JP2004162983A - Heat pump built-in type hot water storage water heater - Google Patents

Heat pump built-in type hot water storage water heater Download PDF

Info

Publication number
JP2004162983A
JP2004162983A JP2002328428A JP2002328428A JP2004162983A JP 2004162983 A JP2004162983 A JP 2004162983A JP 2002328428 A JP2002328428 A JP 2002328428A JP 2002328428 A JP2002328428 A JP 2002328428A JP 2004162983 A JP2004162983 A JP 2004162983A
Authority
JP
Japan
Prior art keywords
hot water
heat
water storage
temperature
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002328428A
Other languages
Japanese (ja)
Inventor
Koji Komata
康二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Housetec Inc
Original Assignee
Housetec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Housetec Inc filed Critical Housetec Inc
Priority to JP2002328428A priority Critical patent/JP2004162983A/en
Publication of JP2004162983A publication Critical patent/JP2004162983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot water storage type water heater capable of supplying the hot water of a desired temperature without cooling the hot water to 30°C once by supplying the water even when the temperature of the hot water in the hot water storage tank is within the range of about 30-40°C which is lower than the desired hot water supply temperature. <P>SOLUTION: This hot water storage water heater 30 is composed of a solar heat collector 1 and a hot water storage tank 2 connected through a heat exchanging system. The heat exchanging system comprises the following heat pump cycles (a)-(d) to raise and keep the temperature of the hot water in the hot water storage tank 2 at a high temperature. The heat pump cycle comprises (a) pumping up the heat collected by the solar heat collector 1 by an evaporator 11 by using a refrigerant (gasification of refrigerant), (b) raising a pressure and a temperature of the refrigerant gas by a compressor (operated by commercial power source) 12, (c) pumping up the heat by a condenser 13 mounted at the hot water storage tank side (liquefaction of refrigerant gas), and (d) expanding the liquefied refrigerant by an expansion valve 14. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冬季や日射が不足する雨天・曇天の場合も、貯湯タンクに貯める温水の温度を希望温度以上の高い温度に昇温・維持させ、希望温度に給湯できるヒートポンプ式貯湯給湯器に関するものである。
【0002】
【従来の技術】
図3は、従来の(太陽熱利用型)貯湯給湯器の一例である。この貯湯給湯器は、屋根上などの日当たりの良い場所に設置した太陽熱集熱器1と地上に設置した貯湯タンク2とを備え、貯湯タンク2の後流には瞬間湯沸器などの補助熱源器7を配置している。貯湯タンク2と太陽熱集熱器1との間には循環配管(往き管3a及び戻り管3b)で連結した循環経路が形成され、その循環経路内に熱媒体を充填している。日射があるときは循環ポンプ4を稼動させ、太陽熱集熱器1で熱された熱媒体を循環させて、貯湯タンク2内部に設けた熱交換器6を介して貯湯タンク2中の水を間接的に温める。日射が不足する雨天・曇天や冬季などで、貯湯タンク2内の湯水温度が上昇しない場合には、補助熱源器(瞬間湯沸器)7で加熱・追焚して給湯する。
【0003】
【発明が解決しようとする課題】
しかし、上記の補助熱源器組込型貯湯給湯器の場合は、補助熱源器の最小温度上昇分(熱量)が小さくないので、貯湯タンク2内の湯水温度が、希望給湯温度より若干低い温度(約30〜40℃程度の範囲)にあるときに、(補助熱源器を運転すると、出湯温度が熱くなりすぎるので)貯湯タンク2からの湯水を一旦水でうすめて約30℃にまで下げ、その後に補助熱源器7で追い炊きして希望温度に昇温し、給湯・自動湯張りをしなければならない。そのため、エネルギーの無駄が生じる。
【0004】
本発明は、瞬間湯沸器のような補助熱源器を用いることなく、希望給湯温度で給湯できる貯湯給湯器を提供すること、すなわち、貯湯タンクの温水の温度が希望給湯温度に満たない約30〜40℃の範囲であっても、これを水でうすめて一旦約30℃までに下げることなく、希望給湯温度に給湯できる貯湯給湯器を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明では次の構成をとった。すなわち、本発明は、先ずは、
太陽熱集熱器1と貯湯タンク2とが、熱交換系を介して繋がっている貯湯給湯器30であって、前記熱交換系は、次のa)〜d)のヒートポンプ(又はヒートポンプサイクル)を備えていて、貯湯タンク2内の湯水温度を高温度に昇温・維持できるヒートポンプ式貯湯給湯器30である。
ヒートポンプサイクル:
a)太陽熱集熱器1で集熱した(低質な)熱を蒸発器11で冷媒を用いて汲み上げる(冷媒のガス化);
b)圧縮機(通常は、商用電源で稼動)12によって前記冷媒ガスを昇圧・昇温させる;
c)貯湯タンク側に設けた凝縮器13で熱を汲み上げる(冷媒ガスの液化);
d)前記液化冷媒を膨張弁14で膨張させる。
【0006】
ここで、上記太陽熱集熱器1に代えて、燃料電池における電池部もしくは改質部の廃熱回収部、あるいは太陽電池などを用いることができる。
すなわち、本発明は、(排熱などの低質な)熱の発生部と貯湯タンク2とが、熱交換系を介して繋がっている貯湯給湯器40であって、前記熱交換系は、次のa)〜d)のヒートポンプ(又はヒートポンプサイクル)を備えており、貯湯タンク2内の湯水温度を高温度に昇温・維持できるヒートポンプ式の貯湯給湯器40でもある。
ヒートポンプサイクル:
a)熱の発生部で発生した熱を蒸発器11で冷媒を用いて汲み上げる(冷媒のガス化);
b)圧縮機12によって前記冷媒ガスを昇圧・昇温させる;
c)貯湯タンク側に設けた凝縮器13で熱を汲み上げる(冷媒ガスの液化);
d)前記液化冷媒を膨張弁で膨張させる。
上記熱発生部は、燃料電池における電池部もしくは改質部の廃熱回収部、あるいは太陽電池などである。
【0007】
なお、ヒートポンプサイクルにおける蒸発器とは、太陽熱集熱器1からの熱エネルギーを蒸発潜熱の形で冷媒に汲み上げる作用を有する装置(低温側熱交換器)であり、また、凝縮器とは、冷媒ガスの顕熱及び凝縮潜熱によって貯湯タンクの湯水を温める高温側熱交換器のことである。
【0008】
【作用】
本発明の貯湯給湯器では、瞬間湯沸器などの補助熱源器を使用せず、代わりにヒートポンプによる熱の汲上げを利用し(エネルギー源は商用電源)、貯湯タンクの湯水温度が希望給湯温度に満たない約30〜40℃の場合も、これを一旦水でうすめて約30℃にまで下げることなく、直接に温めて希望給湯温度以上に加温できるので、エネルギーの無駄がない。
また、ここで利用するヒートポンプの蒸発器(低温側熱交換器)では、エネルギー源として、太陽熱集熱器で温めた温水や、太陽電池、燃料電池等からの排熱や不安定な熱発生部からの低質な熱を利用するので、大気温度からの汲上げに比べて、汲上げ温度差を小さくすることができ、ヒートポンプサイクルのエネルギー効率は上がる。
【0009】
【発明の実施の形態】
以下、添付図面を参照しながら、本発明を更に具体的に説明する。
図1は、本発明の一例のヒートポンプ組込式(太陽熱集熱器利用型)貯湯給湯器である。図示するように、太陽熱温水器側では、太陽エネルギーを集熱する太陽熱集熱器1、熱媒体のバッファータンク5、熱媒体を強制循環させる循環ポンプ4、及び蒸発器(低温側熱交換器)11が配置されており、往き管3a及び戻り管3bで連結した循環経路の中を熱媒体を強制循環させる。そして、
a)太陽熱集熱器1で集熱した低質な熱を蒸発器(低温側熱交換器)11で冷媒を用いて汲み上げる(冷媒のガス化)。
つづいて、
b)圧縮機(通常は、商用電源で稼動)12によって前記冷媒ガスを昇圧・昇温させ;
c)貯湯タンク側に設けた凝縮器(高温側熱交換器)13で熱を汲み上げ(冷媒ガスの液化);
d)前記液化冷媒を膨張弁14で膨張させる;
以上のヒートポンプサイクルを構成するヒートポンプにより、商用電源からの電気エネルギーによって、凝縮器(高温側熱交換器)13において、冷媒ガスの顕熱及び凝縮潜熱によって貯湯タンクの湯水を加熱する。
【0010】
また、貯湯タンク2の下部には、給水源からの給水配管15が配され、その給水配管15からはバイパスパイプ16が分岐して、貯湯タンク2の上部には貯湯タンク出口側パイプ17が接続され、その貯湯タンク出口側パイプ17とバイパスパイプ16との合流部には、湯水混合三方弁18を設けていて、希望給湯温度で給湯可能である。
【0011】
コントローラ21は、太陽熱集熱器1の集熱量によってヒートポンプサイクルの運転を制御すると同時に、給水配管15から分岐したバイパスパイプ16と貯湯タンク出口側パイプ17との合流部の湯水混合三方弁18を調整して、混合湯の温度を調整し、希望給湯温度に給湯する。
【0012】
なおここで、ヒートポンプサイクル系の凝縮器(高温側熱交換器)13は、貯湯タンク内部熱交換方式をとっているが、貯湯タンク2の外部に配置した外部熱交換方式でもよい。そのときは貯湯タンク2内の水と熱交換するために、貯湯タンク2下部から貯湯タンク2内の水を引き抜き、循環ポンプ4を介して凝縮器(高温側熱交換器)13に水を循環させ、貯湯タンク2上部に湯水を戻す構造とすることができる。
【0013】
また、本発明で用いる熱交換器、配管又は貯湯タンク等の材質としては、ステンレス、アルミニウム、アルミニウム合金、銅、銅合金、鉄鋼材等の金属類がある。用いる冷媒や熱媒体により適宜選ぶ。使用温度・圧力によっては、ポリエチレン、ポリプロピレン、ポリブデン、塩化ビニル等プラスチック類も使用できる。
【0014】
ヒートポンプは、圧縮機の種類によりピストン式、ロータリー式、スクロール式、スクリュー式、遠心式等があり、いずれも用いることができる。また、冷媒はCFC(クロロ・フルオロ・カーボン)、HCFC(ハイドロ・クロロ・フルオロ・カーボン)、HFC(ハイドロ・フルオロ・カーボン)等のフロン系冷媒のほか、二酸化炭素やアンモニア等の自然冷媒がある。
循環ポンプは、種々の温水ポンプが使用できる。メンテナンス性を考慮するとマグネット式等のシールレスポンプが好ましい。
【0015】
図2は、他の例の貯湯給湯器で、固体高分子型家庭用定置型の燃料電池を利用した貯湯給湯器である。燃料電池側では、図示するように、都市ガスから水素(燃料電池の燃料)を得るための改質器8と、空気中の酸素を供給するためのブロワ19と、固体高分子型燃料電池(電池部)9と、上記改質器8及び上記電池部9から排熱を汲み上げる蒸発器(低温側熱交換器)11とが配置され、循環経路の中を熱媒体を強制循環させている。そして、
a)燃料電池側で発生した(低質な)排熱を蒸発器(低温側熱交換器)11で冷媒を用いて汲み上げ(冷媒のガス化);
つづいて、
b)圧縮機(通常は、商用電源で稼動)12によって前記冷媒ガスを昇圧・昇温させ;
c)貯湯タンク側に設けた凝縮器(高温側熱交換器)13で熱を汲み上げ(冷媒ガスの液化);
d)前記液化冷媒を膨張弁14で膨張させる;
以上のヒートポンプサイクルを構成するヒートポンプにより、商用電源からの電気エネルギーによって、凝縮器(高温側熱交換器)13において、冷媒ガスの顕熱及び凝縮潜熱によって貯湯タンクの湯水を加熱する。
【0016】
なお、コントローラ21は、固体高分子型燃料電池(電池部)9の運転及びヒートポンプの運転制御を行い、固体高分子型燃料電池(電池部)9からの排熱量に応じたヒートポンプ運転を制御する。また貯湯タンク2内の湯水温度を常時監視し、適量の湯量及び湯水温度を確保するとともに、リモコン20にて設定した給湯温度(希望給湯温度か、それよりも1〜2℃高い温度)の給湯が可能なように、貯湯タンク2内の湯と、給水源からの水とを湯水混合三方弁18の開度を調整する。
【0017】
燃料電池について説明する。供給された都市ガスは改質器8に導入され、水素(固体高分子型燃料電池の燃料の一つ)へと改質され、ブロワ19からの(空気中の)酸素と共に固体高分子型燃料電池(電池部)9に導かれて発電を行う。このとき、固体高分子型燃料電池(電池部)9から排熱が発生するので、この排熱をヒートポンプサイクルの蒸発器11に導入して利用する。
【0018】
発電能力及びその排熱量が各々1kWの固体高分子型燃料電池を24時間連続して運転すると、後者の排熱量だけで3600kJ/hとなり、この排熱量はタンク(300L)中の300Lの水の温度を69℃(3600×24÷300÷4.2)だけ温度上昇させる能力がある。ところが、固体高分子型燃料電池を作動させる最適温度は約70℃であるため、貯湯タンク2で貯える湯水温度は(前記温度よりも約10℃低い)高々60℃程度が限界であり、この温度レベルは十分に満足できる温度ではない。需要を十分に満たすために貯湯タンクの容量を更に大きくすることも考えられるがよい方法とは言えない。更に高い温度の湯を蓄えるには、別途の加熱手段が必要性となる。
【0019】
そこで、図2に示したように、排熱回収部にヒートポンプサイクルを付加する。その運転条件により貯湯タンク2内の湯水温度を90℃程度の高温にすることも可能であり、また、直接大気熱からヒートポンプで熱を汲み上げる場合よりも、高い温度の熱源から汲み上げることができ、ヒートポンプサイクルの効率を高めることができる。
【0020】
給湯する際は、貯湯タンク2内の湯温が高温になっているので、貯湯タンク出口側パイプ17とバイパスパイプ16との合流部における湯水混合三方弁18を調整するだけで、希望給湯温度で給湯できる。
【0021】
なお、図2の例は、固体高分子型燃料電池の例であるが、これに代えて、太陽電池でもよい。また、太陽電池と太陽熱温水器のハイブリッドシステムであってもよい。
【0022】
【発明の効果】
本発明に係る貯湯給湯器によれば、瞬間湯沸器のような補助熱源器を用いることなく、希望給湯温度で給湯できる貯湯給湯器を提供できる。換言すれば、貯湯タンクの温水の温度が希望給湯温度に満たない約30〜40℃の範囲であっても、これを水でうすめて一旦約30℃までに下げることなく、希望給湯温度で給湯できるので、エネルギーの無駄がない。また、二酸化炭素の発生量を低減でき地球環境に優しい。また、補助熱源器による追焚き不要となるため、温度制御のための構造やシステムも単純になる。
【図面の簡単な説明】
【図1】本発明の一例の貯湯給湯器(太陽熱集熱器利用型)。
【図2】本発明の他例の貯湯給湯器(燃料電池利用型)。
【図3】従来例の(太陽熱利用型)貯湯給湯器。
【符号の説明】
1:太陽熱集熱器 2:貯湯タンク
3a:往き管 3b:戻り管
4:循環ポンプ 5:バッファータンク
6:熱交換器 7:補助熱源器(瞬間湯沸器)
8:改質部(改質器) 9:電池部
11:蒸発器(低温側熱交換器) 12:圧縮機
13:凝縮器(高温側熱交換器) 14:膨張弁
15:給水配管 16:バイパスパイプ
17:貯湯タンク出口側パイプ 18:湯水混合三方弁
19:ブロワ 20:リモコン
21:コントローラ
30:貯湯給湯器(太陽熱利用型)
40:貯湯給湯器(燃料電池利用型)
HP:ヒートポンプ(ヒートポンプサイクル)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump hot water storage water heater that can raise and maintain the temperature of hot water stored in a hot water storage tank to a temperature higher than a desired temperature even in the case of rainy weather or cloudy weather when solar radiation is insufficient in winter or hot water, and can supply hot water to a desired temperature. It is.
[0002]
[Prior art]
FIG. 3 is an example of a conventional (solar heat utilization type) hot water supply / hot water supply device. This hot water storage water heater includes a solar heat collector 1 installed in a sunny place such as on a roof and a hot water storage tank 2 installed on the ground, and an auxiliary heat source such as an instantaneous water heater is provided downstream of the hot water storage tank 2. Vessel 7 is arranged. A circulation path is formed between the hot water storage tank 2 and the solar heat collector 1 via circulation pipes (an outgoing pipe 3a and a return pipe 3b), and the circulation path is filled with a heat medium. When there is solar radiation, the circulation pump 4 is operated to circulate the heat medium heated by the solar heat collector 1, and the water in the hot water storage tank 2 is indirectly transferred through the heat exchanger 6 provided inside the hot water storage tank 2. Warm up. If the temperature of the hot water in the hot water storage tank 2 does not rise in rainy or cloudy weather or in winter when sunshine is insufficient, the auxiliary hot-heater (instantaneous water heater) 7 heats and reheats the hot water to supply hot water.
[0003]
[Problems to be solved by the invention]
However, in the case of the above-described auxiliary hot-water supply type hot water storage water heater, since the minimum temperature rise (heat amount) of the auxiliary heat source is not small, the temperature of the hot water in the hot water storage tank 2 is slightly lower than the desired hot water supply temperature ( When the temperature is in the range of about 30 to 40 ° C., the temperature of the hot water from the hot water storage tank 2 is temporarily diluted with water to lower the temperature to about 30 ° C. In addition, additional heating must be performed in the auxiliary heat source 7 to raise the temperature to the desired temperature, and hot water supply and automatic hot water filling must be performed. Therefore, energy is wasted.
[0004]
The present invention provides a hot water storage water heater that can supply hot water at a desired hot water supply temperature without using an auxiliary heat source device such as an instantaneous water heater, that is, the temperature of hot water in a hot water storage tank is less than about 30 lower than the desired hot water supply temperature. It is an object of the present invention to provide a hot-water storage water heater that can supply hot water to a desired hot-water supply temperature without reducing the temperature to about 30 ° C. even when the temperature is in the range of −40 ° C.
[0005]
[Means for Solving the Problems]
To achieve the above object, the present invention has the following configuration. That is, the present invention firstly
The solar heat collector 1 and the hot water storage tank 2 are a hot water storage water heater 30 connected via a heat exchange system, and the heat exchange system includes a heat pump (or heat pump cycle) of the following a) to d). A heat pump hot water storage / water heater 30 that is provided and can raise and maintain the temperature of hot water in the hot water storage tank 2 to a high temperature.
Heat pump cycle:
a) Pumping (low-quality) heat collected by the solar heat collector 1 using a refrigerant in the evaporator 11 (gasification of the refrigerant);
b) The refrigerant gas is pressurized and heated by a compressor (usually operated by a commercial power supply) 12;
c) Pumping heat in the condenser 13 provided on the hot water storage tank side (liquefaction of refrigerant gas);
d) The liquefied refrigerant is expanded by the expansion valve 14.
[0006]
Here, instead of the solar heat collector 1, a waste heat recovery unit of a cell unit or a reforming unit in a fuel cell, a solar cell, or the like can be used.
That is, the present invention relates to a hot-water storage water heater 40 in which a heat generation unit (low-quality heat such as exhaust heat) and the hot-water storage tank 2 are connected via a heat exchange system. The heat pump (or heat pump cycle) of a) to d) is also provided, and the heat pump type hot water storage / water heater 40 is capable of raising and maintaining the temperature of hot water in the hot water storage tank 2 at a high temperature.
Heat pump cycle:
a) Pumping up the heat generated in the heat generating section using a refrigerant in the evaporator 11 (gasification of the refrigerant);
b) The refrigerant gas is pressurized and heated by the compressor 12;
c) Pumping heat in the condenser 13 provided on the hot water storage tank side (liquefaction of refrigerant gas);
d) The liquefied refrigerant is expanded by an expansion valve.
The heat generation unit is a waste heat recovery unit of a cell unit or a reforming unit in a fuel cell, a solar cell, or the like.
[0007]
The evaporator in the heat pump cycle is a device (low-temperature side heat exchanger) having the function of pumping heat energy from the solar heat collector 1 into a refrigerant in the form of latent heat of evaporation, and the condenser is a refrigerant. A high-temperature heat exchanger that heats the hot water in the hot water storage tank with the sensible heat and latent heat of condensation of the gas.
[0008]
[Action]
The hot-water storage water heater of the present invention does not use an auxiliary heat source device such as an instantaneous water heater, but instead uses heat pumping by a heat pump (the energy source is a commercial power supply), and the hot-water temperature of the hot-water storage tank becomes the desired hot-water supply temperature. Even when the temperature is lower than about 30 to 40 ° C., it can be heated directly to a desired hot water supply temperature or higher without being diluted with water and lowered to about 30 ° C., so that there is no waste of energy.
In the heat pump evaporator (low-temperature heat exchanger) used here, hot water heated by a solar heat collector, waste heat from a solar cell, fuel cell, etc., or an unstable heat generator is used as an energy source. Since low-quality heat from the water is used, the difference in pumping temperature can be reduced as compared with pumping from the ambient temperature, and the energy efficiency of the heat pump cycle increases.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described more specifically with reference to the accompanying drawings.
FIG. 1 shows an example of a heat pump built-in type (using a solar heat collector) of the present invention. As shown in the figure, on the solar water heater side, a solar heat collector 1 for collecting solar energy, a buffer tank 5 for a heat medium, a circulation pump 4 for forcibly circulating the heat medium, and an evaporator (low-temperature heat exchanger). A heating medium 11 is forcibly circulated in a circulation path connected by the going pipe 3a and the returning pipe 3b. And
a) The low-quality heat collected by the solar heat collector 1 is pumped up by a refrigerant in an evaporator (low-temperature side heat exchanger) 11 (gasification of the refrigerant).
Then,
b) The refrigerant gas is pressurized and heated by a compressor (usually operated by a commercial power supply) 12;
c) Pump up heat in a condenser (high-temperature side heat exchanger) 13 provided on the hot water storage tank side (liquefy refrigerant gas);
d) expanding the liquefied refrigerant with an expansion valve 14;
With the heat pump constituting the above heat pump cycle, the hot water in the hot water storage tank is heated in the condenser (high temperature side heat exchanger) 13 by the sensible heat of the refrigerant gas and the latent heat of condensation by the electric energy from the commercial power supply.
[0010]
A water supply pipe 15 from a water supply source is arranged below the hot water storage tank 2, a bypass pipe 16 branches from the water supply pipe 15, and a hot water storage tank outlet side pipe 17 is connected to an upper part of the hot water storage tank 2. A hot / water mixing three-way valve 18 is provided at the junction of the hot water storage tank outlet pipe 17 and the bypass pipe 16 so that hot water can be supplied at a desired hot water supply temperature.
[0011]
The controller 21 controls the operation of the heat pump cycle based on the amount of heat collected by the solar heat collector 1, and at the same time, adjusts the hot water mixing three-way valve 18 at the junction of the bypass pipe 16 branched from the water supply pipe 15 and the hot water storage tank outlet pipe 17. Then, the temperature of the mixed hot water is adjusted, and hot water is supplied to a desired hot water supply temperature.
[0012]
Here, the condenser (high-temperature side heat exchanger) 13 of the heat pump cycle system uses a hot water storage tank internal heat exchange system, but may use an external heat exchange system arranged outside the hot water storage tank 2. At that time, in order to exchange heat with the water in the hot water storage tank 2, the water in the hot water storage tank 2 is withdrawn from the lower part of the hot water storage tank 2, and the water is circulated to the condenser (high-temperature side heat exchanger) 13 via the circulation pump 4. Then, the hot water can be returned to the upper portion of the hot water storage tank 2.
[0013]
In addition, examples of the material of the heat exchanger, piping, hot water storage tank, and the like used in the present invention include metals such as stainless steel, aluminum, aluminum alloy, copper, copper alloy, and steel. It is appropriately selected depending on the refrigerant and heat medium used. Depending on the operating temperature and pressure, plastics such as polyethylene, polypropylene, polybutene, and vinyl chloride can also be used.
[0014]
The heat pump includes a piston type, a rotary type, a scroll type, a screw type, a centrifugal type, and the like, depending on the type of the compressor, and any of them can be used. In addition, refrigerants include natural refrigerants such as carbon dioxide and ammonia, in addition to CFCs (chlorofluorocarbons), HCFCs (hydrochlorofluorocarbons), HFCs (hydrofluorocarbons), and the like. .
Various hot water pumps can be used as the circulation pump. Considering the maintenance, a sealless pump of a magnet type or the like is preferable.
[0015]
FIG. 2 shows another example of a hot water heater, which uses a stationary polymer fuel cell for home use. On the fuel cell side, as shown, a reformer 8 for obtaining hydrogen (fuel for the fuel cell) from city gas, a blower 19 for supplying oxygen in the air, and a polymer electrolyte fuel cell ( A battery section 9 and an evaporator (low-temperature side heat exchanger) 11 for pumping exhaust heat from the reformer 8 and the battery section 9 are provided to forcibly circulate a heat medium in a circulation path. And
a) Pumping (low-quality) exhaust heat generated on the fuel cell side by using a refrigerant in an evaporator (low-temperature side heat exchanger) 11 (gasification of the refrigerant);
Then,
b) The refrigerant gas is pressurized and heated by a compressor (usually operated by a commercial power supply) 12;
c) Pump up heat in a condenser (high-temperature side heat exchanger) 13 provided on the hot water storage tank side (liquefy refrigerant gas);
d) expanding the liquefied refrigerant with an expansion valve 14;
With the heat pump constituting the above heat pump cycle, the hot water in the hot water storage tank is heated in the condenser (high temperature side heat exchanger) 13 by the sensible heat of the refrigerant gas and the latent heat of condensation by the electric energy from the commercial power supply.
[0016]
The controller 21 controls the operation of the polymer electrolyte fuel cell (cell unit) 9 and the operation of the heat pump, and controls the heat pump operation according to the amount of heat discharged from the polymer electrolyte fuel cell (cell unit) 9. . In addition, the temperature of the hot water in the hot water storage tank 2 is constantly monitored to secure an appropriate amount of hot water and the hot water temperature, and the hot water temperature set by the remote controller 20 (the desired hot water temperature or a temperature higher by 1 to 2 ° C. than that). The opening degree of the hot / water mixing three-way valve 18 between the hot water in the hot water storage tank 2 and the water from the water supply source is adjusted so as to be able to perform the above operations.
[0017]
The fuel cell will be described. The supplied city gas is introduced into the reformer 8 and reformed into hydrogen (one of the fuels of the polymer electrolyte fuel cell), and together with the oxygen (in the air) from the blower 19, the solid polymer fuel is It is guided by a battery (battery unit) 9 to generate power. At this time, waste heat is generated from the polymer electrolyte fuel cell (cell part) 9, and the waste heat is introduced into the evaporator 11 of the heat pump cycle and used.
[0018]
When a polymer electrolyte fuel cell having a power generation capacity and a waste heat amount of 1 kW each is operated continuously for 24 hours, only the latter waste heat amount becomes 3600 kJ / h, and the waste heat amount is 300 L of water in the tank (300 L). Capable of increasing the temperature by 69 ° C. (3600 × 24 × 300 ÷ 4.2). However, since the optimum temperature for operating the polymer electrolyte fuel cell is about 70 ° C., the temperature of the hot water stored in the hot water storage tank 2 is about 60 ° C. at most (about 10 ° C. lower than the above temperature). The level is not a satisfactory temperature. It is conceivable to further increase the capacity of the hot water storage tank to sufficiently meet demand, but this is not a good method. In order to store hot water at a higher temperature, a separate heating means is required.
[0019]
Therefore, as shown in FIG. 2, a heat pump cycle is added to the exhaust heat recovery unit. Depending on the operating conditions, the temperature of the hot water in the hot water storage tank 2 can be increased to about 90 ° C., and can be pumped from a heat source with a higher temperature than when the heat is directly pumped from atmospheric heat with a heat pump. The efficiency of the heat pump cycle can be increased.
[0020]
At the time of hot water supply, since the hot water temperature in the hot water storage tank 2 is high, the hot water mixing three-way valve 18 at the junction of the hot water storage tank outlet pipe 17 and the bypass pipe 16 is merely adjusted to obtain the desired hot water supply temperature. Can supply hot water.
[0021]
Although the example in FIG. 2 is an example of a polymer electrolyte fuel cell, a solar cell may be used instead. Further, a hybrid system of a solar cell and a solar water heater may be used.
[0022]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the hot-water storage water heater which concerns on this invention, a hot-water storage water heater which can supply hot water at a desired hot-water supply temperature can be provided, without using an auxiliary heat source like an instantaneous water heater. In other words, even if the temperature of the hot water in the hot water storage tank is in the range of about 30 to 40 ° C., which is lower than the desired hot water supply temperature, the hot water is supplied at the desired hot water supply temperature without being diluted with water and temporarily lowered to about 30 ° C. There is no waste of energy. In addition, the amount of carbon dioxide generated can be reduced and it is environmentally friendly. In addition, since additional heating by the auxiliary heat source is not required, the structure and system for temperature control are simplified.
[Brief description of the drawings]
FIG. 1 is an example of a hot-water storage / hot-water supply device of the present invention (using a solar heat collector).
FIG. 2 is a hot-water storage / hot-water heater of another example of the present invention (using a fuel cell).
FIG. 3 shows a conventional (solar heat type) hot water supply / hot water supply device.
[Explanation of symbols]
1: Solar heat collector 2: Hot water storage tank 3a: Outgoing pipe 3b: Return pipe 4: Circulation pump 5: Buffer tank 6: Heat exchanger 7: Auxiliary heat source (flash water heater)
8: Reforming section (reformer) 9: Battery section 11: Evaporator (low-temperature side heat exchanger) 12: Compressor 13: Condenser (high-temperature side heat exchanger) 14: Expansion valve 15: Water supply pipe 16: Bypass pipe 17: Hot water storage tank outlet side pipe 18: Hot water mixing three-way valve 19: Blower 20: Remote control 21: Controller 30: Hot water storage water heater (solar heat type)
40: Hot water storage water heater (using fuel cell)
HP: Heat pump (heat pump cycle)

Claims (3)

太陽熱集熱器と貯湯タンクとが、熱交換系を介して繋がっている貯湯給湯器であって、
前記熱交換系は、次のa)〜d)のヒートポンプを備えている貯湯給湯器。
a)太陽熱集熱器で集熱した熱を蒸発器で冷媒を用いて汲み上げる(冷媒のガス化);
b)圧縮機によって前記冷媒ガスを昇圧・昇温させる;
c)貯湯タンク側に設けた凝縮器で熱を汲み上げる(冷媒ガスの液化);
d)前記液化冷媒を膨張弁で膨張させる。
A solar water collector and a hot water storage tank are hot water storage water heaters connected via a heat exchange system,
The heat exchange system is a hot-water storage water heater provided with the following heat pumps a) to d).
a) pumping up the heat collected by the solar heat collector using a refrigerant in an evaporator (gasification of the refrigerant);
b) raising and raising the temperature of the refrigerant gas by a compressor;
c) Pumping heat with a condenser provided on the hot water storage tank side (liquefaction of refrigerant gas);
d) The liquefied refrigerant is expanded by an expansion valve.
熱の発生部と貯湯タンクとが、熱交換系を介して繋がっている貯湯給湯器であって、
前記熱交換系は、次のa)〜d)のヒートポンプを備えている貯湯給湯器。
a)熱の発生部で発生した熱を蒸発器で冷媒を用いて汲み上げる(冷媒のガス化);
b)圧縮機によって前記冷媒ガスを昇圧・昇温させる;
c)貯湯タンク側に設けた凝縮器で熱を汲み上げる(冷媒ガスの液化);
d)前記液化冷媒を膨張弁で膨張させる。
A heat generating unit and a hot water storage tank are hot water storage water heaters connected via a heat exchange system,
The heat exchange system is a hot-water storage water heater provided with the following heat pumps a) to d).
a) pumping up the heat generated in the heat generating section using a refrigerant in an evaporator (gasification of the refrigerant);
b) raising and raising the temperature of the refrigerant gas by a compressor;
c) Pumping heat with a condenser provided on the hot water storage tank side (liquefaction of refrigerant gas);
d) The liquefied refrigerant is expanded by an expansion valve.
熱発生部は、燃料電池における電池部もしくは改質部の廃熱回収部であるか、あるいは太陽電池である、請求項2の貯湯給湯器。The hot-water storage water heater according to claim 2, wherein the heat generation unit is a waste heat recovery unit of a battery unit or a reforming unit of the fuel cell, or a solar cell.
JP2002328428A 2002-11-12 2002-11-12 Heat pump built-in type hot water storage water heater Pending JP2004162983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328428A JP2004162983A (en) 2002-11-12 2002-11-12 Heat pump built-in type hot water storage water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328428A JP2004162983A (en) 2002-11-12 2002-11-12 Heat pump built-in type hot water storage water heater

Publications (1)

Publication Number Publication Date
JP2004162983A true JP2004162983A (en) 2004-06-10

Family

ID=32806740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328428A Pending JP2004162983A (en) 2002-11-12 2002-11-12 Heat pump built-in type hot water storage water heater

Country Status (1)

Country Link
JP (1) JP2004162983A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619444B1 (en) 2005-04-07 2006-09-06 (주)이앤이 시스템 Chilled water storage type hybrid heating and cooling system using a solar heat system
JP2012038688A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd Fuel cell power generation device
KR101136072B1 (en) 2011-10-25 2012-04-18 (주)도암엔지니어링 Heating and cooling system using geothermal heat, subterranean air, solar energy, and subterranean water
CN102721233A (en) * 2012-06-01 2012-10-10 朱明龙 Combination system of solar water heater and ground source heat pump attachment
US9016079B2 (en) 2009-07-08 2015-04-28 Heatf A/S Energy system with a heat pump
CN104596120A (en) * 2013-11-01 2015-05-06 广西南宁阳升太阳能有限公司 Novel all-weather flat-plate solar water heater and water heating method thereof
CN105135705A (en) * 2015-10-15 2015-12-09 昆明统领科技有限公司 Solar/air-source liner-in-liner full-automatic integrated water heater
CN105571148A (en) * 2014-10-10 2016-05-11 Tcl空调器(中山)有限公司 Water heater and control method thereof
CN106322834A (en) * 2016-08-31 2017-01-11 北京建筑大学 Direct-expansion type heat pump device and flow control method for heat collecting liquid
CN107036155A (en) * 2017-06-20 2017-08-11 国网山东节能服务有限公司 A kind of double heat source heat pump solar association heating system and method
CN110779211A (en) * 2019-11-13 2020-02-11 江苏浴普太阳能有限公司 Damping fixing frame of air energy water heater

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619444B1 (en) 2005-04-07 2006-09-06 (주)이앤이 시스템 Chilled water storage type hybrid heating and cooling system using a solar heat system
US9016079B2 (en) 2009-07-08 2015-04-28 Heatf A/S Energy system with a heat pump
JP2012038688A (en) * 2010-08-11 2012-02-23 Fuji Electric Co Ltd Fuel cell power generation device
KR101136072B1 (en) 2011-10-25 2012-04-18 (주)도암엔지니어링 Heating and cooling system using geothermal heat, subterranean air, solar energy, and subterranean water
CN102721233A (en) * 2012-06-01 2012-10-10 朱明龙 Combination system of solar water heater and ground source heat pump attachment
CN104596120A (en) * 2013-11-01 2015-05-06 广西南宁阳升太阳能有限公司 Novel all-weather flat-plate solar water heater and water heating method thereof
CN105571148A (en) * 2014-10-10 2016-05-11 Tcl空调器(中山)有限公司 Water heater and control method thereof
CN105135705A (en) * 2015-10-15 2015-12-09 昆明统领科技有限公司 Solar/air-source liner-in-liner full-automatic integrated water heater
CN106322834A (en) * 2016-08-31 2017-01-11 北京建筑大学 Direct-expansion type heat pump device and flow control method for heat collecting liquid
CN107036155A (en) * 2017-06-20 2017-08-11 国网山东节能服务有限公司 A kind of double heat source heat pump solar association heating system and method
CN107036155B (en) * 2017-06-20 2024-02-20 国网山东综合能源服务有限公司 Double-heat source heat pump-solar energy combined heating system and method
CN110779211A (en) * 2019-11-13 2020-02-11 江苏浴普太阳能有限公司 Damping fixing frame of air energy water heater
CN110779211B (en) * 2019-11-13 2021-08-17 江苏浴普太阳能有限公司 Damping fixing frame of air energy water heater

Similar Documents

Publication Publication Date Title
CN112985145B (en) Energy storage device and method based on carbon dioxide gas-liquid phase change
CN100391037C (en) Proton-exchange film fuel-cell generating device
CN112985144B (en) Multistage compression energy storage device and method based on carbon dioxide gas-liquid phase change
KR101514957B1 (en) Hybrid heat pump system using geothermal, solar heat and air heat
KR101843380B1 (en) Cooling and heating device
Mosleh et al. A year-round dynamic simulation of a solar combined, ejector cooling, heating and power generation system
JP2006183933A (en) Photovoltaic system
JP2015022864A (en) Fuel cell system
JP2007218525A (en) System using exhaust heat
JP2004162983A (en) Heat pump built-in type hot water storage water heater
CN105715518A (en) Heating-electric-cooling tri generation device with cold supply in summer and heat supply in winter and method
CN112502925B (en) Transcritical carbon dioxide power generation system and method driven by solar energy and geothermal energy in combined mode
WO2012131860A1 (en) Device using constant volume heater
CN101769654B (en) Heating system for compression heat pump and heating method thereof
KR101387908B1 (en) Hybrid air conditioning system with fuel cell and geothermal heat pump
JP2010190460A (en) Air conditioning system
JP2004211979A (en) Absorption refrigerating system
CN203809224U (en) Solar photothermal power generation comprehensive utilizing system
JP2009210162A (en) Power generating/hot water supply system
CN210622880U (en) Multi-stage heat pump type double-tank molten salt energy storage power generation system
CN101726134A (en) Compressed heat supply system and heat supply method
JP4531490B2 (en) Solar heat combined utilization system, operation control method thereof, program, and recording medium
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP6784699B2 (en) Improving power plant efficiency
JP4630429B2 (en) Building with fuel cell