JP2006179681A - Heat supply system utilizing photovoltaic power generation - Google Patents

Heat supply system utilizing photovoltaic power generation Download PDF

Info

Publication number
JP2006179681A
JP2006179681A JP2004371422A JP2004371422A JP2006179681A JP 2006179681 A JP2006179681 A JP 2006179681A JP 2004371422 A JP2004371422 A JP 2004371422A JP 2004371422 A JP2004371422 A JP 2004371422A JP 2006179681 A JP2006179681 A JP 2006179681A
Authority
JP
Japan
Prior art keywords
power
storage battery
stored
supply system
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004371422A
Other languages
Japanese (ja)
Inventor
Hiroshi Inoue
浩 井上
Shinichi Kamitsuma
信一 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004371422A priority Critical patent/JP2006179681A/en
Publication of JP2006179681A publication Critical patent/JP2006179681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat supply system utilizing a photovoltaic power generation, in which, in particular, in an independent power supply system such as a hut, etc., a loss of power energy is restrained without charging or discharging a storage battery. <P>SOLUTION: Any or all of power generated by a solar battery in the daytime is classified into a charge portion A stored in the storage battery and a non-charge portion B not stored in the storage battery, and the power of the non-charge portion B is supplied to a cryogenic power generator via a converter and a panel board for operation in the daytime to make ice, whereby it is cool-stored as cryogenic energy and this cool-stored cryogenic energy is used for air conditioning. Further, the power of the non-charge portion B is supplied to a thermal power generator via the converter and the panel board for operation in the daytime to generate hot water, whereby it is heat-stored as thermal energy and this heat-stored thermal energy can also be used for supplying hot water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電システムと熱供給装置とを組み合わせた太陽光発電利用の熱供給システムに関する。   The present invention relates to a solar power generation-use heat supply system that combines a solar power generation system and a heat supply device.

従来、太陽電池を用いて太陽光により直流電力を発電し、この直流電力をパワーコンディショナ等のインバータで交流に変換し出力して分電盤を介して屋内の負荷に給電し、余剰の交流電力は系統連系により商用電源側に逆潮流(売電)させるようにした太陽光発電システムが知られている。又、太陽電池によって発電した電力を用いてヒートポンプを作動させ、これにより発生した冷熱及び温熱を利用すると共に、この冷温熱を蓄冷温熱装置に蓄える技術が、例えば特許文献1に記載されている。
特開平6−101931号公報
Conventionally, solar power is used to generate direct-current power from sunlight, this direct-current power is converted into alternating current by an inverter such as a power conditioner, and then output and supplied to an indoor load via a distribution board. A photovoltaic power generation system is known in which power is reversely flowed (sold) to the commercial power supply side through grid interconnection. Further, for example, Patent Document 1 discloses a technique for operating a heat pump using electric power generated by a solar cell and using the generated heat and heat and storing the heat and cold in a cold storage and heating device.
Japanese Patent Laid-Open No. 6-101931

独立電源システム例えば山小屋等においては、昼間太陽電池で発電した電力を使用し、余剰の電力は蓄電池に充電するようにしている。そして、朝方や夜間など太陽電池で発電できない時は、蓄電池に充電してある電力を放電させて利用することが行われている。又、蓄電池から放電させた電力を夜間空調装置に給電して作動させたり、或は給湯装置に給電して温水を作る等に利用している。   In an independent power supply system such as a mountain hut, electric power generated by a daytime solar cell is used, and surplus power is charged in a storage battery. When the solar cell cannot generate electricity such as in the morning or at night, the power stored in the storage battery is discharged and used. Moreover, the electric power discharged from the storage battery is supplied to the night air conditioner for operation, or the hot water supply device is supplied to make hot water.

このような独立電源システムにおいて、従来は昼間太陽電池で発電した電力のうち余剰の電力は全て蓄電池に充電していた。この蓄電池に充電した電力を上記のように朝方や夜間に利用しているのであるが、蓄電池を介して充放電させるために電力エネルギーの損失が大きくなる問題があった。   In such an independent power supply system, conventionally, the surplus power out of the power generated by the daytime solar cell is charged in the storage battery. The electric power charged in the storage battery is used in the morning or at night as described above, but there is a problem that the loss of electric power energy becomes large because charging / discharging is performed through the storage battery.

本発明は、このような従来生じていた問題を解決するためになされ、蓄電池を介して充放電させることなく、電力エネルギーの損失を抑えられるようにした太陽光発電利用の熱供給システムを提供することを目的とする。   The present invention is made in order to solve such a problem that has occurred in the past, and provides a heat supply system using photovoltaic power generation that can suppress loss of power energy without charging and discharging via a storage battery. For the purpose.

上記の目的を達成するための手段として、本発明の請求項1は、昼間太陽電池で発電した電力のうち一部又は全部を蓄電池に溜める充電分と、蓄電池に溜めない非充電分とに分け、前記非充電分の電力を昼間冷熱発生装置に給電して製氷することにより冷熱エネルギーとして蓄冷し、この冷熱エネルギーを冷房用として使用することを特徴とする太陽光発電利用の熱供給システムである。   As means for achieving the above-mentioned object, claim 1 of the present invention is divided into a charged part in which part or all of the electric power generated by the daytime solar battery is stored in the storage battery and a non-charged part not stored in the storage battery. The solar power generation heat supply system is characterized in that the non-charged power is supplied to a daytime refrigeration generator for ice making, and is stored as refrigeration energy, and the refrigeration energy is used for cooling. .

又、本発明の請求項2は、昼間太陽電池で発電した電力のうち一部又は全部を蓄電池に溜める充電分と、蓄電池に溜めない非充電分とに分け、前記非充電分の電力を昼間温熱発生装置に給電して温水を生成することにより温熱エネルギーとして蓄熱し、この温熱エネルギーを給湯用として使用することを特徴とする太陽光発電利用の熱供給システムである。   Further, according to claim 2 of the present invention, a part or all of the electric power generated by the daytime solar battery is divided into a charged part that is stored in the storage battery and a non-charged part that is not stored in the storage battery. It is a heat supply system using solar power generation characterized in that heat is generated as hot energy by supplying power to a heat generator to generate hot water, and this heat energy is used for hot water supply.

本発明の請求項3は、請求項1又は請求項2に記載の太陽光発電利用の熱供給システムにおいて、前記冷熱発生装置、温熱発生装置はそれぞれに冷凍サイクルを備え、作動媒体として二酸化炭素が使用されることを特徴とする。   According to a third aspect of the present invention, in the heat supply system using solar power generation according to the first or second aspect, each of the cold generator and the hot generator includes a refrigeration cycle, and carbon dioxide is used as a working medium. It is used.

本発明の請求項4は、請求項1乃至請求項3いずれか記載の太陽光発電利用の熱供給システムにおいて、前記蓄電池に溜める充電分と、前記蓄電池に溜めない非充電分とに分ける制御を、前記太陽電池の発電量に応じて動作させる制御機能を有することを特徴とする。   According to a fourth aspect of the present invention, in the heat supply system using solar power generation according to any one of the first to third aspects, the control is divided into a charged amount accumulated in the storage battery and a non-charged amount not accumulated in the storage battery. It has a control function to operate according to the power generation amount of the solar cell.

上記請求項1の太陽光発電利用の熱供給システムによれば、昼間太陽電池で発電した電力のうち一部又は全部をすべて蓄電池に充電するのではなく、充電分と非充電分とに分け、非充電分の電力を昼間冷熱発生装置に給電して製氷することにより蓄冷することができる。これにより、蓄冷した冷熱エネルギーを用いて冷気を生成して冷房することができ、従来曇りや雨で太陽電池の発電電力が少ない時や夜間に冷熱発生装置に給電していた電力は蓄電池に充放電しないため電力エネルギーの損失を抑えることができる。   According to the heat supply system using solar power generation according to claim 1, instead of charging part or all of the electric power generated by the daytime solar battery to the storage battery, it is divided into a charged part and a non-charged part, Cold storage can be achieved by supplying uncharged power to the daytime cold heat generator and making ice. As a result, cold energy can be generated and cooled using the stored cold energy, and the power supplied to the cold energy generator at the time when the generated power of the solar battery is low due to cloudiness or rain or at night is charged to the storage battery. Since it is not discharged, loss of power energy can be suppressed.

上記請求項2の太陽光発電利用の熱供給システムによれば、昼間太陽電池で発電した電力のうち一部又は全部をすべて蓄電池に充電するのではなく、充電分と非充電分とに分け、非充電分の電力を昼間温熱発生装置に給電して温水を生成することにより蓄熱することができる。これにより、蓄熱した温熱エネルギーを用いて給湯することができ、従来曇りや雨で太陽電池の発電電力が少ない時や夜間に温熱発生装置に給電していた電力は蓄電池に充放電しないため電力エネルギーの損失を抑えることができる。   According to the heat supply system using solar power generation according to claim 2, instead of charging all or part of the electric power generated by the daytime solar battery to the storage battery, it is divided into a charged part and a non-charged part, Heat can be stored by supplying uncharged power to the daytime heat generator to generate hot water. As a result, hot water can be supplied using the stored thermal energy. Conventionally, when the generated power of the solar cell is low due to cloudy or rain, or the power supplied to the thermal generator at night is not charged / discharged to the storage battery, the power energy Loss can be suppressed.

上記請求項3の太陽光発電利用の熱供給システムによれば、前記冷熱発生装置、温熱発生装置はそれぞれに冷凍サイクルを備え、作動媒体として二酸化炭素が使用されるため、蓄冷又は蓄熱を高効率に行うことができ、且つ自然冷媒で環境にやさしく、毒性がなく、非可燃性であるため安全に使用することができる。   According to the heat supply system using solar power generation according to the third aspect, the cold heat generator and the hot heat generator each have a refrigeration cycle, and carbon dioxide is used as a working medium. And can be used safely because it is a natural refrigerant, is environmentally friendly, non-toxic and non-flammable.

上記請求項4の太陽光発電利用の熱供給システムによれば、太陽電池の発電量に応じて蓄電池に溜める充電分と、蓄電池に溜めない非充電分とに分ける動作を制御する機能を有するため、発電量が少ない時は蓄電せず、温熱発生装置の使用に支障を来たす恐れを防止することができる。   According to the heat supply system using solar power generation according to the fourth aspect of the present invention, since it has a function of controlling an operation to be divided into a charge amount stored in the storage battery and a non-charge amount not stored in the storage battery according to the power generation amount of the solar battery. When the amount of power generation is small, power is not stored, and the risk of hindering the use of the heat generator can be prevented.

以下、本発明に係る太陽光発電利用の熱供給システムの実施形態を添付図面に基づいて説明する。図1は、本発明に係る太陽光発電利用の熱供給システムの第1実施形態を示すブロック図である。図2は、太陽光発電による電力配分を説明するための説明図である。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a heat supply system using solar power generation according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a first embodiment of a heat supply system using solar power generation according to the present invention. FIG. 2 is an explanatory diagram for explaining power distribution by solar power generation.

図1において、1は公知の太陽電池であり、山小屋等の独立家屋の屋根に取り付けられる。この場合、独立家屋には商用電源は引き込まれておらず太陽電池1による独立電源システムになっているものとする。2は交換器であり、太陽電池1で発電した直流電力を交流に変換するものであり、通常DC/ACインバータを使用することができる。3は分電盤であり、この分電盤3を介して屋内負荷4、冷熱発生装置5に交流電力が給電される。
6は蓄電池であり、太陽電池1で発電した直流電力を充電し及び変換器2に放電できるようにしてある。
In FIG. 1, 1 is a well-known solar cell, which is attached to the roof of an independent house such as a mountain hut. In this case, it is assumed that a commercial power source is not drawn into the independent house, and that the solar cell 1 is an independent power system. Reference numeral 2 denotes an exchanger that converts direct-current power generated by the solar cell 1 into alternating current, and a normal DC / AC inverter can be used. Reference numeral 3 denotes a distribution board, and AC power is supplied to the indoor load 4 and the cold heat generator 5 through the distribution board 3.
Reference numeral 6 denotes a storage battery that can charge the DC power generated by the solar battery 1 and discharge it to the converter 2.

上記蓄電池6に対して、従来では太陽電池1で発電した電力のうち、屋内負荷4で消費する電力分を除く電力を全部充電していたが、本実施形態では全部充電しない。例えば図2に示すように、昼間の日射により太陽電池1で発電された電力を山形の実線で略示し、使用電力を波形の破線で略示すると、主として昼間屋内負荷4で使用する斜線部分の電力分Cを除く電力を、充電分Aと非充電分Bとに分け、充電分Aのみを蓄電池6に充電する。   Conventionally, all the electric power generated by the solar battery 1 except for the electric power consumed by the indoor load 4 is charged with respect to the storage battery 6, but in the present embodiment, it is not fully charged. For example, as shown in FIG. 2, when the electric power generated by the solar cell 1 by daytime solar radiation is schematically shown by a solid mountain line and the electric power used is schematically shown by a broken waveform line, the shaded portion used mainly by the daytime indoor load 4 is shown. The electric power excluding the electric power C is divided into a charged part A and a non-charged part B, and only the charged part A is charged in the storage battery 6.

日射量の不足する曇や雨の日には充電分A、非充電分Bが生じないことが有り、日射量の多い晴れの日には充電分A、非充電分Bが増大することから、充電分A、非充電分Bはその日の天候によって影響を受けて一定量とはならない。しかしながら、太陽電池1による発電で充電分A、非充電分Bが生じた場合には、上記のように充電分Aが蓄電池6に充電される。曇りや雨の日に、前記屋内負荷4で使用する電力に不足分が生じた場合には、蓄電池6から必要量の電力を放電させて変換器2に供給し、この変換器2から分電盤3を介して屋内負荷4に交流の電力を給電してバックアップする。又、朝方や夜間に屋内負荷4で使用する電力も蓄電池6からの放電により賄うのである。   Charged A and non-charged B may not occur on cloudy or rainy days when the amount of solar radiation is insufficient, and charged A and non-charged B increase on sunny days with a lot of solar radiation. The charged amount A and the non-charged amount B are affected by the weather of the day and do not become a fixed amount. However, when the charge A and the non-charge B are generated by the power generation by the solar battery 1, the charge A is charged to the storage battery 6 as described above. When a shortage occurs in the power used by the indoor load 4 on a cloudy or rainy day, a necessary amount of power is discharged from the storage battery 6 and supplied to the converter 2. Power is backed up by supplying AC power to the indoor load 4 via the panel 3. In addition, the power used by the indoor load 4 in the morning or at night is covered by the discharge from the storage battery 6.

上記充電分A、非充電分Bのうち非充電分Bは、交換器2で交流に変換されると共に分電盤3から前記冷熱発生装置5に給電される。冷熱発生装置5は、図示を省略したが冷凍サイクルを備え、作動媒体として二酸化炭素が使用されており、給電により圧縮機が作動して冷媒ガスを高圧に圧縮し、この高圧冷媒ガスを冷やして凝縮し、凝縮した冷媒液を減圧して蒸発させ、蒸発した冷媒ガスを圧縮機に戻すサイクルを繰り返す。そして、蒸発熱を利用して水と熱交換させることで製氷し貯蔵する。これにより、圧縮機を昼間運転して冷熱発生装置5に冷熱エネルギーを蓄冷することができる。この蓄冷した冷熱エネルギーを利用して熱交換により冷気を生成して冷房を行うことができる。   Of the charge A and the non-charge B, the non-charge B is converted into an alternating current by the exchanger 2 and supplied to the cold heat generator 5 from the distribution board 3. Although not shown, the cold heat generator 5 has a refrigeration cycle, carbon dioxide is used as a working medium, the compressor is operated by power supply, compresses the refrigerant gas to a high pressure, and cools the high-pressure refrigerant gas. The cycle of condensing, condensing the condensed refrigerant liquid to evaporate, and returning the evaporated refrigerant gas to the compressor is repeated. Then, ice is made and stored by exchanging heat with water using the heat of evaporation. As a result, the compressor can be operated during the daytime to store cold energy in the cold generator 5. Cooling can be performed by generating cold air by heat exchange using the cold energy stored.

冷熱発生装置5における冷凍サイクルの作動媒体は二酸化炭素が用いられるので、高圧側が超臨界圧力となり得る遷臨界冷凍サイクル装置となっている。作動媒体として二酸化炭素を用いると、蓄冷性能を向上させることができ、且つ自然冷媒であるため環境にやさしく、毒性がなく、非可燃性であるため安全に使用することができる。   Since carbon dioxide is used as the working medium of the refrigeration cycle in the cold heat generating apparatus 5, the transcritical refrigeration cycle apparatus in which the high pressure side can be a supercritical pressure. When carbon dioxide is used as the working medium, the cold storage performance can be improved, and since it is a natural refrigerant, it is environmentally friendly, non-toxic and non-flammable, so it can be used safely.

又、冷熱発生装置5への給電分は蓄電池6に充放電しないため、その分蓄電池6の容量を減らすことができる。これにより、システム全体が大型化せず、設備面での優位性が得られる。   Moreover, since the power supply to the cold heat generator 5 is not charged / discharged to the storage battery 6, the capacity of the storage battery 6 can be reduced. As a result, the overall system is not increased in size, and an advantage in terms of facilities can be obtained.

次に、本発明に係る太陽光発電利用の熱供給システムの第2実施形態を説明する。図3は、その第2実施形態を示すブロック図である。図4は、太陽光発電による電力配分を説明するための説明図である。   Next, a second embodiment of the heat supply system using solar power generation according to the present invention will be described. FIG. 3 is a block diagram showing the second embodiment. FIG. 4 is an explanatory diagram for explaining power distribution by solar power generation.

図3において、11は公知の太陽電池であり、山小屋等の独立家屋の屋根に取り付けられる。この場合、独立家屋には商用電源は引き込まれておらず太陽電池11による独立電源システムになっているものとする。12は交換器であり、太陽電池11で発電した直流電力を交流に変換するものであり、通常DC/ACインバータを使用することができる。13は分電盤であり、この分電盤13を介して屋内負荷14、温熱発生装置15に交流電力が給電される。16は蓄電池であり、太陽電池11で発電した直流電力を充電し及び変換器12に放電できるようにしてある。   In FIG. 3, 11 is a known solar cell and is attached to the roof of an independent house such as a mountain hut. In this case, it is assumed that a commercial power source is not drawn into the independent house and the solar cell 11 is an independent power system. Reference numeral 12 denotes an exchanger, which converts DC power generated by the solar battery 11 into AC, and a normal DC / AC inverter can be used. Reference numeral 13 denotes a distribution board, and AC power is supplied to the indoor load 14 and the heat generator 15 through the distribution board 13. Reference numeral 16 denotes a storage battery that can charge DC power generated by the solar battery 11 and discharge the converter 12.

上記蓄電池16に対して、従来では太陽電池11で発電した電力のうち、屋内負荷14で消費する電力分を除く電力を全部充電していたが、本実施形態では全部充電しない。例えば図4に示すように、昼間の日射により太陽電池11で発電された電力を山形の実線で略示し、使用電力を波形の破線で略示すると、主として昼間屋内負荷14で使用する斜線部分の電力分Cを除く電力を、充電分Aと非充電分Bとに分け、充電分Aのみを蓄電池16に充電する。   Conventionally, all of the electric power generated by the solar battery 11 except for the electric power consumed by the indoor load 14 is charged with respect to the storage battery 16, but in the present embodiment, it is not fully charged. For example, as shown in FIG. 4, when the electric power generated by the solar cell 11 by daytime solar radiation is schematically shown by a solid mountain line and the electric power used is schematically shown by a broken waveform line, the shaded portion used mainly by the daytime indoor load 14 is shown. The electric power excluding the electric power C is divided into the charged A and the non-charged B, and only the charged A is charged in the storage battery 16.

日射量の不足する曇や雨の日には充電分A、非充電分Bが生じないことが有り、日射量の多い晴れの日には充電分A、非充電分Bが増大することから、充電分A、非充電分Bはその日の天候によって影響を受けて一定量とはならない。しかしながら、太陽電池11による発電で充電分A、非充電分Bが生じた場合には、上記のように充電分Aが蓄電池6に充電される。曇りや雨の日に、前記屋内負荷14で使用する電力に不足分が生じた場合には、蓄電池16から必要量の電力を放電させて変換器12に供給し、この変換器12から分電盤13を介して屋内負荷14に交流の電力を給電してバックアップする。又、朝方や夜間に屋内負荷14で使用する電力も蓄電池16からの放電により賄うのである。   Charged A and non-charged B may not occur on cloudy or rainy days when the amount of solar radiation is insufficient, and charged A and non-charged B increase on sunny days with a lot of solar radiation. The charged amount A and the non-charged amount B are affected by the weather of the day and do not become a fixed amount. However, when the charge A and the non-charge B are generated by the power generation by the solar battery 11, the charge A is charged to the storage battery 6 as described above. When a shortage occurs in the power used by the indoor load 14 on a cloudy or rainy day, a necessary amount of power is discharged from the storage battery 16 and supplied to the converter 12, and the power distribution from the converter 12 is performed. The indoor load 14 is supplied with AC power via the panel 13 for backup. Further, the electric power used by the indoor load 14 in the morning or at night is covered by the discharge from the storage battery 16.

上記充電分A、非充電分Bのうち非充電分Bは、交換器12で交流に変換されると共に分電盤13から前記温熱発生装置15に給電される。温熱発生装置15は、図示を省略したが冷凍サイクルを備え、作動媒体として二酸化炭素が使用されており、給電により圧縮機が作動して冷媒ガスを高圧に圧縮し、この高圧冷媒ガスを冷やして凝縮し、凝縮した冷媒液を減圧して蒸発させ、蒸発した冷媒ガスを圧縮機に戻すサイクルを繰り返す。そして、凝縮熱を利用して水と熱交換させることで温水を生成し、図示しない給湯タンクに貯蔵する。これにより、圧縮機を昼間運転して温熱発生装置5に温熱エネルギーを蓄熱することができる。この蓄熱した温熱エネルギーを利用して給湯タンクから給湯を行うことができる。   Of the charge amount A and the non-charge amount B, the non-charge amount B is converted into an alternating current by the exchanger 12 and supplied to the heat generating device 15 from the distribution board 13. Although not shown in the figure, the heat generator 15 has a refrigeration cycle, and carbon dioxide is used as a working medium. The compressor is operated by power supply to compress the refrigerant gas to a high pressure, and the high-pressure refrigerant gas is cooled. The cycle of condensing, condensing the condensed refrigerant liquid to evaporate, and returning the evaporated refrigerant gas to the compressor is repeated. And hot water is produced | generated by making it heat-exchange with water using condensing heat, and it stores in the hot water supply tank which is not shown in figure. Thereby, the compressor can be operated during the daytime to store the thermal energy in the thermal generator 5. Hot water can be supplied from the hot water supply tank using the stored thermal energy.

温熱発生装置15における冷凍サイクルの作動媒体は二酸化炭素が用いられるので、高圧側が超臨界圧力となり得る遷臨界冷凍サイクル装置となっている。作動媒体として二酸化炭素を用いると、蓄熱性能を向上させることができ、且つ自然冷媒であるため環境にやさしく、毒性がなく、非可燃性であるため安全に使用することができる。   Since carbon dioxide is used as the working medium for the refrigeration cycle in the heat generator 15, the transcritical refrigeration cycle apparatus can be supercritical on the high pressure side. When carbon dioxide is used as the working medium, the heat storage performance can be improved, and since it is a natural refrigerant, it is environmentally friendly, non-toxic and non-flammable, so it can be used safely.

又、温熱発生装置15への給電分は蓄電池16に充放電しないため、その分蓄電池16の容量を減らすことができる。これにより、システム全体が大型化せず、設備面での優位性が得られる。   Further, since the power supply to the heat generator 15 is not charged or discharged to the storage battery 16, the capacity of the storage battery 16 can be reduced. As a result, the overall system is not increased in size, and an advantage in terms of facilities can be obtained.

本発明では、前記蓄電池に溜める充電分と、蓄電池に溜めない非充電分とに分ける制御を、前記太陽電池の発電量に応じて動作させる制御機能を有しており、例えば発電量が少ない朝などは蓄電せず、温熱発生装置の使用に支障を来たさないようにすることができる。   The present invention has a control function that operates according to the amount of power generated by the solar cell, for example, in the morning when the amount of power generated is small. Etc. can be stored so that the use of the heat generator is not hindered.

尚、上記第1実施形態及び第2実施形態において、いずれも図示しない制御装置を用いて太陽光発電の電力配分、蓄電池への充放電及び冷熱発生装置、温熱発生装置への給電を制御するように構成する。   In the first embodiment and the second embodiment, the control device (not shown) is used to control the power distribution of solar power generation, charging / discharging the storage battery, and the power supply to the cold / hot generator. Configure.

本発明は、特に山小屋等の独立電源システムにおける太陽光発電利用の熱供給システムとして有効に利用することができる。   The present invention can be effectively used as a heat supply system using solar power generation particularly in an independent power supply system such as a mountain hut.

本発明に係る太陽光発電利用の熱供給システムの第1実施形態を示すブロック図である。1 is a block diagram showing a first embodiment of a heat supply system using solar power generation according to the present invention. 第1実施形態において、太陽光発電による電力配分を説明するための説明図である。In 1st Embodiment, it is explanatory drawing for demonstrating the electric power distribution by solar power generation. 本発明に係る太陽光発電利用の熱供給システムの第2実施形態を示すブロック図である。It is a block diagram which shows 2nd Embodiment of the heat supply system using photovoltaic power generation which concerns on this invention. 第2実施形態において、太陽光発電による電力配分を説明するための説明図である。In 2nd Embodiment, it is explanatory drawing for demonstrating the electric power distribution by solar power generation.

符号の説明Explanation of symbols

1 太陽電池
2 交換器
3 分電盤
4 屋内負荷
5 冷熱発生装置
6 蓄電池
11 太陽電池
12 交換器
13 分電盤
14 屋内負荷
15 温熱発生装置
16 蓄電池
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Exchanger 3 Distribution board 4 Indoor load 5 Cold heat generator 6 Storage battery 11 Solar cell 12 Exchanger 13 Distribution board 14 Indoor load 15 Thermal generator 16 Storage battery

Claims (4)

昼間太陽電池で発電した電力のうち一部又は全部を蓄電池に溜める充電分と、蓄電池に溜めない非充電分とに分け、前記非充電分の電力を昼間冷熱発生装置に給電して製氷することにより冷熱エネルギーとして蓄冷し、この冷熱エネルギーを冷房用として使用することを特徴とする太陽光発電利用の熱供給システム。   Dividing the electric power generated by the daytime solar battery into part of or all of the power stored in the storage battery and non-charged power not stored in the storage battery. The solar power generation heat supply system is characterized in that the cold energy is stored as refrigeration energy and is used for cooling. 昼間太陽電池で発電した電力のうち一部又は全部を蓄電池に溜める充電分と、蓄電池に溜めない非充電分とに分け、前記非充電分の電力によって昼間温熱発生装置に給電して温水を生成することにより温熱エネルギーとして蓄熱し、この温熱エネルギーを給湯用として使用することを特徴とする太陽光発電利用の熱供給システム。   Divided into a storage battery that stores part or all of the power generated by the daytime solar battery in a storage battery and a non-charged battery that cannot be stored in the storage battery. A heat supply system using photovoltaic power generation, characterized in that the thermal energy is stored as thermal energy and is used for hot water supply. 前記冷熱発生装置、温熱発生装置はそれぞれに冷凍サイクルを備え、作動媒体として二酸化炭素が使用されることを特徴とする請求項1又は請求項2に記載の太陽光発電利用の熱供給システム。   The heat supply system using solar power generation according to claim 1 or 2, wherein the cold heat generator and the hot heat generator are each provided with a refrigeration cycle, and carbon dioxide is used as a working medium. 前記蓄電池に溜める充電分と、前記蓄電池に溜めない非充電分とに分ける制御を、前記太陽電池の発電量に応じて動作させる制御機能を有することを特徴とする請求項1乃至請求項3いずれかに記載の太陽光発電利用の熱供給システム。   The control function of operating the control to divide the charged amount stored in the storage battery into the non-charged amount not stored in the storage battery according to the amount of power generated by the solar cell. A heat supply system using solar power generation as described in Crab.
JP2004371422A 2004-12-22 2004-12-22 Heat supply system utilizing photovoltaic power generation Pending JP2006179681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371422A JP2006179681A (en) 2004-12-22 2004-12-22 Heat supply system utilizing photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371422A JP2006179681A (en) 2004-12-22 2004-12-22 Heat supply system utilizing photovoltaic power generation

Publications (1)

Publication Number Publication Date
JP2006179681A true JP2006179681A (en) 2006-07-06

Family

ID=36733498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371422A Pending JP2006179681A (en) 2004-12-22 2004-12-22 Heat supply system utilizing photovoltaic power generation

Country Status (1)

Country Link
JP (1) JP2006179681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589270A (en) * 2012-02-13 2012-07-18 广州市香港科大霍英东研究院 Novel criticality striding carbon dioxide (CO2) heat pump system with solar energy photovoltaic power generation serving as auxiliary power
US8865998B2 (en) 2009-05-25 2014-10-21 Industrial Technology Research Institute Photovoltaic electrochromic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865998B2 (en) 2009-05-25 2014-10-21 Industrial Technology Research Institute Photovoltaic electrochromic device
CN102589270A (en) * 2012-02-13 2012-07-18 广州市香港科大霍英东研究院 Novel criticality striding carbon dioxide (CO2) heat pump system with solar energy photovoltaic power generation serving as auxiliary power

Similar Documents

Publication Publication Date Title
CN109687002B (en) Distributed combined cooling heating and power system
US8312733B2 (en) Autonomous power supply system
EP2482002A1 (en) Heat pump power generation system
JP5282516B2 (en) Power supply device, compression refrigerant cycle device, and hot water storage hot water supply system
US20090178421A1 (en) Air conditioning system with multiple power selections
CN202210708U (en) Power supply system
CN101832611A (en) Optically, electrically and geothermally integrated air conditioning system device
KR20170009580A (en) Solar generating zero house system
JP2004069197A (en) System using natural energy/underground heat together, and operating method thereof
JP2011217590A (en) Air conditioning system
JP2008180473A (en) Hybrid energy-using heat pump device
CN114109524A (en) Carbon dioxide Carnot battery-based cold-heat-electricity-water combined supply system and operation method
JP2010107074A (en) Energy supply system, self-supporting housing and self-supporting region
KR20190080177A (en) Electric car charging station based on gas energy and operating method of that
JP4531490B2 (en) Solar heat combined utilization system, operation control method thereof, program, and recording medium
CN109113930B (en) Wind-solar energy heat pump system
CN104390389A (en) Composite integrated domestic solar photovoltaic-air source heat pump
JP2004162983A (en) Heat pump built-in type hot water storage water heater
JP2006179681A (en) Heat supply system utilizing photovoltaic power generation
CN113587189B (en) Renewable energy source heating system and method
Bharj et al. Energy efficient hybrid solar system for cold storage in remote areas
JP2006029635A (en) Hot-water supply system utilizing photovoltaic power generation
Pokhrel et al. A Sustainable Heating Solution for Multifamily Residential Buildings in Cold Climates
JPS61106954A (en) Operating method of generating device concurrently supplying heat
KR20140123246A (en) Smart Energy Storage System of High-rise Buildings, Renewable Energy Used to Drive The Inverter Pump and How to Use