたグロープ
ラグ等の着火装置によって排ガスに着火して排気管内で
後燃えを発生させ、その燃焼熱で触媒を暖機することが
提案されている。
As a countermeasure, in recent years, it has been known that the catalyst is quickly warmed to the activation temperature by performing early catalyst warm-up control such as ignition retard control at the time of cold start to increase the temperature of exhaust gas. However, recently, in order to further enhance the catalyst warm-up performance, as disclosed in JP-A-9-96216,
During early catalyst warm-up control, fuel injection to some of the cylinders of the engine (hereinafter referred to as "injection stopped cylinders") is stopped to increase the oxygen concentration (the amount of unburned air) in the exhaust gas and to the remaining operating cylinders. HC, C in exhaust gas by increasing the fuel injection amount of
It has been proposed to increase a rich component such as O, ignite exhaust gas by an ignition device such as a glow plug provided in the exhaust pipe, generate afterburning in the exhaust pipe, and warm up the catalyst with the combustion heat. .

【0004】[0004]

【発明が解決しようとする課題】しかし、上記公知例で
は、排気管内で後燃えを発生させるために、排気管にグ
ロープラグ等の着火装置を設ける必要があるため、構成
が複雑化し、コスト高になるという欠点がある。
However, in the above-mentioned known example, it is necessary to provide an ignition device such as a glow plug in the exhaust pipe in order to generate afterburning in the exhaust pipe. Disadvantage.

【0005】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、排ガス通路に着火装
置を設けることなく、排ガス通路内で後燃えを発生させ
て触媒を早期に暖機することができ、構成簡単化・低コ
スト化と触媒暖機性能向上とを両立させることができる
排ガス浄化用触媒の早期暖機制御装置を提供することに
ある。
[0005] The present invention has been made in view of such circumstances, and accordingly, an object thereof is to provide an after-burn in the exhaust gas passage without providing an ignition device in the exhaust gas passage to quickly warm the catalyst. An object of the present invention is to provide an early warm-up control device for an exhaust gas purifying catalyst, which can achieve both a simplified configuration, low cost, and improved catalyst warm-up performance.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1の排ガス浄化用触媒の早期暖機制
御装置は、触媒早期暖機制御時に、排ガス昇温制御手段
によって点火遅角制御して排ガス中のリッチ成分が排ガ
ス通路内で燃焼可能な排ガス温度に昇温するように制御
すると共に、減筒運転制御手段によって一部の気筒(以
下「噴射停止気筒」という)ヘの燃料噴射を停止して残
りの気筒(以下「運転気筒」という)で内燃機関を運転
する減筒運転を行う。このようにすれば、触媒早期暖機
制御時に、運転気筒から排出される排ガスは、点火遅角
制御により排ガス通路内で燃焼可能な温度に昇温される
ため、この高温の排ガス中のHC,CO等のリッチ成分
が、噴射停止気筒から排出される未燃空気の酸素と混合
されると、排ガス通路内で後燃えが自然に発生し、その
燃焼熱で触媒が暖機される。これにより、始動後に触媒
を早期に暖機できると共に、排ガスに着火する着火装置
が不要となり、構成を簡単化して低コスト化することが
できる。
According to a first aspect of the present invention, there is provided an apparatus for controlling the early warm-up of an exhaust gas purifying catalyst according to the present invention. The retard control is performed so that the rich component in the exhaust gas is heated to a temperature at which the exhaust gas can be combusted in the exhaust gas passage, and the reduced cylinder operation control means controls a part of the cylinders (hereinafter referred to as “injection stopped cylinders”). The fuel injection is stopped, and the reduced cylinder operation for operating the internal combustion engine in the remaining cylinders (hereinafter referred to as “operating cylinders”) is performed. With this configuration, during the early catalyst warm-up control, the exhaust gas discharged from the operating cylinder is heated to a temperature at which combustion can be performed in the exhaust gas passage by the ignition retard control. When a rich component such as CO is mixed with the oxygen of the unburned air discharged from the injection stop cylinder, afterburning naturally occurs in the exhaust gas passage, and the combustion heat warms up the catalyst. As a result, the catalyst can be warmed up early after the start, and an ignition device for igniting the exhaust gas is not required, so that the configuration can be simplified and the cost can be reduced.

【0007】ところで、触媒早期暖機制御が行われる内
燃機関の始動直後は、内燃機関も暖機途中であるため、
排ガス中のHC量が増加する傾向がある。従って、触媒
早期暖機制御中に運転気筒に供給する混合気の空燃比を
リッチに制御すると、運転気筒から排出される排ガス中
のHC量が、噴射停止気筒から排出される未燃空気の酸
素量に対して過剰となって、大気中ヘのHC排出量が増
加してしまうおそれがある。
[0007] Immediately after the start of the internal combustion engine in which the early catalyst warm-up control is performed, the internal combustion engine is also in the process of warming up.
The amount of HC in the exhaust gas tends to increase. Therefore, if the air-fuel ratio of the air-fuel mixture supplied to the operating cylinder is controlled to be rich during the early catalyst warm-up control, the amount of HC in the exhaust gas discharged from the operating cylinder becomes the oxygen of the unburned air discharged from the injection stopped cylinder. There is a possibility that the amount of HC emission to the atmosphere may increase due to an excess with respect to the amount.

【0008】そこで、請求項2のように、減筒運転中に
運転気筒に供給する混合気の空燃比を理論空燃比付近又
は少しリーン側に制御するようにすると良い。このよう
にすれば、運転気筒の排ガス中のHC量が過剰になら
ず、触媒の早期暖機(後燃え)に必要最少限のHC量ま
で低減される。これにより、運転気筒の排ガス中のHC
を噴射停止気筒から排出される未燃空気の酸素で十分に
燃焼させることができ、触媒早期暖機制御中の大気中へ
のHC排出量を低減することができる。
Therefore, it is preferable to control the air-fuel ratio of the air-fuel mixture supplied to the operating cylinder during the reduced cylinder operation to a value close to the stoichiometric air-fuel ratio or slightly lean. In this way, the amount of HC in the exhaust gas of the operating cylinder does not become excessive, and is reduced to the minimum amount of HC necessary for early warm-up (after-burning) of the catalyst. As a result, HC in the exhaust gas of the operating cylinder
Can be sufficiently combusted with the oxygen of the unburned air discharged from the injection stop cylinder, and the amount of HC discharged into the atmosphere during early catalyst warm-up control can be reduced.

【0009】また、減筒運転中の運転気筒では、点火遅
角制御によって燃焼安定性が低下するおそれがあるた
め、請求項3のように、減筒運転中に運転気筒の1回の
燃焼行程中に複数回の点火(多重点火)を実行するよう
にしても良い。このようにすれば、点火遅角制御を実施
しながら、多重点火により運転気筒の燃焼状態を安定さ
せることができ、燃焼不安定によるトルク変動やエンジ
ン振動を抑えることができる。
Further, in the operating cylinder during the reduced cylinder operation, there is a possibility that the combustion stability may be reduced by the ignition retard control, so that one combustion stroke of the operating cylinder during the reduced cylinder operation is performed. During this time, a plurality of ignitions (multiple ignitions) may be executed. With this configuration, the combustion state of the operating cylinder can be stabilized by the multiple ignitions while performing the ignition retard control, and the torque fluctuation and engine vibration due to unstable combustion can be suppressed.

【0010】この場合、請求項4のように、減筒運転を
開始した後に点火遅角制御(排ガス昇温制御)を開始す
るようにしても良く、或は、請求項5のように、点火遅
角制御を開始するのと同時又はその後に減筒運転を開始
するようにしても良い。請求項4のように、点火遅角制
御よりも減筒運転を先に開始すれば、減筒運転により排
ガス中のHC量を低減しつつ触媒早期暖機制御を実施で
き、触媒早期暖機制御中の大気中へのHC排出量を低減
することができる。一方、請求項5のように、点火遅角
制御を開始するのと同時又はその後に減筒運転を開始す
れば、請求項4の場合よりも減筒運転の開始時期を遅ら
せることができるので、請求項4の場合よりも安定した
燃焼状態下で減筒運転を開始することができ、減筒運転
によるトルク変動、エンジン振動を少なくすることがで
きる。
In this case, the ignition retard control (exhaust gas temperature raising control) may be started after the reduced-cylinder operation is started. The reduced cylinder operation may be started simultaneously with or after the start of the retard control. If the reduced cylinder operation is started prior to the ignition retard control, the catalyst early warm-up control can be performed while reducing the amount of HC in the exhaust gas by the reduced cylinder operation. It is possible to reduce the amount of HC discharged into the atmosphere. On the other hand, if the reduced cylinder operation is started at the same time as or after the ignition retard control is started, the start timing of the reduced cylinder operation can be delayed as compared with the case of the fourth embodiment. The reduced cylinder operation can be started under a more stable combustion state than in the case of the fourth aspect, and the torque fluctuation and engine vibration due to the reduced cylinder operation can be reduced.

【0011】触媒の早期暖機の面からは、できるだけ早
く点火遅角制御と減筒運転を開始することが望ましい
が、燃焼状態が十分に安定しない時期に減筒運転を開始
すると、トルク変動、エンジン振動が増大する。
From the viewpoint of early warm-up of the catalyst, it is desirable to start the ignition retard control and the reduced cylinder operation as soon as possible. However, if the reduced cylinder operation is started at a time when the combustion state is not sufficiently stabilized, torque fluctuation, Engine vibration increases.

【0012】そこで、請求項6のように、始動後の運転
状態に応じて減筒運転の開始時期を変化させるようにし
ても良い。このようにすれば、燃焼状態がある程度安定
するのを待って減筒運転を開始することができ、減筒運
転によるトルク変動、エンジン振動を低減できる。しか
も、燃焼状態が早く安定すれば、それに応じて減筒運転
(後燃えによる触媒暖機)を早く開始することができ、
減筒運転によるトルク変動等の低減と触媒暖機時期の早
期化とを両立させることができる。
Therefore, the start timing of the reduced-cylinder operation may be changed according to the operation state after the start. With this configuration, the reduced cylinder operation can be started after the combustion state is stabilized to some extent, and the torque fluctuation and engine vibration due to the reduced cylinder operation can be reduced. In addition, if the combustion state is quickly stabilized, the reduced-cylinder operation (catalyst warm-up due to afterburning) can be started earlier accordingly.
It is possible to achieve both a reduction in torque fluctuation and the like due to the reduced cylinder operation and an earlier catalyst warm-up time.

【0013】ところで、減筒運転中の噴射停止気筒は、
特定の気筒に固定しても良いが、そうすると、噴射停止
気筒によるトルク変動、エンジン振動が毎サイクル同じ
タイミングで発生するようになり、運転者に不快感を与
えるおそれがある。
Incidentally, the injection stop cylinder during the reduced cylinder operation is:
The cylinder may be fixed to a specific cylinder. However, in such a case, the torque fluctuation and the engine vibration due to the injection stop cylinder occur at the same timing in each cycle, and the driver may feel uncomfortable.

【0014】この対策として、請求項7のように、減筒
運転中に噴射停止気筒を順次変更するようにしても良
い。このようにすれば、噴射停止気筒によるトルク変動
を分散させて運転者に感じにくくさせることができ、運
転者に不快感を与えることなく、減筒運転を実施でき
る。
As a countermeasure, the injection stop cylinder may be sequentially changed during the reduced cylinder operation. In this way, the torque fluctuation due to the injection stop cylinder can be dispersed to make it difficult for the driver to feel, and the reduced cylinder operation can be performed without giving the driver discomfort.

【0015】また、内燃機関の排気バルブのバルブタイ
ミングを変化させる可変バルブタイミング手段を備えた
システムに本発明を適用する場合は、請求項8のよう
に、減筒運転中に噴射停止気筒の排気バルブのバルブタ
イミングを運転気筒の排気バルブのバルブタイミングに
応じて変化させるようにしても良い。このようにすれ
ば、減筒運転中に、噴射停止気筒からの未燃空気の排出
タイミングを、運転気筒からの高温の排ガスの排出タイ
ミングに合わせて調整して、排気マニホールドの合流部
で未燃空気と高温の排ガスとを確実に合流させて両者を
十分に混合させることができ、排ガスのリッチ成分の後
燃えを促進させることができる。
Further, when the present invention is applied to a system having variable valve timing means for changing the valve timing of an exhaust valve of an internal combustion engine, the exhaust of the injection stopped cylinder during the reduced cylinder operation may be performed. The valve timing of the valve may be changed according to the valve timing of the exhaust valve of the operating cylinder. With this configuration, during the reduced-cylinder operation, the discharge timing of the unburned air from the injection-stop cylinder is adjusted in accordance with the discharge timing of the high-temperature exhaust gas from the operating cylinder, and the unburned air is discharged at the junction of the exhaust manifold. The air and the high-temperature exhaust gas can be surely merged so that the two can be sufficiently mixed, and the after-burning of the rich component of the exhaust gas can be promoted.

【0016】また、吸気バルブと排気バルブのバルブタ
イミングを変化させる可変バルブタイミング手段を備え
たシステムに本発明を適用する場合は、請求項9のよう
に、減筒運転中に運転気筒の吸気バルブと排気バルブの
バルブタイミング、燃料噴射タイミング及び点火タイミ
ングを運転気筒の数で720℃Aを分割したクランク角
間隔で制御するようにしても良い。このようにすれば、
減筒運転中には、運転気筒の数で720℃Aを分割した
一定のクランク角毎に各運転気筒の爆発を発生させるこ
とができて、運転気筒の数と同じ気筒数のエンジンと同
じような燃焼サイクルで運転することができ、減筒運転
によるトルク変動、エンジン振動を効果的に低減するこ
とができる。
When the present invention is applied to a system having variable valve timing means for changing the valve timing of the intake valve and the exhaust valve, the intake valve of the operating cylinder may be operated during the reduced cylinder operation. Alternatively, the valve timing, fuel injection timing, and ignition timing of the exhaust valve may be controlled at crank angle intervals obtained by dividing 720 ° C. by the number of operating cylinders. If you do this,
During the reduced-cylinder operation, an explosion of each operating cylinder can be generated at every fixed crank angle obtained by dividing 720 ° C. by the number of operating cylinders, similar to an engine having the same number of cylinders as the number of operating cylinders. It is possible to operate with a simple combustion cycle, and it is possible to effectively reduce torque fluctuation and engine vibration due to reduced cylinder operation.

【0017】[0017]

【発明の実施の形態】[実施形態(1)]以下、本発明
の実施形態(1)を図1乃至図5に基づいて説明する。
図1に示すように、内燃機関であるエンジン11の吸気
管12には、スロットル開度を調整するスロットルバル
ブ13が設けられ、各気筒に空気を導入する吸気マニホ
ールド14の吸気ポート近傍には、それぞれ燃料を噴射
する燃料噴射弁15が取り付けられている。一方、エン
ジンの排気管16の途中には、排ガス中のHC、CO、
NOxを浄化する三元触媒等の触媒17が設けられてい
る。
[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS.
As shown in FIG. 1, an intake pipe 12 of an engine 11 which is an internal combustion engine is provided with a throttle valve 13 for adjusting a throttle opening, and near an intake port of an intake manifold 14 for introducing air to each cylinder. A fuel injection valve 15 for injecting fuel is attached to each. On the other hand, in the exhaust pipe 16 of the engine, HC, CO,
A catalyst 17 such as a three-way catalyst for purifying NOx is provided.

【0018】エンジン制御回路(以下「ECU」と表記
する)18は、マイクロコンピュータを主体として構成
され、内蔵されたROM(記憶媒体)に記憶された燃料
噴射プログラム(図示せず)を実行することで、エンジ
ン運転状態に応じて燃料噴射弁15の燃料噴射量を制御
すると共に、点火制御プログラム(図示せず)を実行す
ることで、点火プラグ19の点火時期を制御する。
The engine control circuit (hereinafter referred to as "ECU") 18 is mainly constituted by a microcomputer and executes a fuel injection program (not shown) stored in a built-in ROM (storage medium). Then, the ignition timing of the ignition plug 19 is controlled by controlling the fuel injection amount of the fuel injection valve 15 according to the engine operating state and executing an ignition control program (not shown).

【0019】ところで、始動直後の冷機時には、触媒1
7が未活性の状態であるため、エンジン11から排出さ
れるHC,CO,NOxを十分に浄化することができな
い。そこで、ECU18は、図2の触媒早期暖機制御プ
ログラムを実行することで、点火時期を遅角制御して排
ガス中のリッチ成分(HC,CO)が排気管16内で燃
焼可能な排ガス温度に昇温させると共に、図3に示すよ
うに、エンジン11の一部の気筒(例えば#1気筒)へ
の燃料噴射を停止して残りの気筒(例えば#2〜#4気
筒)でエンジン11を運転する減筒運転を行う。このよ
うに、触媒早期暖機制御時に点火遅角制御と減筒運転と
を同時に実施することで、運転気筒から排出される高温
の排ガス中のリッチ成分を、噴射停止気筒から排出され
る未燃空気の酸素と混合させて、触媒17上流側の排気
管16内で後燃えを自然に発生させ、その燃焼熱で触媒
17を早期に暖機する。
By the way, at the time of cooling immediately after starting, the catalyst 1
7 is in an inactive state, it is not possible to sufficiently purify HC, CO, and NOx discharged from the engine 11. Therefore, the ECU 18 executes the catalyst early warm-up control program of FIG. 2 to retard the ignition timing to control the exhaust gas to a temperature at which the rich components (HC, CO) in the exhaust gas can be burned in the exhaust pipe 16. While increasing the temperature, as shown in FIG. 3, fuel injection to some of the cylinders of the engine 11 (for example, # 1 cylinder) is stopped, and the engine 11 is operated in the remaining cylinders (for example, # 2 to # 4 cylinders). Cylinder operation. As described above, by performing the ignition retard control and the reduced cylinder operation at the same time during the early catalyst warm-up control, the rich component in the high-temperature exhaust gas discharged from the operating cylinder is reduced to the unburned fuel discharged from the injection stop cylinder. After mixing with the oxygen of the air, afterburning naturally occurs in the exhaust pipe 16 on the upstream side of the catalyst 17, and the catalyst 17 is quickly warmed up by the combustion heat.

【0020】以下、この触媒早期暖機制御を実行する図
2の触媒早期暖機制御プログラムの処理内容を説明す
る。本プログラムは、例えばイグニッションスイッチ
(図示せず)のオンと同時に起動され、特許請求の範囲
でいう排ガス昇温制御手段及び減筒運転制御手段として
の役割を果たす。本プログラムが起動されると、まず、
ステップ101で、エンジン11を高温の状態で再始動
する高温再始動時であるか否かを冷却水温等により判定
し、高温再始動時であれば、触媒17が活性状態である
と考えられるため、触媒早期暖機制御は必要ない判断し
て、以降の処理を行うことなく、本プログラムを終了す
る。
Hereinafter, the processing contents of the catalyst early warm-up control program of FIG. 2 for executing the catalyst early warm-up control will be described. This program is started, for example, at the same time when an ignition switch (not shown) is turned on, and plays a role as an exhaust gas temperature raising control means and a reduced cylinder operation control means described in the claims. When this program starts, first,
In step 101, it is determined whether or not the engine 11 is restarted in a high temperature state based on the cooling water temperature or the like. If the engine is restarted at a high temperature, the catalyst 17 is considered to be in an active state. Then, it is determined that the catalyst early warm-up control is not necessary, and this program is ended without performing the subsequent processing.

【0021】一方、高温再始動でない、つまり、冷間始
動時と判定されれば、ステップ102に進み、エンジン
回転速度NEが始動判定値A(例えば400rpm)を
越えたか否かにより始動が完了(完爆)したか否かを判
定し、始動完了前であれば、始動完了まで待機する。そ
の後、始動完了と判定された時点で、ステップ103に
進み、始動完了から所定時間内にエンジン回転速度NE
が第1の燃焼判定値B(例えば1400rpm)を越え
たか否かを判定する。もし、始動完了から所定時間内に
エンジン回転速度NEが第1の燃焼判定値Bを越えなけ
れば、燃焼状態が安定していないと考えられるため、触
媒早期暖機制御(点火遅角制御、減筒運転)を行わない
方が良いと判断して、以降の処理を行うことなく、本プ
ログラムを終了する。
On the other hand, if it is determined that the engine is not restarted at a high temperature, that is, it is determined that the engine is in a cold start, the routine proceeds to step 102, where the engine is completed based on whether or not the engine speed NE exceeds a start determination value A (for example, 400 rpm) ( It is determined whether or not a complete explosion has occurred. Thereafter, when it is determined that the start is completed, the process proceeds to step 103, and the engine speed NE is set within a predetermined time after the start is completed.
Is greater than a first combustion determination value B (for example, 1400 rpm). If the engine speed NE does not exceed the first combustion determination value B within a predetermined time after the start is completed, it is considered that the combustion state is not stable. Therefore, the catalyst early warm-up control (ignition retard control, decrease It is determined that it is better not to perform the cylinder operation, and the program ends without performing the subsequent processing.

【0022】これに対して、始動完了から所定時間内に
エンジン回転速度NEが第1の燃焼判定値Bを越えた場
合には、燃焼状態がある程度安定していると判断して、
ステップ104に進み、点火遅角動作を開始して、点火
プラグ19の点火時期θを例えば0.01℃A/1ms
の割合で遅角する。そして、次のステップ105で、点
火遅角動作開始直後のエンジン回転速度NEの上昇具合
によって燃焼状態が十分に安定しているか否かを判定す
る。この判定は、点火遅角動作開始直後にエンジン回転
速度NEが第1の燃焼判定値Bよりも少し高い第2の燃
焼判定値C(例えば1500rpm)を越えたか否かに
よって判定する。
On the other hand, if the engine speed NE exceeds the first combustion determination value B within a predetermined time after the start is completed, it is determined that the combustion state is somewhat stable.
Proceeding to step 104, the ignition retard operation is started, and the ignition timing θ of the spark plug 19 is set to, for example, 0.01 ° C. A / 1 ms.
Retard at the rate of Then, in the next step 105, it is determined whether or not the combustion state is sufficiently stable depending on the increase in the engine speed NE immediately after the ignition retard operation is started. This determination is made based on whether or not the engine rotational speed NE has exceeded a second combustion determination value C (for example, 1500 rpm) slightly higher than the first combustion determination value B immediately after the start of the ignition retard operation.

【0023】もし、図4に示すように、点火遅角動作開
始直後にエンジン回転速度NEが第2の燃焼判定値Cを
越えれば、燃焼状態が十分に安定していると考えられる
ため、点火遅角動作開始直後に減筒運転を開始しても問
題ないと判断して、ステップ106に進み、直ちに減筒
運転を開始して噴射停止気筒ヘの燃料噴射を停止する。
この減筒運転中は、運転気筒の排ガス中のHC量が噴射
停止気筒から排出される未燃空気の酸素量に対して過剰
とならないように、各運転気筒に供給する混合気の空燃
比を理論空燃比付近又は少しリーン側に制御すると共
に、各運転気筒の1回の燃焼行程中に複数回の点火を行
う多重点火を実行して運転気筒の燃焼状態を安定させ
る。
As shown in FIG. 4, if the engine speed NE exceeds the second combustion determination value C immediately after the start of the ignition retarding operation, the combustion state is considered to be sufficiently stable. It is determined that there is no problem even if the reduced-cylinder operation is started immediately after the start of the retard operation, and the routine proceeds to step 106, where the reduced-cylinder operation is immediately started to stop the fuel injection to the injection stop cylinder.
During this reduced cylinder operation, the air-fuel ratio of the air-fuel mixture supplied to each operating cylinder is adjusted so that the HC amount in the exhaust gas of the operating cylinder does not become excessive with respect to the oxygen amount of the unburned air discharged from the injection stop cylinder. Control is performed near the stoichiometric air-fuel ratio or slightly to the lean side, and multiple ignitions for performing a plurality of ignitions during one combustion stroke of each operating cylinder are executed to stabilize the combustion state of the operating cylinder.

【0024】減筒運転開始後、ステップ107に進み、
点火時期θが目標点火時期θm まで遅角されたか否かを
判定する。この目標点火時期θm は排ガス中のリッチ成
分が排気管16内で燃焼可能な排ガス温度に昇温させる
ことができる点火時期(例えばATDC10℃A)に設
定されている。もし、点火時期θが目標点火時期θmま
で遅角されていなければ、引き続き、0.01℃A/1
msの割合で点火遅角動作を継続し、その後、点火時期
θが目標点火時期θm まで遅角された時点で、ステップ
108に進み、点火時期θを目標点火時期θm に固定し
て、ステップ112に進む。この点火遅角制御により、
運転気筒から排出される排ガスを高温に昇温して触媒1
7上流側の排気管16内で後燃えを発生させ、その燃焼
熱で触媒17を暖機する。
After the start of the reduced cylinder operation, the routine proceeds to step 107,
It is determined whether the ignition timing θ has been retarded to the target ignition timing θm. The target ignition timing θm is set to an ignition timing (for example, ATDC 10 ° C.) at which a rich component in the exhaust gas can be raised to a temperature at which the exhaust gas can be burned in the exhaust pipe 16. If the ignition timing θ has not been retarded to the target ignition timing θm, the temperature continues to be 0.01 ° C. A / 1
ms, the ignition timing is continued at a rate of ms. Thereafter, when the ignition timing θ is retarded to the target ignition timing θm, the routine proceeds to step 108, where the ignition timing θ is fixed to the target ignition timing θm, and the routine proceeds to step 112. Proceed to. With this ignition retard control,
The temperature of the exhaust gas discharged from the operating cylinder is raised to a high temperature and the catalyst 1
Afterburning occurs in the exhaust pipe 16 on the upstream side of 7, and the catalyst 17 is warmed up by the combustion heat.

【0025】一方、点火遅角動作開始直後に燃焼安定性
が低下すると、エンジン回転速度NEの上昇が鈍るため
ため、ステップ105で、点火遅角動作開始直後のエン
ジン回転速度NEが第2の燃焼判定値C以下と判定され
るようになる。この場合は、点火遅角動作開始直後の燃
焼状態が十分に安定していないため、すぐには減筒運転
を開始せずに、点火時期θを目標点火時期θm まで遅角
するまで点火遅角動作のみを続ける(ステップ10
9)。そして、点火時期θを目標点火時期θm まで遅角
した時点で、点火時期θを目標点火時期θm に固定し
(ステップ110)、減筒運転を開始する(ステップ1
11)。これにより、噴射停止気筒から排出される未燃
空気を高温の排ガスと混合させて触媒17上流側の排気
管16内で後燃えを発生させ、その燃焼熱で触媒17を
暖機する。
On the other hand, if the combustion stability decreases immediately after the start of the ignition retard operation, the increase in the engine rotational speed NE slows down. Therefore, in step 105, the engine rotational speed NE immediately after the start of the ignition retard operation becomes the second combustion. It is determined that the value is equal to or less than the determination value C. In this case, since the combustion state immediately after the start of the ignition retarding operation is not sufficiently stable, the reduced-cylinder operation is not immediately started, and the ignition timing is retarded until the ignition timing θ is retarded to the target ignition timing θm. Continue only operation (Step 10
9). When the ignition timing θ is retarded to the target ignition timing θm, the ignition timing θ is fixed to the target ignition timing θm (step 110), and the reduced cylinder operation is started (step 1).
11). As a result, the unburned air discharged from the injection stop cylinder is mixed with the high-temperature exhaust gas to generate afterburning in the exhaust pipe 16 on the upstream side of the catalyst 17, and the catalyst 17 is warmed up by the combustion heat.

【0026】以上のようにして実行する触媒早期暖機制
御(減筒運転及び点火遅角制御)の実行中は、ステップ
112で、触媒早期暖機制御終了条件が成立したか否か
を判定する。この触媒早期暖機制御終了条件は、例え
ば、次の〜のいずれか1つに該当することである。 始動完了から所定時間Tが経過すること 自動変速機がNレンジからDレンジにシフトされるこ
と レーシングされること(アクセルペダルが踏み込まれ
ること)
During the early catalyst warm-up control (reduced cylinder operation and ignition retard control) executed as described above, it is determined in step 112 whether the catalyst early warm-up control termination condition is satisfied. . The catalyst early warm-up control termination condition is, for example, one of the following conditions (1) to (5). A predetermined time T has elapsed since the start was completed. The automatic transmission was shifted from the N range to the D range. Racing (the accelerator pedal was depressed)

【0027】ここで、における所定時間Tは、触媒1
7が活性温度にまで暖機されるのに十分な時間に設定さ
れている。従って、の条件を満たせば、触媒17の暖
機が終了したと判断できる。また、,の場合は、エ
ンジン負荷が増加するため、燃焼安定性やエンジントル
クを増加させる必要があり、そのために、触媒早期暖機
制御を終了することが望ましい。
Here, the predetermined time T in the formula (1) is the catalyst 1
7 is set to a time sufficient to warm up to the activation temperature. Therefore, if the condition is satisfied, it can be determined that the warm-up of the catalyst 17 has been completed. In the cases of (1) and (2), the engine load increases, so that it is necessary to increase the combustion stability and the engine torque. Therefore, it is desirable to end the catalyst early warm-up control.

【0028】上記〜のいずれにも該当しない場合
は、触媒早期暖機制御を継続し、その後、〜のいず
れかに該当すれば、触媒早期暖機制御の終了タイミング
であると判断して、ステップ113に進み、触媒早期暖
機制御(点火遅角制御及び減筒運転)を終了して、本プ
ログラムを終了する。
If none of the above is satisfied, the catalyst early warm-up control is continued. If any of the following is satisfied, it is determined that it is the end timing of the catalyst early warm-up control. Proceeding to 113, the catalyst early warm-up control (ignition retard control and reduced cylinder operation) is terminated, and this program is terminated.

【0029】以上説明した本実施形態(1)によれば、
触媒早期暖機制御中は、点火時期θを目標点火時期θm
まで遅角して排ガスのリッチ成分が排気管16内で燃焼
可能な排ガス温度に昇温させると共に、減筒運転を実施
して、運転気筒から排出される高温の排ガス中のリッチ
成分を噴射停止気筒から排出される未燃空気と混合させ
て後燃えを発生させ、その燃焼熱で触媒17を暖機す
る。これにより、排ガスに着火する着火装置を設けるこ
となく、後燃えを発生させて触媒17を早期に暖機する
ことが可能となり、構成簡単化・部品点数削減による低
コスト化と触媒暖機性能向上とを両立させることができ
る。
According to the embodiment (1) described above,
During the early catalyst warm-up control, the ignition timing θ is set to the target ignition timing θm
The exhaust gas rich component of the exhaust gas is heated to a temperature at which the rich component of the exhaust gas can be burned in the exhaust pipe 16 and the reduced-cylinder operation is performed to stop the injection of the rich component in the high-temperature exhaust gas discharged from the operating cylinder. Afterburning is generated by mixing with unburned air discharged from the cylinder, and the catalyst 17 is warmed up by the combustion heat. As a result, after-burning can be generated and the catalyst 17 can be quickly warmed up without providing an ignition device for igniting the exhaust gas, thereby reducing the cost and improving the catalyst warm-up performance by simplifying the configuration and reducing the number of parts. And can be compatible.

【0030】ところで、触媒早期暖機制御が行われる始
動直後は、エンジン11も暖機途中であるため、排ガス
中のHC量が増加する傾向がある。従って、触媒早期暖
機制御中に運転気筒の供給空燃比をリッチにすると、運
転気筒から排出されるHC量が、噴射停止気筒から排出
される未燃空気の酸素量に対して過剰となって、大気中
ヘのHC排出量が増加してしまうおそれがある。
Immediately after the start in which the catalyst early warm-up control is performed, the engine 11 is in the process of warming up, so that the HC amount in the exhaust gas tends to increase. Accordingly, if the supply air-fuel ratio of the operating cylinder is made rich during the catalyst early warm-up control, the amount of HC discharged from the operating cylinder becomes excessive with respect to the amount of oxygen of the unburned air discharged from the injection stop cylinder. Therefore, there is a possibility that the amount of HC discharged into the atmosphere may increase.

【0031】その点、本実施形態(1)では、減筒運転
中に運転気筒の供給空燃比を理論空燃比付近又は少しリ
ーン側に制御するようにしているので、運転気筒の排ガ
ス中のHC量を後燃えに必要最少限のHC量まで低減す
ることができて、排ガス中のHCを噴射停止気筒から排
出される未燃空気の酸素で十分に燃焼させることがで
き、触媒早期暖機制御中の大気中へのHC排出量を低減
することができる。
In this regard, in the present embodiment (1), the supply air-fuel ratio of the operating cylinder is controlled to be close to the stoichiometric air-fuel ratio or slightly lean during the reduced-cylinder operation. The amount of HC can be reduced to the minimum amount required for afterburning, and HC in exhaust gas can be sufficiently combusted with the oxygen of unburned air discharged from the injection stop cylinder. It is possible to reduce the amount of HC discharged into the atmosphere.

【0032】また、本実施形態(1)では、減筒運転中
に運転気筒で多重点火を実行するようにしているので、
点火遅角制御を実施しながら、多重点火によって運転気
筒の燃焼状態を安定化させることができ、減筒運転中の
トルク変動やエンジン振動を抑制することができる利点
がある。但し、本発明は、減筒運転中に多重点火を実行
しないようにしても良く、この場合でも、本発明の所期
の目的は十分に達成することができる。
In this embodiment (1), multiple ignition is executed in the operating cylinder during the reduced cylinder operation.
While performing the ignition retard control, the combustion state of the operating cylinder can be stabilized by the multiple ignition, and there is an advantage that torque fluctuation and engine vibration during reduced cylinder operation can be suppressed. However, in the present invention, the multiple ignition may not be performed during the reduced-cylinder operation. Even in this case, the intended object of the present invention can be sufficiently achieved.

【0033】ところで、触媒の早期暖機の面からは、で
きるだけ早く点火遅角制御と減筒運転を開始することが
望ましいが、燃焼状態が十分に安定しない時期に減筒運
転を開始すると、トルク変動、エンジン振動が増大する
おそれがある。
From the viewpoint of early warm-up of the catalyst, it is desirable to start the ignition retard control and the reduced cylinder operation as soon as possible. However, if the reduced cylinder operation is started at a time when the combustion state is not sufficiently stabilized, the torque is reduced. Fluctuation and engine vibration may increase.

【0034】このような事情を考慮して、本実施形態
(1)では、点火遅角動作開始直後のエンジン回転速度
NEの上昇具合によって点火遅角動作開始直後の燃焼状
態を判定し、図4に示すように、点火遅角動作開始直後
にエンジン回転速度NEが第2の燃焼判定値Cを越えて
燃焼状態が十分に安定していると判断できる場合は、点
火遅角動作開始直後に減筒運転を開始する。これによ
り、減筒運転によるトルク変動を防止しながら、早期に
減筒運転(後燃えによる触媒暖機)を開始することがで
きる。
In consideration of such circumstances, in this embodiment (1), the combustion state immediately after the start of the ignition retard operation is determined based on the increase in the engine speed NE immediately after the start of the ignition retard operation, and FIG. As shown in (2), when the engine speed NE exceeds the second combustion determination value C immediately after the ignition retarding operation is started and it can be determined that the combustion state is sufficiently stable, the engine speed NE decreases immediately after the ignition retarding operation is started. Start cylinder operation. Thus, it is possible to start the reduced-cylinder operation (catalyst warm-up due to afterburning) at an early stage while preventing the torque fluctuation due to the reduced-cylinder operation.

【0035】一方、図5に示すように、点火遅角動作開
始直後のエンジン回転速度NEが第2の燃焼判定値Cを
越えず、燃焼状態が十分に安定していないと判断できる
場合は、点火遅角動作が完了するのを待って(つまり燃
焼状態が安定するのを待って)減筒運転を開始する。こ
れにより、減筒運転によるトルク変動、エンジン振動を
低減することができる。
On the other hand, as shown in FIG. 5, when the engine speed NE immediately after the start of the ignition retard operation does not exceed the second combustion determination value C and it can be determined that the combustion state is not sufficiently stable, After the ignition retard operation is completed (that is, the combustion state is stabilized), the reduced cylinder operation is started. As a result, it is possible to reduce torque fluctuation and engine vibration caused by the reduced cylinder operation.

【0036】但し、本発明は、必ずしも、運転状態(燃
焼状態)に応じて減筒運転の開始時期を変化させる必要
はなく、減筒運転の開始時期を固定しても良い。この場
合、減筒運転を開始した後に点火遅角制御を開始するよ
うにしたり、或は、点火遅角制御を開始するのと同時又
はその後に減筒運転を開始するようにしても良い。前者
のように、点火遅角制御よりも減筒運転を先に開始すれ
ば、減筒運転により排ガス中のHC量を低減しつつ触媒
早期暖機制御を実施でき、触媒早期暖機制御中の大気中
へのHC排出量を低減することができる。一方、後者の
ように、点火遅角制御を開始するのと同時又はその後に
減筒運転を開始すれば、前者の場合よりも減筒運転の開
始時期を遅らせることができるので、前者の場合よりも
安定した燃焼状態下で減筒運転を開始することができ、
減筒運転によるトルク変動、エンジン振動を少なくする
ことができる。
However, in the present invention, it is not always necessary to change the start timing of the reduced cylinder operation according to the operating state (combustion state), and the start timing of the reduced cylinder operation may be fixed. In this case, the ignition retard control may be started after the reduced cylinder operation is started, or the reduced cylinder operation may be started simultaneously with or after the start of the ignition retard control. As in the former case, if the reduced cylinder operation is started before the ignition retard control, the catalyst early warm-up control can be performed while reducing the HC amount in the exhaust gas by the reduced cylinder operation. HC emissions into the atmosphere can be reduced. On the other hand, if the reduced cylinder operation is started at the same time as or after the ignition retard control is started, as in the latter case, the start timing of the reduced cylinder operation can be delayed as compared with the former case. Can start reduced cylinder operation under stable combustion conditions,
It is possible to reduce torque fluctuation and engine vibration due to reduced cylinder operation.

【0037】また、本実施形態(1)では、減筒運転中
に噴射停止気筒を特定気筒(例えば#1気筒)に固定し
たが、減筒運転中に噴射停止気筒を順次変更するように
しても良い。例えば、噴射停止気筒を複数の特定の気筒
の中から1サイクル毎に順次変更するようにしたり、或
は、噴射停止気筒を全気筒の中から1サイクル毎に順次
変更するようにしても良い。このようにすれば、噴射停
止気筒によるトルク変動を分散させて運転者に感じにく
くすることができ、運転者に不快感を与えることなく、
減筒運転を実施できる。尚、減筒運転中に複数の気筒の
燃料噴射を停止するようにしても良いことは言うまでも
ない。
In this embodiment (1), the injection stop cylinder is fixed to a specific cylinder (for example, # 1 cylinder) during the reduced cylinder operation. However, the injection stop cylinder is sequentially changed during the reduced cylinder operation. Is also good. For example, the injection stop cylinder may be sequentially changed every cycle from a plurality of specific cylinders, or the injection stop cylinder may be sequentially changed every cycle from all cylinders. In this way, the torque fluctuation due to the injection stop cylinder can be dispersed to make it difficult for the driver to feel, and without giving the driver discomfort,
Reduced cylinder operation can be performed. It goes without saying that the fuel injection of a plurality of cylinders may be stopped during the reduced cylinder operation.

【0038】[実施形態(2)]図6に示す本発明の実
施形態(2)では、エンジン20の各気筒に、可変バル
ブタイミング手段である電磁駆動装置(図示せず)によ
って駆動される電磁駆動式の排気バルブ(図示せず)を
設け、ECU21によって電磁駆動装置を制御すること
で、排気バルブのバルブタイミングを自由に変化させる
ことができるようにしている。更に、ECU21は、減
筒運転中に、噴射停止気筒(例えば#1気筒)から排出
される未燃空気が、少なくとも1つの運転気筒から排出
される高温の排ガスと排気マニホールド22の合流部で
合流するように、噴射停止気筒の排気バルブのバルブタ
イミングを調整する。この際、噴射停止気筒の排気バル
ブを1サイクルに複数回開閉して、噴射停止気筒から排
出される未燃空気が複数の運転気筒から排出される高温
の排ガスとそれぞれ排気マニホールド22の合流部で合
流するようにしても良い。また、噴射停止気筒の排気バ
ルブを1サイクルに複数回開閉する場合は、噴射停止気
筒の吸気行程と燃焼(膨張)行程で吸気バルブを開弁す
ることで、1サイクル中に吸入空気を2回吸入するよう
にしても良い。その他の構成・制御は、前記実施形態
(1)と同じである。
[Embodiment (2)] In an embodiment (2) of the present invention shown in FIG. 6, an electromagnetic drive device (not shown) which is a variable valve timing means is provided to each cylinder of the engine 20. A drive-type exhaust valve (not shown) is provided, and the valve timing of the exhaust valve can be freely changed by controlling the electromagnetic drive device by the ECU 21. Further, during the reduced-cylinder operation, the ECU 21 combines the unburned air discharged from the injection stop cylinder (for example, the # 1 cylinder) with the high-temperature exhaust gas discharged from at least one operating cylinder at the junction of the exhaust manifold 22. Thus, the valve timing of the exhaust valve of the injection stop cylinder is adjusted. At this time, the exhaust valve of the injection stop cylinder is opened and closed a plurality of times in one cycle, so that the unburned air discharged from the injection stop cylinder and the high temperature exhaust gas discharged from the plurality of operation cylinders at the junction of the exhaust manifold 22 respectively. You may make it join. When the exhaust valve of the injection stop cylinder is opened and closed multiple times in one cycle, the intake air is opened twice in one cycle by opening the intake valve in the intake stroke and the combustion (expansion) stroke of the injection stop cylinder. You may inhale. Other configurations and controls are the same as those in the embodiment (1).

【0039】以上のように構成した本実施形態(2)に
よれば、噴射停止気筒からの未燃空気と運転気筒からの
高温の排ガスを排気マニホールド22の合流部で確実に
合流させて十分に混合させることができるため、後燃え
を効果的に促進することができる。
According to the embodiment (2) configured as described above, the unburned air from the injection stop cylinder and the high-temperature exhaust gas from the operating cylinder are surely merged at the junction of the exhaust manifold 22 so as to be sufficiently mixed. Since it is possible to mix, afterburning can be effectively promoted.

【0040】尚、本実施形態(2)では、電磁駆動式の
排気バルブを用いたが、カム駆動式の排気バルブを設け
たエンジンでは、クランク軸に対するカム軸の位相を油
圧で変化させて排気バルブのバルブタイミングを変化さ
せる油圧駆動式の可変バルブタイミング機構を用いても
良い。
In this embodiment (2), an electromagnetically driven exhaust valve is used. However, in an engine provided with a cam driven exhaust valve, the phase of the camshaft with respect to the crankshaft is changed by oil pressure to exhaust. A hydraulically driven variable valve timing mechanism that changes the valve timing of the valve may be used.

【0041】[実施形態(3)]次に、図7及び図8を
用いて本発明の実施形態(3)を説明する。本実施形態
(3)では、例えば5気筒のエンジン23の各気筒に、
電磁駆動式の吸気バルブと電磁駆動式の排気バルブ(共
に図示せず)を設け、ECU24によって各電磁駆動装
置(図示せず)を制御することで、吸気バルブと排気バ
ルブのバルブタイミングを制御するようになっている。
[Embodiment (3)] Next, an embodiment (3) of the present invention will be described with reference to FIGS. In the present embodiment (3), for example, each cylinder of the five-cylinder engine 23 has:
An electromagnetically driven intake valve and an electromagnetically driven exhaust valve (both not shown) are provided, and the ECU 24 controls each electromagnetically driven device (not shown) to control the valve timing of the intake and exhaust valves. It has become.

【0042】ECU24は、減筒運転中に、噴射停止気
筒(例えば#5気筒)への燃料噴射を停止し、運転気筒
(例えば#1〜4気筒)の吸気バルブと排気バルブのバ
ルブタイミング、燃料噴射タイミング及び点火タイミン
グを運転気筒の数(例えば4)で720℃Aを分割した
クランク角(例えば180℃A)間隔で制御する。その
他の構成・制御は、前記実施形態(1)と同じである。
The ECU 24 stops the fuel injection to the injection stop cylinder (for example, the # 5 cylinder) during the reduced cylinder operation, and sets the valve timing of the intake valve and the exhaust valve of the operating cylinder (for example, # 1 to 4 cylinders), the fuel The injection timing and the ignition timing are controlled at intervals of a crank angle (for example, 180 ° C) obtained by dividing 720 ° C by the number of operating cylinders (for example, 4). Other configurations and controls are the same as those in the embodiment (1).

【0043】以上のように構成した本実施形態(3)で
は、減筒運転中に、運転気筒の数で720℃Aを分割し
た一定のクランク角毎に各運転気筒の爆発(燃焼)を発
生させることができるため、運転気筒の数と同じ気筒数
のエンジンと同じような燃焼サイクルでエンジン23を
運転することが可能となり、減筒運転によるトルク変
動、エンジン振動を効果的に低減することができる。
In the embodiment (3) configured as described above, during the reduced cylinder operation, explosion (combustion) of each operating cylinder occurs at every fixed crank angle obtained by dividing 720 ° A by the number of operating cylinders. Therefore, it is possible to operate the engine 23 in a combustion cycle similar to that of an engine having the same number of operating cylinders as the number of operating cylinders, and it is possible to effectively reduce torque fluctuation and engine vibration due to reduced cylinder operation. it can.

【0044】以上説明した各実施形態では、本発明を4
気筒又は5気筒エンジンに適用したが、他の気筒数のエ
ンジンに広く適用することができる。
In each of the embodiments described above, the present invention is applied
Although applied to a cylinder or five-cylinder engine, it can be widely applied to engines of other cylinder numbers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 1 is a schematic configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.

【図2】触媒早期暖機制御プログラムの処理の流れを示
すフローチャート
FIG. 2 is a flowchart showing a processing flow of a catalyst early warm-up control program.

【図3】実施形態(1)の減筒運転時の燃焼サイクルと
燃料噴射タイミングを説明するための図
FIG. 3 is a diagram for explaining a combustion cycle and fuel injection timing during a reduced cylinder operation according to the embodiment (1).

【図4】点火遅角動作開始直後の燃焼状態が安定してい
る場合の触媒早期暖機制御の一例を示すタイムチャート
FIG. 4 is a time chart showing an example of early catalyst warm-up control when the combustion state immediately after the start of the ignition retard operation is stable;

【図5】点火遅角動作開始直後の燃焼状態が安定してい
ない場合の触媒早期暖機制御の一例を示すタイムチャー
FIG. 5 is a time chart showing an example of early catalyst warm-up control when the combustion state immediately after the start of the ignition retard operation is not stable;

【図6】本発明の実施形態(2)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 6 is a schematic configuration diagram of an entire engine control system showing an embodiment (2) of the present invention.

【図7】本発明の実施形態(3)を示すエンジン制御シ
ステム全体の概略構成図
FIG. 7 is a schematic configuration diagram of an entire engine control system showing an embodiment (3) of the present invention.

【図8】実施形態(3)の減筒運転時の燃焼サイクルと
燃料噴射タイミングを説明するための図
FIG. 8 is a diagram for explaining a combustion cycle and fuel injection timing during reduced cylinder operation according to the embodiment (3).

【符号の説明】[Explanation of symbols]

11…エンジン(内燃機関)、15…燃料噴射弁、16
…排気管(排ガス通路)、17…触媒、18…ECU
(排ガス昇温制御手段,減筒運転制御手段)、19…点
火プラグ、20…エンジン、21…ECU、22…排気
マニホールド、23…エンジン、24…ECU。
11 ... engine (internal combustion engine), 15 ... fuel injection valve, 16
... exhaust pipe (exhaust gas passage), 17 ... catalyst, 18 ... ECU
(Exhaust gas temperature raising control means, reduced cylinder operation control means), 19: spark plug, 20: engine, 21: ECU, 22: exhaust manifold, 23: engine, 24: ECU.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 41/06 330 F02D 41/06 330Z 45/00 301 45/00 301D Fターム(参考) 3G084 BA09 BA13 BA16 BA17 BA23 CA02 DA00 DA10 EA11 EC01 EC02 EC03 FA33 3G091 AA02 AA17 AB01 BA03 BA13 CB02 CB05 CB06 DA02 DA07 DA08 FA04 FA05 3G092 AA01 BA05 BA08 BA09 BB01 CA07 DA01 DA02 DA08 EA01 EA04 EA06 EA08 EA14 FA00 FA15 GA02 HE01Z 3G301 HA01 JA00 JA21 KA05 KA26 LA00 LA07 MA01 MA11 MA24 NA08 NE12 NE19 PE01Z──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F02D 41/06 330 F02D 41/06 330Z 45/00 301 45/00 301D F-term (Reference) 3G084 BA09 BA13 BA16 BA17 BA23 CA02 DA00 DA10 EA11 EC01 EC02 EC03 FA33 3G091 AA02 AA17 AB01 BA03 BA13 CB02 CB05 CB06 DA02 DA07 DA08 FA04 FA05 3G092 AA01 BA05 BA08 BA09 BB01 CA07 DA01 DA02 DA08 EA01 EA04 EA06 EA00 FA01 FA01 FA00 LA07 MA01 MA11 MA24 NA08 NE12 NE19 PE01Z

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排ガスを浄化する触媒を早期
に暖機する早期暖機制御装置において、 触媒早期暖機制御時に排ガス中のリッチ成分が排ガス通
路内で燃焼可能な排ガス温度に昇温するように点火遅角
制御する排ガス昇温制御手段と、 触媒早期暖機制御時に一部の気筒(以下「噴射停止気
筒」という)ヘの燃料噴射を停止して残りの気筒(以下
「運転気筒」という)で内燃機関を運転する減筒運転を
行う減筒運転制御手段とを備えていることを特徴とする
排ガス浄化用触媒の早期暖機制御装置。
1. An early warm-up control device for early warming up a catalyst for purifying exhaust gas of an internal combustion engine, wherein a rich component in the exhaust gas is heated to an exhaust gas temperature at which a rich component in the exhaust gas can be combusted in an exhaust gas passage during early catalyst warm-up control. Exhaust gas temperature raising control means for performing ignition retard control so that fuel injection to some cylinders (hereinafter referred to as “injection stopped cylinders”) is stopped during early catalyst warm-up control and the remaining cylinders (hereinafter referred to as “operating cylinders”). ), The reduced-cylinder operation control means for performing the reduced-cylinder operation for operating the internal combustion engine.
【請求項2】 前記減筒運転制御手段は、減筒運転中に
前記運転気筒に供給する混合気の空燃比を理論空燃比付
近又は少しリーン側に制御することを特徴とする請求項
1に記載の排ガス浄化用触媒の早期暖機制御装置。
2. The reduced-cylinder operation control means controls an air-fuel ratio of an air-fuel mixture supplied to the operating cylinder to a value close to a stoichiometric air-fuel ratio or slightly lean during a reduced-cylinder operation. An early warm-up control device for an exhaust gas purifying catalyst as described in the above.
【請求項3】 前記減筒運転制御手段は、減筒運転中に
前記運転気筒の1回の燃焼行程中に複数回の点火を実行
することを特徴とする請求項1又は2に記載の排ガス浄
化用触媒の早期暖機制御装置。
3. The exhaust gas according to claim 1, wherein the reduced cylinder operation control means performs a plurality of ignitions during one combustion stroke of the operating cylinder during the reduced cylinder operation. Early warm-up control device for purification catalyst.
【請求項4】 前記排ガス昇温制御手段は、前記減筒運
転制御手段により減筒運転を開始した後に点火遅角制御
を開始することを特徴とする請求項1乃至3のいずれか
に記載の排ガス浄化用触媒の早期暖機制御装置。
4. The exhaust gas temperature raising control means starts ignition retard control after starting the reduced cylinder operation by the reduced cylinder operation control means. Early warm-up control device for exhaust gas purifying catalyst.
【請求項5】 前記減筒運転制御手段は、前記排ガス昇
温制御手段により点火遅角制御を開始するのと同時又は
その後に減筒運転を開始することを特徴とする請求項1
乃至3のいずれかに記載の排ガス浄化用触媒の早期暖機
制御装置。
5. The reduced-cylinder operation control means starts the reduced-cylinder operation simultaneously with or after starting the ignition retard control by the exhaust gas temperature raising control means.
4. The early warm-up control device for an exhaust gas purifying catalyst according to any one of claims 1 to 3.
【請求項6】 前記減筒運転制御手段は、始動後の運転
状態に応じて減筒運転の開始時期を変化させることを特
徴とする請求項1乃至3のいずれかに記載の排ガス浄化
用触媒の早期暖機制御装置。
6. The exhaust gas purifying catalyst according to claim 1, wherein the reduced-cylinder operation control means changes the start timing of the reduced-cylinder operation according to an operating state after the engine is started. Early warm-up control device.
【請求項7】 前記減筒運転制御手段は、減筒運転中に
前記噴射停止気筒を順次変更することを特徴とする請求
項1乃至6のいずれかに記載の排ガス浄化用触媒の早期
暖機制御装置。
7. The exhaust gas purifying catalyst according to claim 1, wherein the reduced cylinder operation control means sequentially changes the injection stop cylinder during the reduced cylinder operation. Control device.
【請求項8】 内燃機関の排気バルブのバルブタイミン
グを変化させる可変バルブタイミング手段を備え、 前記減筒運転制御手段は、減筒運転中に前記噴射停止気
筒の排気バルブのバルブタイミングを前記運転気筒の排
気バルブのバルブタイミングに応じて変化させることを
特徴とする請求項1乃至7のいずれかに記載の排ガス浄
化用触媒の早期暖機制御装置。
8. A variable valve timing means for changing a valve timing of an exhaust valve of the internal combustion engine, wherein the reduced cylinder operation control means sets the valve timing of the exhaust valve of the injection stop cylinder to the operating cylinder during the reduced cylinder operation. The early warm-up control device for an exhaust gas purifying catalyst according to any one of claims 1 to 7, wherein the controller is changed according to the valve timing of the exhaust valve.
【請求項9】 内燃機関の吸気バルブと排気バルブのバ
ルブタイミングを変化させる可変バルブタイミング手段
を備え、 前記減筒運転制御手段は、減筒運転中に前記運転気筒の
吸気バルブと排気バルブのバルブタイミング、燃料噴射
タイミング及び点火タイミングを運転気筒の数で720
℃Aを分割したクランク角間隔で制御することを特徴と
する請求項1乃至8のいずれかに記載の排ガス浄化用触
媒の早期暖機制御装置。
9. Variable valve timing means for changing valve timings of an intake valve and an exhaust valve of the internal combustion engine, wherein the reduced cylinder operation control means includes a valve for an intake valve and an exhaust valve of the operating cylinder during the reduced cylinder operation. The timing, fuel injection timing, and ignition timing are determined by the number of operating cylinders as 720.
9. The early warm-up control apparatus for an exhaust gas purifying catalyst according to claim 1, wherein the control is performed at a crank angle interval obtained by dividing the temperature (C).
JP36582799A 1999-12-06 1999-12-24 Early warm-up control device for exhaust emission control catalyst Pending JP2001182601A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP36582799A JP2001182601A (en) 1999-12-24 1999-12-24 Early warm-up control device for exhaust emission control catalyst
US09/729,855 US6560959B2 (en) 1999-12-06 2000-12-06 Exhaust gas purification apparatus of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36582799A JP2001182601A (en) 1999-12-24 1999-12-24 Early warm-up control device for exhaust emission control catalyst

Publications (1)

Publication Number Publication Date
JP2001182601A true JP2001182601A (en) 2001-07-06

Family

ID=18485218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36582799A Pending JP2001182601A (en) 1999-12-06 1999-12-24 Early warm-up control device for exhaust emission control catalyst

Country Status (1)

Country Link
JP (1) JP2001182601A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086710A1 (en) 2009-01-30 2010-08-05 Toyota Jidosha Kabushiki Kaisha Operation control device and operation control method for multi-cylinder internal combustion engine
JP2010236467A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Direct-injection engine with supercharger
JP2011007139A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp Engine cooling device
JP2011017303A (en) * 2009-07-09 2011-01-27 Toyota Motor Corp Vehicle damping control device
WO2014155175A1 (en) * 2013-03-27 2014-10-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017110617A (en) * 2015-12-18 2017-06-22 マツダ株式会社 Exhaust device of engine
CN110821609A (en) * 2018-08-07 2020-02-21 丰田自动车株式会社 Control device and control method for internal combustion engine
JP2022075162A (en) * 2020-11-06 2022-05-18 トヨタ自動車株式会社 Ignition timing controller of multi-cylinder internal combustion engine
US11365695B1 (en) * 2021-04-16 2022-06-21 Ford Global Technologies, Llc Methods and system for operating skipped cylinders to provide secondary air

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086710A1 (en) 2009-01-30 2010-08-05 Toyota Jidosha Kabushiki Kaisha Operation control device and operation control method for multi-cylinder internal combustion engine
DE112010000766T5 (en) 2009-01-30 2012-11-29 Toyota Jidosha K.K. Operation control apparatus and operation control method for a multi-cylinder internal combustion engine
US9328688B2 (en) 2009-03-31 2016-05-03 Mazda Motor Corporation Supercharged direct fuel injection engine
JP2010236467A (en) * 2009-03-31 2010-10-21 Mazda Motor Corp Direct-injection engine with supercharger
JP2011007139A (en) * 2009-06-26 2011-01-13 Toyota Motor Corp Engine cooling device
JP2011017303A (en) * 2009-07-09 2011-01-27 Toyota Motor Corp Vehicle damping control device
WO2014155175A1 (en) * 2013-03-27 2014-10-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2017110617A (en) * 2015-12-18 2017-06-22 マツダ株式会社 Exhaust device of engine
CN110821609A (en) * 2018-08-07 2020-02-21 丰田自动车株式会社 Control device and control method for internal combustion engine
CN110821609B (en) * 2018-08-07 2021-05-28 丰田自动车株式会社 Control device and control method for internal combustion engine
JP2022075162A (en) * 2020-11-06 2022-05-18 トヨタ自動車株式会社 Ignition timing controller of multi-cylinder internal combustion engine
US11454204B2 (en) 2020-11-06 2022-09-27 Toyota Jidosha Kabushiki Kaisha Ignition timing controller and ignition timing control method for multi-cylinder internal combustion engine
JP7327356B2 (en) 2020-11-06 2023-08-16 トヨタ自動車株式会社 Ignition timing control device for multi-cylinder internal combustion engine
US11365695B1 (en) * 2021-04-16 2022-06-21 Ford Global Technologies, Llc Methods and system for operating skipped cylinders to provide secondary air

Similar Documents

Publication Publication Date Title
JP3052856B2 (en) Exhaust heating device
JP3325231B2 (en) Control device for in-cylinder injection engine
JP3257423B2 (en) Exhaust heating device
KR100394842B1 (en) Internal Combustion Engine and it's Controlling Method
JP3963144B2 (en) Control device for spark ignition engine
JP4023115B2 (en) Control device for direct-injection spark ignition engine
JP3348659B2 (en) In-cylinder injection internal combustion engine
JPH11336574A (en) Control device for internal combustion engine
JP2001248481A (en) Control device for direct cylinder injection type engine
JP2002161770A (en) Variable valve timing control device for internal combustion engine
JP2001182601A (en) Early warm-up control device for exhaust emission control catalyst
JP2000145511A (en) Exhaust gas temperature raising device
JP3257420B2 (en) In-cylinder injection internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JP2000120471A (en) Cylinder injection type engine control device
JPH11280522A (en) Start control device for cylinder injection engine
JP3726580B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2002130024A (en) Controller for direct injection spark ignition type internal combustion engine
JP2000038948A (en) Cylinder direct injection type spark ignition engine
JP3149822B2 (en) Exhaust gas heating device for in-cylinder injection internal combustion engine
JP2001182586A (en) Exhaust-temperature raising device
JP2001073913A (en) Control device of direct injection spark ignition internal combustion engine
JP2002089339A (en) Cylinder fuel injection type spark ignition internal combustion engine
JP2000054872A (en) Internal combustion engine
JP3721791B2 (en) In-cylinder direct injection spark ignition engine