JP2006029635A - Hot-water supply system utilizing photovoltaic power generation - Google Patents

Hot-water supply system utilizing photovoltaic power generation Download PDF

Info

Publication number
JP2006029635A
JP2006029635A JP2004206179A JP2004206179A JP2006029635A JP 2006029635 A JP2006029635 A JP 2006029635A JP 2004206179 A JP2004206179 A JP 2004206179A JP 2004206179 A JP2004206179 A JP 2004206179A JP 2006029635 A JP2006029635 A JP 2006029635A
Authority
JP
Japan
Prior art keywords
power
water supply
hot water
supply device
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004206179A
Other languages
Japanese (ja)
Inventor
Shinichi Kamitsuma
信一 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004206179A priority Critical patent/JP2006029635A/en
Publication of JP2006029635A publication Critical patent/JP2006029635A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot-water supply system utilizing photovoltatic power generation capable of operating a hot-water supply device when a power conditioner suppresses an increase in voltage and storing the excess electric power energy of photovoltaic power generation electric power being loss conventionally as heat energy. <P>SOLUTION: A solar battery 1, the power conditioner 2, a distribution board 3, and an electric power system 5 for a commercial use are linked in system and constitute the hot-water supply system utilizing the photovoltatic power generation for feeding electricity to an indoor load 4 and the hot-water supply device 6 from the distribution board 3. The power conditioner 2 is provided with a voltage increase suppressing function for preventing a voltage from exceeding a predetermined voltage specified value. When an amount of the power generation of the solar battery 1 exceeds a standard condition and is larger than the voltage specified value of the power conditioner 2, the voltage increase suppressing function functions to feed excess alternate current electric power to the hot-water supply device 6 through an electric supply line 8 and operate the hot-water supply device 6 in the daytime by inputting a signal through a communication line 7. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、太陽光発電システムと給湯装置とを組み合わせた太陽光発電利用の給湯システムに関する。   The present invention relates to a hot water supply system using solar power generation that combines a solar power generation system and a hot water supply apparatus.

従来、太陽電池を用いて太陽光により直流電力を発電し、この直流電力をパワーコンディショナ等のインバータで交流に変換し出力して分電盤を介して屋内の負荷に給電し、余剰の交流電力は系統連系により商用電力系統側に逆潮流(売電)させるようにした太陽光発電システムが知られている。又、深夜における安価な商用電力を使用して給湯装置を運転し、貯湯槽に湯を溜めることが行われている。貯湯槽に溜めた湯は、昼間や夜間に給湯用として使用される。このような太陽光発電システムと給湯装置とを組み合わせた太陽光発電利用の給湯システムも従来知られており、その代表的な例は図3に示すように太陽電池1で発電した直流電力を、パワーコンディショナ2で交流に変換・出力して分電盤3を介して屋内負荷4に給電し、深夜においては商用電力系統5から安価な商用電力を分電盤3を介して給湯装置6に給電して運転させ、湯を沸かして貯湯槽(図略)に溜めるものである。   Conventionally, solar power is used to generate direct-current power from sunlight, this direct-current power is converted into alternating current by an inverter such as a power conditioner, and then output and supplied to an indoor load via a distribution board. There is known a photovoltaic power generation system in which power is reversely flowed (sold) to the commercial power system side through grid connection. In addition, hot water supply devices are operated by using inexpensive commercial power at midnight and hot water is stored in a hot water storage tank. Hot water stored in the hot water tank is used for hot water supply during the day and at night. Conventionally, a hot water supply system using solar power generation in which such a solar power generation system and a hot water supply device are combined is also known, and a typical example thereof is a DC power generated by the solar cell 1 as shown in FIG. The inverter 2 converts and outputs the alternating current and supplies power to the indoor load 4 via the distribution board 3, and in the middle of the night, cheap commercial power is supplied from the commercial power system 5 to the hot water supply device 6 via the distribution board 3. It is operated by supplying power, boiling water and storing it in a hot water tank (not shown).

又、貯湯装置としてヒートポンプを用いた例が例えば特許文献1、特許文献2に記載されている。特許文献1の場合は、ヒートポンプを含む複数種類の加熱手段を設け、これら加熱手段のいずれかを選択し、或は組み合わせることにより作動させる構成のものである。特許文献2の場合は、深夜に商用電力を給電し、整流器により直流電力に変換してインバータに供給し、インバータ・系統連系保護制御装置により適正な周波数に調整した後、コンプレッサ駆動部に供給することによりインバータ運転するように構成したものである。
特開2002−22270号公報 特開平8−265988号公報
Moreover, the example using the heat pump as a hot water storage apparatus is described in patent document 1 and patent document 2, for example. In the case of Patent Document 1, a plurality of types of heating means including a heat pump are provided, and one of these heating means is selected or combined to be operated. In the case of Patent Document 2, commercial power is supplied at midnight, converted to DC power by a rectifier, supplied to an inverter, adjusted to an appropriate frequency by an inverter / system interconnection protection control device, and then supplied to a compressor drive unit Thus, the inverter is operated.
JP 2002-22270 A JP-A-8-265888

上記従来の代表的な太陽光発電利用の給湯システムにおいては、昼間日射量が多くて太陽電池の発電能力が高い時、発電量が多くなって所定の電圧(電気事業法で101V±6Vと定められている)を超えてしまうことがある。又、太陽電池の発電量が最大でなくても、所定の電圧を超えてしまうこともある。近くに太陽光発電の住宅が集中したりすると、電圧上昇の度合いが大きくなる傾向がある。電圧が高くなると、電化製品等が故障する可能性があるため、逆潮流の際には所定の電圧を超えないようにしなければならず、前記パワーコンディショナは電圧上昇抑制機能を備えている必要がある。このパワーコンディショナの電圧上昇抑制機能が働くと、太陽電池で発電した電力が絞られるためにロスが生じる問題がある。   In the conventional typical hot water supply system using solar power generation, when the amount of solar radiation is large and the power generation capacity of the solar cell is high, the power generation amount increases and a predetermined voltage (101V ± 6V is defined by the Electricity Business Act). May be exceeded). Moreover, even if the power generation amount of the solar cell is not the maximum, the predetermined voltage may be exceeded. When photovoltaic power generation houses are concentrated nearby, the degree of voltage rise tends to increase. If the voltage increases, electrical appliances may break down, so it is necessary not to exceed a predetermined voltage during reverse power flow, and the power conditioner must have a voltage rise suppression function. There is. When the voltage rise suppression function of the power conditioner works, there is a problem that loss occurs because the electric power generated by the solar cell is reduced.

本発明は、このような従来技術における問題を解決するためになされたもので、パワーコンディショナの電圧上昇抑制機能が働く際に、太陽電池による発電量のうち電圧規定値を超える過剰分を給湯装置に給電して給湯装置を運転し、従来ロスとなっていた太陽光発電エネルギーを熱エネルギーに替えて貯蔵することにより有効利用できるようにした太陽光発電利用の給湯システムを提供することを目的とする。   The present invention has been made to solve such a problem in the prior art, and when the voltage rise suppression function of the power conditioner works, the excess amount exceeding the voltage regulation value of the amount of power generated by the solar cell is supplied with hot water. The purpose is to provide a hot water supply system using solar power generation that can be used effectively by supplying power to the device and operating the hot water supply device to store the solar power generation energy, which has conventionally been a loss, in place of thermal energy. And

この目的を達成するための手段として、本発明に係る請求項1の太陽光発電利用の給湯システムは、太陽電池で発電した電力を、パワーコンディショナ及び分電盤を介して屋内の負荷に給電すると共に余剰の電力は商用電力系統側に逆潮流させ、商用電力系統からの電力を、前記分電盤を介して屋内の負荷又は給湯装置に給電するシステムにおいて、前記太陽電池の発電量が多くて前記パワーコンディショナの電圧規定値を超えた時に、前記太陽電池の発電電力のうち前記パワーコンディショナの電圧規定値を超える分の電力を前記給湯装置に給電し、この給湯装置を昼間運転させることを特徴とする。   As a means for achieving this object, the hot water supply system using solar power generation according to claim 1 of the present invention supplies power generated by a solar cell to an indoor load via a power conditioner and a distribution board. In addition, in a system in which surplus power is reversely flowed to the commercial power system and power is supplied from the commercial power system to an indoor load or hot water supply device via the distribution board, the amount of power generated by the solar cell is large. When the specified voltage value of the power conditioner is exceeded, electric power that exceeds the specified voltage value of the power conditioner among the generated power of the solar battery is supplied to the hot water supply device, and the hot water supply device is operated in the daytime. It is characterized by that.

本発明に係る請求項2の太陽光発電利用の給湯システムは、太陽電池で発電した電力を、パワーコンディショナ及び分電盤を介して屋内の負荷に給電すると共に余剰の電力は商用電力系統側に逆潮流させ、商用電力系統からの電力を、前記分電盤を介して屋内の負荷又は給湯装置に給電するシステムにおいて、前記パワーコンディショナからの電力を前記給湯装置に供給する給電線を備え、前記太陽電池の発電量が多くて前記パワーコンディショナの電圧規定値を超えた時に、前記太陽電池の発電電力のうち前記パワーコンディショナの電圧規定値を超える分の電力を、前記給電線を介して前記給湯装置に給電し、この給湯装置を昼間運転させることを特徴とする。   The hot water supply system using solar power generation according to claim 2 of the present invention supplies power generated by a solar battery to an indoor load through a power conditioner and a distribution board, and surplus power is supplied to the commercial power system side. A power supply line for supplying electric power from the power conditioner to the hot water supply device in a system for supplying electric power from a commercial power system to an indoor load or hot water supply device via the distribution board. When the power generation amount of the solar cell is large and exceeds the voltage regulation value of the power conditioner, the power for the power exceeding the voltage regulation value of the power conditioner among the generated power of the solar cell is supplied to the feeder line. Power is supplied to the hot water supply device, and the hot water supply device is operated in the daytime.

本発明に係る請求項3の太陽光発電利用の給湯システムは、請求項1又は請求項2の太陽光発電利用の給湯システムにおいて、前記給湯装置は、圧縮機、ガスクーラ、減圧器、蒸発器を環状に配管接続すると共に、作動媒体として二酸化炭素を用いたヒートポンプにより水を加熱可能としたことを特徴とする。   The hot water supply system using solar power generation according to claim 3 of the present invention is the hot water supply system using solar power generation according to claim 1 or claim 2, wherein the hot water supply device includes a compressor, a gas cooler, a decompressor, and an evaporator. It is characterized in that water can be heated by a heat pump using carbon dioxide as a working medium while being connected to a pipe in an annular shape.

上記請求項1の太陽光発電利用の給湯システムによれば、日射量が多くて太陽電池の発電性能が高く、所定の電圧を超える発電がなされた時、太陽電池の発電電力のうち前記パワーコンディショナの電圧規定値を超える分の電力を前記給湯装置に給電して昼間運転させるため、太陽光発電電力を最大限に有効利用して従来生じていたロスを解消できると共に、深夜において給湯装置に給電する商用電力を減少させることができる。   According to the hot water supply system using solar power generation according to claim 1, when the amount of solar radiation is large, the power generation performance of the solar cell is high, and power generation exceeding a predetermined voltage is performed, the power condition is included in the power generation power of the solar cell. Since the electric power exceeding the specified voltage value is fed to the hot water supply device and operated in the daytime, the solar power generation power can be used to the maximum extent to eliminate the loss that has occurred in the past and to the hot water supply device at midnight. Commercial power to be fed can be reduced.

上記請求項2の太陽光発電利用の給湯システムによれば、日射量が多くて太陽電池の発電性能が高く、所定の電圧を超える発電がなされた時、太陽電池の発電電力のうち前記パワーコンディショナの電圧規定値を超える分の電力を、給電線を介して前記給湯装置に給電して昼間運転させることができる。専用の給電線を用いるため故障が少なく、保守・点検等の作業もし易くなる。そして、太陽光発電電力を最大限に有効利用することにより従来生じていたロスを解消できると共に、深夜において給湯装置に給電する商用電力を減少させることができる。   According to the hot water supply system using solar power generation according to claim 2, when the amount of solar radiation is large, the power generation performance of the solar cell is high, and when power generation exceeding a predetermined voltage is performed, the power condition is included in the power generation power of the solar cell. It is possible to operate in the daytime by supplying the amount of power exceeding the specified voltage value of the na to the hot water supply device via the feeder line. Because a dedicated power supply line is used, there are few failures and maintenance and inspection work is easy. And the loss which has arisen conventionally by using solar power generation power to the maximum effectively can be eliminated, and the commercial power supplied to the hot water supply device at midnight can be reduced.

上記請求項3の太陽光発電利用の給湯システムによれば、給湯装置は圧縮機、ガスクーラ、減圧器、蒸発器を環状に配管接続すると共に、作動媒体として二酸化炭素を用いたヒートポンプにより構成されているため高性能であり、作動媒体が自然冷媒であって環境にやさしく、しかも毒性がなく、非可燃性であるため安全に使用することができる。   According to the hot water supply system using solar power generation according to the third aspect, the hot water supply apparatus is configured by connecting a compressor, a gas cooler, a decompressor, and an evaporator in a ring shape, and a heat pump using carbon dioxide as a working medium. Therefore, it has high performance, and the working medium is a natural refrigerant, is environmentally friendly, non-toxic, and non-flammable, so it can be used safely.

次に、本発明に係る太陽光発電利用の給湯システムの実施形態を添付図面に基づいて説明する。図1は、本発明に係る太陽光発電利用の給湯システムの実施形態を示すブロック図である。図2は、本発明に係る太陽光発電利用の給湯システムにおける運転制御の一例を示すフローチャートである。   Next, an embodiment of a hot water supply system using solar power generation according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing an embodiment of a hot water supply system using solar power generation according to the present invention. FIG. 2 is a flowchart showing an example of operation control in the hot water supply system using solar power generation according to the present invention.

本実施形態において、前記従来例と同じ構成部材は前記と同じ符号を付けて説明すると、図1において、1は太陽電池であり、通常はビルの屋上又は戸建ての屋根に取り付けられる。太陽電池1の構造及び発電原理は公知であるため、それらの説明は省略する。   In this embodiment, the same components as those in the conventional example are described with the same reference numerals as those described above. In FIG. 1, reference numeral 1 denotes a solar cell, which is usually attached to the roof of a building or a roof of a detached house. Since the structure and the power generation principle of the solar cell 1 are known, the description thereof is omitted.

2はパワーコンディショナであり、太陽電池1と分電盤3との間に接続されている。このパワーコンディショナ2は、公知のように通常インバータ等の電子的な電力変換機器類と制御・保護系を一体構造のユニットとしたものであり、太陽電池1で発電した直流の電力を商用電力と同じ交流の電力に変換することができ、所定の電圧規定値を超えないように電圧上昇抑制機能を備えている。   A power conditioner 2 is connected between the solar cell 1 and the distribution board 3. As is well known, this power conditioner 2 is a unit in which an electronic power conversion device such as an inverter and a control / protection system are integrated as a unit, and DC power generated by the solar cell 1 is used as commercial power. It is possible to convert the same AC power into the same voltage and has a voltage rise suppression function so as not to exceed a predetermined voltage regulation value.

上記分電盤3は商用電力系統5に接続し、太陽光発電システムの電力と商用電力とを系統連系することにより両方の電力を使用できるようにしてある。これにより、夜間や雨曇り時に太陽光発電システムで発電電力が不足した場合は、商用電力系統5側から電力をバックアップすることができ、又太陽光発電システムで発電電力が余剰な場合は、その余剰電力を商用電力系統5側に逆潮流することができる。   The distribution board 3 is connected to the commercial power system 5 so that the power of the photovoltaic power generation system and the commercial power can be interconnected to use both powers. As a result, when the generated power is insufficient in the photovoltaic power generation system at night or when it is raining, the power can be backed up from the commercial power system 5 side, and when the generated power is excessive in the photovoltaic power generation system, Surplus power can be reversely flowed to the commercial power system 5 side.

4は分電盤3に接続されている屋内負荷であり、屋内に設置されたテレビ、冷蔵庫、エアコン等の各種電化製品や照明等を含んでいる。6は分電盤3に接続されている給湯装置であり、通常は深夜における安価な商用電力を商用電力系統5から給電して運転させる。この給湯装置6は、公知のようにヒートポンプ式であって図示を省略した圧縮機、ガスクーラ、減圧器、蒸発器を環状に配管接続してなる冷凍サイクルを有し、貯湯槽内の水をガスクーラで加熱することにより温水とし、この温水を貯湯槽内に溜める。そして、貯湯槽内に溜めた温水を給湯装置6から給湯する。   Reference numeral 4 denotes an indoor load connected to the distribution board 3 and includes various electric appliances such as a television set, a refrigerator, and an air conditioner installed indoors, lighting, and the like. A hot water supply device 6 connected to the distribution board 3 is usually operated by supplying inexpensive commercial power from the commercial power system 5 at midnight. This hot water supply apparatus 6 has a refrigeration cycle in which a compressor, a gas cooler, a decompressor, and an evaporator (not shown) are connected in an annular shape as is well known and is a heat pump type. It is made warm water by heating with, and this warm water is stored in the hot water tank. Then, the hot water stored in the hot water storage tank is supplied from the hot water supply device 6.

給湯装置6における冷凍サイクルの作動媒体は二酸化炭素が用いられるので、高圧側が超臨界圧力となり得る遷臨界冷凍サイクル装置となっている。作動媒体として二酸化炭素を用いると、ヒートポンプの性能を向上させることができ、自然冷媒であるため環境にやさしく、しかも毒性がなく、非可燃性であるため安全に使用することができる。   Since carbon dioxide is used as the working medium of the refrigeration cycle in the hot water supply apparatus 6, the transcritical refrigeration cycle apparatus is capable of providing a supercritical pressure on the high pressure side. When carbon dioxide is used as the working medium, the performance of the heat pump can be improved, and since it is a natural refrigerant, it is environmentally friendly, non-toxic and non-flammable, so it can be used safely.

7は前記パワーコンディショナ2と給湯装置6とを繋ぐ通信線であり、この通信線7を介してパワーコンディショナ2において電圧上昇抑制機能が働いた際に、給湯装置6を運転させるための信号を発し、電圧上昇抑制機能が停止した際に給湯装置6を停止させるための信号を発するようにしてある。8はパワーコンディショナ2と給湯装置6とを接続する給電線である。専用の給電線8を用いることで故障が少なくなり、保守・点検等の作業もし易くなる。   Reference numeral 7 denotes a communication line that connects the power conditioner 2 and the hot water supply device 6, and a signal for operating the hot water supply device 6 when the voltage rise suppression function is activated in the power conditioner 2 via the communication line 7. When the voltage rise suppression function stops, a signal for stopping the hot water supply device 6 is issued. A power supply line 8 connects the power conditioner 2 and the hot water supply device 6. The use of the dedicated power supply line 8 reduces the number of failures and facilitates maintenance and inspection work.

上記のように構成されている太陽光発電利用の給湯システムは、太陽電池1の発電能力が標準状態においては、太陽電池1で発電した直流電力をパワーコンディショナ2で交流電力に変換・昇圧して分電盤3に送電し、この分電盤3から屋内負荷4に給電する。そして、太陽電池1の発電量が屋内負荷4の消費電力を超えており、且つパワーコンディショナ2の電圧規定値以下の場合には、余剰の電力は系統連系により商用電力系統5側に逆潮流させる。夜間又は降雨や曇天のために太陽電池1の発電能力が標準以下の状態においては、太陽電池1の発電量が屋内負荷4の消費電力に比して少なく電力不足となるため、商用電力系統5からの商用電力を分電盤3を介して屋内負荷4に給電することにより電力不足分を補う。   In the hot water supply system using solar power generation configured as described above, the DC power generated by the solar battery 1 is converted and boosted to AC power by the power conditioner 2 when the power generation capacity of the solar battery 1 is in a standard state. Then, power is transmitted to the distribution board 3 and the indoor load 4 is fed from the distribution board 3. If the power generation amount of the solar cell 1 exceeds the power consumption of the indoor load 4 and is equal to or less than the voltage regulation value of the power conditioner 2, the surplus power is reversed to the commercial power grid 5 side by grid connection. Let the tide flow. When the power generation capacity of the solar cell 1 is below standard at night or due to rain or cloudy weather, the power generation amount of the solar cell 1 is less than the power consumption of the indoor load 4, and thus the commercial power system 5 Power supply is supplied to the indoor load 4 through the distribution board 3 to compensate for the power shortage.

日射量が多いため太陽電池1の発電能力が標準を超える状態においては、太陽電池1で発電した直流電力をパワーコンディショナ2で交流電力に変換・昇圧すると、パワーコンディショナ2の電圧規定値を超えてしまう場合がある。このような時には、パワーコンディショナ2の電圧上昇抑制機能が働き、電圧規定値を超える分の交流電力が前記給電線8を介して前記給湯装置6に給電されると共に、前記通信線7を介して給湯装置6に信号を入力することで給湯装置6を運転させる。これにより、昼間においても給湯装置6を運転し、太陽電池1の発電電力を熱エネルギーに変換して貯蔵できるため有効利用が図れ、従来の発電ロスを解消することができる。又、深夜において、商用電力を使って給湯装置6を運転する場合に、商用電力の節電が図れる。   In the state where the power generation capacity of the solar cell 1 exceeds the standard due to the large amount of solar radiation, when the DC power generated by the solar cell 1 is converted and boosted to AC power by the power conditioner 2, the voltage specified value of the power conditioner 2 is It may exceed. In such a case, the voltage rise suppression function of the power conditioner 2 is activated, and AC power exceeding the voltage regulation value is supplied to the hot water supply device 6 via the power supply line 8 and also via the communication line 7. Then, the hot water supply device 6 is operated by inputting a signal to the hot water supply device 6. Thereby, since the hot water supply device 6 can be operated even in the daytime and the generated power of the solar cell 1 can be converted into thermal energy and stored, it can be effectively used and the conventional power generation loss can be eliminated. Further, when the hot water supply device 6 is operated using commercial power at midnight, commercial power can be saved.

太陽電池1の発電能力が標準状態に変化した時には、パワーコンディショナ2から給湯装置6への交流電力の給電が停止すると共に、給湯装置6に信号を入力することで給湯装置6の運転を停止させる。   When the power generation capacity of the solar cell 1 changes to the standard state, the supply of AC power from the power conditioner 2 to the hot water supply device 6 is stopped and the operation of the hot water supply device 6 is stopped by inputting a signal to the hot water supply device 6. Let

図2は、給湯システムにおける運転制御を示すフローチャートであり、ステップS1で夜間電力の時間帯であるかどうかを判断し、夜間電力の時間帯でないと判断された場合にはステップS2で発電電圧と電圧規定値とを対比し、発電電圧が電圧規定値より大きい時はステップS3で給湯装置6を運転させ、発電電圧が電圧規定値より小さい時はステップ6で給湯装置6を停止させてステップS1に戻る。そして、ステップS3で給湯装置6を運転させた後は、ステップS4で貯湯が完了したかどうかを検知し、貯湯が完了している場合にはステップS7で給湯装置6の運転を停止させてステップS1に戻り、貯湯が完了していない場合にはステップS5で所定時間の経過を検知し、所定時間が経過している時にはステップS1に戻り、所定時間が経過していない時にはステップS3に戻って給湯装置6の運転を継続させる。前記ステップS1で夜間電力の時間帯である場合と判断された場合には、ステップS8で貯湯が完了しているかどうかを検知し、貯湯が完了している場合にはステップS1に戻り、貯湯が完了していない場合には、ステップS9で給湯装置6を運転させてステップS8に戻る。   FIG. 2 is a flowchart showing operation control in the hot water supply system. In step S1, it is determined whether or not it is a time zone of nighttime power. If it is determined that it is not a time zone of nighttime power, the generated voltage is set in step S2. When the generated voltage is higher than the specified voltage value, the hot water supply device 6 is operated in step S3. When the generated voltage is lower than the specified voltage value, the hot water supply device 6 is stopped in step 6 and the step S1 is performed. Return to. Then, after operating the hot water supply device 6 in step S3, it is detected whether the hot water storage is completed in step S4. If the hot water storage is completed, the operation of the hot water supply device 6 is stopped in step S7. Returning to S1, if the hot water storage is not completed, the elapse of the predetermined time is detected in step S5, and if the predetermined time has elapsed, the process returns to step S1, and if the predetermined time has not elapsed, the process returns to step S3. The operation of the water heater 6 is continued. If it is determined in step S1 that it is a nighttime power time zone, it is detected in step S8 whether hot water storage is completed, and if hot water storage is completed, the process returns to step S1 to store hot water. If not completed, the hot water supply device 6 is operated in step S9 and the process returns to step S8.

このような給湯装置システムの制御は図示を省略した制御装置により行い、この制御装置に関連するセンサーやタイマー等の付属部品(図略)は給湯装置6の適所に設置するものとする。   Such a hot water supply system is controlled by a control device (not shown), and accessories (not shown) such as sensors and timers related to the control device are installed at appropriate positions of the hot water supply device 6.

尚、上記実施形態では、給電線8を介して給湯装置6へ給電するように構成したが、この給電線8を設けずに、通常通りパワーコンディショナ2から分電盤3を介して給湯装置6へ給電するように構成しても良い。   In the above-described embodiment, power is supplied to the hot water supply device 6 via the power supply line 8. However, the hot water supply device is normally provided from the power conditioner 2 via the distribution board 3 without providing the power supply wire 8. 6 may be configured to supply power.

本発明に係る太陽光発電利用の給湯システムは、一般家庭や集合住宅、病院や老人介護所等の各種の施設に組み込んで有効に利用することができる。   The hot water supply system using solar power generation according to the present invention can be effectively used by being incorporated into various facilities such as ordinary homes, apartment houses, hospitals and elderly care centers.

本発明に係る太陽光発電利用の給湯システムの実施形態を示すブロック図である。It is a block diagram showing an embodiment of a hot water supply system using solar power generation according to the present invention. 本発明に係る太陽光発電利用の給湯システムにおける運転制御の一例を示すフローチャートである。It is a flowchart which shows an example of the operation control in the hot water supply system using solar power generation concerning this invention. 従来の代表的な太陽光発電利用の給湯システムを示すブロック図である。It is a block diagram which shows the conventional typical hot water supply system using photovoltaic power generation.

符号の説明Explanation of symbols

1 太陽電池
2 パワーコンディショナ
3 分電盤
4 屋内負荷
5 商用電力系統
6 給湯装置
7 通信線
8 給電線
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Power conditioner 3 Distribution board 4 Indoor load 5 Commercial power system 6 Hot-water supply apparatus 7 Communication line 8 Feed line

Claims (3)

太陽電池で発電した電力を、パワーコンディショナ及び分電盤を介して屋内の負荷に給電すると共に余剰の電力は商用電力系統側に逆潮流させ、商用電力系統からの電力を、前記分電盤を介して屋内の負荷又は給湯装置に給電するシステムにおいて、前記太陽電池の発電量が多くて前記パワーコンディショナの電圧規定値を超えた時に、前記太陽電池の発電電力のうち前記パワーコンディショナの電圧規定値を超える分の電力を前記給湯装置に給電し、この給湯装置を昼間運転させることを特徴とする太陽光発電利用の給湯システム。   The power generated by the solar cell is supplied to the indoor load via the power conditioner and the distribution board, and surplus power is reversely flowed to the commercial power system side, and the power from the commercial power system is supplied to the distribution board. In a system for supplying power to an indoor load or hot water supply device through the solar battery, when the amount of power generated by the solar cell exceeds a specified voltage value of the power conditioner, the power conditioner of the power conditioner A hot water supply system using photovoltaic power generation, wherein the hot water supply device is supplied with electric power exceeding a specified voltage value and is operated in the daytime. 太陽電池で発電した電力を、パワーコンディショナ及び分電盤を介して屋内の負荷に給電すると共に余剰の電力は商用電力系統側に逆潮流させ、商用電力系統からの電力を、前記分電盤を介して屋内の負荷又は給湯装置に給電するシステムにおいて、前記パワーコンディショナからの電力を前記給湯装置に供給する給電線を備え、前記太陽電池の発電量が多くて前記パワーコンディショナの電圧規定値を超えた時に、前記太陽電池の発電電力のうち前記パワーコンディショナの電圧規定値を超える分の電力を、前記給電線を介して前記給湯装置に給電し、この給湯装置を昼間運転させることを特徴とする太陽光発電利用の給湯システム。   The power generated by the solar cell is supplied to the indoor load via the power conditioner and the distribution board, and surplus power is reversely flowed to the commercial power system side, and the power from the commercial power system is supplied to the distribution board. In a system for supplying power to an indoor load or a hot water supply device via a power supply line, comprising a power supply line for supplying electric power from the power conditioner to the hot water supply device, wherein the power generation amount of the solar cell is large, and the voltage regulation of the power conditioner When the value exceeds the value, the electric power exceeding the voltage condition value of the power conditioner among the generated electric power of the solar cell is supplied to the hot water supply device via the feeder line, and the hot water supply device is operated in the daytime. Hot water supply system using solar power generation. 前記給湯装置は、圧縮機、ガスクーラ、減圧器、蒸発器を環状に配管接続すると共に、作動媒体として二酸化炭素を用いたヒートポンプにより水を加熱可能としたことを特徴とする請求項1又は請求項2に記載の太陽光発電利用の給湯システム。   The hot water supply apparatus is characterized in that a compressor, a gas cooler, a decompressor, and an evaporator are connected to each other in an annular shape, and water can be heated by a heat pump using carbon dioxide as a working medium. 2. A hot water supply system using solar power generation according to 2.
JP2004206179A 2004-07-13 2004-07-13 Hot-water supply system utilizing photovoltaic power generation Pending JP2006029635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004206179A JP2006029635A (en) 2004-07-13 2004-07-13 Hot-water supply system utilizing photovoltaic power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004206179A JP2006029635A (en) 2004-07-13 2004-07-13 Hot-water supply system utilizing photovoltaic power generation

Publications (1)

Publication Number Publication Date
JP2006029635A true JP2006029635A (en) 2006-02-02

Family

ID=35896214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004206179A Pending JP2006029635A (en) 2004-07-13 2004-07-13 Hot-water supply system utilizing photovoltaic power generation

Country Status (1)

Country Link
JP (1) JP2006029635A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216723A (en) * 2009-03-17 2010-09-30 Nishimatsu Constr Co Ltd Hot water supply system and method for operating the same
US20110147360A1 (en) * 2009-12-17 2011-06-23 Hammerstrom Donald J Thermal Energy Storage Apparatus, Controllers And Thermal Energy Storage Control Methods
CN102510602A (en) * 2011-10-12 2012-06-20 嘉兴清源电气科技有限公司 Portable solar lighting device
JP2014027761A (en) * 2012-07-26 2014-02-06 Noritz Corp Power conditioner
JP2014126301A (en) * 2012-12-26 2014-07-07 Rinnai Corp Hot water storage type hot water supply device
JP2014190638A (en) * 2013-03-27 2014-10-06 Rinnai Corp Heating system
JP2015121403A (en) * 2015-04-02 2015-07-02 ダイキン工業株式会社 Water heater
WO2016007688A1 (en) * 2014-07-10 2016-01-14 Cooper Technologies Company Electric water heater systems for power grids with distributed generation
CN106440376A (en) * 2016-06-23 2017-02-22 盐城工业职业技术学院 Electric water heater with solar energy and alternating current as double power sources

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216723A (en) * 2009-03-17 2010-09-30 Nishimatsu Constr Co Ltd Hot water supply system and method for operating the same
US20110147360A1 (en) * 2009-12-17 2011-06-23 Hammerstrom Donald J Thermal Energy Storage Apparatus, Controllers And Thermal Energy Storage Control Methods
US9331483B2 (en) 2009-12-17 2016-05-03 Battelle Memorial Institute Thermal energy storage apparatus, controllers and thermal energy storage control methods
US11106228B2 (en) 2009-12-17 2021-08-31 Battelle Memorial Institute Thermal energy storage apparatus, controllers and thermal energy storage control methods
CN102510602A (en) * 2011-10-12 2012-06-20 嘉兴清源电气科技有限公司 Portable solar lighting device
JP2014027761A (en) * 2012-07-26 2014-02-06 Noritz Corp Power conditioner
JP2014126301A (en) * 2012-12-26 2014-07-07 Rinnai Corp Hot water storage type hot water supply device
JP2014190638A (en) * 2013-03-27 2014-10-06 Rinnai Corp Heating system
AU2015287786B2 (en) * 2014-07-10 2019-12-05 Eaton Intelligent Power Limited Electric water heater systems for power grids with distributed generation
WO2016007688A1 (en) * 2014-07-10 2016-01-14 Cooper Technologies Company Electric water heater systems for power grids with distributed generation
US9927131B2 (en) 2014-07-10 2018-03-27 Eaton Intelligent Power Limited Electric water heater systems for power grids with distributed generation
JP2015121403A (en) * 2015-04-02 2015-07-02 ダイキン工業株式会社 Water heater
CN106440376A (en) * 2016-06-23 2017-02-22 盐城工业职业技术学院 Electric water heater with solar energy and alternating current as double power sources

Similar Documents

Publication Publication Date Title
CN108496288B (en) Household energy device and operation method for operating household energy device
US8373303B1 (en) Solar synchronized loads for photovoltaic systems
JP5344759B2 (en) Power distribution system
RU2350847C1 (en) System for independent supply of heat to consumers relying on usage of low-potential heat source and powered from renewable electric energy sources
US20090301687A1 (en) Integrated energy system for whole home or building
WO2011157220A1 (en) Energy storage type wind-power generating system
JP2011069587A (en) Heat pump hot water supply system
JP5282516B2 (en) Power supply device, compression refrigerant cycle device, and hot water storage hot water supply system
JP2011217590A (en) Air conditioning system
JP2006029635A (en) Hot-water supply system utilizing photovoltaic power generation
JP2013062927A (en) Photovoltaic power generation system and power supply controller
JP5378018B2 (en) Hot water supply system and operation method thereof
KR20080088063A (en) Heating system using aerogenerator
RU185808U1 (en) Greenhouse complex with combined heat supply system
JP2003222411A (en) Solar system
KR101490390B1 (en) Smart Energy Storage System of High-rise Buildings, Renewable Energy Used to Drive The Inverter Pump
JP2004012025A (en) Hybrid energy system
WO2021215022A1 (en) Hot water supply system and control method for same
JP2014128100A (en) Solar cell system
CN106169902B (en) Portable multiple-energy-source Coupling Thermal thermoelectricity compound type energy source station with real-time control system
JP6694757B2 (en) Hot water supply system
RU2095913C1 (en) Operation of off-line power plant using renewable energy source
JP2015122898A (en) Solar cell system
JP2019030152A (en) Power control system and power control method
CN220043260U (en) Wind-solar energy storage power generation system