JP2006181451A - Method of reducing dioxin in fly ash from refuse incineration equipment - Google Patents

Method of reducing dioxin in fly ash from refuse incineration equipment Download PDF

Info

Publication number
JP2006181451A
JP2006181451A JP2004376790A JP2004376790A JP2006181451A JP 2006181451 A JP2006181451 A JP 2006181451A JP 2004376790 A JP2004376790 A JP 2004376790A JP 2004376790 A JP2004376790 A JP 2004376790A JP 2006181451 A JP2006181451 A JP 2006181451A
Authority
JP
Japan
Prior art keywords
potassium carbonate
fly ash
average particle
dioxins
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004376790A
Other languages
Japanese (ja)
Other versions
JP4581682B2 (en
Inventor
Hachiro Hirano
八朗 平野
Yasunori Yamaguchi
保徳 山口
Shigeru Sakurai
茂 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004376790A priority Critical patent/JP4581682B2/en
Publication of JP2006181451A publication Critical patent/JP2006181451A/en
Application granted granted Critical
Publication of JP4581682B2 publication Critical patent/JP4581682B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reducing dioxins in fly ash generated by refuse incineration equipment 1. <P>SOLUTION: The method of reducing dioxins in fly ash is characterized by bringing porous potassium carbonate of an average particle size of 1-50 μm, a specific surface area of 1.0-3.0 m<SP>2</SP>/g and a total volume of pores of 0.1-1.0 μm diameters of ≥0.08 mL/g and calcium hydroxide of an average particle size of 0.1-20 μm into contact with the fly ash generated by refuse incineration equipment 1 in the flue 4 at temperatures equal to or higher than 100 and lower than 300°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ゴミ焼却設備で発生する飛灰中のダイオキシン類の低減方法に関する。   The present invention relates to a method for reducing dioxins in fly ash generated in a garbage incineration facility.

ゴミ焼却設備でのダイオキシン類の排出源は、排ガスと飛灰や主灰等の固体残渣である。ここで高度な排ガス処理により排ガスに伴う排出量は低減でき、主灰は高温度の焼却で低減できるが、全体でのダイオキシン類の多くを占める固体残渣の飛灰に含まれるダイオキシン類の量は依然として多い。実際、ゴミ焼却設備からの排ガスを消石灰に活性炭を混合した薬剤で処理した場合、排ガス中のダイオキシン類は0.1ng−TEQ/Nmと極めて低くとも、飛灰中のダイオキシン類は1ng−TEQ/gは存在する。排ガス中の飛灰の濃度が5〜10g/Nmとすると、5〜10ng−TEQ/Nmのダイオキシン類が飛灰とともに捕捉されねばならない。よって、ゴミ焼却設備からのダイオキシン類の全発生量を削減するには、単に排ガス中のダイオキシン類を低減させるのみでなく、飛灰中のダイオキシン類を低減させることが重要である。 The sources of dioxins in garbage incineration equipment are exhaust gas and solid residues such as fly ash and main ash. The amount of dioxins contained in the solid residue fly ash, which occupies most of the dioxins in the whole, can be reduced by high-temperature incineration through high-temperature exhaust gas treatment. Still many. In fact, when the exhaust gas from the garbage incineration facility is treated with a chemical mixture of slaked lime and activated carbon, the dioxins in the exhaust gas are as low as 0.1 ng-TEQ / Nm 3 , but the dioxins in the fly ash are 1 ng-TEQ. / G is present. If the concentration of fly ash in the exhaust gas is 5 to 10 g / Nm 3 , 5 to 10 ng-TEQ / Nm 3 dioxins must be captured together with the fly ash. Therefore, in order to reduce the total amount of dioxins generated from garbage incineration facilities, it is important not only to reduce dioxins in exhaust gas but also to reduce dioxins in fly ash.

例えば、前述した排ガスからのダイオキシン類の除去で主に採用されている活性炭等による吸着法では、排ガス中のダイオキシン類が高度に除去されても、結局は飛灰等の固体廃棄物中のダイオキシン類の含有量が高くなってしまい、ゴミ焼却設備から排出されるダイオキシン類全量の低減には寄与しない。ここでの飛灰中のダイオキシン類濃度が高い理由は単にダイオキシン類が吸着されるのみでなく前駆体から再合成されることにもよる。よって再合成を抑制できることが重要な課題である。また飛灰中のダイオキシン類の生成条件は、排ガスとは異なり、滞留時間が長くダイオキシン類生成の触媒となる塩化銅等との接触時間も長い。よって排ガス中のダイオキシン類の低減方法をそのまま適用しても効果は少ない。このように基本的には、排ガス中のダイオキシン類の低減方法と飛灰中のダイオキシン類の低減方法は別方法である。   For example, in the adsorption method using activated carbon or the like, which is mainly used for the removal of dioxins from exhaust gas, the dioxins in solid waste such as fly ash are eventually removed even if dioxins in exhaust gas are highly removed. This will not contribute to the reduction of the total amount of dioxins discharged from garbage incineration facilities. The reason why the concentration of dioxins in the fly ash is high is that not only the dioxins are adsorbed but also re-synthesized from the precursor. Therefore, it is an important problem that resynthesis can be suppressed. In addition, the production conditions for dioxins in fly ash are different from exhaust gas, and the residence time is long and the contact time with copper chloride or the like, which is a catalyst for producing dioxins, is also long. Therefore, even if the method for reducing dioxins in exhaust gas is applied as it is, the effect is small. Thus, basically, the method for reducing dioxins in exhaust gas and the method for reducing dioxins in fly ash are different methods.

特許文献1〜3には、排ガス中のダイオキシン類や塩化水素を低減させる方法が記載されている。しかし、これらは何れも飛灰中のダイオキシン類の低減を目的とした発明ではなく、飛灰中のダイオキシン類を低下するに好適な薬剤種の選定やその薬剤の多孔質性、比表面積、平均粒子径、細孔構造等の重要な物性の開示は無い。また、特許文献3のように活性炭を併用するものは、活性炭にダイオキシン類が捕捉されるために飛灰中のダイオキシン類の量は低下しない。   Patent Documents 1 to 3 describe a method for reducing dioxins and hydrogen chloride in exhaust gas. However, these are not inventions aimed at reducing dioxins in the fly ash, but the selection of a drug type suitable for lowering the dioxins in the fly ash and the porosity, specific surface area, and average of the drug. There is no disclosure of important physical properties such as particle diameter and pore structure. Moreover, since the thing using activated carbon together like patent document 3 capture | acquires dioxins by activated carbon, the quantity of dioxins in fly ash does not fall.

特開平3−224618号公報(請求項1)JP-A-3-224618 (Claim 1) 特開平11−104439号公報(請求項1、2)JP-A-11-104439 (Claims 1 and 2) 特開2000−354735号公報(請求項1、3)JP 2000-354735 A (Claims 1 and 3)

本発明は、飛灰中のダイオキシン類を、300℃未満の低い温度で、容易に低減する方法を提供することを課題とする。   An object of the present invention is to provide a method for easily reducing dioxins in fly ash at a low temperature of less than 300 ° C.

本発明は、下記の方法を提供するものである。
(1)平均粒子径が1〜50μm、比表面積が1.0〜3.0m/gである多孔質の炭酸カリウム、および、水酸化カルシウムを、100℃以上300℃未満で、ゴミ焼却設備から発生する飛灰と接触させることを特徴とする飛灰中のダイオキシン類の低減方法。
(2)前記多孔質炭酸カリウムは、細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上である(1)記載の低減方法。
(3)前記多孔質炭酸カリウムは、多孔質炭酸カリウムと水酸化カルシウムの合計量に対して1〜50質量%である(1)または(2)記載の低減方法。
(4)前記多孔質炭酸カリウムおよび水酸化カルシウムを、ゴミ焼却設備の煙道中に噴霧して、その後飛灰と共に集塵する(1)〜(3)いずれか記載の低減方法。
(5)平均粒子径60〜500μmの多孔質炭酸カリウムを平均粒子径1〜50μmに粉砕しつつ煙道に噴霧する(4)記載の低減方法。
(6)平均粒子径60〜500μmの多孔質の炭酸カリウムを平均粒子径1〜50μmに粉砕したものを水酸化カルシウムと混合して煙道に噴霧する(4)記載の低減方法。
(7)平均粒子径60〜500μmの多孔質炭酸カリウムと平均粒子径20μm以下の水酸化カルシウムを混合してものを、粉砕しつつ煙道に噴霧する(4)記載の低減方法。
(8)多孔質炭酸カリウムおよび水酸化カルシウムよりなり、多孔質炭酸カリウムは平均粒子径が1〜50μmで比表面積が1.0〜3.0m/gで細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上であり、水酸化カルシウムは平均粒子径が0.1〜20μmであり、多孔質炭酸カリウムの含量が多孔質炭酸カリウムと水酸化カルシウムの合計量に対して1〜50質量%である、飛灰中のダイオキシン類の低減薬剤。
The present invention provides the following method.
(1) Porous potassium carbonate having an average particle diameter of 1 to 50 μm and a specific surface area of 1.0 to 3.0 m 2 / g and calcium hydroxide at 100 ° C. or higher and lower than 300 ° C. A method for reducing dioxins in fly ash, characterized by contacting with fly ash generated from ash.
(2) The method according to (1), wherein the porous potassium carbonate has a total pore volume of pores having a pore diameter of 0.1 to 1.0 μm of 0.08 mL / g or more.
(3) The reduction method according to (1) or (2), wherein the porous potassium carbonate is 1 to 50% by mass with respect to the total amount of porous potassium carbonate and calcium hydroxide.
(4) The reduction method according to any one of (1) to (3), wherein the porous potassium carbonate and calcium hydroxide are sprayed into a flue of a garbage incinerator and then collected together with fly ash.
(5) The reduction method according to (4), wherein porous potassium carbonate having an average particle size of 60 to 500 μm is sprayed on the flue while being pulverized to an average particle size of 1 to 50 μm.
(6) The reduction method according to (4), in which porous potassium carbonate having an average particle size of 60 to 500 μm is ground to an average particle size of 1 to 50 μm and mixed with calcium hydroxide and sprayed onto the flue.
(7) The reduction method according to (4), wherein a mixture of porous potassium carbonate having an average particle diameter of 60 to 500 μm and calcium hydroxide having an average particle diameter of 20 μm or less is sprayed on the flue while being pulverized.
(8) It consists of porous potassium carbonate and calcium hydroxide. The porous potassium carbonate has an average particle diameter of 1 to 50 μm, a specific surface area of 1.0 to 3.0 m 2 / g and a pore diameter of 0.1 to 1.0 μm. The total pore volume of these pores is 0.08 mL / g or more, calcium hydroxide has an average particle size of 0.1 to 20 μm, and the content of porous potassium carbonate is porous potassium carbonate and calcium hydroxide. The reduction | restoration agent of the dioxins in fly ash which is 1-50 mass% with respect to the total amount of.

本発明に係る薬剤の使用により、飛灰中のダイオキシン類を1ng−TEQ/g以下、さらには0.1ng−TEQ/gという、非常に低い濃度まで低減できる。しかも、300℃未満の低い温度で、飛灰中のダイオキシン類を容易に低減できる。また溶融炉や加熱炉等を有していないゴミ焼却設備でも追加設備無く実施可能である。   By using the chemicals according to the present invention, dioxins in fly ash can be reduced to a very low concentration of 1 ng-TEQ / g or less, further 0.1 ng-TEQ / g. Moreover, dioxins in fly ash can be easily reduced at a low temperature of less than 300 ° C. In addition, waste incineration equipment that does not have a melting furnace or heating furnace can be implemented without additional equipment.

本明細書において、特に説明のない場合、%は質量%を表す。また、mLは容量の単位であるミリリットルを表す。各物性値の測定にあたっては、平均粒径の測定は、粉砕品等で平均粒子径が微細で50μm以下の場合についてはレーザー散乱回折式の粒度分布測定装置使用して行う。本発明で使用した装置は「マイクロトラックFRA9220」(日機装社製商品名)である。未粉砕品等で平均粒子径が50μm超と大きい場合の平均粒子径についてはロータップ式ふるい分け測定により行う。本発明で使用した装置は「SIEVE SHAKER」(飯田製作所製商品名)である。比表面積の測定は、窒素置換法により行う。本発明で使用した装置は「迅速表面積測定装置SA−1000」(柴田科学社製商品名)である。また、細孔容積の測定は、水銀圧入式法により行う。本発明で使用した装置は「マイクロメリティックスポアサイザー9310形」(島津製作所製商品名、測定範囲:細孔径0.0071〜609.5μm)である。   In the present specification, unless otherwise specified,% represents mass%. Moreover, mL represents milliliter which is a unit of capacity. In measuring each physical property value, the average particle diameter is measured using a laser scattering diffraction type particle size distribution measuring apparatus when the average particle diameter is fine and 50 μm or less in a pulverized product or the like. The apparatus used in the present invention is “Microtrac FRA9220” (trade name, manufactured by Nikkiso Co., Ltd.). The average particle size when the average particle size is as large as more than 50 μm in an unground product or the like is measured by low-tap sieving measurement. The apparatus used in the present invention is “SIEVE SHAKER” (trade name, manufactured by Iida Seisakusho). The specific surface area is measured by a nitrogen substitution method. The apparatus used in the present invention is “rapid surface area measuring apparatus SA-1000” (trade name, manufactured by Shibata Kagaku Co.). The pore volume is measured by a mercury intrusion method. The apparatus used in the present invention is “Micromeritics Pore Sizer 9310 type” (trade name, manufactured by Shimadzu Corporation, measurement range: pore diameter 0.0071 to 609.5 μm).

まず、本発明に用いる多孔質炭酸カリウムについて説明する。多孔質炭酸カリウムは、平均粒子径が1〜50μm、比表面積が1.0〜3.0m/gである。多孔質炭酸カリウムの平均粒子径が50μmを超えると、飛灰中に同じ質量の炭酸カリウムを含んでいても、単位質量あたりの飛灰中の炭酸カリウムの個数が減少し、飛灰中での炭酸カリウムの分散度が低下してしまう。平均粒子径は、より好ましくは20μm以下、さらに好ましくは10μm以下である。一方、平均粒子径が小さいほど個数が増加して飛灰内での分散度が高くなるが、小さすぎると粉砕による製造が困難となったり、粒子同士が凝集する傾向が強くなり逆に分散性が低下したり、吸湿性が強く潮解しやすくなり細孔がつぶれたりし、好ましくない。よって、平均粒子径は1μm以上である。平均粒子径は、より好ましくは2μm以上、さらに好ましくは5μm以上である。 First, the porous potassium carbonate used in the present invention will be described. The porous potassium carbonate has an average particle diameter of 1 to 50 μm and a specific surface area of 1.0 to 3.0 m 2 / g. When the average particle diameter of the porous potassium carbonate exceeds 50 μm, even if the fly ash contains the same mass of potassium carbonate, the number of potassium carbonate in the fly ash per unit mass is reduced. Dispersion degree of potassium carbonate is lowered. The average particle diameter is more preferably 20 μm or less, still more preferably 10 μm or less. On the other hand, the smaller the average particle size, the greater the number and the higher the degree of dispersibility in the fly ash, but if it is too small, it becomes difficult to produce by pulverization or the particles tend to agglomerate with each other. This is not preferable because of a decrease in the moisture content, strong hygroscopicity, and easy deliquescence and collapse of the pores. Therefore, the average particle diameter is 1 μm or more. The average particle diameter is more preferably 2 μm or more, and further preferably 5 μm or more.

炭酸カリウムの比表面積は1.0〜3.0m/gで、より好ましくは上限は2.5m/gで、下限は1.5m/gである。比表面積が大きいほど反応に寄与する部分が多いが、一方、比表面積が大きいということは、細孔1個の細孔直径と細孔1個の細孔容積が小さいということであり、後述の細孔1個の細孔容積を大きくすることと相反し本用途での性能の低下につながるため、3.0m/g以下が好ましい。比表面積は1.0m/g未満では、反応に寄与する面積が少なくなりダイオキシン類の低減効果が低下する。同一の細孔構造であっても、比表面積は平均粒子径が小さいほど大きくなる。しかし前述のごとく平均粒子径が小さすぎると分散性、吸湿性、工業的生産性の観点から支障が出てくるため、この平均粒子径の制約からも比表面積は3.0m/g以下の範囲が好ましくなる。ここで炭酸カリウムが多孔質でない場合は、平均粒子径を10μmまで小さくしても、比表面積は1.0m/g未満に留まる。 The specific surface area of potassium carbonate in 1.0~3.0m 2 / g, more preferably the upper limit is 2.5 m 2 / g, the lower limit is 1.5 m 2 / g. The larger the specific surface area, the more part contributes to the reaction. On the other hand, the large specific surface area means that the pore diameter of one pore and the pore volume of one pore are small. Since it contradicts with increasing the pore volume of one pore and leads to a decrease in performance in this application, 3.0 m 2 / g or less is preferable. When the specific surface area is less than 1.0 m 2 / g, the area contributing to the reaction is reduced, and the effect of reducing dioxins is lowered. Even with the same pore structure, the specific surface area increases as the average particle size decreases. However, as described above, if the average particle size is too small, there are problems from the viewpoints of dispersibility, hygroscopicity, and industrial productivity. Therefore, the specific surface area is 3.0 m 2 / g or less due to the limitation of the average particle size. Range is preferred. Here, when potassium carbonate is not porous, the specific surface area remains below 1.0 m 2 / g even if the average particle size is reduced to 10 μm.

多孔質の炭酸カリウムは、細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上であることが好ましい。反応性を高くするために、炭酸カリウムは細孔径0.1〜1.0μmの細孔を数多く有していることが好ましく、細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上であることが好ましく、0.1mL/g以上であることがより好ましい。ここで細孔径は細孔の直径のことをいう。発明者らは、細孔径0.1〜1.0μmの細孔が発達することによって、反応相手となるダイオキシン類の前駆体の炭酸カリウム細孔内での物質移動が容易となるため、炭酸カリウムの飛灰中のダイオキシン類の低減効果が、無孔質の炭酸カリウムの場合に比較してさらに向上すると推測している。すなわち、本発明における多孔質の炭酸カリウムが飛灰に接して存在することによってクロロベンゼン類やクロロフェノール類等のダイオキシン類の前駆体と、塩素ガスや臭素ガスや塩化水素ガスとの反応が抑制されるので、飛灰中の重金属によるダイオキシン類の再合成も抑制されると推測される。細孔径0.1μm未満の微細な細孔では、比表面積が大きくとも、反応相手となるダイオキシン類の前駆体の炭酸カリウムの細孔内での物質移動速度が遅くなり、反応活性が低下すると推測している。この効果は特願2004−67204に示されるごとく、炭酸水素ナトリウムが焼成された多孔質の炭酸ナトリウムよりも多孔質炭酸カリウムが優れる。   In the porous potassium carbonate, the total pore volume of pores having a pore diameter of 0.1 to 1.0 μm is preferably 0.08 mL / g or more. In order to increase the reactivity, potassium carbonate preferably has a large number of pores having a pore diameter of 0.1 to 1.0 μm, and the pore volume of the pores having a pore diameter of 0.1 to 1.0 μm The total is preferably 0.08 mL / g or more, and more preferably 0.1 mL / g or more. Here, the pore diameter refers to the diameter of the pore. The inventors have developed a pore having a pore diameter of 0.1 to 1.0 μm, which facilitates mass transfer within the potassium carbonate pore of the precursor of the dioxins to be a reaction partner. It is estimated that the effect of reducing dioxins in the fly ash is further improved compared to the case of nonporous potassium carbonate. That is, the presence of porous potassium carbonate in contact with fly ash in the present invention suppresses the reaction between the precursors of dioxins such as chlorobenzenes and chlorophenols, and chlorine gas, bromine gas or hydrogen chloride gas. Therefore, it is speculated that the resynthesis of dioxins by heavy metals in fly ash is also suppressed. Presumably, fine pores with a pore diameter of less than 0.1 μm have a slow mass transfer rate within the potassium carbonate pores of the dioxin precursor, which is the reaction partner, even if the specific surface area is large, resulting in a decrease in reaction activity. is doing. As shown in Japanese Patent Application No. 2004-67204, this effect is superior to porous potassium carbonate than porous sodium carbonate obtained by firing sodium hydrogen carbonate.

比表面積の大きさに関連し、排ガス中の塩化水素ガスの低減と飛灰中のダイオキシン類の低減の機構は以下のように推測される。塩化水素ガスの分子はダイオキシン類の前駆体の分子に比較して小さいため、本薬剤の細孔径が小さくとも塩化水素ガスとの反応性は良く、さらに本薬剤の比表面積が大きいほど良い。一方、飛灰中のダイオキシン類の低減に関しては、ガス状のダイオキシン類の前駆体が炭酸カリウムの細孔内を拡散し、そこで脱塩素化されねばならないため、本薬剤の細孔径はダイオキシン類の前駆体に比較して大きいことが必要である。すなわち細孔径が小さいほど比表面積は大きくできるが、細孔径に下限があるために、比表面積に上限が出てくる。このため比表面積の値は、1.0〜3.0m/gが好ましいと推測される。 In relation to the size of the specific surface area, the mechanism of reduction of hydrogen chloride gas in exhaust gas and dioxins in fly ash is estimated as follows. Since the molecule of hydrogen chloride gas is smaller than the molecule of the precursor of dioxins, the reactivity with hydrogen chloride gas is good even if the pore size of the drug is small, and the larger the specific surface area of the drug is better. On the other hand, with regard to the reduction of dioxins in fly ash, since the gaseous dioxin precursor diffuses in the pores of potassium carbonate and must be dechlorinated there, the pore size of this drug is the same as that of dioxins. It needs to be large compared to the precursor. That is, the smaller the pore diameter, the larger the specific surface area. However, since the pore diameter has a lower limit, an upper limit appears in the specific surface area. For this reason, it is estimated that the value of a specific surface area is preferably 1.0 to 3.0 m 2 / g.

本発明に用いる水酸化カルシウムは、排ガス中の塩化水素等の酸性ガス成分を除去する効果を有し、多孔質の炭酸カリウムが排ガス中の塩化水素等の酸性ガス成分との反応により消耗されるのを抑制する。このため、本方法においては、経済的にも効能とバランスのとれたダイオキシンの低減方法が実現できる。水酸化カルシウムは、消石灰で良く、平均粒子径は、塩化水素ガスとの反応に供されるので、排ガス中の分散をよくするためと、比表面積を増加して塩化水素等の酸性ガス成分との反応性を向上させるために、細かい方が良いので20μm以下が好ましい。より好ましくは10μm以下である。また、水酸化カルシウムの平均粒子径は、0.1μm以上であることが好ましい。微細な水酸化カルシウムほど、排ガス中での単位質量あたりの個数が増加し塩化水素等の酸性ガスの水酸化カルシウム粒子への拡散距離が短くなり、かつ比表面積も大きくなるので、排ガス中の塩化水素等の酸性ガス成分との反応に優れるが、0.1μm未満の水酸化カルシウムは工業的に製造するには高価となるし、さらに凝集しやすくなる。   Calcium hydroxide used in the present invention has an effect of removing acidic gas components such as hydrogen chloride in exhaust gas, and porous potassium carbonate is consumed by reaction with acidic gas components such as hydrogen chloride in exhaust gas. To suppress. For this reason, in this method, the reduction method of dioxin with which the effect and balance were economically realizable is realizable. Calcium hydroxide may be slaked lime, and the average particle size is provided for reaction with hydrogen chloride gas, so as to improve dispersion in the exhaust gas, and increase the specific surface area and acid gas components such as hydrogen chloride. In order to improve the reactivity of this, since the finer one is good, 20 micrometers or less are preferable. More preferably, it is 10 μm or less. Moreover, it is preferable that the average particle diameter of a calcium hydroxide is 0.1 micrometer or more. Finer calcium hydroxide increases the number per unit mass in the exhaust gas, shortens the diffusion distance of acidic gas such as hydrogen chloride to the calcium hydroxide particles, and increases the specific surface area. Although it is excellent in reaction with acidic gas components such as hydrogen, calcium hydroxide of less than 0.1 μm is expensive to industrially manufacture and more easily aggregates.

本発明において、排ガス中の塩化水素等の酸性ガス成分の濃度にもよるが、多孔質の炭酸カリウムは多孔質の炭酸カリウムと水酸化カルシウムの合計に対して1〜50%であることが好ましい。より好ましくは、5〜40%である。1%未満であるとダイオキシン類の低減効果が十分発現しないおそれがあり、50%より多いと、飛灰中のダイオキシン類の低減効果は向上するものの、一般的には水酸化カルシウムより高価である炭酸カリウムの使用量が増加しコストが過大となってしまう。   In the present invention, although depending on the concentration of acidic gas components such as hydrogen chloride in the exhaust gas, the porous potassium carbonate is preferably 1 to 50% with respect to the total of the porous potassium carbonate and calcium hydroxide. . More preferably, it is 5 to 40%. If it is less than 1%, the dioxin reduction effect may not be sufficiently manifested. If it exceeds 50%, the dioxin reduction effect in fly ash is improved, but it is generally more expensive than calcium hydroxide. The amount of potassium carbonate used increases and the cost becomes excessive.

水酸化カルシウムは多孔質の炭酸カリウムと混合した後に噴霧してもよく、あるいは水酸化カルシウムを先に煙道の上流部分に噴霧して下流で炭酸カリウムを噴霧するなど、別々に噴霧してもよい。   Calcium hydroxide may be sprayed after mixing with porous potassium carbonate, or sprayed separately, such as spraying calcium hydroxide first on the upstream part of the flue and then spraying potassium carbonate downstream. Good.

排ガス中の塩化水素等の酸性ガス成分の除去のために、水酸化カルシウムを使用する利点としては、水酸化カルシウムが安価であり、消石灰として入手が容易であること、さらにはこれらの事情によりゴミ焼却の排ガス中の塩化水素の除去薬剤として普及しているために、利用できる既設設備がすでに整っていることが挙げられる。   The advantages of using calcium hydroxide to remove acidic gas components such as hydrogen chloride in the exhaust gas are that calcium hydroxide is inexpensive and easily available as slaked lime, and further, because of these circumstances, it is garbage. It can be mentioned that the existing facilities that can be used are already in place because of its widespread use as an agent for removing hydrogen chloride in exhaust gas from incineration.

本発明で用いる多孔質の炭酸カリウムは、ヒュームドシリカを多孔質の炭酸カリウムとヒュームドシリカとの合計に対して0.1〜5%含むことが好ましい。微粉に粉砕した場合の分散性の向上には固結防止剤を使用することができる。特にヒュームドシリカは好適に使用できる。ヒュームドシリカは親水性あるいは疎水性ともに使用できるが、飛灰を引き続き、水に溶解する等の、湿式処理する場合は親水性のヒュームドシリカの使用が好ましい。またヒュームドシリカは平均粒子径1〜50μmの炭酸カリウムに混合するだけでなく、後述するオンサイト粉砕法において、粉砕する前の平均粒子径60〜500μmの炭酸カリウムに混合して使用できる。これによって粉砕機への粉体の安定した投入ができ、かつ粉砕中の凝集を抑制し、さらに粉砕後の微粉の分散性を改善でき、本薬剤を飛灰に均一に添加できる。ヒュームドシリカの添加量は多孔質の炭酸カリウムとヒュームドシリカとの合計に対して、さらに好ましくは0.3〜2%である。ヒュームドシリカの添加量は0.1%未満では添加効果が少ない。一方、ヒュームドシリカは高価であるために5%を超えて添加することは経済的でない。   The porous potassium carbonate used in the present invention preferably contains 0.1 to 5% of fumed silica with respect to the total of porous potassium carbonate and fumed silica. An anti-caking agent can be used to improve dispersibility when pulverized into fine powder. In particular, fumed silica can be preferably used. Although fumed silica can be used for both hydrophilicity and hydrophobicity, it is preferable to use hydrophilic fumed silica in the case of wet treatment such as dissolving fly ash in water. Further, fumed silica is not only mixed with potassium carbonate having an average particle diameter of 1 to 50 μm, but can also be used by mixing with potassium carbonate having an average particle diameter of 60 to 500 μm before pulverization in an on-site pulverization method described later. As a result, powder can be stably charged into the pulverizer, aggregation during pulverization can be suppressed, dispersibility of the fine powder after pulverization can be improved, and the drug can be uniformly added to the fly ash. The amount of fumed silica added is more preferably 0.3 to 2% based on the total amount of porous potassium carbonate and fumed silica. If the addition amount of fumed silica is less than 0.1%, the addition effect is small. On the other hand, since fumed silica is expensive, it is not economical to add more than 5%.

本発明においては、多孔質炭酸カリウムとともに実質的には活性炭を使用しないことが好ましい。活性炭は水不溶解成分として固形廃棄物を増加させることとなり、また引火性であるため高温での使用にあたり制約が出るからである。さらに本発明の目的である飛灰中のダイオキシン類を減らす観点から見ても、活性炭はダイオキシン類を吸着するのみであり、飛灰中のダイオキシン類の低減には寄与しないので不要である。   In the present invention, it is preferable that substantially no activated carbon is used together with the porous potassium carbonate. This is because activated carbon increases solid waste as a water-insoluble component, and it is flammable, which limits its use at high temperatures. Furthermore, from the viewpoint of reducing dioxins in fly ash, which is the object of the present invention, activated carbon only adsorbs dioxins and is unnecessary because it does not contribute to the reduction of dioxins in fly ash.

本発明は上記の多孔質炭酸カリウムおよび水酸化カリウム(以下あわせて本薬剤という。)を100℃以上300℃未満で、ゴミ焼却設備から発生する飛灰と接触させることにより飛灰中のダイオキシン類を低減する方法である。本薬剤を飛灰と接触させる温度は、100℃以上300℃未満である。下限が100℃未満であると、本薬剤の反応性が低下したり、ゴミ焼却ガスが結露し本薬剤が吸湿したり、酸露点以下となり設備腐食が発生したりする。また、300℃以上では本薬剤の細孔構造が次第に変化することで比表面積が低下したり、設備がアルカリ腐食したりする。より好ましくは下限は120℃で上限は260℃である。   The present invention relates to dioxins in fly ash by bringing the above porous potassium carbonate and potassium hydroxide (hereinafter collectively referred to as the present drug) into contact with fly ash generated from waste incineration equipment at 100 ° C. or more and less than 300 ° C. This is a method for reducing the above. The temperature which makes this chemical | medical agent contact with fly ash is 100 degreeC or more and less than 300 degreeC. If the lower limit is less than 100 ° C., the reactivity of the drug is reduced, the incineration gas is condensed and the drug absorbs moisture, or the acid dew point is not reached and equipment corrosion occurs. In addition, at 300 ° C. or higher, the specific surface area decreases due to the gradual change of the pore structure of the drug, and the equipment corrodes with alkali. More preferably, the lower limit is 120 ° C and the upper limit is 260 ° C.

本発明においてゴミ焼却設備とは、都市ゴミ、産業廃棄物、RDF(熱可塑性樹脂を含むゴミを粉砕乾燥して圧縮成形した固形化物)を燃焼する設備をいう。   In the present invention, the waste incineration equipment refers to equipment that burns municipal waste, industrial waste, and RDF (solidified product obtained by compressing and molding waste containing thermoplastic resin).

以下に、本発明の実施の形態について図面を参照して説明する。図1は、本発明をゴミ焼却設備から発生する飛灰中のダイオキシン低減に適用した好適な例の概要を示したものである。本発明の実施の態様は、本図を用いた説明に限定されるものではなく、飛灰をゴミ焼却設備から取り出した後、本薬剤と飛灰とを混合して外熱式のロータリーキルンなどで100〜300℃に加熱する態様も含む。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an outline of a preferred example in which the present invention is applied to dioxin reduction in fly ash generated from garbage incineration equipment. The embodiment of the present invention is not limited to the description using this figure. After taking out the fly ash from the garbage incineration facility, the present chemical and the fly ash are mixed and used in an externally heated rotary kiln or the like. The aspect heated to 100-300 degreeC is also included.

本発明の飛灰中のダイオキシン類の低減方法の態様として、本薬剤をゴミ焼却設備の煙道に噴霧しその後、飛灰と共に集塵することが好ましい。例えば図1のゴミ焼却設備1から発生する排ガス中に、第2の煙道4で噴霧する。本薬剤の噴霧にあたっては、水溶液やスラリーにせず粉体のまま使用する。噴霧された本薬剤は、飛灰と共にバグフィルターや電気集塵機等の集塵装置で捕集される。例えば図1の集塵装置5で除去されて、さらに排ガスは第3の煙道6を通って煙突7から排出される。   As an embodiment of the method for reducing dioxins in fly ash according to the present invention, it is preferable to spray the chemical on a flue of a garbage incinerator and then collect the dust together with fly ash. For example, the second flue 4 sprays the exhaust gas generated from the waste incineration facility 1 of FIG. When spraying this drug, use it in powder form without using aqueous solution or slurry. The sprayed medicine is collected together with fly ash by a dust collector such as a bag filter or an electric dust collector. For example, it is removed by the dust collector 5 of FIG. 1, and the exhaust gas is further discharged from the chimney 7 through the third flue 6.

本薬剤のうちの炭酸カリウムを煙道に噴霧する態様として、平均粒子径60〜500μmの多孔質の炭酸カリウムを平均粒子径1〜50μmに粉砕しつつ煙道に噴霧することが好ましい。粉砕される前の平均粒子径は粉砕機への投入が安定するように60〜500μmが好適である。より好ましくは100〜400μmである。500μm超であると粉砕機が大型となり、60μm未満であると粉体としての流動性が低下し粉砕機への投入が安定しない。ここで粉砕された炭酸カリウムの平均粒子径は1〜50μmで、より好ましくは1〜20μm、さらに好ましくは1〜10μmである。事前に平均粒子径50μm以下の微粉を準備してこれを噴霧せず、平均粒子径60〜500μmの粗粉を平均粒子径1〜50μmに粉砕しつつ噴霧する方法を、以下、オンサイト粉砕法という。また、平均粒子径60〜500μmの多孔質の炭酸カリウムの比表面積は1m/g以上が好ましい。すなわち平均粒子径1〜50μmに粉砕された後に比表面積が1.0〜3.0m/gとなる必要がある。 As an aspect of spraying potassium carbonate of the present agent onto the flue, it is preferable to spray porous potassium carbonate having an average particle size of 60 to 500 μm to the flue while being pulverized to an average particle size of 1 to 50 μm. The average particle size before pulverization is preferably 60 to 500 μm so that the input to the pulverizer is stable. More preferably, it is 100-400 micrometers. If it exceeds 500 μm, the pulverizer becomes large, and if it is less than 60 μm, the fluidity as a powder decreases and the charging to the pulverizer becomes unstable. The average particle diameter of the pulverized potassium carbonate is 1 to 50 μm, more preferably 1 to 20 μm, and still more preferably 1 to 10 μm. An on-site pulverization method, in which a fine powder having an average particle size of 50 μm or less is prepared in advance and sprayed without pulverizing a coarse powder having an average particle size of 60 to 500 μm to an average particle size of 1 to 50 μm, That's it. The specific surface area of porous potassium carbonate having an average particle size of 60 to 500 μm is preferably 1 m 2 / g or more. That is, the specific surface area needs to be 1.0 to 3.0 m 2 / g after being pulverized to an average particle diameter of 1 to 50 μm.

この場合は水酸化カルシウムは別に煙道中に噴霧される。一方、所定の平均粒子径にした炭酸カリウムと水酸化カルシウムを予め混合したものを噴霧しても良い。この場合には、炭酸カリウム単独の場合に比べて、固結しにくいという利点がある。   In this case, calcium hydroxide is sprayed separately into the flue. On the other hand, a premixed mixture of potassium carbonate and calcium hydroxide having a predetermined average particle diameter may be sprayed. In this case, there is an advantage that it is difficult to consolidate compared to the case of potassium carbonate alone.

本薬剤を煙道に噴霧する別の態様として、平均粒子径60〜500μmの炭酸カリウムと平均粒子径20μm以下の水酸化カルシウムを混合して、炭酸カリウムの平均粒子径を1〜50μmに粉砕しつつ煙道に噴霧しても良い。   As another aspect of spraying the drug on the flue, potassium carbonate having an average particle size of 60 to 500 μm and calcium hydroxide having an average particle size of 20 μm or less are mixed, and the average particle size of potassium carbonate is pulverized to 1 to 50 μm. You may spray on the flue while.

平均粒子径60〜500μmの炭酸カリウムと水酸化カルシウムの合計に対して炭酸カリウムを1〜50%混合することが好ましい。これは吸湿性の低い水酸化カルシウムが介在するために炭酸カリウムが粉砕機のハンマーや分級機のインペラに付着することを防止できるからである。   It is preferable to mix 1 to 50% of potassium carbonate with respect to the total of potassium carbonate and calcium hydroxide having an average particle size of 60 to 500 μm. This is because calcium hydroxide having low hygroscopicity is present, so that potassium carbonate can be prevented from adhering to the hammer of the grinder or the impeller of the classifier.

他の態様としては事前に粉砕した多孔質炭酸カリウムや水酸化カルシウムを混合し、あるいは別々に貯層に貯留して、一定量を逐次使用する方法を採用することができる。この方法は、微粉砕を別のラインで大規模に効率良く実施できるので、小規模のゴミ焼却設備で本発明を採用する場合に有利となる。   As another aspect, it is possible to employ a method in which porous potassium carbonate or calcium hydroxide pulverized in advance is mixed or separately stored in a reservoir and a certain amount is sequentially used. This method is advantageous when the present invention is adopted in a small-scale waste incineration facility because fine pulverization can be efficiently performed on a large scale in another line.

なお、上記した粉砕には、風力式分級機能を内蔵した衝撃式粉砕器、例えば「ACMパルベライザー」(ホソカワミクロン社製商品名)が好適に使用できる。炭酸カリウムは吸湿性が強いために、露点が0℃以下、より好ましくは露点が−10℃以下の乾燥空気中で粉砕を行う。   For the above-described pulverization, an impact pulverizer having a built-in wind classification function, for example, “ACM Pulverizer” (trade name, manufactured by Hosokawa Micron Co., Ltd.) can be preferably used. Since potassium carbonate has strong hygroscopicity, it is pulverized in dry air having a dew point of 0 ° C. or lower, more preferably −10 ° C. or lower.

[例1(実施例)]
バッチ炉のゴミ焼却設備で、3000kgの紙類を、20時間で焼却した。ゴミ焼却部分の温度制御は400〜480℃となっている。燃焼の初期は一次バーナーで補助燃料として天然ガスを用いて燃焼し、8時間後は補助燃料を停止し、自燃で推移する。さらにここで発生した排ガスを二次バーナーで800〜900℃に温度制御した。この排ガスはその後、スプレー式の冷却塔である冷却装置3で180℃に冷却され、次いで本発明の薬剤が噴霧され、バグフィルターである集塵装置5集塵される。下記の各例においてはゴミ質と焼却量は同じとした。
[Example 1 (Example)]
In a batch furnace garbage incineration facility, 3000 kg of paper was incinerated in 20 hours. The temperature control of the waste incineration part is 400 to 480 ° C. In the initial stage of combustion, the primary burner burns using natural gas as auxiliary fuel, and after 8 hours, the auxiliary fuel is stopped and changes by self-combustion. Further, the temperature of the exhaust gas generated here was controlled to 800 to 900 ° C. with a secondary burner. Thereafter, the exhaust gas is cooled to 180 ° C. by the cooling device 3 which is a spray-type cooling tower, and then the chemical of the present invention is sprayed to collect the dust collecting device 5 which is a bag filter. In the following examples, the waste quality and the amount of incineration were the same.

以下に本薬剤の調整について記載する。ここに平均粒子径290μmの多孔質の炭酸カリウムを、ACMパルベライザーACM−5型(ホソカワミクロン社製商品名)を用いて、露点が−15℃の乾燥空気中で粉砕して作製しておいた平均粒子径12μmの炭酸カリウム10質量%と、宇部マテリアル株式会社の平均粒子径6.5μmの消石灰特号90質量%とを事前に混合した本薬剤を、6.8kg/h噴霧した。噴霧場所は水噴霧式の冷却塔である冷却装置3とバグフィルターである集塵装置5の間の第2の煙道4である。噴霧した炭酸カリウムの物性を表1に示す。   The adjustment of this drug is described below. Here, porous potassium carbonate having an average particle size of 290 μm was pulverized in dry air having a dew point of −15 ° C. using an ACM pulverizer ACM-5 type (trade name, manufactured by Hosokawa Micron Corporation). This drug in which 10% by mass of potassium carbonate having a particle size of 12 μm and 90% by mass of special slaked lime having an average particle size of 6.5 μm by Ube Material Co., Ltd. was sprayed in advance was sprayed at 6.8 kg / h. A spraying place is the 2nd flue 4 between the cooling device 3 which is a water spray type cooling tower, and the dust collector 5 which is a bag filter. Table 1 shows the physical properties of the sprayed potassium carbonate.

Figure 2006181451
Figure 2006181451

燃焼状態が安定する焼却開始2時間後から、バグフィルターである集塵装置5出口における排ガスおよび飛灰の分析を開始した。分析結果は表2のようであった。排ガス中のダイオキシン類の濃度も活性炭を使用していなかったが良好であった。   Two hours after the start of incineration when the combustion state was stabilized, analysis of exhaust gas and fly ash at the outlet of the dust collector 5 as a bag filter was started. The analysis results were as shown in Table 2. The concentration of dioxins in the exhaust gas was good even though no activated carbon was used.

[例2(比較例)]
例1と同一設備を用い、同一焼却条件で、噴霧する薬剤を消石灰のみとした。使用した消石灰は例1と同じく宇部マテリアルズ株式会社の消石灰特号を使用した。噴霧量は6.8kg/hであった。
[Example 2 (comparative example)]
Using the same equipment as in Example 1, the sprayed chemical was only slaked lime under the same incineration conditions. The slaked lime used was the slaked lime special number of Ube Materials Corporation as in Example 1. The spray amount was 6.8 kg / h.

Figure 2006181451
Figure 2006181451

本発明によって飛灰中のダイオキシン類を低減できた。本発明の炭酸カリウムの効果に関して例1と例2と比較すると、例1は、例2と同一の特号消石灰の10%を本発明の炭酸カリウムに置換したのみであるが、飛灰中のダイオキシン類について、例1は例2に対し、0.10/0.26=0.38倍であった。一方、塩化水素ガスの濃度については、例1は例2に対し、21/35=0.60倍であったことから、本発明の炭酸カリウムが飛灰中のダイオキシン類の選択的低減に効果があったことが分かる。また、排ガス中のダイオキシン類の濃度については、例1は例2に対し、0.32/0.5=0.64倍、すなわち、低減したものの飛灰中のダイオキシン類の低減効果(0.38倍)までには至らなかった。これは本薬剤が飛灰中のダイオキシン類の低減により効果的であったことを示している。   Dioxins in fly ash can be reduced by the present invention. Compared with Example 1 and Example 2 regarding the effect of the potassium carbonate of the present invention, Example 1 was obtained by replacing only 10% of the same special slaked lime as Example 2 with the potassium carbonate of the present invention. Regarding dioxins, Example 1 was 0.10 / 0.26 = 0.38 times that of Example 2. On the other hand, since the concentration of hydrogen chloride gas in Example 1 was 21/35 = 0.60 times that in Example 2, the potassium carbonate of the present invention was effective in selectively reducing dioxins in fly ash. You can see that there was. Moreover, about the density | concentration of the dioxins in waste gas, Example 1 is 0.32 / 0.5 = 0.64 times compared with Example 2, That is, although it reduced, the reduction effect of dioxins in fly ash (0. 38 times). This indicates that the drug was effective in reducing dioxins in fly ash.

本発明は、ゴミ焼却設備から発生する飛灰中のダイオキシン類の低減に利用できる。   The present invention can be used to reduce dioxins in fly ash generated from garbage incineration facilities.

本発明に係る薬剤を使用するゴミ焼却設備の概要を示す図。The figure which shows the outline | summary of the garbage incineration equipment which uses the chemical | medical agent which concerns on this invention.

符号の説明Explanation of symbols

1.ゴミ焼却設備、
2.第1の煙道、
3.冷却装置、
4.第2の煙道、
5.集塵装置、
6.第3の煙道、
7.煙突、
8.薬剤(飛灰中のダイオキシン類低減剤)、
9.飛灰。
1. Garbage incineration equipment,
2. The first flue,
3. Cooling system,
4). The second flue,
5. Dust collector,
6). The third flue,
7). chimney,
8). Drugs (reducing agents for dioxins in fly ash),
9. Fly ash.

Claims (8)

平均粒子径が1〜50μm、比表面積が1.0〜3.0m/gである多孔質の炭酸カリウム、および、水酸化カルシウムを、100℃以上300℃未満で、ゴミ焼却設備から発生する飛灰と接触させることを特徴とする飛灰中のダイオキシン類の低減方法。 Porous potassium carbonate having an average particle diameter of 1 to 50 μm and a specific surface area of 1.0 to 3.0 m 2 / g and calcium hydroxide are generated from a waste incineration facility at 100 ° C. or more and less than 300 ° C. A method for reducing dioxins in fly ash, characterized by contacting with fly ash. 前記多孔質炭酸カリウムは、細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上である請求項1記載の低減方法。   2. The reduction method according to claim 1, wherein the porous potassium carbonate has a total pore volume of pores having a pore diameter of 0.1 to 1.0 μm of 0.08 mL / g or more. 前記多孔質炭酸カリウムは、多孔質炭酸カリウムと水酸化カルシウムの合計量に対して1〜50質量%である請求項1または2記載の低減方法。   The reduction method according to claim 1 or 2, wherein the porous potassium carbonate is 1 to 50 mass% with respect to the total amount of porous potassium carbonate and calcium hydroxide. 前記多孔質炭酸カリウムおよび水酸化カルシウムを、ゴミ焼却設備の煙道中に噴霧して、その後飛灰と共に集塵する請求項1〜3いずれか記載の低減方法。   The reduction method according to any one of claims 1 to 3, wherein the porous potassium carbonate and calcium hydroxide are sprayed into a flue of a garbage incinerator and then collected together with fly ash. 平均粒子径60〜500μmの多孔質炭酸カリウムを平均粒子径1〜50μmに粉砕しつつ煙道に噴霧する請求項4記載の低減方法。   The reduction method according to claim 4, wherein porous potassium carbonate having an average particle size of 60 to 500 μm is sprayed on the flue while being pulverized to an average particle size of 1 to 50 μm. 平均粒子径60〜500μmの多孔質の炭酸カリウムを平均粒子径1〜50μmに粉砕したものを水酸化カルシウムと混合して煙道に噴霧する請求項4記載の低減方法。   The reduction method according to claim 4, wherein porous potassium carbonate having an average particle size of 60 to 500 μm is pulverized to an average particle size of 1 to 50 μm and mixed with calcium hydroxide and sprayed onto the flue. 平均粒子径60〜500μmの多孔質炭酸カリウムと平均粒子径20μm以下の水酸化カルシウムを混合してものを、粉砕しつつ煙道に噴霧する請求項4記載の低減方法。   The reduction method according to claim 4, wherein a mixture of porous potassium carbonate having an average particle size of 60 to 500 µm and calcium hydroxide having an average particle size of 20 µm or less is sprayed on the flue while being pulverized. 多孔質炭酸カリウムおよび水酸化カルシウムよりなり、多孔質炭酸カリウムは平均粒子径が1〜50μmで比表面積が1.0〜3.0m/gで細孔径0.1〜1.0μmの細孔の細孔容積の合計が0.08mL/g以上であり、水酸化カルシウムは平均粒子径が0.1〜20μmであり、多孔質炭酸カリウムの含量が多孔質炭酸カリウムと水酸化カルシウムの合計量に対して1〜50質量%である、飛灰中のダイオキシン類の低減薬剤。
The porous potassium carbonate is composed of porous potassium carbonate and calcium hydroxide. The porous potassium carbonate has an average particle diameter of 1 to 50 μm, a specific surface area of 1.0 to 3.0 m 2 / g and a pore diameter of 0.1 to 1.0 μm. The total pore volume is 0.08 mL / g or more, calcium hydroxide has an average particle size of 0.1 to 20 μm, and the content of porous potassium carbonate is the total amount of porous potassium carbonate and calcium hydroxide. 1-50 mass% with respect to dioxins in fly ash.
JP2004376790A 2004-12-27 2004-12-27 Reduction method of dioxins in fly ash of garbage incineration equipment Expired - Fee Related JP4581682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376790A JP4581682B2 (en) 2004-12-27 2004-12-27 Reduction method of dioxins in fly ash of garbage incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376790A JP4581682B2 (en) 2004-12-27 2004-12-27 Reduction method of dioxins in fly ash of garbage incineration equipment

Publications (2)

Publication Number Publication Date
JP2006181451A true JP2006181451A (en) 2006-07-13
JP4581682B2 JP4581682B2 (en) 2010-11-17

Family

ID=36734939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376790A Expired - Fee Related JP4581682B2 (en) 2004-12-27 2004-12-27 Reduction method of dioxins in fly ash of garbage incineration equipment

Country Status (1)

Country Link
JP (1) JP4581682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187243A1 (en) * 2015-12-30 2017-07-05 Lhoist Recherche et Développement S.A. Composition for the purification of flue gas
CN108697977A (en) * 2015-12-30 2018-10-23 勒瓦研究开发股份有限公司 Composition for purification flue gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220438A (en) * 1996-02-16 1997-08-26 Kurita Water Ind Ltd Material for preventing formation of dioxins in incinerator and method therefor
JPH11104439A (en) * 1997-10-01 1999-04-20 Asahi Glass Co Ltd Removing agent for acidic ingredient in gas and removal of acidic ingredient

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220438A (en) * 1996-02-16 1997-08-26 Kurita Water Ind Ltd Material for preventing formation of dioxins in incinerator and method therefor
JPH11104439A (en) * 1997-10-01 1999-04-20 Asahi Glass Co Ltd Removing agent for acidic ingredient in gas and removal of acidic ingredient

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3187243A1 (en) * 2015-12-30 2017-07-05 Lhoist Recherche et Développement S.A. Composition for the purification of flue gas
WO2017114819A1 (en) * 2015-12-30 2017-07-06 Lhoist Recherche Et Développement S.A. Composition for the purification of flue gas
CN108602011A (en) * 2015-12-30 2018-09-28 勒瓦研究开发股份有限公司 Composition for purification flue gas
CN108697977A (en) * 2015-12-30 2018-10-23 勒瓦研究开发股份有限公司 Composition for purification flue gas
JP2019502551A (en) * 2015-12-30 2019-01-31 ロイスト ルシェルシュ エ デヴロップマン エス.ア.Lhoist Recherche et Developpement S.A. Composition for purification of flue gas
JP2021035674A (en) * 2015-12-30 2021-03-04 ロイスト ルシェルシュ エ デヴロップマン エス.ア.Lhoist Recherche et Developpement S.A. Composition for purification of flue gas

Also Published As

Publication number Publication date
JP4581682B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
JP2006239689A (en) Acid component-removing agent, method for producing it and method for removing acid component
Xue et al. Enabling efficient and economical degradation of PCDD/Fs in MSWIFA via catalysis and dechlorination effect of EMR in synergistic thermal treatment
TWI726189B (en) Acid gas treatment agent and acid gas treatment method
JP2003286020A (en) Highly activated active coke powder and manufacturing method thereof
JP2006021204A (en) Exhaust gas treating agent and method and apparatus for treating exhaust gas by using the same
JP4581682B2 (en) Reduction method of dioxins in fly ash of garbage incineration equipment
Dong et al. Application of mechanochemical technology for removal/solidification pollutant and preparation/recycling energy storage materials
JP4617934B2 (en) Reduction method of dioxins in fly ash of garbage incineration equipment
JP5045225B2 (en) Acid component removing agent and method for producing the same
JP2006263635A (en) Inorganic solidified body with hig specific surface area ratio and method for producing the same
JP3745765B2 (en) Exhaust gas treatment agent and exhaust gas treatment apparatus using the same
JP4051734B2 (en) Treatment agent for exhaust gas containing dioxins and acidic substances
CN108499309A (en) A kind of industrial smoke dioxin predecessor remover
JPH0975667A (en) Treatment of exhaust gas
JP5009777B2 (en) Method for producing hybrid combustion catalyst
Shen et al. Incineration of pelletized Fly ash in a bench-scale fluidized bed combustor
JP2002058963A (en) Exhaust gas treating agent and its method
JP2021178283A (en) Flue gas treatment material and flue gas treatment method
JP2007160223A (en) Exhaust gas neutralizer using molten slag
JP2000225320A (en) Method for treating high temperature gas and active carbon
JP2003088724A (en) Powdery inhibitor of dioxins generation and hydrogen chloride removing agent
JP4401639B2 (en) Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment apparatus
JP5425166B2 (en) Organic pollutant emission reduction method
JP2005177576A (en) Agent for detoxifying halogen-based gas and acidic gas
JP2008222477A (en) Method for reducing organic pollutant discharge quantity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees