WO2012131860A1 - Device using constant volume heater - Google Patents

Device using constant volume heater Download PDF

Info

Publication number
WO2012131860A1
WO2012131860A1 PCT/JP2011/057487 JP2011057487W WO2012131860A1 WO 2012131860 A1 WO2012131860 A1 WO 2012131860A1 JP 2011057487 W JP2011057487 W JP 2011057487W WO 2012131860 A1 WO2012131860 A1 WO 2012131860A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant volume
heat
heat source
heater
utilization device
Prior art date
Application number
PCT/JP2011/057487
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤賢治
Original Assignee
一般社団法人太陽エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般社団法人太陽エネルギー研究所 filed Critical 一般社団法人太陽エネルギー研究所
Priority to PCT/JP2011/057487 priority Critical patent/WO2012131860A1/en
Publication of WO2012131860A1 publication Critical patent/WO2012131860A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a compressor, a boiler, a refrigeration cycle, a generator, a solar energy utilization device, and a moving device.
  • liquid gas heat exchangers and ejectors as means for improving the coefficient of performance of the refrigeration cycle.
  • inverter as a power control of the compressor.
  • As a compressor there are a positive displacement compressor and a centrifugal compressor.
  • Supercritical water power generation has been developed to improve the thermal efficiency of steam turbines in heat engines.
  • Solar thermal power generation technology and solar cell technology have been developed as means for utilizing solar energy.
  • Hybrid cars and electric cars are being developed as automobiles. In particular, energy saving is required for the refrigeration cycle, boiler, and power generation.
  • Many compressors are used in industry. Carbon dioxide separation and recovery technology has been developed.
  • the relationship between the low temperature heat source and the high temperature heat source of the original ideal coefficient of performance is the relationship between the refrigerant evaporation temperature and the compressor discharge temperature. This is the cause of the deterioration in the theoretical coefficient of performance. Improvement of boiler energy efficiency is approaching its limit. In order to develop a heat pump boiler, it is necessary to use water as a refrigerant, but it is difficult to compress water vapor. There is no refrigeration cycle that can heat and cool hot water at the same time. Improving the thermal efficiency of power generation using steam turbines such as thermal power generation and nuclear power generation is the limit. The steam temperature for improving the thermal efficiency of thermal power generation has become high-temperature and high-pressure, and it is necessary to reinforce the structure of the steam turbine, and the manufacturing cost of the steam turbine is rising.
  • a constant volume heater utilizing device for achieving this object a pressure vessel, A suction valve; A discharge valve is provided.
  • This apparatus is a compressor using a constant volume heater.
  • the pressure vessel is the same as that used in the adiabatic compressor, condenser and evaporator of the refrigeration cycle.
  • the pressure resistance is the same as the pressure vessel of the adiabatic compressor of the refrigeration cycle and the pressure vessel of the condenser.
  • a constant volume heating fluid is further provided.
  • the constant volume heating fluid is air in the air compressor. It is a refrigerant in the refrigeration cycle.
  • the refrigerant is fluorocarbon, water, ammonia, butane, carbon dioxide or the like.
  • the constant volume heating fluid is water in the boiler. There are seawater, brine and chemicals.
  • a final heater comprising a final heating heat source used for final heating of the constant volume heating fluid.
  • the temperature and pressure rise when heating the same volume of gas in an ideal gas. An increase in temperature and pressure is the same as compression.
  • a constant volume heater can be used in the refrigeration cycle instead of the adiabatic compressor. If a constant volume heating fluid is placed in the pressure vessel and heated while the suction valve and the discharge valve are closed, the heating becomes constant and the pressure increases and the temperature rises.
  • the discharge valve is set to a predetermined temperature and pressure of the constant volume heating fluid, when the temperature rises due to heating, the discharge valve opens and gas is discharged.
  • the pressure in the pressure vessel is lowered, the suction valve is opened, and the low-pressure gas in the previous process is sucked.
  • the final heating heat source needs to have a certain temperature difference in order to be higher than the discharge temperature and to conduct heat. At least 10 degrees or more is necessary.
  • An apparatus for heating at a constant volume using a final heating heat source is a final heater.
  • the functions of the suction valve and the discharge valve are the same as those of a normal adiabatic compressor.
  • the combustion heat fuel includes solid fuel, liquid fuel, and gaseous fuel.
  • Solid fuels include coal and biomass.
  • Liquid fuels include petroleum-based kerosene, naphtha, and light oil.
  • Gas fuel includes natural gas. In the refrigeration cycle, a heat source temperature higher than the designed discharge temperature of the refrigerant is required.
  • a preheating heater including a preheating heat source used for preheating the constant volume heating fluid is further provided.
  • a preheating heat source is a heat source below the final heating heat source temperature.
  • a heat source below the final heating temperature can be used for preheating the constant volume heating fluid.
  • Preheating heat sources include outside air, groundwater, river water, tap water, heat engine cooling exhaust heat, combustion gas exhaust heat, seawater, geothermal power generation exhaust heat, and industrial exhaust heat. If the temperature difference between the external environment and the temperature is small, a means for improving heat transfer is necessary. Preheating with a preheating heat source improves the coefficient of performance of the refrigeration cycle.
  • the functions of the suction valve and discharge valve of the preheating constant volume heater are check valves. When the constant volume heating fluid is discharged from the final heater, the pressure in the final heater falls below the pressure in the preheating heater, and the constant volume heating fluid in the preheating heater is sucked into the final heater.
  • the heat insulating material includes a vacuum heat insulating material, a glass wool heat insulating material, and a urethane heat insulating material. The heat insulating material covers the inside or outside of the pressure vessel.
  • constant volume heat transfer improving means for improving the heat transfer performance of the constant volume heater.
  • the preheating heat source When the preheating heat source is at a low temperature, it absorbs heat of air and water as in the evaporator, so a sufficient heat transfer area is required.
  • a horizontal shell and tube, a vertical shell and tube, a double tube, and a plate fin tube are used as means for improving heat transfer performance.
  • a heating start means for starting heating of the final heater A heating stop means for stopping the heating of the final heater;
  • a heating amount increasing / decreasing means for increasing or decreasing the heating amount of the final heater is provided.
  • the heating start of the final heater is the start of use of the constant volume heater using device.
  • the power is turned on, and in the case of combustion heat, ignition is performed.
  • the heating amount increase / decrease is an increase / decrease in current in the case of electrical resistance heating.
  • the combustion heat is an increase or decrease in the amount of fuel.
  • heating start instruction means for instructing to start heating of the final heater
  • heating amount increase / decrease instruction means for instructing to increase / decrease the heating amount of the final heater
  • heating for instructing to stop heating of the final heater A stop instruction means is provided.
  • the output is generated by heating, the output is controlled by controlling the amount of heating heat.
  • the heating heat source is combustion heat
  • control is performed by controlling the fuel supply amount and the air supply amount.
  • the heating heat source generates heat by electric power, the voltage and current are controlled.
  • the heating heat source is solar heat, it is difficult to control the amount of heat, so control is performed with other heat sources, combustion heat, and electric power.
  • heat radiating means for radiating the heat of the constant volume heating fluid An expansion valve for lowering the low-temperature and low-pressure of the constant volume heating fluid; It is characterized by comprising heat absorption means for absorbing heat by vaporizing the constant volume heating fluid.
  • This apparatus is a refrigeration cycle apparatus, a chemical synthesis substance heating apparatus, a heat pump boiler, and a heating element cooling apparatus.
  • the constant volume heating fluid is a refrigerant in the refrigeration cycle and water in the heat pump boiler.
  • the heat radiating means for radiating the heat of the constant volume heating fluid is the discharge of the heated constant volume heating fluid. In the boiler, water vapor is emitted.
  • the constant volume heating fluid is a refrigerant and the heat radiation means is a condenser.
  • the expansion valve is used in the refrigeration cycle.
  • the endothermic means is an evaporator in the refrigeration cycle.
  • the heat absorbing means includes a concentrating solar cell element that is a heat generating object and a device that absorbs heat generated by the CPU of the computer.
  • the coefficient of performance improves when the constant volume heating fluid is preheated with outside air or the like with a constant volume heater.
  • the constant volume heater does not use power and can achieve a refrigeration cycle using only the final heating heat source.
  • Automatic control, refrigerant circulation rate, condenser, expansion valve, evaporator, etc. are the same as in the case of using an adiabatic compressor.
  • the actual performance coefficient and the theoretical performance coefficient of the current refrigeration cycle are different from the ideal performance coefficient by thermodynamics. This is because the temperature difference between the low-temperature heat source and the high-temperature heat source with the ideal coefficient of performance is the refrigerant temperature difference with the theoretical coefficient of performance.
  • the temperature difference of the refrigerant is the difference between the evaporator inlet temperature and the condenser inlet temperature.
  • the temperature of the cooling water and the cooling outside air is at least higher than the refrigerant outlet temperature of the refrigerant, it can be heated by the preheating heater to at least the cooling water temperature and the cooling outside temperature. This improves the coefficient of theoretical performance.
  • the refrigerant preheated by the preheating heater is finally heated to the discharge temperature by the final heater. Give an example.
  • the low temperature of the refrigerant is irrelevant for constant volume heating.
  • the cooling exhaust heat is always higher than the outside air, so the performance coefficient is further improved by preheating with cooling exhaust heat.
  • the cooling exhaust heat temperature is 40 degrees, it becomes 31.3.
  • a boiler that uses water as the constant volume heating fluid is a boiler.
  • the efficiency of the heat pump boiler will be described. Water is evaporated in the evaporator. Water is vaporized by an evaporator as a refrigerant to absorb heat.
  • the saturated vapor pressure of water vapor at 0 degrees Celsius is 597 pa, so the set pressure of the evaporator may be set to 597 pa or less.
  • the water vapor exiting the evaporator is preheated by a preheating heat source.
  • the preheating heat source should have a sufficient heat transfer area so that it can be heated to the preheating temperature.
  • heating is performed with an electric resistance heat source, that is, heating with a nichrome wire, or a combustion heat source such as natural gas, petroleum, coal, biomass, or a solar heat source.
  • the constant volume heater is easy because compression above the saturated vapor pressure, which is difficult with a positive displacement compressor, is a heating change. This is because adiabatic compression liquefies above the saturated vapor pressure.
  • the discharge temperature can be adjusted by setting the discharge valve pressure of the vapor pressure corresponding to the temperature of the saturated steam. Therefore, the water vapor discharge temperature can be easily increased.
  • the discharge valve setting at a steam temperature of 300 degrees Celsius is 9.4 MPa. If this steam is ejected, it becomes a boiler.
  • the coefficient of performance of the heat pump boiler is 2.0 when the boiler steam temperature is 300 degrees and the feed water temperature is 20 degrees, and the energy used is 50% of the conventional one.
  • a constant volume heating fluid supply means for supplying the constant volume heating fluid is further provided.
  • the constant volume heating fluid supply means newly supplies the constant volume heating fluid.
  • a boiler it is a water supply device.
  • a constant volume heating fluid recovery means for recovering the constant volume heating fluid.
  • the refrigerant that is the constant volume heating fluid circulates.
  • the condenser of the refrigeration cycle has functions of heat dissipation and recovery.
  • the boiler condenser is the recovery means.
  • conversion that converts thermal energy into mechanical energy is a heat dissipation means.
  • carbon dioxide, ammonia, etc. whose boiling point is close to that of carbon dioxide and ammonia can be used.
  • the reaction for synthesizing urea from carbon dioxide and ammonia is optimal because it is about 300 degrees under a catalyst.
  • the heat absorbing means includes a concentrating solar cell element that is a heat generating object and a device that absorbs heat generated by the CPU of the computer.
  • the heat absorption part of the refrigeration cycle absorbs the heat of the heating element and can be lowered. If the heat source is solar heat, the cycle can be operated without any other power, and the concentrating solar cell element can be cooled to about 10 degrees below zero.
  • a sufficient heat dissipation heat transfer area may be secured without using a fan or cooling water pump for heat dissipation.
  • a refrigeration cycle using a constant volume heater will be described.
  • Automatic control, refrigerant circulation rate, condenser, expansion valve, evaporator, etc. are the same as in the case of using an adiabatic compressor.
  • the actual performance coefficient and the theoretical performance coefficient of the current refrigeration cycle are different from the ideal performance coefficient by thermodynamics. This is because the temperature difference between the low-temperature heat source and the high-temperature heat source with the ideal coefficient of performance is the refrigerant temperature difference with the theoretical coefficient of performance.
  • the temperature difference of the refrigerant is the difference between the evaporator inlet temperature and the condenser inlet temperature.
  • the temperature of the cooling water and the cooling outside air is at least higher than the refrigerant outlet temperature of the refrigerant, it can be heated by the preheating heater to at least the cooling water temperature and the cooling outside temperature. This improves the coefficient of theoretical performance.
  • the refrigerant preheated by the preheating heater is finally heated to the discharge temperature by the final heater. Give an example.
  • the low temperature of the refrigerant is irrelevant for constant volume heating.
  • the cooling exhaust heat is always higher than the outside air, so the performance coefficient is further improved by preheating with cooling exhaust heat.
  • the cooling exhaust heat temperature is 40 degrees, it becomes 31.3. It is a boiler that uses a constant volume heating fluid as water.
  • the efficiency of the heat pump boiler will be described. Water is evaporated in the evaporator. Water is vaporized by an evaporator as a refrigerant to absorb heat.
  • the saturated vapor pressure of water vapor at 0 degrees Celsius is 597 pa, so the set pressure of the evaporator may be set to 597 pa or less.
  • the water vapor exiting the evaporator is preheated by a preheating heat source.
  • the preheating heat source should have a sufficient heat transfer area so that it can be heated to the preheating temperature.
  • heating is performed with an electric resistance heat source, that is, heating with a nichrome wire, or a combustion heat source such as natural gas, petroleum, coal, biomass, or a solar heat source.
  • the constant volume heater is easy because compression above the saturated vapor pressure, which is difficult with a positive displacement compressor, is a heating change. This is because adiabatic compression liquefies above the saturated vapor pressure.
  • the discharge temperature can be adjusted by setting the discharge valve pressure of the vapor pressure corresponding to the temperature of the saturated steam. Therefore, the water vapor discharge temperature can be easily increased.
  • the discharge valve setting at a steam temperature of 300 degrees Celsius is 9.4 MPa. If this steam is ejected, it becomes a boiler.
  • the coefficient of performance of the heat pump boiler is 2.0 when the boiler steam temperature is 300 degrees and the feed water temperature is 20 degrees, and the energy used is 50% of the conventional one.
  • the constant volume heating fluid is a refrigerant, A condenser, An expansion valve and an evaporator are provided.
  • This is a so-called refrigeration cycle.
  • a refrigeration cycle using a constant volume heater will be described.
  • Q the amount of work taken from the outside of the cycle
  • the amount of heat the amount of heat required for constant volume heating
  • the constant volume heater does not use power and can achieve a refrigeration cycle using only the final heating heat source.
  • Automatic control, refrigerant circulation rate, condenser, expansion valve, evaporator, etc. are the same as in the case of using an adiabatic compressor.
  • the actual performance coefficient and the theoretical performance coefficient of the current refrigeration cycle are different from the ideal performance coefficient by thermodynamics. This is because the temperature difference between the low-temperature heat source and the high-temperature heat source with the ideal coefficient of performance is the refrigerant temperature difference with the theoretical coefficient of performance.
  • the temperature difference of the refrigerant is the difference between the evaporator inlet temperature and the condenser inlet temperature.
  • the preheating heater since the temperature of the cooling water and the cooling outside air is at least higher than the refrigerant outlet temperature of the refrigerant, it can be heated by the preheating heater to at least the cooling water temperature and the cooling outside temperature. This improves the coefficient of theoretical performance.
  • the refrigerant preheated by the preheating heater is finally heated to the discharge temperature by the final heater.
  • the low temperature of the refrigerant is irrelevant for constant volume heating.
  • the cooling exhaust heat is always higher than the outside air, so the performance coefficient is further improved by preheating with cooling exhaust heat.
  • the cooling exhaust heat temperature is 40 degrees, it becomes 31.3. It is a boiler that uses a constant volume heating fluid as water.
  • the efficiency of the heat pump boiler will be described. Water is evaporated in the evaporator. Water is vaporized by an evaporator as a refrigerant to absorb heat.
  • the saturated vapor pressure of water vapor at 0 degrees Celsius is 597 pa, so the set pressure of the evaporator may be set to 597 pa or less.
  • the water vapor exiting the evaporator is preheated by a preheating heat source.
  • the preheating heat source should have a sufficient heat transfer area so that it can be heated to the preheating temperature.
  • heating is performed with an electric resistance heat source, that is, heating with a nichrome wire, or a combustion heat source such as natural gas, petroleum, coal, biomass, or a solar heat source.
  • the constant volume heater is easy because compression above the saturated vapor pressure, which is difficult with a positive displacement compressor, is a heating change. This is because adiabatic compression liquefies above the saturated vapor pressure.
  • the discharge temperature can be adjusted by setting the discharge valve pressure of the vapor pressure corresponding to the temperature of the saturated steam. Therefore, the water vapor discharge temperature can be easily increased.
  • the discharge valve setting at a steam temperature of 300 degrees Celsius is 9.4 MPa. If this steam is ejected, it becomes a boiler.
  • the coefficient of performance of the heat pump boiler is 2.0 when the boiler steam temperature is 300 degrees and the feed water temperature is 20 degrees, and the energy used is 50% of the conventional one.
  • the solar battery is further provided with a solar heat collecting means for collecting sunlight.
  • the solar heat collecting means includes a stationary vacuum tube type solar heat collecting device and a concentrating solar heat collecting device using a mirror or a Fresnel lens.
  • a vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight, and uses a heat medium, so it can collect heat up to 200 degrees. In a normal refrigeration cycle, the discharge temperature of the refrigerant is about 70 degrees Celsius, so the vacuum tube solar collector can be used as a heat source. However, since it is necessary to use a heat source of 200 ° C. or more in order to use as a heating heat source of the boiler, it cannot be used.
  • the heat source is a solar heat collection heat source, it is possible to operate the refrigeration cycle and heat pump cycle using only natural energy.
  • An inexpensive vacuum tube solar collector is used for heating the refrigerant below 200 degrees.
  • a concentrating solar thermal collector requires a tracking device and is expensive. However, since it is hotter than a vacuum tube type, it is used in boilers, solar thermal power generation, and the like.
  • the condensing type uses the final heater as the condensing point.
  • the stationary solar collector has a maximum elevation of 1000w per square meter when installed at an elevation angle of 35 degrees on the south side, but the annual solar radiation is low. In the condensing type, direct light is 800 w per square meter, but the annual solar radiation tracks the sun, so it is about 1.6 times that of the fixed type.
  • the heat collecting material becomes high temperature and can be used as a high-temperature heat source for the final heater.
  • the solar light collecting and collecting means is used as an energy source for the refrigeration cycle and heat pump boiler of the constant volume heater utilizing device.
  • the constant volume heater has the same structure as the condenser and evaporator, so the final heater is heated by connecting the pressure vessel and the heat collecting material with a material having high thermal conductivity. Since the total efficiency of the heat pump boiler and the heat engine is 100%, 100 electricity can be generated with respect to the input solar energy 100. If the electric conversion efficiency of the constant volume heater utilization device is 85%, 118 solar energy is required for the power generation 100.
  • the cost can be reduced by preheating a vacuum tube type solar thermal collector that does not require a tracking device as a low-temperature heat source of about 200 degrees. Nichrome wire heat and combustion heat are used as a high-temperature heat source at night when there is no solar heat or when it is cloudy.
  • a vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight and uses a heat medium, so it can collect heat at a high temperature of 200 degrees.
  • a concentrating solar thermal collector is a high-temperature, high-energy heat source that concentrates several hundred to several tens of thousands of times. Preheat using the cooling water and cooling air of the condenser.
  • the set pressure of the suction valve and discharge valve of the preheating constant volume heater is the same as that of the final heater. Since it cannot heat above the temperature of a low-temperature heating heat source, the set pressure of the discharge valve may be the same as that of the final heater.
  • Condenser exhaust heat is outlet cooling water in water cooling and outlet air in air cooling. Basically, the temperature is lower than the refrigerant discharge temperature.
  • a vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight, and uses a heat medium, so it can collect heat at a high temperature of 200 degrees or more. Since the refrigerant discharge temperature is about 70 degrees Celsius in a normal refrigeration cycle, the vacuum tube solar collector type can be used as a heat source. However, in order to use as a heating heat source for a boiler that requires steam of 200 ° C. or higher, a heat source of 200 ° C. or higher is required, and thus cannot be used. Can be used for boilers below 200 degrees.
  • the exhaust heat from the condenser is effective.
  • Preheating and constant volume heating is performed using the cooling water and cooling air of the condenser.
  • the set pressure of the suction valve and discharge valve of the preheating heater is the same as that of the final heater. Since it cannot heat above the temperature of the preheating heat source, the set pressure of the discharge valve may be the same as that of the final heater.
  • the apparatus further comprises heat storage means for storing solar heat collected by the solar heat collecting means.
  • Thermal energy collected by the solar heat collecting means is stored by the heat storage means for nighttime when there is no sunlight, cloudy weather, and rainy weather.
  • heat is stored with the dissolved salt used in solar thermal power generation. Ice storage is used for cooling.
  • Vacuum tube solar collectors are also ideal for cooling and refrigeration applications because they have a heat storage function. In the case of a concentrating solar heat collection heat source, heating is performed separately for the final heater and for heat storage.
  • the apparatus further comprises heat / mechanical energy conversion means for converting thermal energy into mechanical energy using the working fluid as the constant volume heating fluid.
  • the assumed volumetric heating fluid is water. Therefore, the working fluid is water vapor.
  • the heat-mechanical energy converter is a steam engine and a steam turbine. The used steam is sent to a condenser to be cooled.
  • This device can be mounted on ships, automobiles, heavy machinery and the like. Moreover, it is good to provide a storage battery for the power utilization at the time of starting, and the electrical storage at the time of electric power generation.
  • a lead storage battery is used for start-up, and a lithium ion battery, a nickel ion battery, or a NAS battery is used to store surplus power.
  • the exhaust heat of the steam engine and steam boiler is higher than the outside air temperature and cooling water temperature, the temperature difference deteriorates the thermal efficiency, so the actual COP is brought closer to the ideal COP by absorbing it with a constant volume heater.
  • the low-temperature heat source of the refrigeration cycle can be covered with the exhaust heat from cooling the heat engine. From this theory, the combination of the heat pump and the heat engine will examine the low temperature heat source and the high temperature heat source with the effective area efficiency of the equipment. Equipment costs can be reduced because there is no need for high temperatures for thermal efficiency.
  • the final heater High temperature heat source accommodation means for accommodating the high temperature heat source part of the heat / mechanical energy conversion means is provided.
  • the high temperature heat source part of the heat engine is up to the stationary blade. Up to the previous step of converting thermal energy into velocity energy.
  • the present invention is characterized by further comprising a high temperature heat source accommodation heat insulating means for insulating the high temperature heat source accommodation means. Heat insulation can be suppressed by insulating the high-temperature heat source accommodation means.
  • the preheating heat source having a temperature difference is further provided.
  • Examples of the preheating heat source having a temperature difference are outside air temperature and groundwater. If there is a heat source with a temperature difference, the overall efficiency of the heat engine and the heat pump cycle can be made 1 or more. If the high temperature heat source is 300 degrees, the outside temperature is 35 degrees and the groundwater is 18 degrees, the low temperature heat source of the refrigeration cycle is the outside temperature, If the low-temperature heat source of the heat / mechanical converter is groundwater, the total conversion efficiency is 1 or more.
  • the combined theoretical overall efficiency of the heat pump cycle and the heat / mechanical converter increases to 1 or more.
  • Total theoretical efficiency is low and low temperature heat source temperature is T1
  • High and low temperature heat source temperature is T2.
  • T3 as the high-temperature heat source for heat pump cycle and heat / mechanical converter
  • the overall efficiency of the above setting is 1.064.
  • the preheating heat source of the heat pump cycle is set to groundwater
  • the low temperature heat source of the heat engine is set to the outside temperature.
  • the best location is a cold area with a geothermal heat source, long sunshine hours, and a lot of solar radiation
  • the apparatus further comprises a generator that converts mechanical energy converted by the heat-mechanical conversion means into electric energy. It is a so-called brackish water generator.
  • the steam turbine and the steam engine are moved by the high-temperature and high-pressure steam from the heat pump boiler to generate electricity with an electromagnetic induction generator. In the case of power generation, it is heated up to about 300 to 600 degrees with a heat pump boiler.
  • the condenser functions as a condenser. When mounted on the moving means, the generated electricity is supplied to the electric motor and the storage battery.
  • the present invention is characterized by further comprising livestock power storage means for storing the power generated by the generator.
  • the storage means is a storage battery, a capacitor, or the like.
  • Storage batteries include lead batteries, nickel batteries, and lithium batteries.
  • Steam engines, steam turbines, and the like have poor output responsiveness, so charge them beforehand and generate driving force with an electric motor to improve responsiveness.
  • the apparatus further comprises a final heating heat source switching means for switching the final heating heat source.
  • a final heating heat source switching means for switching the final heating heat source.
  • preheating heat source switching means for switching the preheating heat source is further provided.
  • the heat pump cycle and the heat engine it is necessary to switch the low-temperature heat source in Japan in summer and winter.
  • a solenoid valve used for switching between heating and cooling is used.
  • the apparatus further comprises a moving means for mounting the constant volume heater utilization device.
  • the moving means is an automobile, a ship, a construction machine, a forklift, or the like. Specifically, water is used as the refrigerant of the heat pump cycle, and the working fluid of the external combustion engine is used as water vapor. Steam turbine car, steam turbine ship, steam locomotive, steam turbine locomotive.
  • the apparatus further comprises mechanical / driving force converting means for converting mechanical energy converted by the heat / mechanical converting means into driving force of the moving means.
  • the moving device is directly driven by a steam engine and a steam turbine.
  • a power transmission device such as a transmission and a propeller shaft is required. Since steam turbines and steam engines have poor output responsiveness, electric and electric motors are required.
  • the apparatus further comprises power / driving force conversion means for converting the power generated by the generator into the driving force of the mobile device.
  • the power / driving force conversion means is an electric motor. It is basically an electric motor drive moving device with steam turbine generator. The converted electric energy is distributed to driving force and power storage. Fluctuations in driving force are dealt with by supplying electric power from the electric motor and the power storage device, and the thermal / mechanical converter improves fuel efficiency when it is operated at multiple stages of constant speed output. Multiple stages include idling, city driving, high speed driving, ultra high speed driving, and the like.
  • the apparatus further comprises mechanical energy distribution means for distributing mechanical energy converted by the heat / mechanical conversion means to the mechanical / driving force conversion device and the generator.
  • the apparatus further comprises mechanical energy distribution rate selection means for selecting a distribution rate of the mechanical energy distribution means.
  • the apparatus further comprises driving force requesting means for requesting the driving force to the mechanical / driving force converting device and the power / driving force converting means.
  • an irreversible reaction generation heat source storage means for storing an irreversible reaction generation heat source of the constant volume heater utilizing device.
  • An irreversible reaction generation heat recovery means including a preheater using the irreversible reaction generation heat source as a preheating heat source is provided. Irreversible loss is generated when a mechanical device such as mechanical loss, heat of chemical reaction, and frictional heat is operated.
  • Preheat heat source for preheater heaters such as steam turbine heat generator, generator, storage battery, solar heat accumulator to absorb heat generated by friction of rotating part of steam turbine, frictional heat of moving part of generator, chemical reaction heat of storage battery And This can prevent so-called entropy increase. Overall thermal efficiency is improved.
  • a steam turbine machine movable part, a generator, a condenser, and a drive device are accommodated in the same heat insulation space, and a preheating heater is installed in the space to absorb generated heat.
  • a heat transfer improving means is attached to the preheating heater. This also leads to cooling of each device.
  • the heat generating unit accommodating heat insulating means for insulating the generated heat source accommodating means is further provided. Heat loss can be suppressed by heat insulation.
  • the present invention is characterized by further comprising a livestock power measuring means for measuring the livestock power stored in the power storage means.
  • the amount of electricity stored is always measured, and if there is storage capacity, electricity generated by the mechanical / electrical conversion means is stored.
  • the apparatus further comprises a vortex tube for separating the constant volume heating fluid into a high temperature fluid and a low temperature fluid.
  • Vortex tubes can separate gases into high and low temperatures. Water vapor is generated by a heat pump boiler, but the vacuum tube type solar heat collecting device has no light condensing operation, so the limit is 200 degrees. Since the efficiency of the heat cycle is determined by the temperature difference, it is necessary to increase the temperature of the water vapor. Therefore, the temperature is increased using a vortex tube. It has been reported that current vortex tubes can produce a temperature difference of about 100 degrees. Water vapor heated to 200 degrees by a vacuum tube type solar heat collector heat source is separated into water vapor at 300 degrees and water vapor at 100 degrees.
  • the steam turbine is rotated with high-temperature steam at 300 degrees to increase the conversion efficiency.
  • 100 degree low temperature steam is sent to a constant volume heater and reheated. This improves the conversion efficiency.
  • the cryogenic fluid is sent to a preheater. Since the preheating heater is usually the outside air and seawater of a heat source having a temperature lower than that of the low temperature fluid, the high pressure low temperature fluid is sucked into the preheating heater.
  • the final heating heat source of the constant volume heater is the solar heat collecting means
  • the solar heat collecting means is a concentrating heat collecting device
  • the heat absorption source of the heat absorption means is a concentrating solar cell element receiver.
  • the solar cell element generates heat at several thousand degrees or more. Since the function of the evaporator is heat absorption, the solar cell receiver is made of a copper plate and heat exchange with the refrigerant pipe absorbs heat generated by the solar cell element.
  • the constant volume heater-utilizing device operates the refrigeration cycle using the concentrating heat collecting device as a high-temperature heat source, so that the concentrating solar cell element can be cooled without requiring power or electricity for cooling.
  • the evaporator temperature of the refrigerant is -10 degrees
  • the condenser inlet temperature is 50 degrees
  • the outside air temperature is 30 degrees
  • the theoretical coefficient of performance is 21.01 and 5% of the cooling amount It becomes.
  • a naturally cooled concentrating solar cell element is about 70 degrees.
  • the temperature difference from the evaporator temperature is 80 degrees, which is improved by 20% or more. It is also possible to increase the light collection magnification that is currently limited to several hundred times to several thousand times.
  • the final heating heat source is a combustion heat heat source.
  • combustion heat source is a solid fuel combustion heat source.
  • combustion heat source is a liquid fuel combustion heat source.
  • combustion heat heat source is a gaseous fuel combustion heat heat source.
  • the combustion heat heat source is the combustion heat of biomass fuel derived from plants.
  • Biomass fuel contains biogas and vegetation resources generated from wastewater from sewage treatment plants, beer factories, and manure from livestock. Combined with solar heat collecting means, when there is sunlight, sunlight is used as the final heating heat source, and at night and rainy days when there is no sunlight, biomass fuel is used as the final heating heat source to generate zero carbon dioxide emissions. Realize.
  • the final heating heat source is an electric resistance heating heat source.
  • the final heating heat source is a solar heat collecting heat source.
  • the preheating heat source is used as cooling exhaust heat of a heat engine.
  • the heat energy that is not converted to the mechanical energy of the heat engine becomes cooling exhaust heat.
  • the heat engine is a steam turbine, a steam engine, or the like. This is recovered by a heat pump cycle.
  • the preheating heat source is outside air. Preheat the constant volume heating fluid with outside air. In summer in the Northern Hemisphere, outside air is hotter than groundwater and seawater, so it is used to preheat the heat pump cycle. Groundwater and seawater are cooler than the outside air, so use them as a low-temperature iron source for heat engines.
  • the preheating heat source is groundwater.
  • groundwater In the case of the northern hemisphere in which the constant volume heating fluid is preheated with groundwater, groundwater is hotter than the outside air, so it is used for preheating the heat pump cycle. Since the outside air is cooler than groundwater, it is used as a low-temperature iron source for heat engines.
  • the preheating heat source is the irreversible reaction generating heat source. Heat generated from the mechanical part of the steam turbine, storage battery, and generator is recovered as a preheating heat source for the heat pump cycle.
  • the preheating heat source is a vortex tube low temperature separation heat source.
  • the preheating heater In order to finally heat the low-temperature constant volume heating fluid separated by the vortex tube, it comes to a preheating heater. Since the pressure on the low temperature side of the vortex tube is higher than the preheating heat source temperature of the preheating heater, it is sucked into the preheating heater.
  • the preheating heat source is a nuclear reaction heat.
  • the generated heat of the spent nuclear fuel is used as a preheating heat source.
  • the preheating heat source is seawater. Preheat the constant volume heating fluid with seawater. When seawater such as ships is available, in the northern hemisphere winter, seawater is hotter than the outside air, so it is used to preheat the heat pump cycle. Since the outside air is cooler than seawater, it is used as a low-temperature iron source for heat engines.
  • the preheating heat source is a hot drainage for geothermal power generation.
  • the hot drainage of geothermal power generation is used as the preheating heat source of the heat pump cycle and the low temperature heat source of the heat engine is outside air or groundwater, the combined efficiency of the heat pump and the heat engine becomes 1 or more in theory.
  • the constant volume heating fluid is air.
  • This device is an air compressor.
  • the constant volume heating fluid is used as a refrigerant for a refrigeration cycle.
  • This apparatus is a refrigeration cycle apparatus, which is an air conditioner or a refrigeration apparatus.
  • the refrigerant include fluorocarbon, water, carbon dioxide, ammonia, and butane.
  • the constant volume heating fluid is a chemical substance used for a chemical reaction.
  • the refrigerant of the refrigeration cycle is used as a chemical reactant.
  • the chemical reactant is heated by a heat pump cycle. If the outside air temperature is 25 ° C., the coefficient of performance is 2.08 due to the outside air preheating, thereby saving energy.
  • the chemically reactive substance is heated by the final heater and discharged.
  • the constant volume heating fluid is carbon dioxide
  • the constant volume heating fluid supply means is carbon dioxide supply means, Chemicals that react chemically with carbon dioxide, Carbon dioxide reactive chemicals, It is characterized by comprising a carbon dioxide compounding device that combines carbon dioxide and a carbon dioxide reactive chemical substance.
  • Carbon dioxide recovery means will be installed at sources such as steelworks and cement factories. Various recovery methods have been developed, but any of them may be used.
  • the carbon dioxide reactive chemical substance is ammonia.
  • Carbon dioxide and ammonia are synthesized into urea at a temperature of 300 degrees under a catalyst.
  • the energy required for urea synthesis is halved by using a heat pump cycle.
  • the heat source is coal combustion, carbon dioxide is halved.
  • the solar heat collection heat source is the final heat source of the heat pump cycle, the synthesis of urea with zero carbon dioxide emission results in the reduction of carbon dioxide.
  • the constant volume heating fluid is water.
  • This device is a heat pump boiler.
  • the structure in the case of the combustion heat source is the same as that of the once-through boiler.
  • the constant volume heating fluid is seawater. Steam is spouted using a constant volume heating fluid as seawater, power is generated by a steam turbine, and the steam is condensed with outside air to recover fresh water. Supplying seawater for fresh water recovery will enable power generation, seawater desalination and cooling. The total efficiency of the heat pump cycle and the heat engine is 100%. The steam discharge temperature is determined depending on whether power generation is important, seawater desalination is important, or cooling demand is important.
  • the constant volume heating fluid is brine.
  • the brine is calcium chloride aqueous solution, sodium chloride, ethylene glycol aqueous solution, propylene glycol aqueous solution or the like.
  • the heat / mechanical conversion means is a steam heat engine.
  • a steam heat engine is a steam turbine or a steam engine.
  • the solar heat collecting means is a concentrating solar heat collector or a vacuum tube solar heat collector.
  • the solar heat collecting means includes a stationary vacuum tube type solar heat collector and a concentrating solar heat collector equipped with a tracking device using a mirror or a Fresnel lens.
  • a vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight, and uses a heat medium, so it can collect heat up to 200 degrees. In a normal refrigeration cycle, the discharge temperature of the refrigerant is about 70 degrees Celsius, so the vacuum tube solar collector can be used as a heat source. However, since it is necessary to use a heat source of 200 ° C. or more for the final heating heat source of the boiler, it cannot be used.
  • the heat source is a solar heat collection heat source, it is possible to operate the refrigeration cycle and heat pump cycle using only natural energy.
  • An inexpensive vacuum tube solar collector is used for heating the refrigerant below 200 degrees.
  • the concentrating heat collecting device requires a tracking device and is expensive, but it is used in boilers, solar thermal power generation and the like because it is hotter than a vacuum tube type.
  • the heat source is used for heat exchange with a heat transfer medium of the collector and a constant volume heating fluid in a double tube structure.
  • the condensing type uses a final heating constant volume heater as a condensing point.
  • a vacuum tube solar collector is up to 1000w per square meter when installed at an elevation angle of 35 degrees on the south surface, but the annual solar radiation is low.
  • direct light is 800 w per square meter, but the annual solar radiation tracks the sun, so it is about 1.6 times that of the fixed type.
  • the heat collecting material becomes high temperature and can be used as the final heating heat source of the constant volume heater.
  • the heat storage means is a molten salt heat storage.
  • the heat storage means is ice heat storage.
  • the constant volume heating fluid supply means is a water supply device.
  • the structure of the pressure vessel is a double tube structure of a constant volume heating fluid and a preheating heat source.
  • the preheating heat source is outside air, groundwater, etc.
  • a double pipe structure is used in the case of water cooling.
  • a heat utilization device with a theoretical total conversion thermal efficiency of 1 is realized by a combination of a heat pump cycle using a constant volume heater and a Carnot cycle heat engine.
  • a heat utilization device with a total conversion thermal efficiency of 1 or more can be realized. Noise can be reduced compared to an adiabatic compressor by heating the refrigerant at a high temperature using a constant volume heater.
  • Heating the refrigerant with outside air temperature or cooling exhaust heat using a constant volume heater increases the theoretical coefficient of performance of the refrigeration cycle by 4 to 6 times when using air conditioning compared to using an adiabatic compressor. More than 75% energy saving. If a heat pump boiler is constructed using water as the refrigerant in the refrigeration cycle using a constant volume heater, the coefficient of performance is about 2 at a steam temperature of 300 degrees, saving 50% energy. Cooling and freezing can be performed simultaneously. When a heat pump boiler and a steam turbine or a steam engine are combined using a constant volume heater, the theoretical conversion efficiency becomes 1 regardless of the temperature and becomes the highest efficiency. The heat pump boiler can be reduced in size as compared with the conventional boiler. Because it is a heat pump boiler, it can also be cooled at the same time.
  • the heat source is a solar heat collection heat source using a constant volume heater
  • cooling, heating and power generation with zero CO2 emission can be realized.
  • a constant volume heater solar power generation with a solar energy conversion theoretical conversion efficiency of 100% is realized without using solar cells. Since power can be generated by collecting heat, an apparatus with a thermal efficiency of 100% or more can be obtained by using a low-temperature heat source by using a constant volume heater. Since the boiler is miniaturized, it can be mounted on a moving device. A combination of a heat pump boiler, a steam turbine, and a generator enables power generation with a theoretical thermal efficiency of 100%.
  • the power system is stable and the power generation without carbon dioxide emission becomes possible.
  • the facility operation rate of solar power generation is low and the facility cost is high.
  • the steam heat engine can be operated at a constant speed and output fluctuations can be handled by electricity storage and electric motors to achieve significant energy savings.
  • exhaust gas measures are not required.
  • the final heater When the 4 constant volume heating fluid in 1 pressure vessel is heated by 4 final heating heat sources with 2 intake valves and 3 discharge valves closed, the pressure temperature increases. When a predetermined temperature pressure is reached, the discharge valve is opened and the constant volume heated fluid 4 is discharged.
  • the final heating heat source is a heat source higher than the discharge temperature of the constant volume heating fluid, and includes a combustion heat heat source, an electric resistance heat generating heat source, and a solar heat collecting heat source.
  • the set pressure of the discharge valve is the pressure at the design discharge temperature of the constant volume heating fluid. The new constant volume heating fluid is sucked into the pressure vessel whose pressure has dropped due to the discharge of the constant volume heating fluid 4 and the suction valve opens.
  • the heat insulating means 7 is a heat insulating means, and the final heater is heated to prevent heat loss because the final heater is hotter than the external environment.
  • the heat insulating means 7 may be inside or outside the pressure vessel. Various types of insulation can be used, such as vacuum insulation, glass wool, and urethane.
  • It is a preheating heater.
  • the structure is the same as the final heater.
  • the function of the intake valve and the discharge valve is a check valve function.
  • 6 is a preheating heat source. 4 constant volume heating fluid is heated with a preheating heat source.
  • the preheating heat source includes outside air, groundwater, exhaust heat from the cooling machine, and exhaust heat from combustion. Since the preheating heat source is a low temperature, heat transfer performance is improved by adding 8 heat transfer improvement means.
  • . 4 is a constant volume heating fluid.
  • 9 is a final heater.
  • the constant volume heating fluid is discharged at a high temperature in the final heater.
  • Reference numeral 5 denotes a final heating heat source.
  • Reference numeral 13 denotes a final heating heat source switch, which switches between a solar heat collecting heat source and a combustion heat heat source and switches between a solar heat heat source and an electric resistance heat generating heat source.
  • Reference numeral 10 denotes a preheating heater which preheats the constant volume heating fluid.
  • Reference numeral 14 denotes a preheating heat source switching unit for switching to a higher temperature of the preheating heat source that changes due to seasonal variation. For example, in the summer of the Northern Hemisphere, if it is outside temperature and groundwater, it turns into outside air. 53 is a heat dissipation means. Reference numeral 15 denotes an output start / stop increase / decrease device. Start and stop heating of the final heater and increase or decrease the heating amount. 43 is a generator. 44 is a mechanical energy distribution means that determines whether to use the mechanical energy as it is or to generate power. When all mechanical energy is allocated to power generation, it becomes a power plant.
  • Reference numeral 42 denotes a heat / mechanical conversion means.
  • the heat of the constant volume heating fluid is dissipated.
  • Reference numeral 11 denotes an endothermic means. In the refrigeration cycle, it is an evaporator.
  • Reference numeral 12 denotes a constant volume heating fluid recovery means. 53 is a heat dissipation means.
  • a condenser having a heat radiation means and a constant volume heating fluid recovery means in a refrigeration cycle is a condenser.
  • Reference numeral 42 denotes a heat / mechanical conversion means having a heat radiation function.
  • When the constant volume heating fluid is water, it is a steam turbine or a steam engine.
  • Reference numeral 19 denotes an expansion valve. Reduce the low temperature and pressure of the constant volume heating fluid.
  • a mechanical / driving force converting means 46 converts mechanical energy into driving force of the moving device.
  • 47 is a power / driving force converting means for converting electric power into driving force. This is a so-called electric motor.
  • Reference numeral 48 denotes a driving force distribution means for determining the distribution of electric power / driving force and machine / driving force.
  • 52 is a starting means. Ships, automobiles, railway locomotives, construction machinery, etc.
  • Reference numeral 50 denotes a heat / mechanical conversion means high-temperature heat source section. It is a high-temperature heat source for the Carnot cycle of heat engines.
  • 51 is a high temperature heat source accommodation means. Heat loss can be suppressed by coexisting the high-temperature heat source of the heat pump cycle and the high-temperature heat source of the heat engine. This is a refrigeration cycle using a constant volume heater. 9 is a final heater.
  • Reference numeral 10 denotes a preheating heater. Replacing traditional adiabatic compressors with final and preheater heaters. 10 is a preheating heater 17 is an evaporator.
  • Reference numeral 16 denotes a condenser.
  • Reference numeral 19 denotes an expansion valve.
  • 18 is a refrigerant.
  • 21 is a solar heat collecting heat source as a final heating heat source.
  • Reference numeral 20 denotes a combustion heat heat source as a final heating heat source.
  • Reference numeral 25 denotes the outside air of the preheating heat source.
  • 26 is groundwater.
  • 54 is a molten salt heat storage. Stores solar heat collection heat.
  • This device is a heat pump boiler with a condenser.
  • 30 is water.
  • Reference numeral 34 denotes a steam heat exchanger. Heat exchange is performed between the heated steam and the heated product.
  • 35 is a condenser.
  • 36 is a biomass combustion heat source.
  • Reference numeral 37 denotes a concentrating solar heat collector, which can collect heat at a very high temperature and can be used as a final heating heat source.
  • 36 is a biomass combustion heat source. A combination of 37 and 36 can realize a boiler with renewable energy.
  • This device is a heat pump boiler without a condenser.
  • 31 is a water supply apparatus.
  • 32 is a water vapor jet. Water supply is necessary because water disappears due to water vapor.
  • Reference numeral 33 denotes a vacuum tube type solar heat collector.
  • 23 is a gas combustion heat source.
  • Reference numeral 24 denotes a petroleum-based combustion heat heat source. 33 and 23 are final heating heat sources.
  • 25 switched by 13 switching means is outside air. 26 is groundwater. Change to the higher one with 14 switching means.
  • 54 is a molten salt heat storage device for storing solar heat collected at 33.
  • Reference numeral 38 denotes a vortex tube. Separate the constant volume heating fluid into 39 and 40.
  • Reference numeral 17 denotes an evaporator. 35 is a condenser. 57 is a steam turbine. 30 is water. Reference numeral 33 denotes a vacuum tube type solar heat collector. 54 is a molten salt heat storage. Reference numeral 24 denotes a liquid combustion heat source. 25 is outside air. 67 is heat engine cooling exhaust heat. 56 is a ship.
  • the irreversible reaction generation heat recovery apparatus 10 is a preheating heater. 59 is an irreversible reaction generation heat source. Reference numeral 60 denotes generated heat source accommodation means.
  • Reference numeral 70 denotes an irreversible reaction generating heat source accommodation heat insulating means.
  • 1 is a pressure vessel.
  • 2 is a suction valve.
  • 3 is a discharge valve.
  • 8 is a constant volume heat transfer improving means.
  • 61 is a generator machine heat generation heat source
  • 62 is a steam turbine machine heat generation heat source.
  • 62 is a steam turbine machine exothermic heat source
  • 63 is a storage battery chemical reaction heat source.
  • the concentrating solar cell element cooling system 16 is a condenser.
  • Reference numeral 19 denotes an expansion valve.
  • 18 is a refrigerant.
  • 25 is outside air.
  • 21 is a solar heat collecting heat source.
  • Reference numeral 64 denotes a concentrating solar cell element receiver which is an object to be cooled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

[Problem] There is a demand for improvement in the coefficient of performance for a refrigeration cycle that is a reverse Carnot cycle, and there is a demand for improved thermal efficiency of a thermal engine. To improve the thermal efficiency of a thermal engine, the moisture vapor temperature of a steam turbine is brought to a high temperature. There is a demand for improved efficiency, the prevention of noise, and reduced mechanical loss in an adiabatic compressor. There is a demand for a reduction in the amount of energy used by a boiler, for improved electrical efficiency in a steam turbine, and for improved fuel consumption in devices such as automobiles. [Solution] The coefficient of performance of the refrigeration cycle is improved by replacing the adiabatic compression process of a refrigeration cycle that is a reverse Carnot cycle with a constant volume heating process. The constant volume heater utilizes the thermal change of a fixed volume in the Boyle-Charles's law of thermodynamics. A heat utilization device with a theoretical overall conversion energy efficiency of 1 is achieved with a combination of a heat pump cycle using a constant volume heater and a Carnot cycle thermal engine. A heat utilization device with an overall conversion energy efficiency of 1 or greater is achieved through the proper use of a low-temperature heat source of the refrigeration cycle and a low-temperature heat source of the thermal engine.

Description

定容加熱器利用装置Constant volume heater equipment
本発明は圧縮機、ボイラー、冷凍サイクル、発電機、太陽エネルギー利用装置、移動装置に関する The present invention relates to a compressor, a boiler, a refrigeration cycle, a generator, a solar energy utilization device, and a moving device.
冷凍サイクルの成績係数の向上手段として液ガス熱交換器やエジェクタがある。
圧縮機の電力制御としてインバータがある。
圧縮機として容積式圧縮機と遠心式圧縮機がある。
冷房暖房に対応するエアコンがある。
熱機関の蒸気タービンの熱効率向上として超臨界水発電などが開発されている。
二酸化炭素を冷媒としたヒートポンプ給湯器がある。
太陽光エネルギー活用手段として太陽熱発電技術や太陽電池技術が開発されている。
自動車でハイブリッド車や電気自動車が開発されている。
その中でも特に冷凍サイクル、ボイラー、発電の省エネルギー化が求められている。
また、圧縮機は産業界で多数使われている。
二酸化炭素の分離回収技術が開発されている。
There are liquid gas heat exchangers and ejectors as means for improving the coefficient of performance of the refrigeration cycle.
There is an inverter as a power control of the compressor.
As a compressor, there are a positive displacement compressor and a centrifugal compressor.
There is an air conditioner that supports air conditioning.
Supercritical water power generation has been developed to improve the thermal efficiency of steam turbines in heat engines.
There is a heat pump water heater that uses carbon dioxide as a refrigerant.
Solar thermal power generation technology and solar cell technology have been developed as means for utilizing solar energy.
Hybrid cars and electric cars are being developed as automobiles.
In particular, energy saving is required for the refrigeration cycle, boiler, and power generation.
Many compressors are used in industry.
Carbon dioxide separation and recovery technology has been developed.
逆カルノーサイクルとされている冷凍サイクルの成績係数の向上と熱機関の熱効率の向上が求められている。
熱機関の熱効率向上のため蒸気タービンの水蒸気温度が高温化している。
断熱圧縮機は基本的に機械式または電動式である。このため騒音が発生する。
冷媒を高圧にすると、液化するので圧縮効率が悪化し機械損失が増大する。
摩擦回避のため潤滑油が必要である。
冷凍サイクルの成績係数の向上は熱力学上の低温熱源から高温熱源に熱移動する理想成績係数と理論成績係数が大きく乖離している。
本来の理想成績係数の低温熱源と高温熱源の関係が冷媒の蒸発温度と圧縮機吐出温度の関係になっている。
この事がこの理論成績係数悪化の原因である。
ボイラーのエネルギー効率の向上が限界に近づいている。ヒートポンプボイラーの開発の為には、水を冷媒とする必要があるが、水蒸気の圧縮が困難である。
給湯加熱と冷房を同時に出来る冷凍サイクルが存在しない。
火力発電、原子力発電などの蒸気タービンを使用した発電の熱効率の向上が限界である。
火力発電の熱効率向上の水蒸気温度が高温高圧化し蒸気タービンの構造強化が必要になり、蒸気タービンの製造コストが、上昇している。
移動装置、自動車の燃費向上および二酸化炭素の削減が求められているが、走行距離、高出力化の両立が課題である。
内燃機関の有害排出ガス発生抑制が課題である。
太陽エネルギー利用において、太陽電池発電、太陽熱発電の変換効率が最高でも40%程度であり、コストも高いものとなっている。
太陽光日射がない場合、太陽光利用装置が利用できず設備の稼働率が低い。
また、熱機関冷却排熱、ボイラー排熱、燃焼排熱、地下水と外気との温度差などエネルギ密度の低い熱源の活用が求められている。
石炭、石油を燃料とする火力発電の発電効率の向上が求められている。
また、移動装置、自動車、船舶のエネルギー効率の向上が求められている。
蒸気熱機関の小型化と出力変動対応が求められている。
風力発電の出力変動が大きく系統電力が不安定になる。
太陽光用発電の設備稼働率が低く設備コストが割高である
There is a demand for improvement in the coefficient of performance of the refrigeration cycle, which is a reverse Carnot cycle, and improvement in the thermal efficiency of the heat engine.
The steam temperature of the steam turbine is increasing in order to improve the thermal efficiency of the heat engine.
Adiabatic compressors are basically mechanical or electric. For this reason, noise is generated.
When the pressure of the refrigerant is increased, the refrigerant is liquefied, so that the compression efficiency deteriorates and the mechanical loss increases.
Lubricating oil is necessary to avoid friction.
The improvement in the coefficient of performance of the refrigeration cycle is largely different from the ideal coefficient of performance and the theoretical coefficient of performance, which transfer heat from a low temperature heat source to a high temperature heat source.
The relationship between the low temperature heat source and the high temperature heat source of the original ideal coefficient of performance is the relationship between the refrigerant evaporation temperature and the compressor discharge temperature.
This is the cause of the deterioration in the theoretical coefficient of performance.
Improvement of boiler energy efficiency is approaching its limit. In order to develop a heat pump boiler, it is necessary to use water as a refrigerant, but it is difficult to compress water vapor.
There is no refrigeration cycle that can heat and cool hot water at the same time.
Improving the thermal efficiency of power generation using steam turbines such as thermal power generation and nuclear power generation is the limit.
The steam temperature for improving the thermal efficiency of thermal power generation has become high-temperature and high-pressure, and it is necessary to reinforce the structure of the steam turbine, and the manufacturing cost of the steam turbine is rising.
There is a need to improve the fuel efficiency of mobile devices and automobiles, and to reduce carbon dioxide.
Suppressing the generation of harmful exhaust gases in internal combustion engines is an issue.
In the use of solar energy, the conversion efficiency of solar cell power generation and solar thermal power generation is at most about 40%, and the cost is high.
When there is no solar radiation, the solar utilization device cannot be used and the operation rate of the equipment is low.
In addition, utilization of heat sources having low energy density such as heat engine cooling exhaust heat, boiler exhaust heat, combustion exhaust heat, and temperature difference between groundwater and outside air is required.
Improvement of power generation efficiency of thermal power generation using coal and oil as fuel is required.
Further, there is a demand for improvement in energy efficiency of mobile devices, automobiles, and ships.
There is a demand for miniaturization of steam heat engines and response to output fluctuations.
Wind power generation output fluctuation is large and system power becomes unstable.
Equipment operation rate of solar power generation is low and equipment costs are high
本目的を達成するための定容加熱器利用装置であって
圧力容器と、
吸入弁と、
吐出弁を備える事を特徴とするものである。
この装置は定容加熱器を利用した圧縮機である。
圧力容器は冷凍サイクルの断熱圧縮機や凝縮器や蒸発器に使用されるものと同じものである。
耐圧力は冷凍サイクルの断熱圧縮機の圧力容器と凝縮器の圧力容器と同じである。
A constant volume heater utilizing device for achieving this object, a pressure vessel,
A suction valve;
A discharge valve is provided.
This apparatus is a compressor using a constant volume heater.
The pressure vessel is the same as that used in the adiabatic compressor, condenser and evaporator of the refrigeration cycle.
The pressure resistance is the same as the pressure vessel of the adiabatic compressor of the refrigeration cycle and the pressure vessel of the condenser.
また、更に被定容加熱流体を備える事を特徴とするものである。
被定容加熱流体は空気圧縮機では空気である。冷凍サイクルでは冷媒である。冷媒はフルオロカーボン、水、アンモニア、ブタン、二酸化炭素等である。
被定容加熱流体はボイラーでは水である。海水、ブライン、化学物質がある。
In addition, a constant volume heating fluid is further provided.
The constant volume heating fluid is air in the air compressor. It is a refrigerant in the refrigeration cycle. The refrigerant is fluorocarbon, water, ammonia, butane, carbon dioxide or the like.
The constant volume heating fluid is water in the boiler. There are seawater, brine and chemicals.
また、更に前記被定容加熱流体の最終加熱に使用される最終加熱熱源からなる最終加熱器を備える事を特徴とするものである。
熱力学のボイルシャルルの法則によると理想気体では同体積の気体を加熱すると温度と圧力が上昇する。
温度・圧力が上昇すると言うことは、圧縮する事と同じことである。
また加熱変化なので容積型の圧縮機の様に高圧液化が起きないので容積型と比較して高温化が容易である。
故に断熱圧縮機の替わりに定容加熱器を冷凍サイクルで使用できる。
圧力容器の中に被定容加熱流体を入れ吸入弁と吐出弁を閉じたまま加熱すると容積一定の加熱になるので圧力が高まり温度が高まる。
吐出弁を被定容加熱流体の所定の温度圧力に設定しておくと、加熱して温度が高まると、吐出弁が開き気体が吐出する。
気体が吐出されると圧力容器の圧力が下がり吸入弁が開き低圧の前工程の気体が吸入される。
要求される圧力・温度から吐出弁の設定圧力をさだめる。
最終加熱熱源は吐出温度以上でかつ熱伝導の為にはある程度の温度差が必要である。
少なくとも10度以上は必要である。
最終加熱熱源を使用して定容加熱する装置が最終加熱器である。
吸入弁、吐出弁の機能としては通常の断熱圧縮機と同じである。
最終加熱器は可動部分が弁機構しかないので音の発生が少なく、断熱圧縮機と比して、低騒音化が出来る。
最終加熱熱源として燃焼熱熱源、電気抵抗発熱熱源、太陽光集熱熱源がある。
燃焼熱の燃料には、固体燃料、液体燃料、気体燃料がある。
固体燃料は石炭、バイオマス等がある。
液体燃料には石油系の灯油、ナフサ、軽油等がある。
気体燃料には天然ガスなどがある。
冷凍サイクルでは冷媒の設計吐出温度以上の熱源温度が必要である。
太陽光集熱では数百倍以上に集光する集光式では問題ないが、真空管式集熱器では200度以上に集熱できないので、200度以上の冷媒吐出温度の最終加熱には使用できない。
Furthermore, a final heater comprising a final heating heat source used for final heating of the constant volume heating fluid is provided.
According to the Boyle's law of thermodynamics, the temperature and pressure rise when heating the same volume of gas in an ideal gas.
An increase in temperature and pressure is the same as compression.
In addition, since the temperature is changed by heating, high-pressure liquefaction does not occur unlike the positive displacement compressor, so that the temperature can be easily increased as compared with the positive displacement type.
Therefore, a constant volume heater can be used in the refrigeration cycle instead of the adiabatic compressor.
If a constant volume heating fluid is placed in the pressure vessel and heated while the suction valve and the discharge valve are closed, the heating becomes constant and the pressure increases and the temperature rises.
If the discharge valve is set to a predetermined temperature and pressure of the constant volume heating fluid, when the temperature rises due to heating, the discharge valve opens and gas is discharged.
When the gas is discharged, the pressure in the pressure vessel is lowered, the suction valve is opened, and the low-pressure gas in the previous process is sucked.
Determine the set pressure of the discharge valve from the required pressure and temperature.
The final heating heat source needs to have a certain temperature difference in order to be higher than the discharge temperature and to conduct heat.
At least 10 degrees or more is necessary.
An apparatus for heating at a constant volume using a final heating heat source is a final heater.
The functions of the suction valve and the discharge valve are the same as those of a normal adiabatic compressor.
Since the final heater has only a valve mechanism at the movable part, there is little sound generation and noise can be reduced compared to an adiabatic compressor.
As the final heating heat source, there are a combustion heat source, an electric resistance heat source, and a solar heat collection heat source.
The combustion heat fuel includes solid fuel, liquid fuel, and gaseous fuel.
Solid fuels include coal and biomass.
Liquid fuels include petroleum-based kerosene, naphtha, and light oil.
Gas fuel includes natural gas.
In the refrigeration cycle, a heat source temperature higher than the designed discharge temperature of the refrigerant is required.
There is no problem with the concentrating type that collects light several hundred times or more in solar heat collection, but since it cannot collect heat to 200 degrees or more with a vacuum tube type heat collector, it cannot be used for final heating at a refrigerant discharge temperature of 200 degrees or more. .
また、更に前記被定容加熱流体の予熱に使用される予熱熱源からなる予熱加熱器を備える事を特徴とするものである。
予熱熱源とは最終加熱熱源温度以下の熱源の事である。
最終加熱温度以下の熱源でも被定容加熱流体の予熱には使用できる。
予熱熱源には外気、地下水、河川水、水道水、熱機関冷却排熱、燃焼ガス排熱、海水、地熱発電温排熱、工業排熱などがある。
外部環境の温度と温度差が小さいものでは伝熱向上手段が必要である。
予熱熱源で予熱をすると冷凍サイクルの成績係数が向上する。
予熱定容加熱器の吸入弁、吐出弁の機能は逆止弁機能である。
最終加熱器で被定容加熱流体が吐出されると最終加熱器内の圧力が予熱加熱器内の圧力よりさがり、予熱加熱器内の被定容加熱流体が最終加熱器に吸入される。
Furthermore, a preheating heater including a preheating heat source used for preheating the constant volume heating fluid is further provided.
A preheating heat source is a heat source below the final heating heat source temperature.
A heat source below the final heating temperature can be used for preheating the constant volume heating fluid.
Preheating heat sources include outside air, groundwater, river water, tap water, heat engine cooling exhaust heat, combustion gas exhaust heat, seawater, geothermal power generation exhaust heat, and industrial exhaust heat.
If the temperature difference between the external environment and the temperature is small, a means for improving heat transfer is necessary.
Preheating with a preheating heat source improves the coefficient of performance of the refrigeration cycle.
The functions of the suction valve and discharge valve of the preheating constant volume heater are check valves.
When the constant volume heating fluid is discharged from the final heater, the pressure in the final heater falls below the pressure in the preheating heater, and the constant volume heating fluid in the preheating heater is sucked into the final heater.
また、更に前記定容加熱器を断熱する定容断熱手段を備える事を特徴とするものである。
最終加熱熱源は高熱なので加熱効率向上のため断熱が必要である。
断熱手段には真空断熱、断熱材被覆などがある。断熱材は真空断熱材、グラスウール断熱材、ウレタン系断熱材がある。
断熱材は圧力容器内部又は外部を被覆する。
Further, it is characterized by further comprising a constant volume heat insulation means for insulating the constant volume heater.
Since the final heating heat source is high heat, heat insulation is necessary to improve heating efficiency.
Insulation means include vacuum insulation and insulation coating. The heat insulating material includes a vacuum heat insulating material, a glass wool heat insulating material, and a urethane heat insulating material.
The heat insulating material covers the inside or outside of the pressure vessel.
また、更に前記定容加熱器の伝熱性能を向上させる定容伝熱向上手段を備えることを特徴とするものである。
予熱熱源が低温の場合は蒸発器と同じように、空気、水の吸熱であるので、十分な伝熱面積が必要である。
熱源温度が低温の冷却排熱、地下水等の場合は伝熱性能向上手段として、横型シェルアンドチューブ、立型シェルアンドチューブ、二重管、プレートフィンチューブを使用する。
Furthermore, it is further characterized by comprising constant volume heat transfer improving means for improving the heat transfer performance of the constant volume heater.
When the preheating heat source is at a low temperature, it absorbs heat of air and water as in the evaporator, so a sufficient heat transfer area is required.
In the case of cooling exhaust heat or groundwater with a low heat source temperature, a horizontal shell and tube, a vertical shell and tube, a double tube, and a plate fin tube are used as means for improving heat transfer performance.
また、更に前記最終加熱器の加熱を開始する加熱開始手段と、
最終加熱器の加熱を停止する加熱停止手段と、
最終加熱器の加熱量を増減する加熱量増減手段を備える事を特徴とするものである。
定容加熱器利用装置は最終加熱器の加熱開始が定容加熱器利用装置の使用開始となる。
電気抵抗発熱では電源オンであり、燃焼熱では着火である。
加熱量増減は電気抵抗発熱では電流の増減である。
燃焼熱では燃料量の増減である。
Furthermore, a heating start means for starting heating of the final heater,
A heating stop means for stopping the heating of the final heater;
A heating amount increasing / decreasing means for increasing or decreasing the heating amount of the final heater is provided.
In the constant volume heater using device, the heating start of the final heater is the start of use of the constant volume heater using device.
In the case of electrical resistance heat generation, the power is turned on, and in the case of combustion heat, ignition is performed.
The heating amount increase / decrease is an increase / decrease in current in the case of electrical resistance heating.
The combustion heat is an increase or decrease in the amount of fuel.
また、更に前記最終加熱器の加熱を開始する指示を行う加熱開始指示手段と
最終加熱器の加熱量を増減する指示を行う加熱量増減指示手段と
最終加熱器の加熱を停止する指示を行う加熱停止指示手段を備える事を特徴とするものである。
定容加熱器利用装置を運転するためには、出力開始、出力停止、出力の増減が必要である。
出力は加熱する事で発生するので、出力の制御は加熱熱量の制御で行う。
加熱熱源が燃焼熱の場合は燃料供給量と空気の供給量の制御で行う。
加熱熱源が電力による発熱の場合は電圧、電流、の制御で行う。
加熱熱源が太陽熱の場合は熱量の制御は困難なので制御は他の熱源、燃焼熱、電力でおこなう。
Further, heating start instruction means for instructing to start heating of the final heater, heating amount increase / decrease instruction means for instructing to increase / decrease the heating amount of the final heater, and heating for instructing to stop heating of the final heater A stop instruction means is provided.
In order to operate the constant volume heater utilization device, it is necessary to start output, stop output, and increase or decrease the output.
Since the output is generated by heating, the output is controlled by controlling the amount of heating heat.
When the heating heat source is combustion heat, control is performed by controlling the fuel supply amount and the air supply amount.
When the heating heat source generates heat by electric power, the voltage and current are controlled.
When the heating heat source is solar heat, it is difficult to control the amount of heat, so control is performed with other heat sources, combustion heat, and electric power.
また、更に前記被定容加熱流体の熱を放熱する放熱手段と、
被定容加熱流体を低温低圧化する膨張弁と、
被定容加熱流体を気化させることで吸熱する吸熱手段を備える事を特徴とするものである。
この装置は冷凍サイクル装置、化学合成物質加熱装置、ヒートポンプボイラー、発熱体冷却装置である。
被定容加熱流体は冷凍サイクルでは冷媒、ヒートポンプボイラーでは水である。
被定容加熱流体の熱を放熱する放熱手段とは加熱された被定容加熱流体の放出である。
ボイラーでは水蒸気噴出である。
化学合成物質加熱装置では化学合成物質放出が放熱である
冷凍サイクルでは被定容加熱流体は冷媒で放熱手段は凝縮器である。
膨張弁は冷凍サイクルで使用されているものである。
吸熱手段は冷凍サイクルでは蒸発器である。
吸熱手段には発熱物体である集光式太陽電池素子やコンピュータのCPUの発熱を吸収する装置を含むものである。
冷凍サイクルにおいて被定容加熱器で被定容加熱流体を外気などで予熱加熱すると成績係数が向上する。
ここで定容加熱器を利用した冷凍サイクルについて述べる。
熱力学では断熱圧縮の仕事をWとすると
W=Q である。 Qはサイクル外部より取り入れた仕事量=熱量=定容加熱必要熱量
故に定容加熱器は動力を使用せず最終加熱熱源だけで冷凍サイクルを実現できる事になる。
自動制御、冷媒循環量、凝縮器、膨張弁、蒸発器、等は断熱圧縮機使用の場合と同様である。
現在の冷凍サイクルの実績成績係数、理論成績係数は熱力学による理想成績係数と乖離している。
なぜか理想成績係数の低温熱源と高温熱源の温度差が理論成績係数では冷媒の温度差になっているからである。
冷媒の温度差は蒸発器入り口温度と凝縮器入り口温度の差である。
しかし、冷却水、冷却外気の温度は少なくとも冷媒の蒸発器出口温度より高いので
少なくとも冷却水温、冷却外気温まで予熱加熱器で加熱可能である。
この事で理論成績係数が向上する。
予熱加熱器で予熱された冷媒は最終加熱器で吐出温度まで最終加熱される。
実例を上げる。  
外気温度 摂氏35度=T1  室内温度 摂氏25度=T2
冷媒の断熱圧縮機出口温度 摂氏50度=T3  蒸発器入り口温度 摂氏-10度=T4 
とすると
理想成績係数=T2/(T1-T2)=(273.15+25)/{(273.15+35)-(273.15+25)}=29.8 である。
断熱圧縮理論成績係数=T4/(T3-T4)=4.38 である。
ここで、予熱加熱器で外気温まで加熱する場合の理論成績係数は
定容加熱理論成績係数=T1/(T3-T1)=20.54である。
故に使用エネルギーは21.3%になる。
また成績係数上は定容加熱では冷媒の低温度は無関係である。
空冷の場合では冷却排熱は必ず外気より高くなるので冷却排熱で予熱すると成績係数は一層向上する。
冷却排熱温度を40度とすると31.3となる。
被定容加熱流体を水とするものはボイラーである。
ここでヒートポンプボイラーの効率について述べる。
水の蒸発を蒸発器で行う。
水を冷媒として蒸発器で気化させて吸熱する。通常の冷媒同様に蒸発温度を摂氏0度にするためには水蒸気の摂氏0度の飽和蒸気圧は597paであるので蒸発器の設定圧力を597pa以下にすればよい。
蒸発器をでた水蒸気は予熱熱源で予熱される。
予熱熱源は予熱温度まで加熱できる様に十分な伝熱面積を確保する。
次は最終加熱であるが最終加熱熱源として電気抵抗発熱器熱源すなわちニクロム線による加熱又は天然ガスや石油や石炭やバイオマス等の燃焼熱源または太陽熱熱源で加熱する。
定容加熱器は容積型の圧縮機では困難な飽和蒸気圧以上の圧縮が加熱変化であるから容易である。
それは断熱圧縮では飽和蒸気圧以上で液化するからである。
定容加熱器では飽和蒸気の温度に対応する蒸気圧の吐出弁圧力設定で吐出温度の調整ができる。
故に水蒸気吐出温度を容易に高温化できる。
例として蒸気温度摂氏300度の吐出弁設定は9.4MPaである。
この蒸気を噴出させればボイラーとなる。
ヒートポンプボイラーの成績係数はボイラー蒸気温度300度、給水温20度とすると2.0となり使用エネルギーは従来比の50%となる。
また、寒冷地では外気温が零度以下になり、水が凍結するので、ブレインを使用する。
化学合成物質の加熱にヒートポンプサイクルを利用すると加熱温度が300度ぐらいであれば予熱を外気または排熱を使用すれば、成績係数は2くらいである。故に50%の省エネルギーとなる。
Further, heat radiating means for radiating the heat of the constant volume heating fluid;
An expansion valve for lowering the low-temperature and low-pressure of the constant volume heating fluid;
It is characterized by comprising heat absorption means for absorbing heat by vaporizing the constant volume heating fluid.
This apparatus is a refrigeration cycle apparatus, a chemical synthesis substance heating apparatus, a heat pump boiler, and a heating element cooling apparatus.
The constant volume heating fluid is a refrigerant in the refrigeration cycle and water in the heat pump boiler.
The heat radiating means for radiating the heat of the constant volume heating fluid is the discharge of the heated constant volume heating fluid.
In the boiler, water vapor is emitted.
In the chemical synthetic substance heating device, in the refrigeration cycle in which the chemical synthetic substance release is heat radiation, the constant volume heating fluid is a refrigerant and the heat radiation means is a condenser.
The expansion valve is used in the refrigeration cycle.
The endothermic means is an evaporator in the refrigeration cycle.
The heat absorbing means includes a concentrating solar cell element that is a heat generating object and a device that absorbs heat generated by the CPU of the computer.
In the refrigeration cycle, the coefficient of performance improves when the constant volume heating fluid is preheated with outside air or the like with a constant volume heater.
Here, a refrigeration cycle using a constant volume heater will be described.
In thermodynamics, if the work of adiabatic compression is W
W = Q. Since Q is the amount of work taken from the outside of the cycle = the amount of heat = the amount of heat required for constant volume heating, the constant volume heater does not use power and can achieve a refrigeration cycle using only the final heating heat source.
Automatic control, refrigerant circulation rate, condenser, expansion valve, evaporator, etc. are the same as in the case of using an adiabatic compressor.
The actual performance coefficient and the theoretical performance coefficient of the current refrigeration cycle are different from the ideal performance coefficient by thermodynamics.
This is because the temperature difference between the low-temperature heat source and the high-temperature heat source with the ideal coefficient of performance is the refrigerant temperature difference with the theoretical coefficient of performance.
The temperature difference of the refrigerant is the difference between the evaporator inlet temperature and the condenser inlet temperature.
However, since the temperature of the cooling water and the cooling outside air is at least higher than the refrigerant outlet temperature of the refrigerant, it can be heated by the preheating heater to at least the cooling water temperature and the cooling outside temperature.
This improves the coefficient of theoretical performance.
The refrigerant preheated by the preheating heater is finally heated to the discharge temperature by the final heater.
Give an example.
Outside temperature 35 degrees Celsius = T1 Indoor temperature 25 degrees Celsius = T2
Adiabatic compressor outlet temperature of refrigerant 50 degrees Celsius = T3 Evaporator inlet temperature -10 degrees Celsius = T4
Then, the ideal coefficient of performance = T2 / (T1-T2) = (273.15 + 25) / {(273.15 + 35) − (273.15 + 25)} = 29.8.
The adiabatic compression theoretical coefficient of performance = T4 / (T3-T4) = 4.38.
Here, the theoretical performance coefficient when heating to the outside temperature with the preheating heater is constant volume heating theoretical performance coefficient = T1 / (T3−T1) = 20.54.
Therefore, the energy used is 21.3%.
In terms of coefficient of performance, the low temperature of the refrigerant is irrelevant for constant volume heating.
In the case of air cooling, the cooling exhaust heat is always higher than the outside air, so the performance coefficient is further improved by preheating with cooling exhaust heat.
When the cooling exhaust heat temperature is 40 degrees, it becomes 31.3.
A boiler that uses water as the constant volume heating fluid is a boiler.
Here, the efficiency of the heat pump boiler will be described.
Water is evaporated in the evaporator.
Water is vaporized by an evaporator as a refrigerant to absorb heat. In order to set the evaporation temperature to 0 degrees Celsius as in the case of a normal refrigerant, the saturated vapor pressure of water vapor at 0 degrees Celsius is 597 pa, so the set pressure of the evaporator may be set to 597 pa or less.
The water vapor exiting the evaporator is preheated by a preheating heat source.
The preheating heat source should have a sufficient heat transfer area so that it can be heated to the preheating temperature.
Next is final heating, but as a final heating heat source, heating is performed with an electric resistance heat source, that is, heating with a nichrome wire, or a combustion heat source such as natural gas, petroleum, coal, biomass, or a solar heat source.
The constant volume heater is easy because compression above the saturated vapor pressure, which is difficult with a positive displacement compressor, is a heating change.
This is because adiabatic compression liquefies above the saturated vapor pressure.
In a constant volume heater, the discharge temperature can be adjusted by setting the discharge valve pressure of the vapor pressure corresponding to the temperature of the saturated steam.
Therefore, the water vapor discharge temperature can be easily increased.
As an example, the discharge valve setting at a steam temperature of 300 degrees Celsius is 9.4 MPa.
If this steam is ejected, it becomes a boiler.
The coefficient of performance of the heat pump boiler is 2.0 when the boiler steam temperature is 300 degrees and the feed water temperature is 20 degrees, and the energy used is 50% of the conventional one.
In cold districts, the outside air temperature falls below zero degrees and water freezes, so use brain.
When a heat pump cycle is used for heating the chemically synthesized material, the coefficient of performance is about 2 if the preheating is used for the outside air or exhaust heat if the heating temperature is about 300 degrees. Therefore, energy saving is 50%.
また、更に前記被定容加熱流体を供給する被定容加熱流体供給手段を備える事を特徴とするものである。
被定容加熱流体を放出、噴出すると被定容加熱流体がなくなるので供給必要がある。
被定容加熱流体を新たに供給するのが被定容加熱流体供給手段である。
ボイラーの場合は給水装置である。
In addition, a constant volume heating fluid supply means for supplying the constant volume heating fluid is further provided.
When the constant volume heating fluid is discharged and ejected, the constant volume heating fluid disappears and needs to be supplied.
The constant volume heating fluid supply means newly supplies the constant volume heating fluid.
In the case of a boiler, it is a water supply device.
また、更に被定容加熱流体を回収する被定容加熱流体回収手段を備える事を特徴とするものである。
通常の冷凍サイクルでは被定容加熱流体である冷媒は循環する。
冷凍サイクルの凝縮器は放熱と回収の機能をもっている。ボイラーの復水器が回収手段である。
水蒸気を放出して蒸気機関または蒸気ボイラーで熱エネルギーを機械エネルギーに変換すると、蒸気温度が下がり放熱する事となる。
よって熱エネルギーを機械エネルギーに変換する変換は放熱手段である。
化学合成物質加熱装置では二酸化炭素、アンモニア等の加熱であり沸点が二酸化炭素、アンモニアに近いものは使用できる。
二酸化炭素とアンモニアから尿素を合成する反応は触媒下で300度程度なので最適である。
吸熱手段には発熱物体である集光式太陽電池素子やコンピュータのCPUの発熱を吸収する装置を含むものである。
冷凍サイクルの吸熱部分で発熱体の熱を吸収し、低温にすることが可能である。熱源を太陽熱にするとサイクルは他の動力なし運転でき、集光式太陽電池素子が零下10度くらいに冷却できる。
放熱にファン、冷却水ポンプを使用せずに、放熱伝熱面積を十分確保すればよい。
ここで定容加熱器を利用した冷凍サイクルについて述べる。
熱力学では断熱圧縮の仕事をWとすると
W=Q である。 Qはサイクル外部より取り入れた仕事量=熱量=定容加熱必要熱量
故に定容加熱器は動力を使用せず最終加熱熱源だけで冷凍サイクルを実現できる事になる。
自動制御、冷媒循環量、凝縮器、膨張弁、蒸発器、等は断熱圧縮機使用の場合と同様である。
現在の冷凍サイクルの実績成績係数、理論成績係数は熱力学による理想成績係数と乖離している。
なぜか理想成績係数の低温熱源と高温熱源の温度差が理論成績係数では冷媒の温度差になっているからである。
冷媒の温度差は蒸発器入り口温度と凝縮器入り口温度の差である。
しかし、冷却水、冷却外気の温度は少なくとも冷媒の蒸発器出口温度より高いので
少なくとも冷却水温、冷却外気温まで予熱加熱器で加熱可能である。
この事で理論成績係数が向上する。
予熱加熱器で予熱された冷媒は最終加熱器で吐出温度まで最終加熱される。
実例を上げる。  
外気温度 摂氏35度=T1  室内温度 摂氏25度=T2
冷媒の断熱圧縮機出口温度 摂氏50度=T3  蒸発器入り口温度 摂氏-10度=T4 
とすると
理想成績係数=T2/(T1-T2)=(273.15+25)/{(273.15+35)-(273.15+25)}=29.8 である。
断熱圧縮理論成績係数=T4/(T3-T4)=4.38 である。
ここで予熱加熱器で外気温まで加熱する場合の理論成績係数は
定容加熱理論成績係数=T1/(T3-T1)=20.54である。
故に使用エネルギーは21.3%になる。
また成績係数上は定容加熱では冷媒の低温度は無関係である。
空冷の場合では冷却排熱は必ず外気より高くなるので冷却排熱で予熱すると成績係数は一層向上する。
冷却排熱温度を40度とすると31.3となる。
被定容加熱流体を水とするボイラーである。
ここでヒートポンプボイラーの効率について述べる。
水の蒸発を蒸発器で行う。
水を冷媒として蒸発器で気化させて吸熱する。通常の冷媒同様に蒸発温度を摂氏0度にするためには水蒸気の摂氏0度の飽和蒸気圧は597paであるので蒸発器の設定圧力を597pa以下にすればよい。
蒸発器をでた水蒸気は予熱熱源で予熱される。
予熱熱源は予熱温度まで加熱できる様に十分な伝熱面積を確保する。
次は最終加熱であるが最終加熱熱源として電気抵抗発熱器熱源すなわちニクロム線による加熱又は天然ガスや石油や石炭やバイオマス等の燃焼熱源または太陽熱熱源で加熱する。
定容加熱器は容積型の圧縮機では困難な飽和蒸気圧以上の圧縮が加熱変化であるから容易である。
それは断熱圧縮では飽和蒸気圧以上で液化するからである。
定容加熱器では飽和蒸気の温度に対応する蒸気圧の吐出弁圧力設定で吐出温度の調整ができる。
故に水蒸気吐出温度を容易に高温化できる。
例として蒸気温度摂氏300度の吐出弁設定は9.4MPaである。
この蒸気を噴出させればボイラーとなる。
ヒートポンプボイラーの成績係数はボイラー蒸気温度300度、給水温20度とすると2.0となり使用エネルギーは従来比の50%となる。
また、寒冷地では外気温が零度以下になり、水が凍結するので、ブレインを使用する。
化学合成物質の加熱にヒートポンプサイクルを利用すると加熱温度が300度ぐらいであれば予熱を外気または排熱を使用すれば、成績係数は2くらいである。故に50%の省エネルギーとなる。
In addition, a constant volume heating fluid recovery means for recovering the constant volume heating fluid is provided.
In a normal refrigeration cycle, the refrigerant that is the constant volume heating fluid circulates.
The condenser of the refrigeration cycle has functions of heat dissipation and recovery. The boiler condenser is the recovery means.
When steam is discharged and heat energy is converted into mechanical energy by a steam engine or a steam boiler, the steam temperature decreases and heat is dissipated.
Therefore, conversion that converts thermal energy into mechanical energy is a heat dissipation means.
In the chemical synthetic material heating device, carbon dioxide, ammonia, etc., whose boiling point is close to that of carbon dioxide and ammonia can be used.
The reaction for synthesizing urea from carbon dioxide and ammonia is optimal because it is about 300 degrees under a catalyst.
The heat absorbing means includes a concentrating solar cell element that is a heat generating object and a device that absorbs heat generated by the CPU of the computer.
The heat absorption part of the refrigeration cycle absorbs the heat of the heating element and can be lowered. If the heat source is solar heat, the cycle can be operated without any other power, and the concentrating solar cell element can be cooled to about 10 degrees below zero.
A sufficient heat dissipation heat transfer area may be secured without using a fan or cooling water pump for heat dissipation.
Here, a refrigeration cycle using a constant volume heater will be described.
In thermodynamics, if the work of adiabatic compression is W
W = Q. Since Q is the amount of work taken from the outside of the cycle = the amount of heat = the amount of heat required for constant volume heating, the constant volume heater does not use power and can achieve a refrigeration cycle using only the final heating heat source.
Automatic control, refrigerant circulation rate, condenser, expansion valve, evaporator, etc. are the same as in the case of using an adiabatic compressor.
The actual performance coefficient and the theoretical performance coefficient of the current refrigeration cycle are different from the ideal performance coefficient by thermodynamics.
This is because the temperature difference between the low-temperature heat source and the high-temperature heat source with the ideal coefficient of performance is the refrigerant temperature difference with the theoretical coefficient of performance.
The temperature difference of the refrigerant is the difference between the evaporator inlet temperature and the condenser inlet temperature.
However, since the temperature of the cooling water and the cooling outside air is at least higher than the refrigerant outlet temperature of the refrigerant, it can be heated by the preheating heater to at least the cooling water temperature and the cooling outside temperature.
This improves the coefficient of theoretical performance.
The refrigerant preheated by the preheating heater is finally heated to the discharge temperature by the final heater.
Give an example.
Outside temperature 35 degrees Celsius = T1 Indoor temperature 25 degrees Celsius = T2
Adiabatic compressor outlet temperature of refrigerant 50 degrees Celsius = T3 Evaporator inlet temperature -10 degrees Celsius = T4
Then, the ideal coefficient of performance = T2 / (T1-T2) = (273.15 + 25) / {(273.15 + 35) − (273.15 + 25)} = 29.8.
The adiabatic compression theoretical coefficient of performance = T4 / (T3-T4) = 4.38.
Here, the theoretical performance coefficient when heating to the outside temperature with the preheating heater is constant volume heating theoretical performance coefficient = T1 / (T3−T1) = 20.44.
Therefore, the energy used is 21.3%.
In terms of coefficient of performance, the low temperature of the refrigerant is irrelevant for constant volume heating.
In the case of air cooling, the cooling exhaust heat is always higher than the outside air, so the performance coefficient is further improved by preheating with cooling exhaust heat.
When the cooling exhaust heat temperature is 40 degrees, it becomes 31.3.
It is a boiler that uses a constant volume heating fluid as water.
Here, the efficiency of the heat pump boiler will be described.
Water is evaporated in the evaporator.
Water is vaporized by an evaporator as a refrigerant to absorb heat. In order to set the evaporation temperature to 0 degrees Celsius as in the case of a normal refrigerant, the saturated vapor pressure of water vapor at 0 degrees Celsius is 597 pa, so the set pressure of the evaporator may be set to 597 pa or less.
The water vapor exiting the evaporator is preheated by a preheating heat source.
The preheating heat source should have a sufficient heat transfer area so that it can be heated to the preheating temperature.
Next is final heating, but as a final heating heat source, heating is performed with an electric resistance heat source, that is, heating with a nichrome wire, or a combustion heat source such as natural gas, petroleum, coal, biomass, or a solar heat source.
The constant volume heater is easy because compression above the saturated vapor pressure, which is difficult with a positive displacement compressor, is a heating change.
This is because adiabatic compression liquefies above the saturated vapor pressure.
In a constant volume heater, the discharge temperature can be adjusted by setting the discharge valve pressure of the vapor pressure corresponding to the temperature of the saturated steam.
Therefore, the water vapor discharge temperature can be easily increased.
As an example, the discharge valve setting at a steam temperature of 300 degrees Celsius is 9.4 MPa.
If this steam is ejected, it becomes a boiler.
The coefficient of performance of the heat pump boiler is 2.0 when the boiler steam temperature is 300 degrees and the feed water temperature is 20 degrees, and the energy used is 50% of the conventional one.
In cold districts, the outside air temperature falls below zero degrees and water freezes, so use brain.
When a heat pump cycle is used for heating the chemically synthesized material, the coefficient of performance is about 2 if the preheating is used for the outside air or exhaust heat if the heating temperature is about 300 degrees. Therefore, energy saving is 50%.
また、更に前記被定容加熱流体を冷媒とし、
凝縮器と、
膨張弁と、蒸発器を備えること事を特徴とするものである。
いわゆる冷凍サイクルである。
ここで定容加熱器を利用した冷凍サイクルについて述べる。
熱力学では断熱圧縮の仕事をWとすると
W=Q である。 Qはサイクル外部より取り入れた仕事量=熱量=定容加熱必要熱量
故に定容加熱器は動力を使用せず最終加熱熱源だけで冷凍サイクルを実現できる事になる。
自動制御、冷媒循環量、凝縮器、膨張弁、蒸発器、等は断熱圧縮機使用の場合と同様である。
現在の冷凍サイクルの実績成績係数、理論成績係数は熱力学による理想成績係数と乖離している。
なぜか理想成績係数の低温熱源と高温熱源の温度差が理論成績係数では冷媒の温度差になっているからである。
冷媒の温度差は蒸発器入り口温度と凝縮器入り口温度の差である。
しかし、冷却水、冷却外気の温度は少なくとも冷媒の蒸発器出口温度より高いので
少なくとも冷却水温、冷却外気温まで予熱加熱器で加熱可能である。
この事で理論成績係数が向上する。
予熱加熱器で予熱された冷媒は最終加熱器で吐出温度まで最終加熱される。
実例を上げる。  
外気温度 摂氏35度=T1  室内温度 摂氏25度=T2
冷媒の断熱圧縮機出口温度 摂氏50度=T3  蒸発器入り口温度 摂氏-10度=T4 
とすると
理想成績係数=T2/(T1-T2)=(273.15+25)/{(273.15+35)-(273.15+25)}=29.8 である。
断熱圧縮理論成績係数=T4/(T3-T4)=4.38 である。
ここで予熱加熱器で外気温まで加熱する場合の理論成績係数は
定容加熱理論成績係数=T1/(T3-T1)=20.54である。
故に使用エネルギーは21.3%になる。
また成績係数上は定容加熱では冷媒の低温度は無関係である。
空冷の場合では冷却排熱は必ず外気より高くなるので冷却排熱で予熱すると成績係数は一層向上する。
冷却排熱温度を40度とすると31.3となる。
被定容加熱流体を水とするボイラーである。
ここでヒートポンプボイラーの効率について述べる。
水の蒸発を蒸発器で行う。
水を冷媒として蒸発器で気化させて吸熱する。通常の冷媒同様に蒸発温度を摂氏0度にするためには水蒸気の摂氏0度の飽和蒸気圧は597paであるので蒸発器の設定圧力を597pa以下にすればよい。
蒸発器をでた水蒸気は予熱熱源で予熱される。
予熱熱源は予熱温度まで加熱できる様に十分な伝熱面積を確保する。
次は最終加熱であるが最終加熱熱源として電気抵抗発熱器熱源すなわちニクロム線による加熱又は天然ガスや石油や石炭やバイオマス等の燃焼熱源または太陽熱熱源で加熱する。
定容加熱器は容積型の圧縮機では困難な飽和蒸気圧以上の圧縮が加熱変化であるから容易である。
それは断熱圧縮では飽和蒸気圧以上で液化するからである。
定容加熱器では飽和蒸気の温度に対応する蒸気圧の吐出弁圧力設定で吐出温度の調整ができる。
故に水蒸気吐出温度を容易に高温化できる。
例として蒸気温度摂氏300度の吐出弁設定は9.4MPaである。
この蒸気を噴出させればボイラーとなる。
ヒートポンプボイラーの成績係数はボイラー蒸気温度300度、給水温20度とすると2.0となり使用エネルギーは従来比の50%となる。
また、寒冷地では外気温が零度以下になり、水が凍結するので、ブレインを使用する。
化学合成物質の加熱にヒートポンプサイクルを利用すると加熱温度が300度ぐらいであれば予熱を外気または排熱を使用すれば、成績係数は2くらいである。故に50%の省エネルギーとなる。
Further, the constant volume heating fluid is a refrigerant,
A condenser,
An expansion valve and an evaporator are provided.
This is a so-called refrigeration cycle.
Here, a refrigeration cycle using a constant volume heater will be described.
In thermodynamics, if the work of adiabatic compression is W
W = Q. Since Q is the amount of work taken from the outside of the cycle = the amount of heat = the amount of heat required for constant volume heating, the constant volume heater does not use power and can achieve a refrigeration cycle using only the final heating heat source.
Automatic control, refrigerant circulation rate, condenser, expansion valve, evaporator, etc. are the same as in the case of using an adiabatic compressor.
The actual performance coefficient and the theoretical performance coefficient of the current refrigeration cycle are different from the ideal performance coefficient by thermodynamics.
This is because the temperature difference between the low-temperature heat source and the high-temperature heat source with the ideal coefficient of performance is the refrigerant temperature difference with the theoretical coefficient of performance.
The temperature difference of the refrigerant is the difference between the evaporator inlet temperature and the condenser inlet temperature.
However, since the temperature of the cooling water and the cooling outside air is at least higher than the refrigerant outlet temperature of the refrigerant, it can be heated by the preheating heater to at least the cooling water temperature and the cooling outside temperature.
This improves the coefficient of theoretical performance.
The refrigerant preheated by the preheating heater is finally heated to the discharge temperature by the final heater.
Give an example.
Outside temperature 35 degrees Celsius = T1 Indoor temperature 25 degrees Celsius = T2
Adiabatic compressor outlet temperature of refrigerant 50 degrees Celsius = T3 Evaporator inlet temperature -10 degrees Celsius = T4
Then, the ideal coefficient of performance = T2 / (T1-T2) = (273.15 + 25) / {(273.15 + 35) − (273.15 + 25)} = 29.8.
The adiabatic compression theoretical coefficient of performance = T4 / (T3-T4) = 4.38.
Here, the theoretical performance coefficient when heating to the outside temperature with the preheating heater is constant volume heating theoretical performance coefficient = T1 / (T3−T1) = 20.44.
Therefore, the energy used is 21.3%.
In terms of coefficient of performance, the low temperature of the refrigerant is irrelevant for constant volume heating.
In the case of air cooling, the cooling exhaust heat is always higher than the outside air, so the performance coefficient is further improved by preheating with cooling exhaust heat.
When the cooling exhaust heat temperature is 40 degrees, it becomes 31.3.
It is a boiler that uses a constant volume heating fluid as water.
Here, the efficiency of the heat pump boiler will be described.
Water is evaporated in the evaporator.
Water is vaporized by an evaporator as a refrigerant to absorb heat. In order to set the evaporation temperature to 0 degrees Celsius as in the case of a normal refrigerant, the saturated vapor pressure of water vapor at 0 degrees Celsius is 597 pa, so the set pressure of the evaporator may be set to 597 pa or less.
The water vapor exiting the evaporator is preheated by a preheating heat source.
The preheating heat source should have a sufficient heat transfer area so that it can be heated to the preheating temperature.
Next is final heating, but as a final heating heat source, heating is performed with an electric resistance heat source, that is, heating with a nichrome wire, or a combustion heat source such as natural gas, petroleum, coal, biomass, or a solar heat source.
The constant volume heater is easy because compression above the saturated vapor pressure, which is difficult with a positive displacement compressor, is a heating change.
This is because adiabatic compression liquefies above the saturated vapor pressure.
In a constant volume heater, the discharge temperature can be adjusted by setting the discharge valve pressure of the vapor pressure corresponding to the temperature of the saturated steam.
Therefore, the water vapor discharge temperature can be easily increased.
As an example, the discharge valve setting at a steam temperature of 300 degrees Celsius is 9.4 MPa.
If this steam is ejected, it becomes a boiler.
The coefficient of performance of the heat pump boiler is 2.0 when the boiler steam temperature is 300 degrees and the feed water temperature is 20 degrees, and the energy used is 50% of the conventional one.
In cold districts, the outside air temperature falls below zero degrees and water freezes, so use brain.
When a heat pump cycle is used for heating the chemically synthesized material, the coefficient of performance is about 2 if the preheating is used for the outside air or exhaust heat if the heating temperature is about 300 degrees. Therefore, energy saving is 50%.
また、更に太陽光を集熱する太陽光集熱手段を備える事を特徴とするものである。
太陽光集熱手段には定置式の真空管式太陽熱集熱装置と鏡またはフレネルレンズを用いた集光式太陽熱集熱装置がある。
真空管式太陽熱集熱器は建物の屋上等に設置して太陽光を集熱するもので熱媒を使用しているので200度までの集熱が可能である。
通常の冷凍サイクルでは冷媒の吐出温度は摂氏70度程度なので真空管式太陽熱集熱器は熱源として十分利用できる。
しかし、ボイラーの加熱熱源とするには200度以上の熱源が必要なので利用できない。
200度以上の熱源を太陽光から得る為には集光が必要である。
集光には追尾装置が必要である。フレネルレンズで集光するものと鏡で集光するものがある。
集光点に加熱物を配置すると、数百倍数千倍で集光するので非常に高温になり最終加熱熱源として十分利用可能である。
集光倍率は集光レンズ又は集光鏡と集光点の面積差で決まるので集光倍率を調整して所定の高温が得られる様にする。
熱源を太陽光集熱熱源にすると自然エネルギーだけで冷凍サイクル、ヒートポンプサイクルの運転が可能になる。
200度以下の冷媒加熱には安価な真空管式太陽熱集熱器を使用する。
集光式太陽熱集熱装置は追尾装置が必要で高価であるが、真空管式より高熱になるのでボイラー、太陽熱発電等で使用される。
集光式は最終加熱器を集光点にする。
定置式集熱器では南面仰角35度設置時で平方メートルあたり最高1000wであるが、年間日射量は低くなる。
集光式では直達光は平方メートル当たり800wであるが、年間日射量は太陽を追尾するので固定式の1.6倍程度になる。
1平方メートルの集光レンズまたは集光鏡で数百倍数千倍に集光すると集熱材は高温になり最終加熱器の高温熱源として利用できる。
太陽光集光集熱手段を定容加熱器利用装置の冷凍サイクル及びヒートポンプボイラーのエネルギー源とする。
実施では定容加熱器は凝縮器、蒸発器と同じ構造なので、圧力容器と集熱材を熱伝導率の高い素材で連結する事で最終加熱器を加熱する。
ヒートポンプボイラーと熱機関の総合効率は100%であるので投入太陽エネルギー100に対して100の電気が発電できる。
定容加熱器利用装置の電気変換効率を85%とすると発電100に対して118の太陽光エネルギーが必要になる。
太陽光直達エネルギーは1平方メートルあたり800wなので、故に発電1kwあたりの必要集光面積は
1kw/mm/0.8kw/mm/0.85=1.47mm  1.47平方メートルである。
また追尾コストは高いので追尾装置不要の真空管式太陽熱集熱装置を200度程度の低温熱源として予熱することでコストを削減できる。
太陽熱が存在しない夜間、曇天時は高温熱源としてニクロム線発熱、燃焼熱を使用する。
真空管式太陽熱集熱器は建物の屋上等に設置して太陽光を集熱するもので熱媒を使用しているので200度の高温集熱が可能である。
48時間程度の蓄熱も可能である。
集光式太陽熱集熱装置は数百倍~数万倍に集光するので高温高エネルギー熱源である。
凝縮器の冷却水、冷却空気を利用して予熱する。
予熱定容加熱器の吸入弁、吐出弁の設定圧力は最終加熱器と同じ設定である。
低温加熱熱源の温度以上には加熱できないので、吐出弁の設定圧力は最終加熱器と同じで良い。
凝縮器排熱とは水冷では出口冷却水、空冷では出口空気である。
基本的に冷媒の吐出温度より低温である。
太陽光集熱装置は定置式の真空管式太陽熱集熱装置と鏡またはフレネルレンズを用いた集光式太陽熱集熱装置がある。
真空管式太陽熱集熱器は建物の屋上等に設置して太陽光を集熱するもので熱媒を使用しているので200度以上の高温集熱が可能である。
通常の冷凍サイクルで冷媒の吐出温度は摂氏70度程度なので真空管式太陽熱集熱器式は熱源として十分利用できる。
しかし、200度以上の蒸気が必要なボイラーの加熱熱源とするには200度以上の熱源が必要なので利用できない。200度以下のボイラーには使用できる。
この場合はヴォテックスチューブを使用して高温に分離して200度以上にして使用する。
200度以上の熱源を太陽光から得る為には集光が必要である。
低温部は予熱加熱器で高温化する。
集光には追尾装置が必要である。フレネルレンズで集光するものと鏡で集光するものがある。
数百倍数千倍に集光するので非常に高温になり加熱熱源として十分利用可能である。
定容加熱器は可動部分が弁機構しかないので音の発生が少なく、断熱圧縮機と比して、低騒音化が出来る。
予熱熱源で予熱すると加熱効率が高くなる。
また冷凍サイクルでは凝縮器の排熱利用が有効である。
凝縮器の冷却水、冷却空気を利用して予熱定容加熱をする。
予熱加熱器の吸入弁、吐出弁の設定圧力は最終加熱器と同じ設定である。
予熱熱源の温度以上には加熱できないので、吐出弁の設定圧力は最終加熱器と同じで良い。
Further, the solar battery is further provided with a solar heat collecting means for collecting sunlight.
The solar heat collecting means includes a stationary vacuum tube type solar heat collecting device and a concentrating solar heat collecting device using a mirror or a Fresnel lens.
A vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight, and uses a heat medium, so it can collect heat up to 200 degrees.
In a normal refrigeration cycle, the discharge temperature of the refrigerant is about 70 degrees Celsius, so the vacuum tube solar collector can be used as a heat source.
However, since it is necessary to use a heat source of 200 ° C. or more in order to use as a heating heat source of the boiler, it cannot be used.
In order to obtain a heat source of 200 degrees or more from sunlight, it is necessary to collect light.
A tracking device is required for light collection. There is a thing which condenses with a Fresnel lens and a thing which condenses with a mirror.
When a heated object is arranged at the condensing point, the condensed light is concentrated several hundred times to several thousand times, so that the temperature becomes very high and it can be sufficiently used as a final heating heat source.
Since the condensing magnification is determined by the area difference between the condensing lens or the condensing mirror and the condensing point, the condensing magnification is adjusted so that a predetermined high temperature can be obtained.
If the heat source is a solar heat collection heat source, it is possible to operate the refrigeration cycle and heat pump cycle using only natural energy.
An inexpensive vacuum tube solar collector is used for heating the refrigerant below 200 degrees.
A concentrating solar thermal collector requires a tracking device and is expensive. However, since it is hotter than a vacuum tube type, it is used in boilers, solar thermal power generation, and the like.
The condensing type uses the final heater as the condensing point.
The stationary solar collector has a maximum elevation of 1000w per square meter when installed at an elevation angle of 35 degrees on the south side, but the annual solar radiation is low.
In the condensing type, direct light is 800 w per square meter, but the annual solar radiation tracks the sun, so it is about 1.6 times that of the fixed type.
When the light is collected several hundreds or thousands of times with a 1 square meter condenser lens or condenser, the heat collecting material becomes high temperature and can be used as a high-temperature heat source for the final heater.
The solar light collecting and collecting means is used as an energy source for the refrigeration cycle and heat pump boiler of the constant volume heater utilizing device.
In practice, the constant volume heater has the same structure as the condenser and evaporator, so the final heater is heated by connecting the pressure vessel and the heat collecting material with a material having high thermal conductivity.
Since the total efficiency of the heat pump boiler and the heat engine is 100%, 100 electricity can be generated with respect to the input solar energy 100.
If the electric conversion efficiency of the constant volume heater utilization device is 85%, 118 solar energy is required for the power generation 100.
Since the direct sunlight energy is 800 w per square meter, the necessary light collection area per 1 kW of power generation is 1 kw / mm / 0.8 kw / mm / 0.85 = 1.47 mm 1.47 square meters.
In addition, since the tracking cost is high, the cost can be reduced by preheating a vacuum tube type solar thermal collector that does not require a tracking device as a low-temperature heat source of about 200 degrees.
Nichrome wire heat and combustion heat are used as a high-temperature heat source at night when there is no solar heat or when it is cloudy.
A vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight and uses a heat medium, so it can collect heat at a high temperature of 200 degrees.
Heat storage for about 48 hours is also possible.
A concentrating solar thermal collector is a high-temperature, high-energy heat source that concentrates several hundred to several tens of thousands of times.
Preheat using the cooling water and cooling air of the condenser.
The set pressure of the suction valve and discharge valve of the preheating constant volume heater is the same as that of the final heater.
Since it cannot heat above the temperature of a low-temperature heating heat source, the set pressure of the discharge valve may be the same as that of the final heater.
Condenser exhaust heat is outlet cooling water in water cooling and outlet air in air cooling.
Basically, the temperature is lower than the refrigerant discharge temperature.
As the solar heat collector, there are a stationary vacuum tube solar heat collector and a concentrating solar heat collector using a mirror or a Fresnel lens.
A vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight, and uses a heat medium, so it can collect heat at a high temperature of 200 degrees or more.
Since the refrigerant discharge temperature is about 70 degrees Celsius in a normal refrigeration cycle, the vacuum tube solar collector type can be used as a heat source.
However, in order to use as a heating heat source for a boiler that requires steam of 200 ° C. or higher, a heat source of 200 ° C. or higher is required, and thus cannot be used. Can be used for boilers below 200 degrees.
In this case, use a vortex tube to separate it to a high temperature and use it at 200 degrees or more.
In order to obtain a heat source of 200 degrees or more from sunlight, it is necessary to collect light.
The low temperature part is heated by a preheating heater.
A tracking device is required for light collection. There is a thing which condenses with a Fresnel lens and a thing which condenses with a mirror.
Since the light is condensed several hundred times to several thousand times, it becomes very hot and can be sufficiently used as a heating heat source.
Constant volume heaters have only a valve mechanism for moving parts, so there is little noise generation and noise can be reduced compared to adiabatic compressors.
Preheating with a preheating heat source increases the heating efficiency.
In the refrigeration cycle, the exhaust heat from the condenser is effective.
Preheating and constant volume heating is performed using the cooling water and cooling air of the condenser.
The set pressure of the suction valve and discharge valve of the preheating heater is the same as that of the final heater.
Since it cannot heat above the temperature of the preheating heat source, the set pressure of the discharge valve may be the same as that of the final heater.
また、更に前記太陽光集熱手段で集熱した太陽熱を蓄熱する蓄熱手段を備えることを特徴とするものである。
太陽光がない夜間、曇天時、雨天時のため、太陽光集熱手段で集熱された熱エネルギーを蓄熱手段で蓄熱する。蓄熱には太陽熱発電で使用されている溶解塩で蓄熱する。
冷房用には氷蓄熱を行う。
真空管式太陽熱集熱器は蓄熱機能も持っているので冷房、冷凍用途には最適である。
集光式太陽熱集熱熱源の場合は最終加熱器用と蓄熱用とを分けて加熱する。
Furthermore, the apparatus further comprises heat storage means for storing solar heat collected by the solar heat collecting means.
Thermal energy collected by the solar heat collecting means is stored by the heat storage means for nighttime when there is no sunlight, cloudy weather, and rainy weather. For heat storage, heat is stored with the dissolved salt used in solar thermal power generation.
Ice storage is used for cooling.
Vacuum tube solar collectors are also ideal for cooling and refrigeration applications because they have a heat storage function.
In the case of a concentrating solar heat collection heat source, heating is performed separately for the final heater and for heat storage.
また、更に作動流体を前記被定容加熱流体とする熱エネルギーを機械エネルギーに変換する熱・機械エネルギー変換手段を備える事を特徴とするものである。
想定している被定容加熱流体は水である。
故に作動流体は水蒸気である。
熱・機械エネルギー変換装置は蒸気機関および蒸気タービンである。
使用した水蒸気は復水器に送られ冷却される。
この装置は、船舶、自動車、重機械などに搭載することが可能である。
また、始動時の動力利用、発電時の蓄電の為に蓄電池を備えると良い。
蓄電池は始動時用は鉛蓄電池を使用し、余剰電力の蓄電には、リチウムイオン電池またはニッケルイオン電池、NAS電池を使用する。
ここでヒートポンプボイラーと蒸気機関、蒸気タービンの最終変換効率についてのべる。
まずヒートポンプボイラーの理想成績係数 理想COPは
外気温又は冷却水温度を T1 =摂氏30度
冷媒 低温を            
T2=摂氏-10度
冷媒 高温を            
T3=摂氏 110度
とすると、外気で予熱しない従来の断熱圧縮では
断熱理想COP=T2/(T3-T2)+1=(273.15-10)/{(273.15+110)-(273.15-10)}+1=2.19+1=3.19
外気温まで予熱すると
 外気予熱理想COP=T1/(T3-T1)+1=T3/(T3-T1)=(273.15+30)/{(273.15+110)-(273.15+30)}+1=3.79+1=4.79
熱機関の熱効率は
1-T1/T3=(T3-T1)/T3
よって総合変換効率は 
外気予熱理想COP×熱効率=T3/(T3-T1)×(T3-T1)/T3=1    
となり、最高の効率となる。
この式からヒートポンプサイクル装置と熱機関の高温熱源を共有し同じ系にすると良い事がわかる。
故に外気または冷却水をヒートポンプサイクル熱機関の低温熱源とすることが重要である。
また定容加熱器は、断熱圧縮機と異なりは可動部が弁ぐらいなので理論と実績の乖離は少ないと思われる。
蒸気機関、蒸気ボイラーの排熱が外気温、冷却水温度より高くなっている場合はその温度差が熱効率を悪化させているので、定容加熱器で吸収することで実績COPを理想COPに近づける事ができる。
実運用では冷凍サイクルの低温熱源は熱機関の冷却排熱とする事で理論熱効率の悪化分をヒートポンプサイクル成績係数向上でカバーすることが出来る。
この理論からヒートポンプと熱機関の組み合わせは設備の有効面積効率で低温熱源と高温熱源を検討する事になる。熱効率の為に高温にする必要がなくなるので設備費が抑えられる。
Further, the apparatus further comprises heat / mechanical energy conversion means for converting thermal energy into mechanical energy using the working fluid as the constant volume heating fluid.
The assumed volumetric heating fluid is water.
Therefore, the working fluid is water vapor.
The heat-mechanical energy converter is a steam engine and a steam turbine.
The used steam is sent to a condenser to be cooled.
This device can be mounted on ships, automobiles, heavy machinery and the like.
Moreover, it is good to provide a storage battery for the power utilization at the time of starting, and the electrical storage at the time of electric power generation.
As the storage battery, a lead storage battery is used for start-up, and a lithium ion battery, a nickel ion battery, or a NAS battery is used to store surplus power.
Here we will discuss the final conversion efficiency of heat pump boilers, steam engines, and steam turbines.
First, the ideal coefficient of performance of the heat pump boiler Ideal COP is the outside air temperature or cooling water temperature T1 = 30 degrees Celsius refrigerant low temperature
T2 = Celsius-10 degrees refrigerant High temperature
Assuming that T3 = 110 degrees Celsius, in the conventional adiabatic compression that is not preheated by the outside air, the adiabatic ideal COP = T2 / (T3-T2) + 1 = (273.15-10) / {(273.15 + 110) − (273.15− 10)} + 1 = 2.19 + 1 = 3.19
When preheating to the outside temperature, the outside air preheating ideal COP = T1 / (T3-T1) + 1 = T3 / (T3-T1) = (273.15 + 30) / {(273.15 + 110) − (273.15 + 30)} + 1 = 3. 79 + 1 = 4.79
The thermal efficiency of the heat engine is 1-T1 / T3 = (T3-T1) / T3
Therefore, the total conversion efficiency is
Outside air preheating ideal COP × thermal efficiency = T3 / (T3-T1) × (T3-T1) / T3 = 1
And the highest efficiency is achieved.
From this equation, it can be seen that it is better to share the high-temperature heat source of the heat pump cycle device and the heat engine in the same system.
Therefore, it is important to use outside air or cooling water as a low-temperature heat source of the heat pump cycle heat engine.
In addition, unlike adiabatic compressors, constant-volume heaters have only about a moving part, so there is little difference between theory and performance.
If the exhaust heat of the steam engine and steam boiler is higher than the outside air temperature and cooling water temperature, the temperature difference deteriorates the thermal efficiency, so the actual COP is brought closer to the ideal COP by absorbing it with a constant volume heater. I can do things.
In actual operation, the low-temperature heat source of the refrigeration cycle can be covered with the exhaust heat from cooling the heat engine.
From this theory, the combination of the heat pump and the heat engine will examine the low temperature heat source and the high temperature heat source with the effective area efficiency of the equipment. Equipment costs can be reduced because there is no need for high temperatures for thermal efficiency.
また、更に前記最終加熱器と、
前記熱・機械エネルギー変換手段の高温熱源部を収容する高温熱源収容手段を備える事を特徴とするものである。
熱機関の高温熱源部とは蒸気タービンでは静翼までである。熱エネルギーを速度エネルギーに変換する前工程までである。
ヒートポンプサイクルと熱機関の高温熱源を同じ空間に収容することで熱機関の熱損失をヒートポンプサイクルで吸収する。
この容器は密閉されていて弁などは何もついていない。この空間の温度が最終加熱器の吐出温度以上になると最終加熱器の吐出弁が開き予熱器から低温の被加熱流体が吸入され、収容空間の温度を吸収する。
これで熱損失を最小にする事ができる。
Further, the final heater;
High temperature heat source accommodation means for accommodating the high temperature heat source part of the heat / mechanical energy conversion means is provided.
In the steam turbine, the high temperature heat source part of the heat engine is up to the stationary blade. Up to the previous step of converting thermal energy into velocity energy.
By accommodating the heat pump cycle and the high-temperature heat source of the heat engine in the same space, the heat loss of the heat engine is absorbed by the heat pump cycle.
This container is sealed and has no valves. When the temperature of this space becomes equal to or higher than the discharge temperature of the final heater, the discharge valve of the final heater opens, and a low-temperature fluid to be heated is sucked from the preheater to absorb the temperature of the accommodation space.
This can minimize heat loss.
また、更に前記高温熱源収容手段を断熱する高温熱源収容断熱手段を備える事を特徴とするものである。
高温熱源収容手段を断熱すると熱損失を抑えられる。
Further, the present invention is characterized by further comprising a high temperature heat source accommodation heat insulating means for insulating the high temperature heat source accommodation means.
Heat insulation can be suppressed by insulating the high-temperature heat source accommodation means.
また、更に温度差を有する前記予熱熱源を備える事を特徴とするものである。
温度差を有する予熱熱源とは外気温と地下水が例である。
温度差がある熱源があれば熱機関とヒートポンプサイクルの総合効率を1以上とする事が可能である。
高温熱源が300度で、外気温が35度で地下水が18度とすると、冷凍サイクルの低温熱源を外気温とし、
熱・機械変換装置の低温熱源を地下水とすると総合変換効率が1以上になる。
常に冷凍サイクルの低温熱源を2個の低温熱源の高い方にして、
熱機関の低温熱源を2個の熱源の低い方にする事でヒートポンプサイクルと熱・機械変換装置の組み合わせ理論総合効率が高くなり1以上となる。
総合理論効率は
低・低温熱源温度をT1
高・低温熱源温度をT2
ヒートポンプサイクル及び熱・機械変換装置の高温熱源をT3
とすると総合熱効率は
(T2/(T3-T2)+1/(1-T1/T3)=(T3-T1)/(T3-T2)である。この結果T2が大きいほどT1が小さいほど総合効率はよくなる。
よって、上記の設定の総合効率は1.064となる。
また冬季で外気温0度 地下水18度とすると総合変換効率は1.0638となる。
この場合ヒートポンプサイクルの予熱熱源を地下水に熱機関の低温熱源を外気温にする。
最高の立地条件は寒冷地で地熱熱源があり日照時間が長く、日射量の多い立地である
Further, the preheating heat source having a temperature difference is further provided.
Examples of the preheating heat source having a temperature difference are outside air temperature and groundwater.
If there is a heat source with a temperature difference, the overall efficiency of the heat engine and the heat pump cycle can be made 1 or more.
If the high temperature heat source is 300 degrees, the outside temperature is 35 degrees and the groundwater is 18 degrees, the low temperature heat source of the refrigeration cycle is the outside temperature,
If the low-temperature heat source of the heat / mechanical converter is groundwater, the total conversion efficiency is 1 or more.
Always set the low temperature heat source of the refrigeration cycle to the higher of the two low temperature heat sources,
By combining the low temperature heat source of the heat engine with the lower of the two heat sources, the combined theoretical overall efficiency of the heat pump cycle and the heat / mechanical converter increases to 1 or more.
Total theoretical efficiency is low and low temperature heat source temperature is T1
High and low temperature heat source temperature is T2.
T3 as the high-temperature heat source for heat pump cycle and heat / mechanical converter
Then, the total thermal efficiency is (T2 / (T3-T2) + 1 / (1-T1 / T3) = (T3-T1) / (T3-T2) As a result, the larger T2 is, the smaller T1 is. Get better.
Therefore, the overall efficiency of the above setting is 1.064.
In the winter season, if the outside air temperature is 0 degrees and the groundwater is 18 degrees, the total conversion efficiency is 1.0638.
In this case, the preheating heat source of the heat pump cycle is set to groundwater, and the low temperature heat source of the heat engine is set to the outside temperature.
The best location is a cold area with a geothermal heat source, long sunshine hours, and a lot of solar radiation
また、更に前記熱・機械変換手段で変換された機械エネルギーを電気エネルギーに変換する発電機を備えることを特徴とするものである。
いわゆる汽水発電機である。ヒートポンプボイラーの高温高圧水蒸気で蒸気タービン、蒸気機関を動かし電磁誘導発電機で発電する。
発電用の場合はヒートポンプボイラーにより300度以上600度くらいまで加熱する。
この場合凝縮器は復水器として機能する。
移動手段に搭載した場合は発電した電気は電気モーターと蓄電池に供給される。
Furthermore, the apparatus further comprises a generator that converts mechanical energy converted by the heat-mechanical conversion means into electric energy.
It is a so-called brackish water generator. The steam turbine and the steam engine are moved by the high-temperature and high-pressure steam from the heat pump boiler to generate electricity with an electromagnetic induction generator.
In the case of power generation, it is heated up to about 300 to 600 degrees with a heat pump boiler.
In this case, the condenser functions as a condenser.
When mounted on the moving means, the generated electricity is supplied to the electric motor and the storage battery.
また、更に前記発電機で発電された電力を蓄電する畜電手段を備える事を特徴とするものである。
蓄電手段とは蓄電池、キャパシタなどである。蓄電池は鉛電池、ニッケル電池、リチウム電池などがある。
蒸気機関、蒸気タービンなどは出力応答性が悪いのであらかじめ蓄電しておき電動モーターで駆動力を発生させ、応答性をよくする。
Further, the present invention is characterized by further comprising livestock power storage means for storing the power generated by the generator.
The storage means is a storage battery, a capacitor, or the like. Storage batteries include lead batteries, nickel batteries, and lithium batteries.
Steam engines, steam turbines, and the like have poor output responsiveness, so charge them beforehand and generate driving force with an electric motor to improve responsiveness.
また、更に前記最終加熱熱源を切り替える最終加熱熱源切り替え手段を備える事を特徴とするものである。
太陽光がない時、蓄熱がなくなった時のため最終加熱熱源の切り替えが必要になる。
蓄電と燃焼熱源でも同様である。
Further, the apparatus further comprises a final heating heat source switching means for switching the final heating heat source.
When there is no sunlight, it is necessary to switch the final heat source because there is no heat storage.
The same applies to power storage and combustion heat sources.
また、更に前記予熱熱源を切り替える予熱熱源切り替え手段を備える事を特徴とするものである。
ヒートポンプサイクルと熱機関の組み合わせでは、日本では、夏季と冬季でそれぞれの低温熱源を切り替える必要がある。
切り替えには、暖房、冷房の切り替えに使用されている電磁弁を使用する。
Furthermore, preheating heat source switching means for switching the preheating heat source is further provided.
In the combination of the heat pump cycle and the heat engine, it is necessary to switch the low-temperature heat source in Japan in summer and winter.
For switching, a solenoid valve used for switching between heating and cooling is used.
また、更に前記定容加熱器利用装置を搭載する移動手段を備える事を特徴とするものである。
移動手段とは自動車、船舶、建設機械、フォークリフト、などである。   
具体的には水をヒートポンプサイクルの冷媒として、外燃機関の作動流体を水蒸気としたものである。蒸気タービン自動車、蒸気タービン船、蒸気機関車、蒸気タービン機関車である。
Further, the apparatus further comprises a moving means for mounting the constant volume heater utilization device.
The moving means is an automobile, a ship, a construction machine, a forklift, or the like.
Specifically, water is used as the refrigerant of the heat pump cycle, and the working fluid of the external combustion engine is used as water vapor. Steam turbine car, steam turbine ship, steam locomotive, steam turbine locomotive.
また、更に前記熱・機械変換手段で変換された機械エネルギーを前記移動手段の駆動力に変換する機械・駆動力変換手段を備える事を特徴とするものである。
蒸気機関、蒸気タービンで移動装置を直接駆動するものである。
変速機、プロペラシャフトなどの動力伝達装置が必要である。
蒸気タービン、蒸気機関は出力応答性が悪いので電気と電動モーターが必要である。
Further, the apparatus further comprises mechanical / driving force converting means for converting mechanical energy converted by the heat / mechanical converting means into driving force of the moving means.
The moving device is directly driven by a steam engine and a steam turbine.
A power transmission device such as a transmission and a propeller shaft is required.
Since steam turbines and steam engines have poor output responsiveness, electric and electric motors are required.
また、更に前記発電機で発電された電力を前記移動装置の駆動力に変換する電力・駆動力変換手段を備える事を特徴とするものである。
電力・駆動力変換手段とは電動モーターの事である。
基本的に蒸気タービン発電機付電気モーター駆動移動装置である。
変換された電気エネルギーは駆動力と蓄電に配分される。
駆動力の変動には電動モーターと蓄電装置の電力供給で対応し、熱・機械変換装置は複数段階の定速出力で運転されると燃費が向上する。
複数段階とはアイドリング、市街地走行、高速走行、超高速走行などである。
Further, the apparatus further comprises power / driving force conversion means for converting the power generated by the generator into the driving force of the mobile device.
The power / driving force conversion means is an electric motor.
It is basically an electric motor drive moving device with steam turbine generator.
The converted electric energy is distributed to driving force and power storage.
Fluctuations in driving force are dealt with by supplying electric power from the electric motor and the power storage device, and the thermal / mechanical converter improves fuel efficiency when it is operated at multiple stages of constant speed output.
Multiple stages include idling, city driving, high speed driving, ultra high speed driving, and the like.
また、更に前記熱・機械変換手段で変換された機械エネルギーを前記機械・駆動力変換装置と前記発電機に配分する機械エネルギー配分手段を備える事を特徴とするものである。 The apparatus further comprises mechanical energy distribution means for distributing mechanical energy converted by the heat / mechanical conversion means to the mechanical / driving force conversion device and the generator.
また、更に機械エネルギー配分手段の配分率を選択する機械エネルギー配分率選択手段を備える事を特徴とするものである。 Further, the apparatus further comprises mechanical energy distribution rate selection means for selecting a distribution rate of the mechanical energy distribution means.
また、更に駆動力を前記機械・駆動力変換装置と前記電力・駆動力変換手段に要求する駆動力要求手段を備える事を特徴とするものである。 Further, the apparatus further comprises driving force requesting means for requesting the driving force to the mechanical / driving force converting device and the power / driving force converting means.
また、更に前記定容加熱器利用装置の不可逆反応発生熱源を収容する不可逆反応発生熱源収容手段と、
不可逆反応発生熱源を予熱熱源とする予熱器からなる不可逆反応発生熱回収手段とを
備える事を特徴とするものである。
不可逆損失とは機械損失と化学反応熱と摩擦熱などの機械装置を運転する時に発生するものである。
蒸気タービンの回転部の摩擦による発熱、発電機の可動部の摩擦熱、蓄電池の化学反応熱を吸収する為に蒸気タービン発熱部、発電機、蓄電池、太陽熱蓄熱器などを予熱加熱器の予熱熱源とする。
この事でいわゆるエントロピー増大が防止できる。
総合熱効率が向上する。
実施においては、蒸気タービン機械可動部、発電機、蓄電器、駆動装置を同一断熱空間に収容し、その空間に予熱加熱器を設置して発生熱を吸収する。
予熱加熱器には伝熱向上手段を取り付ける。
これは、各装置の冷却にもつながる。
Further, an irreversible reaction generation heat source storage means for storing an irreversible reaction generation heat source of the constant volume heater utilizing device,
An irreversible reaction generation heat recovery means including a preheater using the irreversible reaction generation heat source as a preheating heat source is provided.
Irreversible loss is generated when a mechanical device such as mechanical loss, heat of chemical reaction, and frictional heat is operated.
Preheat heat source for preheater heaters such as steam turbine heat generator, generator, storage battery, solar heat accumulator to absorb heat generated by friction of rotating part of steam turbine, frictional heat of moving part of generator, chemical reaction heat of storage battery And
This can prevent so-called entropy increase.
Overall thermal efficiency is improved.
In implementation, a steam turbine machine movable part, a generator, a condenser, and a drive device are accommodated in the same heat insulation space, and a preheating heater is installed in the space to absorb generated heat.
A heat transfer improving means is attached to the preheating heater.
This also leads to cooling of each device.
また、更に前記発生熱源収容手段を断熱する発生熱源収容断熱手段備える事を特徴とするものである。
断熱することで熱損失を抑えられる。
Further, the heat generating unit accommodating heat insulating means for insulating the generated heat source accommodating means is further provided.
Heat loss can be suppressed by heat insulation.
また、更に前記蓄電手段で蓄電された畜電量を計測する畜電量計測手段を備える事を特徴とするものである。
常に蓄電量を計測して蓄電余力がある場合は機械・電気変換手段で発電された電気を蓄電する。
Further, the present invention is characterized by further comprising a livestock power measuring means for measuring the livestock power stored in the power storage means.
The amount of electricity stored is always measured, and if there is storage capacity, electricity generated by the mechanical / electrical conversion means is stored.
また、更に前記被定容加熱流体を高温流体と低温流体に分離するボルテックスチューブを備える事を特徴とするものである。
ボルテックスチューブは気体を高温と低温に分離する事ができる。
ヒートポンプボイラーで水蒸気を発生させるが、真空管式太陽熱集熱装置では集光動作がないので200度が限度である。
熱サイクルの効率は温度差で決まるので水蒸気を高温化する必要がある。
そこでボルッテクスチューブを使用して高温化する。
現在のボルテックスチューブは100度程度の温度差を生み出せる事が報告されている。
真空管式太陽熱集熱装置熱源により200度に加熱された水蒸気を300度の水蒸気と100度の水蒸気に分離する。
300度の高温水蒸気で蒸気タービンを回して変換効率を高める。
100度の低温水蒸気は定容加熱器に送られ再加熱される。
この事で変換効率が向上する。
低温流体は予熱加熱器に送られる。
予熱加熱器は通常低温流体より低温の熱源の外気、海水なので高圧の低温流体は予熱加熱器に吸入される。
Further, the apparatus further comprises a vortex tube for separating the constant volume heating fluid into a high temperature fluid and a low temperature fluid.
Vortex tubes can separate gases into high and low temperatures.
Water vapor is generated by a heat pump boiler, but the vacuum tube type solar heat collecting device has no light condensing operation, so the limit is 200 degrees.
Since the efficiency of the heat cycle is determined by the temperature difference, it is necessary to increase the temperature of the water vapor.
Therefore, the temperature is increased using a vortex tube.
It has been reported that current vortex tubes can produce a temperature difference of about 100 degrees.
Water vapor heated to 200 degrees by a vacuum tube type solar heat collector heat source is separated into water vapor at 300 degrees and water vapor at 100 degrees.
The steam turbine is rotated with high-temperature steam at 300 degrees to increase the conversion efficiency.
100 degree low temperature steam is sent to a constant volume heater and reheated.
This improves the conversion efficiency.
The cryogenic fluid is sent to a preheater.
Since the preheating heater is usually the outside air and seawater of a heat source having a temperature lower than that of the low temperature fluid, the high pressure low temperature fluid is sucked into the preheating heater.
また、更に前記定容加熱器の最終加熱熱源を前記太陽光集熱手段とし、
前記太陽光集熱手段を集光式集熱装置とし、
前記吸熱手段の吸熱源を集光式太陽電池素子レシーバとする事を特徴とするものである。
集光式太陽光発電では集光倍率を数千~数万にするとI-V特性から発電効率が向上する。
しかし太陽電池素子は数千度以上に発熱する。
蒸発器の機能は吸熱なので太陽電池素子のレシーバを銅板にし、冷媒配管と熱交換することで、太陽電池素子の発熱を吸収する。
定容加熱器利用装置は集光式集熱装置を高温熱源として冷凍サイクルが稼動するので冷却に動力、電気を必要としないで集光式太陽電池素子の冷却ができる。
冷媒の蒸発器温度を-10度、凝縮器入り口温度を50度とし外気温度30度とすると定容加熱器を使用して外気温まで予熱すると理論成績係数は21.01となり冷却量の5%となる。自然冷却の集光式太陽電池素子は70度くらいになる。
蒸発器温度との温度差は80度になり20%以上向上する。
また現在数百倍が限度の集光倍率を数千倍にすることも可能である。
Furthermore, the final heating heat source of the constant volume heater is the solar heat collecting means,
The solar heat collecting means is a concentrating heat collecting device,
The heat absorption source of the heat absorption means is a concentrating solar cell element receiver.
In the concentrating solar power generation, when the condensing magnification is several thousand to several tens of thousands, the power generation efficiency is improved from the IV characteristics.
However, the solar cell element generates heat at several thousand degrees or more.
Since the function of the evaporator is heat absorption, the solar cell receiver is made of a copper plate and heat exchange with the refrigerant pipe absorbs heat generated by the solar cell element.
The constant volume heater-utilizing device operates the refrigeration cycle using the concentrating heat collecting device as a high-temperature heat source, so that the concentrating solar cell element can be cooled without requiring power or electricity for cooling.
If the evaporator temperature of the refrigerant is -10 degrees, the condenser inlet temperature is 50 degrees, and the outside air temperature is 30 degrees, using a constant volume heater to preheat to the outside temperature, the theoretical coefficient of performance is 21.01 and 5% of the cooling amount It becomes. A naturally cooled concentrating solar cell element is about 70 degrees.
The temperature difference from the evaporator temperature is 80 degrees, which is improved by 20% or more.
It is also possible to increase the light collection magnification that is currently limited to several hundred times to several thousand times.
また、更に前記最終加熱熱源を燃焼熱熱源とする事を特徴とするものである。 Further, the final heating heat source is a combustion heat heat source.
また、更に前記燃焼熱熱源を固体燃料燃焼熱熱源とする事を特徴とするものである。 Further, the combustion heat source is a solid fuel combustion heat source.
また、更に前記燃焼熱熱源を液体燃料燃焼熱熱源とする事を特徴とするものである。 Further, the combustion heat source is a liquid fuel combustion heat source.
また、更に前記燃焼熱熱源を気体燃料燃焼熱熱源とする事を特徴とするものである。 Further, the combustion heat heat source is a gaseous fuel combustion heat heat source.
また、更に前記燃焼熱熱源を植物起源のバイオマス燃料の燃焼熱とする事を特徴とするものである。
バイオマス燃料は下水処理場、ビール工場の廃液、家畜の糞尿などから発生するバイオガスと草木資源を含むものである。
太陽光集熱手段と組み合わせることで、太陽光がある時は太陽光を最終加熱熱源とし、太陽光がない夜間や雨天はバイオマス燃料を最終加熱熱源とすることで二酸化炭素排出量ゼロの発電が実現する。
Furthermore, the combustion heat heat source is the combustion heat of biomass fuel derived from plants.
Biomass fuel contains biogas and vegetation resources generated from wastewater from sewage treatment plants, beer factories, and manure from livestock.
Combined with solar heat collecting means, when there is sunlight, sunlight is used as the final heating heat source, and at night and rainy days when there is no sunlight, biomass fuel is used as the final heating heat source to generate zero carbon dioxide emissions. Realize.
また、更に前記最終加熱熱源を電気抵抗発熱熱源とする事を特徴とするものである。 Further, the final heating heat source is an electric resistance heating heat source.
また、更に前記最終加熱熱源を太陽光集熱熱源とする事を特徴とするものである。 Further, the final heating heat source is a solar heat collecting heat source.
また、更に前記予熱熱源を熱機関の冷却排熱とする事を特徴とするものである。
熱機関の機械エネルギーに変換されない熱エネルギーは冷却排熱となる。
熱機関とは蒸気タービン、蒸気機関などである。
これをヒートポンプサイクルで回収する。
Furthermore, the preheating heat source is used as cooling exhaust heat of a heat engine.
The heat energy that is not converted to the mechanical energy of the heat engine becomes cooling exhaust heat.
The heat engine is a steam turbine, a steam engine, or the like.
This is recovered by a heat pump cycle.
また、更に前記予熱熱源を外気とする事を特徴とするものである。
外気で被定容加熱流体を予熱する。北半球の夏季の場合
外気は地下水や海水より高温なので、ヒートポンプサイクルの予熱に使用する。
地下水や海水は外気より低温なので熱機関の低温鉄源とする。
Further, the preheating heat source is outside air.
Preheat the constant volume heating fluid with outside air. In summer in the Northern Hemisphere, outside air is hotter than groundwater and seawater, so it is used to preheat the heat pump cycle.
Groundwater and seawater are cooler than the outside air, so use them as a low-temperature iron source for heat engines.
また、更に前記予熱熱源を地下水とする事を特徴とするものである。
地下水で被定容加熱流体を予熱する、北半球の冬季の場合
地下水は外気より高温なので、ヒートポンプサイクルの予熱に使用する。
外気は地下水より低温なので熱機関の低温鉄源とする。
Furthermore, the preheating heat source is groundwater.
In the case of the northern hemisphere in which the constant volume heating fluid is preheated with groundwater, groundwater is hotter than the outside air, so it is used for preheating the heat pump cycle.
Since the outside air is cooler than groundwater, it is used as a low-temperature iron source for heat engines.
また、更に前記予熱熱源を前記不可逆反応発生熱源とする事を特徴とするものである。
蒸気タービンの機械部、蓄電池、発電機の発熱をヒートポンプサイクルの予熱熱源として回収する。
Furthermore, the preheating heat source is the irreversible reaction generating heat source.
Heat generated from the mechanical part of the steam turbine, storage battery, and generator is recovered as a preheating heat source for the heat pump cycle.
また、更に前記予熱熱源をボルテックスチューブ低温分離熱源とする事を特徴とするものである。
ボルテックスチューブで分離された低温側の被定容加熱流体を最終加熱するために予熱加熱器におくる。
予熱加熱器の予熱熱源温度よりボルテックスチューブの低温側の圧力は高いので予熱加熱器に吸入される。
Furthermore, the preheating heat source is a vortex tube low temperature separation heat source.
In order to finally heat the low-temperature constant volume heating fluid separated by the vortex tube, it comes to a preheating heater.
Since the pressure on the low temperature side of the vortex tube is higher than the preheating heat source temperature of the preheating heater, it is sucked into the preheating heater.
また、更に予熱熱源を原子核反応熱とする事を特徴とするものである。
使用済み核燃料の発生熱を予熱熱源にする。安全のため100度以下の熱源として利用する。
Furthermore, the preheating heat source is a nuclear reaction heat.
The generated heat of the spent nuclear fuel is used as a preheating heat source. Use as a heat source of 100 degrees or less for safety.
また、更に前記予熱熱源を海水とする事を特徴とするものである。
海水で被定容加熱流体を予熱する。船舶など海水が入手できる場合、北半球の冬季の場合
海水は外気より高温なので、ヒートポンプサイクルの予熱に使用する。
外気は海水より低温なので熱機関の低温鉄源とする。
Further, the preheating heat source is seawater.
Preheat the constant volume heating fluid with seawater. When seawater such as ships is available, in the northern hemisphere winter, seawater is hotter than the outside air, so it is used to preheat the heat pump cycle.
Since the outside air is cooler than seawater, it is used as a low-temperature iron source for heat engines.
また、更に前記予熱熱源を地熱発電の温排水とする事を特徴とするものである。
ヒートポンプサイクルの予熱熱源として地熱発電の温排水を使用し、熱機関の低温熱源を外気または地下水とすると、ヒートポンプと熱機関の組み合わせ効率が理論値で1以上になる。
Further, the preheating heat source is a hot drainage for geothermal power generation.
When the hot drainage of geothermal power generation is used as the preheating heat source of the heat pump cycle and the low temperature heat source of the heat engine is outside air or groundwater, the combined efficiency of the heat pump and the heat engine becomes 1 or more in theory.
また、更に前記被定容加熱流体を空気とする事を特徴とするものである。
この装置は空気圧縮器である。
 
Further, the constant volume heating fluid is air.
This device is an air compressor.
また、更に前記被定容加熱流体を冷凍サイクルの冷媒とする事を特徴とするものである。
この装置は冷凍サイクル装置で、空調装置、冷凍装置である。冷媒にはフルオロカーボン、水、二酸化炭素、アンモニア、ブタンなどがある。
Furthermore, the constant volume heating fluid is used as a refrigerant for a refrigeration cycle.
This apparatus is a refrigeration cycle apparatus, which is an air conditioner or a refrigeration apparatus. Examples of the refrigerant include fluorocarbon, water, carbon dioxide, ammonia, and butane.
また、更に前記被定容加熱流体を化学反応に使用される化学物質とする事を特徴とするものである。
冷凍サイクルの冷媒を化学反応物質にする。
反応温度が300度の化学反応の場合に化学反応物質をヒートポンプサイクルで加熱する。外気温度を25度とすると外気予熱で成績係数が2.08となり省エネルギーとなる。
この場合化学反応物質は最終加熱器で加熱されて吐出される。
Further, the constant volume heating fluid is a chemical substance used for a chemical reaction.
The refrigerant of the refrigeration cycle is used as a chemical reactant.
In the case of a chemical reaction at a reaction temperature of 300 ° C., the chemical reactant is heated by a heat pump cycle. If the outside air temperature is 25 ° C., the coefficient of performance is 2.08 due to the outside air preheating, thereby saving energy.
In this case, the chemically reactive substance is heated by the final heater and discharged.
また、更に前記被定容加熱流体を二酸化炭素とし、
前記被定容加熱流体供給手段を二酸化炭素供給手段とし、
二酸化炭素と化学反応する化学物質と、
二酸化炭素反応化学物質と、
二酸化炭素と二酸化炭素反応化学物質を化合する二酸化炭素化合装置を備える事を特徴とするものである。
二酸化炭素回収手段は製鉄所、セメント工場などの発生源に設置する。
回収方法は種々開発されているがいずれでも良い。
Further, the constant volume heating fluid is carbon dioxide,
The constant volume heating fluid supply means is carbon dioxide supply means,
Chemicals that react chemically with carbon dioxide,
Carbon dioxide reactive chemicals,
It is characterized by comprising a carbon dioxide compounding device that combines carbon dioxide and a carbon dioxide reactive chemical substance.
Carbon dioxide recovery means will be installed at sources such as steelworks and cement factories.
Various recovery methods have been developed, but any of them may be used.
また、更に前記二酸化炭素反応化学物質をアンモニアとする事を特徴とするものである。
二酸化炭素とアンモニアは触媒下で、温度300度で尿素に合成される。
尿素合成に要するエネルギーがヒートポンプサイクル利用で半減される。
この結果熱源が石炭燃焼の場合で二酸化炭素が半減する。
太陽光集熱熱源をヒートポンプサイクルの最終熱源とすると二酸化炭素排出零の尿素合成となり二酸化炭素が削減される。
Further, the carbon dioxide reactive chemical substance is ammonia.
Carbon dioxide and ammonia are synthesized into urea at a temperature of 300 degrees under a catalyst.
The energy required for urea synthesis is halved by using a heat pump cycle.
As a result, when the heat source is coal combustion, carbon dioxide is halved.
If the solar heat collection heat source is the final heat source of the heat pump cycle, the synthesis of urea with zero carbon dioxide emission results in the reduction of carbon dioxide.
また、更に前記被定容加熱流体を水とする事を特徴とするものである。
この装置はヒートポンプボイラーである。
燃焼熱源の場合の構造は貫流ボイラーと同じ構造となる。
Further, the constant volume heating fluid is water.
This device is a heat pump boiler.
The structure in the case of the combustion heat source is the same as that of the once-through boiler.
また、更に前記被定容加熱流体を海水する事を特徴とするものである。
被定容加熱流体を海水にして水蒸気を噴出して蒸気タービンで発電を行い、蒸気を外気で凝縮して真水を回収する。
真水回収分の海水を供給すると発電と海水淡水化と冷房ができる事になる。
ヒートポンプサイクルと熱機関をあわせた総合効率は100%である。
発電を重視するか海水淡水化を重視するか冷房需要を重視するかで、水蒸気吐出温度を決定する。
Further, the constant volume heating fluid is seawater.
Steam is spouted using a constant volume heating fluid as seawater, power is generated by a steam turbine, and the steam is condensed with outside air to recover fresh water.
Supplying seawater for fresh water recovery will enable power generation, seawater desalination and cooling.
The total efficiency of the heat pump cycle and the heat engine is 100%.
The steam discharge temperature is determined depending on whether power generation is important, seawater desalination is important, or cooling demand is important.
また、更に前記被定容加熱流体をブラインとする事を特徴とするものである。
寒冷地では外気温が零度以下になり水が凍結する。そこで、ブラインを使用する。
ブラインは塩化カルシウム水溶液、塩化ナトリウム、エチレングリコール水溶液、プロピレングリコール水溶液などである。
Further, the constant volume heating fluid is brine.
In cold regions, the outside air temperature falls below zero and water freezes. Therefore, brine is used.
The brine is calcium chloride aqueous solution, sodium chloride, ethylene glycol aqueous solution, propylene glycol aqueous solution or the like.
また、更に前記熱・機械変換手段を蒸気熱機関とする事を特徴とするものである。
蒸気熱機関とは蒸気タービン又は蒸気機関の事である。
Further, the heat / mechanical conversion means is a steam heat engine.
A steam heat engine is a steam turbine or a steam engine.
また、更に前記太陽光集熱手段を集光式太陽熱集熱器または真空管式太陽熱集熱器とする事を特徴とするものである。
太陽光集熱手段には定置式の真空管式太陽熱集熱器と鏡またはフレネルレンズを用いた追尾装置を備えた集光式太陽熱集熱器がある。
真空管式太陽熱集熱器は建物の屋上等に設置して太陽光を集熱するもので熱媒を使用しているので200度までの集熱が可能である。
通常の冷凍サイクルでは冷媒の吐出温度は摂氏70度程度なので真空管式太陽熱集熱器は熱源として十分利用できる。
しかし、ボイラーの最終加熱熱源とするには200度以上の熱源が必要なので利用できない。
200度以上の熱源を太陽光から得る為には集光が必要である。
集光には追尾装置が必要である。フレネルレンズで集光するものと鏡で集光するものがある。
集光点に加熱物を配置すると、数百倍数千倍で集光するので非常に高温になり最終加熱熱源として十分利用可能である。
集光倍率は集光レンズ又は集光鏡と集光点の面積差で決まるので集光倍率を調整して所定の高温が得られる様にする。
熱源を太陽光集熱熱源にすると自然エネルギーだけで冷凍サイクル、ヒートポンプサイクルの運転が可能になる。
200度以下の冷媒加熱には安価な真空管式太陽熱集熱器を使用する。
集光式集熱装置は追尾装置が必要で高価であるが、真空管式より高熱になるのでボイラー、太陽熱発電等で使用されている。
熱源の使用方法は真空管式太陽熱集熱器では、集熱器の熱媒と被定容加熱流体を二重管構造にして熱交換する。
集光式は最終加熱定容加熱器を集光点にする。
真空管式太陽熱集熱器では南面仰角35度設置時で平方メートルあたり最高1000wであるが、年間日射量は低くなる。
集光式では直達光は平方メートル当たり800wであるが、年間日射量は太陽を追尾するので固定式の1.6倍程度になる。
1平方メートルの集光レンズまたは集光鏡で数百倍数千倍に集光すると集熱材は高温になり定容加熱器の最終加熱熱源として利用できる。
Furthermore, the solar heat collecting means is a concentrating solar heat collector or a vacuum tube solar heat collector.
The solar heat collecting means includes a stationary vacuum tube type solar heat collector and a concentrating solar heat collector equipped with a tracking device using a mirror or a Fresnel lens.
A vacuum tube type solar heat collector is installed on the rooftop of a building and collects sunlight, and uses a heat medium, so it can collect heat up to 200 degrees.
In a normal refrigeration cycle, the discharge temperature of the refrigerant is about 70 degrees Celsius, so the vacuum tube solar collector can be used as a heat source.
However, since it is necessary to use a heat source of 200 ° C. or more for the final heating heat source of the boiler, it cannot be used.
In order to obtain a heat source of 200 degrees or more from sunlight, it is necessary to collect light.
A tracking device is required for light collection. There is a thing which condenses with a Fresnel lens and a thing which condenses with a mirror.
When a heated object is arranged at the condensing point, the condensed light is concentrated several hundred times to several thousand times, so that the temperature becomes very high and it can be sufficiently used as a final heating heat source.
Since the condensing magnification is determined by the area difference between the condensing lens or the condensing mirror and the condensing point, the condensing magnification is adjusted so that a predetermined high temperature can be obtained.
If the heat source is a solar heat collection heat source, it is possible to operate the refrigeration cycle and heat pump cycle using only natural energy.
An inexpensive vacuum tube solar collector is used for heating the refrigerant below 200 degrees.
The concentrating heat collecting device requires a tracking device and is expensive, but it is used in boilers, solar thermal power generation and the like because it is hotter than a vacuum tube type.
In the vacuum tube type solar collector, the heat source is used for heat exchange with a heat transfer medium of the collector and a constant volume heating fluid in a double tube structure.
The condensing type uses a final heating constant volume heater as a condensing point.
A vacuum tube solar collector is up to 1000w per square meter when installed at an elevation angle of 35 degrees on the south surface, but the annual solar radiation is low.
In the condensing type, direct light is 800 w per square meter, but the annual solar radiation tracks the sun, so it is about 1.6 times that of the fixed type.
When the light is collected several hundreds or thousands of times with a 1 square meter condensing lens or condensing mirror, the heat collecting material becomes high temperature and can be used as the final heating heat source of the constant volume heater.
また、更に前記蓄熱手段を溶融塩蓄熱とする事を特徴とするものである。 Furthermore, the heat storage means is a molten salt heat storage.
また、更に前記蓄熱手段を氷蓄熱とする事を特徴とするものである。 Further, the heat storage means is ice heat storage.
また、更に前記被定容加熱流体供給手段を給水装置とする事を特徴とするものである。 Further, the constant volume heating fluid supply means is a water supply device.
また、更に圧力容器の構造を被定容加熱流体と予熱熱源の二重管構造とする事を特徴とするものである。63
予熱熱源は外気、地下水等であり、熱交換器の伝熱性能を向上の為に水冷の場合は二重管構造とする。
Further, the structure of the pressure vessel is a double tube structure of a constant volume heating fluid and a preheating heat source. 63
The preheating heat source is outside air, groundwater, etc. In order to improve the heat transfer performance of the heat exchanger, a double pipe structure is used in the case of water cooling.
逆カルノーサイクルとされている冷凍サイクルの断熱圧縮過程を定容加熱過程に置き換え予熱加熱過程と最終加熱過程をとることで逆カルノーサイクルではない加熱冷凍サイクルになりの成績係数が向上する。
定容加熱器利用のヒートポンプサイクルとカルノーサイクル熱機関の組み合わせで理論総合変換熱効率1の熱利用装置が実現する。
冷凍サイクルの低温熱源と熱機関の低温熱源を使い分ける事で総合変換熱効率1以上の熱利用装置が実現できる。
定容加熱器利用で冷媒を加熱高温化することで断熱圧縮機より騒音を低減できる。
定容加熱器利用で冷媒を外気温または冷却排熱で加熱することで冷凍サイクルの理論成績係数が断熱圧縮機利用の場合と比して、冷房使用時4倍~6倍になる。
75%以上の省エネルギーになる。
定容加熱器利用して冷凍サイクルの冷媒を水として、ヒートポンプボイラーを構成すると、蒸気温度300度で成績係数が約2となり50%の省エネルギーになる。また冷房、冷凍が同時にできる。
定容加熱器利用でヒートポンプボイラーと蒸気タービン又は蒸気機関を組み合わせると、理論変換効率は温度に関係なく1となり最高効率になる。
ヒートポンプボイラーは従来のボイラーに比して小型化できる。
ヒートポンプボイラーなので、同時に冷房もできる。
定容加熱器利用で熱源を太陽光集熱熱源とすると、CO2排出0の冷房、暖房、発電が実現できる。
定容加熱器利用で、太陽電池を使用しないで太陽エネルギー変換理論変換効率100%の太陽光発電が実現する。集熱で発電できるから、定容加熱器利用で低温熱源を使い分けることで熱効率100%以上の装置ができる。
ボイラーが小型化されるので移動装置に搭載することができる。
ヒートポンプボイラー、蒸気タービン、発電機の組み合わせで理論熱効率100%の発電が可能となる。
風力発電の出力変動と太陽熱発電の出力変動を定容加熱器利用のバイオマス火力発電を出力変動調整手段とすることで、電力系統が安定しかつ二酸化炭素排出無し発電が可能となる。
太陽光用発電の設備稼働率が低く設備コストが割高である。
また蒸気熱機関を定速運転し出力変動を蓄電と電気モーターで対応することで大幅な省エネルギーが実現する。
内燃機関のように排ガス対策が不要になる。
By replacing the adiabatic compression process of the refrigeration cycle, which is a reverse Carnot cycle, with a constant volume heating process, and taking the preheating heating process and the final heating process, the coefficient of performance for a heating refrigeration cycle other than the reverse Carnot cycle is improved.
A heat utilization device with a theoretical total conversion thermal efficiency of 1 is realized by a combination of a heat pump cycle using a constant volume heater and a Carnot cycle heat engine.
By using the low-temperature heat source of the refrigeration cycle and the low-temperature heat source of the heat engine, a heat utilization device with a total conversion thermal efficiency of 1 or more can be realized.
Noise can be reduced compared to an adiabatic compressor by heating the refrigerant at a high temperature using a constant volume heater.
Heating the refrigerant with outside air temperature or cooling exhaust heat using a constant volume heater increases the theoretical coefficient of performance of the refrigeration cycle by 4 to 6 times when using air conditioning compared to using an adiabatic compressor.
More than 75% energy saving.
If a heat pump boiler is constructed using water as the refrigerant in the refrigeration cycle using a constant volume heater, the coefficient of performance is about 2 at a steam temperature of 300 degrees, saving 50% energy. Cooling and freezing can be performed simultaneously.
When a heat pump boiler and a steam turbine or a steam engine are combined using a constant volume heater, the theoretical conversion efficiency becomes 1 regardless of the temperature and becomes the highest efficiency.
The heat pump boiler can be reduced in size as compared with the conventional boiler.
Because it is a heat pump boiler, it can also be cooled at the same time.
If the heat source is a solar heat collection heat source using a constant volume heater, cooling, heating and power generation with zero CO2 emission can be realized.
By using a constant volume heater, solar power generation with a solar energy conversion theoretical conversion efficiency of 100% is realized without using solar cells. Since power can be generated by collecting heat, an apparatus with a thermal efficiency of 100% or more can be obtained by using a low-temperature heat source by using a constant volume heater.
Since the boiler is miniaturized, it can be mounted on a moving device.
A combination of a heat pump boiler, a steam turbine, and a generator enables power generation with a theoretical thermal efficiency of 100%.
By using the output fluctuation of the wind power generation and the output fluctuation of the solar thermal power generation as the output fluctuation adjustment means using the biomass thermal power generation using the constant volume heater, the power system is stable and the power generation without carbon dioxide emission becomes possible.
The facility operation rate of solar power generation is low and the facility cost is high.
In addition, the steam heat engine can be operated at a constant speed and output fluctuations can be handled by electricity storage and electric motors to achieve significant energy savings.
As with internal combustion engines, exhaust gas measures are not required.
最終加熱器である。1の圧力容器内の4の被定容加熱流体を2の吸入弁と3の吐出弁を閉じたまま4の最終加熱熱源で加熱すると、圧力温度が高まる。所定の温度圧力になると吐出弁が開き4の被定容加熱流体が吐出される。最終加熱熱源は被定容加熱流体の吐出温度より高い熱源で燃焼熱熱源、電気抵抗発熱熱源、太陽熱集熱熱源がある。吐出弁の設定圧力は被定容加熱流体の設計吐出温度の圧力とする。4の被定容加熱流体が吐出されて圧力が低下した圧力容器内には新たな被定容加熱流体が吸入弁が開き吸入される。7は断熱手段で最終加熱器は外部環境より高温になるので熱損失防止のために断熱する。7の断熱手段は圧力容器内部でも外部でも良い。断熱材には真空断熱材、グラスウール、ウレタン系などいろいろ使用できる。The final heater. When the 4 constant volume heating fluid in 1 pressure vessel is heated by 4 final heating heat sources with 2 intake valves and 3 discharge valves closed, the pressure temperature increases. When a predetermined temperature pressure is reached, the discharge valve is opened and the constant volume heated fluid 4 is discharged. The final heating heat source is a heat source higher than the discharge temperature of the constant volume heating fluid, and includes a combustion heat heat source, an electric resistance heat generating heat source, and a solar heat collecting heat source. The set pressure of the discharge valve is the pressure at the design discharge temperature of the constant volume heating fluid. The new constant volume heating fluid is sucked into the pressure vessel whose pressure has dropped due to the discharge of the constant volume heating fluid 4 and the suction valve opens. 7 is a heat insulating means, and the final heater is heated to prevent heat loss because the final heater is hotter than the external environment. The heat insulating means 7 may be inside or outside the pressure vessel. Various types of insulation can be used, such as vacuum insulation, glass wool, and urethane. 予熱加熱器である。構造は最終加熱器と同じである。吸入弁、吐出弁の機能は逆止弁機能である。6は予熱熱源である。4の被定容加熱流体を予熱熱源で加熱する。予熱熱源は外気、地下水、熱機冷却排熱、燃焼排熱がある。予熱熱源は低温なので8の伝熱向上手段をつけて伝熱性能を向上させる。後工程の最終加熱器で被定容加熱流体が吐出されると、最終加熱器内の圧力が予熱加熱器の圧力より低くなり予熱器内の被定容加熱流体が最終加熱器に吸入される。It is a preheating heater. The structure is the same as the final heater. The function of the intake valve and the discharge valve is a check valve function. 6 is a preheating heat source. 4 constant volume heating fluid is heated with a preheating heat source. The preheating heat source includes outside air, groundwater, exhaust heat from the cooling machine, and exhaust heat from combustion. Since the preheating heat source is a low temperature, heat transfer performance is improved by adding 8 heat transfer improvement means. When the constant volume heating fluid is discharged from the final heater in the subsequent process, the pressure in the final heater becomes lower than the pressure of the preheating heater, and the constant volume heating fluid in the preheater is sucked into the final heater. . 4は被定容加熱流体である。9は最終加熱器である。被定容加熱流体は最終加熱器で高温になり吐出される。5は最終加熱熱源である。13は最終加熱熱源切り替え器であり、太陽熱集熱熱源と燃焼熱熱源の切り替えや太陽熱熱源と電気抵抗発熱熱源の切り替えを行う。10は予熱加熱器であり被定容加熱流体を予熱する。最終加熱器と予熱加熱器で従来の断熱圧縮機の機能を満たす。14は予熱熱源切り替え器で季節変動により変化する予熱熱源の高温の方に切り替えるものである。たとえば、北半球の夏季において、外気温と地下水であれば、外気にきりかえる。53は放熱手段である。15は出力開始停止増減装置である。最終加熱器の加熱の開始停止と加熱量の増減を行う。43は発電機である。44は機械エネルギー配分手段で機械エネルギーのまま利用するか発電するかの配分を決める。機械エネルギーを全て発電に配分すると発電所になる。42は熱・機械変換手段である。ここで被定容加熱流体の熱が放熱される。11は吸熱手段である。冷凍サイクルでは蒸発器である。12は被定容加熱流体回収手段である。53は放熱手段である。冷凍サイクルで放熱手段と被定容加熱流体回収手段を備えるものが凝縮器である。42は熱・機械変換手段で放熱機能をもっている。被定容加熱流体が水の場合は蒸気タービンまたは蒸気機関である。19は膨張弁である。被定容加熱流体を低温低圧化する。41は蓄熱手段である。最終加熱熱源が太陽熱集熱手段の場合に夜間、雨天の時蓄熱が必要になる。46は機械・駆動力変換手段で機械エネルギーを移動装置の駆動力に変換する。47は電力・駆動力変換手段で電力を駆動力に変換する。いわゆる電動モーターである。48は駆動力配分手段で電力・駆動力と機械・駆動力の配分を決める。52は始動手段である。船舶、自動車、鉄道機関車、建設機械などがある。50は熱・機械変換手段高温熱源部である。熱機関のカルノーサイクルの高温熱源である。51は高温熱源収容手段である。ヒートポンプサイクルの高温熱源と熱機関の高温熱源を同居させることで熱損失がおさえられる。4 is a constant volume heating fluid. 9 is a final heater. The constant volume heating fluid is discharged at a high temperature in the final heater. Reference numeral 5 denotes a final heating heat source. Reference numeral 13 denotes a final heating heat source switch, which switches between a solar heat collecting heat source and a combustion heat heat source and switches between a solar heat heat source and an electric resistance heat generating heat source. Reference numeral 10 denotes a preheating heater which preheats the constant volume heating fluid. The final heater and preheating heater satisfy the functions of a conventional adiabatic compressor. Reference numeral 14 denotes a preheating heat source switching unit for switching to a higher temperature of the preheating heat source that changes due to seasonal variation. For example, in the summer of the Northern Hemisphere, if it is outside temperature and groundwater, it turns into outside air. 53 is a heat dissipation means. Reference numeral 15 denotes an output start / stop increase / decrease device. Start and stop heating of the final heater and increase or decrease the heating amount. 43 is a generator. 44 is a mechanical energy distribution means that determines whether to use the mechanical energy as it is or to generate power. When all mechanical energy is allocated to power generation, it becomes a power plant. Reference numeral 42 denotes a heat / mechanical conversion means. Here, the heat of the constant volume heating fluid is dissipated. Reference numeral 11 denotes an endothermic means. In the refrigeration cycle, it is an evaporator. Reference numeral 12 denotes a constant volume heating fluid recovery means. 53 is a heat dissipation means. A condenser having a heat radiation means and a constant volume heating fluid recovery means in a refrigeration cycle is a condenser. Reference numeral 42 denotes a heat / mechanical conversion means having a heat radiation function. When the constant volume heating fluid is water, it is a steam turbine or a steam engine. Reference numeral 19 denotes an expansion valve. Reduce the low temperature and pressure of the constant volume heating fluid. 41 is a heat storage means. When the final heating heat source is solar heat collecting means, it is necessary to store heat at night and in rainy weather. A mechanical / driving force converting means 46 converts mechanical energy into driving force of the moving device. 47 is a power / driving force converting means for converting electric power into driving force. This is a so-called electric motor. Reference numeral 48 denotes a driving force distribution means for determining the distribution of electric power / driving force and machine / driving force. 52 is a starting means. Ships, automobiles, railway locomotives, construction machinery, etc. Reference numeral 50 denotes a heat / mechanical conversion means high-temperature heat source section. It is a high-temperature heat source for the Carnot cycle of heat engines. 51 is a high temperature heat source accommodation means. Heat loss can be suppressed by coexisting the high-temperature heat source of the heat pump cycle and the high-temperature heat source of the heat engine. 定容加熱器利用の冷凍サイクルである。9は最終加熱器である。10は予熱加熱器である。最終加熱器と予熱加熱器で従来の断熱圧縮機を置き換える。10は予熱加熱器17は蒸発器である。16は凝縮器である。19は膨張弁である。18は冷媒である。21は最終加熱熱源の太陽光集熱熱源である。20は最終加熱熱源の燃焼熱熱源である。25は予熱熱源の外気である。26は地下水である。切り替え器により常に温度の高い予熱熱源に切り替える。54は溶融塩蓄熱である。太陽熱集熱熱を蓄熱する。This is a refrigeration cycle using a constant volume heater. 9 is a final heater. Reference numeral 10 denotes a preheating heater. Replacing traditional adiabatic compressors with final and preheater heaters. 10 is a preheating heater 17 is an evaporator. Reference numeral 16 denotes a condenser. Reference numeral 19 denotes an expansion valve. 18 is a refrigerant. 21 is a solar heat collecting heat source as a final heating heat source. Reference numeral 20 denotes a combustion heat heat source as a final heating heat source. Reference numeral 25 denotes the outside air of the preheating heat source. 26 is groundwater. Switch to a preheating heat source that always has a high temperature using a switch. 54 is a molten salt heat storage. Stores solar heat collection heat. この装置は復水器つきのヒートポンプボイラーである。30は水である。34は水蒸気熱交換器である。加熱された水蒸気と加熱物と熱交換をする。35は復水器である。36はバイオマス燃焼熱源である。37は集光式太陽熱集熱装置であり、非常に高温に集熱できるので最終加熱熱源としてしようできる。36はバイオマス燃焼熱源である。37と36の組み合わせで再生可能エネルギーでボイラーが実現できる。25は外気である。29は燃焼ガス排熱である。14の切り替え器で温度の高い方にきりかえる。This device is a heat pump boiler with a condenser. 30 is water. Reference numeral 34 denotes a steam heat exchanger. Heat exchange is performed between the heated steam and the heated product. 35 is a condenser. 36 is a biomass combustion heat source. Reference numeral 37 denotes a concentrating solar heat collector, which can collect heat at a very high temperature and can be used as a final heating heat source. 36 is a biomass combustion heat source. A combination of 37 and 36 can realize a boiler with renewable energy. 25 is outside air. 29 is combustion gas exhaust heat. Change to the higher temperature with 14 switches. この装置は復水器なしのヒートポンプボイラーである。31は給水装置である。32は水蒸気噴出である。水蒸気噴出で水がなくなるので給水が必要である。33は真空管式太陽熱集熱装置である。23は気体燃焼熱熱源である。24は石油系燃焼熱熱源である。33と23は最終加熱熱源である。13の切り替え手段で切り替える25は外気である。26は地下水である。14の切り替え手段で高いほうにきりかえる。54は溶融塩蓄熱装置で33で集熱した太陽熱を蓄熱する。38はボルテックスチューブである。39と40に被定容加熱流体を分離する。39の高温流体は吐出される。40の被定容加熱流体は71の予熱加熱器におくられる。40の方が外気、地下水の予熱器より温度が高いので71に吸入される。This device is a heat pump boiler without a condenser. 31 is a water supply apparatus. 32 is a water vapor jet. Water supply is necessary because water disappears due to water vapor. Reference numeral 33 denotes a vacuum tube type solar heat collector. 23 is a gas combustion heat source. Reference numeral 24 denotes a petroleum-based combustion heat heat source. 33 and 23 are final heating heat sources. 25 switched by 13 switching means is outside air. 26 is groundwater. Change to the higher one with 14 switching means. 54 is a molten salt heat storage device for storing solar heat collected at 33. Reference numeral 38 denotes a vortex tube. Separate the constant volume heating fluid into 39 and 40. 39 hot fluid is discharged. 40 constant volume heating fluids are placed in 71 preheating heaters. 40 is sucked into 71 because the temperature is higher than the preheater of outside air and groundwater. 17は蒸発器である。35は復水器である。57は蒸気タービンである。30は水である。33は真空管式太陽熱集熱装置である。54は溶融塩蓄熱である。24は液体燃焼熱熱源である。25は外気である。67は熱機関冷却排熱である。56は船舶である。 Reference numeral 17 denotes an evaporator. 35 is a condenser. 57 is a steam turbine. 30 is water. Reference numeral 33 denotes a vacuum tube type solar heat collector. 54 is a molten salt heat storage. Reference numeral 24 denotes a liquid combustion heat source. 25 is outside air. 67 is heat engine cooling exhaust heat. 56 is a ship. 不可逆反応発生熱回収装置10は予熱加熱器である。59は不可逆反応発生熱源である。60は発生熱源収容手段である。70は不可逆反応発生熱源収容断熱手段である。The irreversible reaction generation heat recovery apparatus 10 is a preheating heater. 59 is an irreversible reaction generation heat source. Reference numeral 60 denotes generated heat source accommodation means. Reference numeral 70 denotes an irreversible reaction generating heat source accommodation heat insulating means. 1は圧力容器である。2は吸入弁である。3は吐出弁である。8は定容伝熱向上手段である。61は発電機機械発熱熱源、62は蒸気タービン機械発熱熱源である。62は蒸気タービン機械発熱熱源、63は蓄電池化学反応熱源である。61~63の熱を予熱加熱器で吸収する。1 is a pressure vessel. 2 is a suction valve. 3 is a discharge valve. 8 is a constant volume heat transfer improving means. 61 is a generator machine heat generation heat source, and 62 is a steam turbine machine heat generation heat source. 62 is a steam turbine machine exothermic heat source, and 63 is a storage battery chemical reaction heat source. Absorb 61-63 heat with preheater. 集光式太陽電池素子冷却システム16は凝縮器である。19は膨張弁である。18は冷媒である。25は外気である。21は太陽光集熱熱源である。64は被冷却物体である集光式太陽電池素子レシーバである。The concentrating solar cell element cooling system 16 is a condenser. Reference numeral 19 denotes an expansion valve. 18 is a refrigerant. 25 is outside air. 21 is a solar heat collecting heat source. Reference numeral 64 denotes a concentrating solar cell element receiver which is an object to be cooled.
1    圧力容器
2    吸入弁
3    吐出弁
4    被定容加熱流体
5    最終加熱熱源
6    予熱熱源
7    定容断熱手段
8    定容伝熱向上手段
9    最終加熱器
10   予熱加熱器
11   吸熱手段
12   被定容加熱流体回収手段
13   最終加熱熱源切換器
14   予熱熱源切換器
15   出力開始停止増減装置
16   凝縮器
17   蒸発器
18   冷媒
19   膨張弁
20   燃焼熱熱源
21   太陽光集熱熱源
22   電気抵抗発熱熱源
23   気体燃料燃焼熱熱源
24   液体燃料燃焼熱熱源
25   外気
26   地下水
27   海水
28   工業排水
29   燃焼ガス排熱
30   水
31   被定容加熱流体供給手段
32   水蒸気噴出
33   真空管式太陽熱集熱装置
34   水蒸気熱交換器
35   復水器
36   バイオマス燃焼熱源
37   集光式太陽熱集熱装置
38   ボルテックスチューブ
39   ボルテックスチューブ高温分離被定容加熱
40   ボルテックスチューブ低温分離被定容加熱
41   蓄熱手段
42   熱・機械変換手段
43   発電機
44   機械エネルギー配分手段
45   機械エネルギー配分率選択手段
46   機械・駆動力変換手段
47   電力・駆動力変換手段
48   駆動力配分手段
49   駆動力要求手段
50   熱・機械変換手段高温熱源部
51   高温熱源収容手段
52   移動手段
53   放熱手段
54   溶融塩蓄積
55   氷蓄積
56   船舶
57   蒸気タービン
58   被冷却物体及び被冷却流体
59   不可逆反応発生熱源
60   発生熱源収容手段
61   発電機機械発熱熱源
62   蒸気タービン機械発熱熱源
63   蓄電池化学反応熱熱源
64   太陽電池素子レシーバー
65   給水装置
66   ニクロム線発熱熱源
67   熱機関冷却排熱
68   不可逆反応発生熱回収手段
69   高温熱源収容断熱手段
70   不可逆反応発生熱源収容断熱手段
71   ボルテックスチューブ用予熱加熱器
DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Suction valve 3 Discharge valve 4 Constant volume heating fluid 5 Final heating heat source 6 Preheating heat source 7 Constant volume heat insulation means 8 Constant volume heat transfer improvement means 9 Final heater 10 Preheating heater 11 Heat absorption means 12 Constant volume heating Fluid recovery means 13 Final heating heat source switching device 14 Preheating heat source switching device 15 Output start / stop increase / decrease device 16 Condenser 17 Evaporator 18 Refrigerant 19 Expansion valve 20 Combustion heat heat source 21 Solar heat collection heat source 22 Electric resistance heat generation heat source 23 Gaseous fuel combustion Heat source 24 Liquid fuel combustion heat source 25 Outside air 26 Ground water 27 Sea water 28 Industrial waste water 29 Combustion gas exhaust heat 30 Water 31 Constant volume heating fluid supply means 32 Steam jet 33 Vacuum tube solar heat collector 34 Steam heat exchanger 35 Condensate 36 Biomass combustion heat source 37 Concentrating solar heat collector 38 Vortex tube 9 Vortex tube high temperature separation constant volume heating 40 Vortex tube low temperature separation constant volume heating 41 Heat storage means 42 Heat / mechanical conversion means 43 Generator 44 Mechanical energy distribution means 45 Mechanical energy distribution rate selection means 46 Mechanical / driving force conversion means 47 Electric power / driving force converting means 48 Driving force distributing means 49 Driving force requesting means 50 Heat / mechanical converting means High temperature heat source section 51 High temperature heat source accommodating means 52 Moving means 53 Heat radiating means 54 Molten salt accumulation 55 Ice accumulation 56 Ship 57 Steam turbine 58 Covered Cooled object and fluid to be cooled 59 Irreversible reaction generation heat source 60 Generated heat source storage means 61 Generator machine heat generation heat source 62 Steam turbine machine heat generation heat source 63 Storage battery chemical reaction heat heat source 64 Solar cell element receiver 65 Water supply device 66 Nichrome wire heat generation heat source 67 Heat engine cooling Heat 68 irreversible reaction generating heat recovery means 69 hot heat source housed insulating means 70 irreversible reaction occurs the heat source housed insulating means 71 pre heater for vortex tubes

Claims (62)

  1. 定容加熱器利用装置であって
    圧力容器と、
    吸入弁と、吐出弁を備える事を特徴とする定容加熱器利用装置
    A constant volume heater using a pressure vessel;
    A constant volume heater utilizing device characterized by comprising a suction valve and a discharge valve
  2. 更に被定容加熱流体を備える事を特徴とする請求項1の定容加熱器利用装置 The constant volume heater utilization device according to claim 1, further comprising a constant volume heating fluid.
  3. 更に前記被定容加熱流体の最終加熱に使用される最終加熱熱源からなる最終加熱器を備える事を特徴とする請求項1又は2の定容加熱器利用装置 3. The constant volume heater utilization device according to claim 1, further comprising a final heater comprising a final heating heat source used for final heating of the constant volume heating fluid.
  4. 更に前記被定容加熱流体の予熱に使用される予熱熱源からなる予熱加熱器を備える事を特徴とする請求項1~3いずれかの定容加熱器利用装置 4. The constant volume heater utilization device according to claim 1, further comprising a preheating heater comprising a preheating heat source used for preheating the constant volume heating fluid.
  5. 更に前記定容加熱器を断熱する定容断熱手段を備える事を特徴とする請求項1~4いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 4, further comprising constant volume heat insulation means for insulating said constant volume heater.
  6. 更に前記定容加熱器の伝熱性能を向上させる定容伝熱向上手段を備えることを特徴とする請求項1~5いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 5, further comprising constant volume heat transfer improvement means for improving heat transfer performance of the constant volume heater.
  7. 更に前記最終加熱器の加熱を開始する加熱開始手段と、
    最終加熱器の加熱を停止する加熱停止手段と、
    最終加熱器の加熱量を増減する加熱量増減手段を備える事を特徴とする請求項1~6いずれかの定容加熱器利用装置
    And heating start means for starting heating of the final heater;
    A heating stop means for stopping the heating of the final heater;
    The constant volume heater utilization device according to any one of claims 1 to 6, further comprising heating amount increasing / decreasing means for increasing or decreasing the heating amount of the final heater.
  8. 更に前記最終加熱器の加熱を開始する指示を行う加熱開始指示手段と
    最終加熱器の加熱量を増減する指示を行う加熱量増減指示手段と
    最終加熱器の加熱を停止する指示を行う加熱停止指示手段を備える事を特徴とする請求項1~7いずれかの定容加熱器利用装置
    Further, a heating start instruction means for instructing to start heating of the final heater, a heating amount increase / decrease instruction means for instructing to increase / decrease the heating amount of the final heater, and a heating stop instruction for instructing to stop heating of the final heater The constant volume heater utilizing device according to any one of claims 1 to 7, characterized by comprising means.
  9. 更に前記被定容加熱流体の熱を放熱する放熱手段と、
    被定容加熱流体を低温低圧化する膨張弁と、
    被定容加熱流体を気化させることで吸熱する吸熱手段を備える事を特徴とする請求項1~8いずれかの定容加熱器利用装置
    Furthermore, a heat radiating means for radiating the heat of the constant volume heating fluid,
    An expansion valve for lowering the low-temperature and low-pressure of the constant volume heating fluid;
    9. The constant volume heater utilization device according to claim 1, further comprising heat absorption means for absorbing heat by vaporizing the constant volume heating fluid.
  10. 更に前記被定容加熱流体を供給する被定容加熱流体供給手段を備える事を特徴とする請求項1~9いずれかの定容加熱器利用装置 10. The constant volume heater utilization device according to claim 1, further comprising a constant volume heating fluid supply means for supplying the constant volume heating fluid.
  11. 更に被定容加熱流体を回収する被定容加熱流体回収手段を備える事を特徴とする請求項1~10いずれかの定容加熱器利用装置 11. The constant volume heater utilization device according to claim 1, further comprising a constant volume heating fluid recovery means for recovering the constant volume heating fluid.
  12. 更に前記被定容加熱流体を冷媒とし、
    凝縮器と、
    膨張弁と、
    蒸発器を備えること事を特徴とする請求項1~11いずれかの定容加熱器利用装置
    Further, the constant volume heating fluid is a refrigerant,
    A condenser,
    An expansion valve;
    12. The constant volume heater utilizing device according to claim 1, further comprising an evaporator.
  13. 更に太陽光を集熱する太陽光集熱手段を備える事を特徴とする請求項1~12いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 12, further comprising solar heat collecting means for collecting sunlight.
  14. 更に前記太陽光集熱手段で集熱した太陽熱を蓄熱する蓄熱手段を備えることを特徴とする請求項1~13いずれかの定容加熱器利用装置 14. The constant volume heater utilization device according to claim 1, further comprising heat storage means for storing solar heat collected by the solar heat collection means.
  15. 更に作動流体を前記被定容加熱流体とする熱エネルギーを機械エネルギーに変換する熱・機械エネルギー変換手段を備える事を特徴とする請求項1~14いずれかの定容加熱器利用装置 15. The constant volume heater utilization device according to claim 1, further comprising heat / mechanical energy conversion means for converting thermal energy into mechanical energy using the working fluid as the constant volume heating fluid.
  16. 更に前記最終加熱器と、
    前記熱・機械エネルギー変換手段の高温熱源部を収容する高温熱源収容手段を備える事を特徴とする請求項1~15いずれかの定容加熱器利用装置
    And the final heater,
    The constant-volume heater utilization device according to any one of claims 1 to 15, further comprising a high-temperature heat source accommodation unit that accommodates a high-temperature heat source unit of the heat-mechanical energy conversion unit.
  17. 更に前記高温熱源収容手段を断熱する高温熱源収容断熱手段を備える事を特徴とする請求項1~16いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 16, further comprising a high temperature heat source accommodation heat insulating means for insulating the high temperature heat source accommodation means.
  18. 更に温度差を有する前記予熱熱源を備える事を特徴とする請求項1~17いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 17, further comprising the preheating heat source having a temperature difference.
  19. 更に前記熱・機械変換手段で変換された機械エネルギーを電気エネルギーに変換する発電機を備えることを特徴とする請求項1~18いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 18, further comprising a generator for converting mechanical energy converted by the heat / mechanical conversion means into electric energy.
  20. 更に前記発電機で発電された電力を蓄電する畜電手段を備える事を特徴とする請求項1~19いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 19, further comprising livestock storage means for storing electric power generated by the generator.
  21. 更に前記最終加熱熱源を切り替える最終加熱熱源切り替え手段を備える事を特徴とする請求項1~20いずれかの定容加熱器利用装置 21. The constant volume heater utilization device according to claim 1, further comprising final heating heat source switching means for switching the final heating heat source.
  22. 更に前記予熱熱源を切り替える予熱熱源切り替え手段を備える事を特徴とする請求項1~21いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 21, further comprising preheating heat source switching means for switching the preheating heat source.
  23. 更に前記定容加熱器利用装置を搭載する移動手段を備える事を特徴とする請求項1~22いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 22, further comprising moving means for mounting the constant volume heater utilization device.
  24. 更に前記熱・機械変換手段で変換された機械エネルギーを前記移動手段の駆動力に変換する機械・駆動力変換手段を備える事を特徴とする請求項1~23いずれかの定容加熱器利用装置 24. The constant volume heater utilization device according to claim 1, further comprising mechanical / driving force converting means for converting mechanical energy converted by the heat / mechanical converting means into driving force of the moving means.
  25. 更に前記発電機で発電された電力を前記移動装置の駆動力に変換する電力・駆動力変換手段を備える事を特徴とする請求項1~24いずれかの定容加熱器利用装置 25. The constant volume heater utilization device according to claim 1, further comprising power / driving force conversion means for converting the electric power generated by the generator into the driving force of the mobile device.
  26. 更に前記熱・機械変換手段で変換された機械エネルギーを前記機械・駆動力変換装置と前記発電機に配分する機械エネルギー配分手段を備える事を特徴とする請求項1~25いずれかの定容加熱器利用装置 The constant volume heating according to any one of claims 1 to 25, further comprising mechanical energy distribution means for distributing mechanical energy converted by the heat / mechanical conversion means to the mechanical / driving force conversion device and the generator. Equipment
  27. 更に機械エネルギー配分手段の配分率を選択する機械エネルギー配分率選択手段を備える事を特徴とする請求項1~26いずれかの定容加熱器利用装置 The constant-volume heater utilization device according to any one of claims 1 to 26, further comprising mechanical energy distribution rate selection means for selecting a distribution rate of the mechanical energy distribution means.
  28. 更に駆動力を前記機械・駆動力変換装置と前記電力・駆動力変換手段に要求する駆動力要求手段を備える事を特徴とする請求項1~27いずれかの定容加熱器利用装置 28. The constant volume heater utilization device according to claim 1, further comprising driving force requesting means for requesting driving force to the mechanical / driving force converting device and the electric power / driving force converting means.
  29. 更に前記定容加熱器利用装置の不可逆反応発生熱源を収容する不可逆反応発生熱源収容手段と、
    不可逆反応発生熱源を予熱熱源とする予熱器からなる不可逆反応発生熱回収手段
    備える事を特徴とする請求項1~28いずれかの定容加熱器利用装置
    Furthermore, an irreversible reaction generation heat source accommodating means for accommodating an irreversible reaction generation heat source of the constant volume heater utilizing device,
    The constant volume heater utilization device according to any one of claims 1 to 28, further comprising an irreversible reaction generation heat recovery means comprising a preheater using the irreversible reaction generation heat source as a preheating heat source.
  30. 更に前記発生熱源収容手段を断熱する発生熱源収容断熱手段備える事を特徴とする請求項1~29いずれかの定容加熱器利用装置 30. The constant-volume heater utilization device according to claim 1, further comprising generated heat source accommodation heat insulation means for insulating the generated heat source accommodation means.
  31. 更に前記蓄電手段で蓄電された畜電量を計測する畜電量計測手段を備える事を特徴とする請求項1~30いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 30, further comprising a livestock amount measuring means for measuring a livestock amount stored in the power storage means.
  32. 更に前記被定容加熱流体を高温流体と低温流体に分離するボルテックスチューブを備える事を特徴とする請求項1~31いずれかの定容加熱器利用装置 32. The constant volume heater utilization device according to claim 1, further comprising a vortex tube for separating the constant volume heating fluid into a high temperature fluid and a low temperature fluid.
  33. 更に前記定容加熱器の最終加熱熱源を前記太陽光集熱手段とし、
    前記太陽光集熱手段を集光式集熱装置とし、
    前記吸熱手段の吸熱源を集光式太陽電池素子レシーバとする事を特徴とする請求項1~32いずれかの定容加熱器利用装置
    Furthermore, the final heating heat source of the constant volume heater is the solar heat collecting means,
    The solar heat collecting means is a concentrating heat collecting device,
    The constant volume heater utilization device according to any one of claims 1 to 32, wherein the heat absorption source of the heat absorption means is a concentrating solar cell element receiver.
  34. 更に前記最終加熱熱源を燃焼熱熱源とする事を特徴とする請求項1~33いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 33, wherein the final heating heat source is a combustion heat heat source.
  35. 更に前記燃焼熱熱源を固体燃料燃焼熱熱源とする事を特徴とする請求項1~34いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 34, wherein the combustion heat heat source is a solid fuel combustion heat heat source.
  36. 更に前記燃焼熱熱源を液体燃料燃焼熱熱源とする事を特徴とする請求項1~35いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 35, wherein the combustion heat heat source is a liquid fuel combustion heat heat source.
  37. 更に前記燃焼熱熱源を気体燃料燃焼熱熱源とする事を特徴とする請求項1~36いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 36, wherein the combustion heat heat source is a gaseous fuel combustion heat heat source.
  38. 更に前記燃焼熱熱源を植物起源のバイオマス燃料の燃焼熱とする事を特徴とする請求項1~37いずれかの定容加熱器利用装置 The constant volume heater utilization apparatus according to any one of claims 1 to 37, wherein the combustion heat heat source is the heat of combustion of biomass fuel of plant origin.
  39. 更に前記最終加熱熱源を電気抵抗発熱熱源とする事を特徴とする請求項1~38いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 38, wherein the final heating heat source is an electric resistance heating heat source.
  40. 更に前記最終加熱熱源を太陽光集熱熱源とする事を特徴とする請求項1~39いずれかの定容加熱器利用装置 The constant volume heater utilizing device according to any one of claims 1 to 39, wherein the final heating heat source is a solar heat collecting heat source.
  41. 更に前記予熱熱源を熱機関の冷却排熱とする事を特徴とする請求項1~40いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 40, wherein the preheating heat source is cooling exhaust heat of a heat engine.
  42. 更に前記予熱熱源を外気とする事を特徴とする請求項1~41いずれかの定容加熱器利用
    装置
    The constant volume heater utilization device according to any one of claims 1 to 41, wherein the preheating heat source is outside air.
  43. 更に前記予熱熱源を地下水とする事を特徴とする請求項1~42いずれかの定容加熱器利用装置 The constant volume heater utilizing device according to any one of claims 1 to 42, wherein the preheating heat source is groundwater.
  44. 更に前記予熱熱源を前記不可逆反応発生熱源とする事を特徴とする請求項1~43いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 43, wherein the preheating heat source is the irreversible reaction generation heat source.
  45. 更に前記予熱熱源をボルテックスチューブ低温分離熱源とする事を特徴とする請求項1~44いずれかの定容加熱器利用装置 45. The constant volume heater utilization apparatus according to claim 1, wherein the preheating heat source is a vortex tube low temperature separation heat source.
  46. 更に予熱熱源を原子核反応熱とする事を特徴とする請求項1~45いずれかの定容加熱器利用装置 The constant volume heater utilizing device according to any one of claims 1 to 45, wherein the preheating heat source is nuclear reaction heat.
  47. 更に前記予熱熱源を海水とする事を特徴とする請求項1~46いずれかの定容加熱器利用装置 The constant volume heater utilizing device according to any one of claims 1 to 46, wherein the preheating heat source is seawater.
  48. 更に前記予熱熱源を地熱発電の温排水とする事を特徴とする請求項1~47いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 47, wherein the preheating heat source is a hot waste water for geothermal power generation.
  49. 更に前記被定容加熱流体を空気とする事を特徴とする請求項1~48いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 48, wherein the constant volume heating fluid is air.
  50. 更に前記被定容加熱流体を冷凍サイクルの冷媒とする事を特徴とする請求項1~49いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 49, wherein the constant volume heating fluid is a refrigerant of a refrigeration cycle.
  51. 更に前記被定容加熱流体を化学反応に使用される化学物質とする事を特徴とする請求項1~50いずれかの定容加熱器利用装置 The apparatus for using a constant volume heater according to any one of claims 1 to 50, wherein the constant volume heating fluid is a chemical substance used for a chemical reaction.
  52. 更に前記被定容加熱流体を二酸化炭素とし、
    前記被定容加熱流体供給手段を二酸化炭素供給手段とし、
    二酸化炭素と化学反応する化学物質と、
    二酸化炭素反応化学物質と、
    二酸化炭素と二酸化炭素反応化学物質を化合する二酸化炭素化合装置を備える事を特徴とする請求項1~51いずれかの定容加熱器利用装置
    Further, the constant volume heating fluid is carbon dioxide,
    The constant volume heating fluid supply means is carbon dioxide supply means,
    Chemicals that react chemically with carbon dioxide,
    Carbon dioxide reactive chemicals,
    An apparatus using a constant volume heater according to any one of claims 1 to 51, further comprising a carbon dioxide compounding device for combining carbon dioxide and a carbon dioxide reactive chemical substance.
  53. 更に前記二酸化炭素反応化学物質をアンモニアとする事を特徴とする請求項1~52いずれかの定容加熱器利用装置 The constant volume heater utilizing device according to any one of claims 1 to 52, wherein the carbon dioxide reactive chemical substance is ammonia.
  54. 更に前記被定容加熱流体を水とする事を特徴とする請求項1~53いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 53, wherein the constant volume heating fluid is water.
  55. 更に前記被定容加熱流体を海水する事を特徴とする請求項1~54いずれかの定容加熱器利用装置 The apparatus for using a constant volume heater according to any one of claims 1 to 54, wherein the constant volume heating fluid is seawater.
  56. 更に前記被定容加熱流体をブラインとする事を特徴とする請求項1~55いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 55, wherein the constant volume heating fluid is brine.
  57. 更に前記熱・機械変換手段を蒸気熱機関とする事を特徴とする請求項1~56いずれかの定容加熱器利用装置 The constant volume heater utilizing device according to any one of claims 1 to 56, wherein the heat / mechanical conversion means is a steam heat engine.
  58. 更に前記太陽光集熱手段を集光式太陽熱集熱器または真空管式太陽熱集熱器とする事を特徴とする請求項1~57いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 57, wherein the solar heat collecting means is a concentrating solar heat collector or a vacuum tube solar heat collector.
  59. 更に前記蓄熱手段を溶融塩蓄熱とする事を特徴とする請求項1~58いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 58, wherein the heat storage means is molten salt heat storage.
  60. 更に前記蓄熱手段を氷蓄熱とする事を特徴とする請求項1~59いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 59, wherein the heat storage means is ice heat storage.
  61. 更に前記被定容加熱流体供給手段を給水装置とする事を特徴とする請求項1~60いずれかの定容加熱器利用装置 The constant volume heater utilization device according to any one of claims 1 to 60, wherein the constant volume heating fluid supply means is a water supply device.
  62. 更に圧力容器の構造を被定容加熱流体と予熱熱源の二重管構造とする事を特徴とする請求項1~61いずれかの定容加熱器利用装置 The apparatus for using a constant volume heater according to any one of claims 1 to 61, wherein the structure of the pressure vessel is a double tube structure of a constant volume heating fluid and a preheating heat source.
PCT/JP2011/057487 2011-03-27 2011-03-27 Device using constant volume heater WO2012131860A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057487 WO2012131860A1 (en) 2011-03-27 2011-03-27 Device using constant volume heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/057487 WO2012131860A1 (en) 2011-03-27 2011-03-27 Device using constant volume heater

Publications (1)

Publication Number Publication Date
WO2012131860A1 true WO2012131860A1 (en) 2012-10-04

Family

ID=46929699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057487 WO2012131860A1 (en) 2011-03-27 2011-03-27 Device using constant volume heater

Country Status (1)

Country Link
WO (1) WO2012131860A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528835A (en) * 2013-05-15 2014-01-22 陈则韶 Equivalent thermal conversion analyzing method
JP2015031252A (en) * 2013-08-06 2015-02-16 一般財団法人電力中央研究所 Geothermal heat generation facility
CN105091020A (en) * 2015-09-17 2015-11-25 郝江平 Adjustable boiler air preheating system and method integrating heat regeneration and waste heat utilization
CN105333450A (en) * 2015-11-24 2016-02-17 郝江平 Comprehensive gradient utilization system of recovered heat and waste heat of thermal power generation
US9453665B1 (en) 2016-05-13 2016-09-27 Cormac, LLC Heat powered refrigeration system
TWI637833B (en) * 2017-02-15 2018-10-11 鉅鋼機械股份有限公司 Mold exchange method and system thereof
CN115196706A (en) * 2022-08-12 2022-10-18 威海蓝创环保设备有限公司 Plate-type solar seawater treatment device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541740A (en) * 1977-06-01 1979-01-08 Potsutsua Buruuno Dara Electricity generating device
JPS5428901A (en) * 1977-08-05 1979-03-03 Kraftwerk Union Ag Apparatus for separating water and vapour in continuous vapour generator
JPH02271081A (en) * 1989-04-10 1990-11-06 Takaaki Matsuura Driving method, power generating method, and cool/warm water intaking method with use of refrigerant gas
JPH03267604A (en) * 1990-03-19 1991-11-28 Matsushita Electric Ind Co Ltd Steam generator
JP2002106802A (en) * 2000-09-29 2002-04-10 Shigeno Tekko Kk Steam generator
JP2005240740A (en) * 2004-02-27 2005-09-08 Toyota Industries Corp Exhaust heat recovering system for vehicle
JP2005257141A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Solar system and its operation method
JP2005345084A (en) * 2004-06-04 2005-12-15 Shigeto Matsuo Exhaust heat recovering refrigeration air conditioning system
JP2009150360A (en) * 2007-12-21 2009-07-09 Mitsui Eng & Shipbuild Co Ltd Beam-down type solar power generation device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541740A (en) * 1977-06-01 1979-01-08 Potsutsua Buruuno Dara Electricity generating device
JPS5428901A (en) * 1977-08-05 1979-03-03 Kraftwerk Union Ag Apparatus for separating water and vapour in continuous vapour generator
JPH02271081A (en) * 1989-04-10 1990-11-06 Takaaki Matsuura Driving method, power generating method, and cool/warm water intaking method with use of refrigerant gas
JPH03267604A (en) * 1990-03-19 1991-11-28 Matsushita Electric Ind Co Ltd Steam generator
JP2002106802A (en) * 2000-09-29 2002-04-10 Shigeno Tekko Kk Steam generator
JP2005240740A (en) * 2004-02-27 2005-09-08 Toyota Industries Corp Exhaust heat recovering system for vehicle
JP2005257141A (en) * 2004-03-10 2005-09-22 Matsushita Electric Ind Co Ltd Solar system and its operation method
JP2005345084A (en) * 2004-06-04 2005-12-15 Shigeto Matsuo Exhaust heat recovering refrigeration air conditioning system
JP2009150360A (en) * 2007-12-21 2009-07-09 Mitsui Eng & Shipbuild Co Ltd Beam-down type solar power generation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528835A (en) * 2013-05-15 2014-01-22 陈则韶 Equivalent thermal conversion analyzing method
CN103528835B (en) * 2013-05-15 2016-08-10 陈则韶 A kind of heating power transform analysis method of equal value
JP2015031252A (en) * 2013-08-06 2015-02-16 一般財団法人電力中央研究所 Geothermal heat generation facility
CN105091020A (en) * 2015-09-17 2015-11-25 郝江平 Adjustable boiler air preheating system and method integrating heat regeneration and waste heat utilization
CN105333450A (en) * 2015-11-24 2016-02-17 郝江平 Comprehensive gradient utilization system of recovered heat and waste heat of thermal power generation
US9453665B1 (en) 2016-05-13 2016-09-27 Cormac, LLC Heat powered refrigeration system
TWI637833B (en) * 2017-02-15 2018-10-11 鉅鋼機械股份有限公司 Mold exchange method and system thereof
CN115196706A (en) * 2022-08-12 2022-10-18 威海蓝创环保设备有限公司 Plate-type solar seawater treatment device

Similar Documents

Publication Publication Date Title
US7964787B2 (en) Hybrid solar power generator
US9500185B2 (en) System and method using solar thermal energy for power, cogeneration and/or poly-generation using supercritical brayton cycles
WO2012131860A1 (en) Device using constant volume heater
CN112985144B (en) Multistage compression energy storage device and method based on carbon dioxide gas-liquid phase change
CN102182655B (en) Low-temperature Rankine dual-cycle power generating unit
CN102563987A (en) Vapor-compression refrigerating plant driven by organic Rankine cycle and method
CN112985142A (en) Heat energy conversion mechanical energy storage device based on carbon dioxide gas-liquid phase change
CN102758690A (en) Efficient high-pressure liquid air energy storage/release system
CN112880451A (en) CO based on supplemental external energy2Gas-liquid phase change energy storage device and method
CN102758748A (en) High-pressure liquid air energy storage/release system
CA2736418A1 (en) A low temperature solar power system
US20080047285A1 (en) Solar air conditioning system
US20180128519A1 (en) Solar Turbo Pump - Hybrid Heating Air-Conditioning and Method of Operation
CN102278285A (en) High-temperature heat-accumulating-type new energy utilizing system
CN108800651B (en) Thermal power air cooling condenser safety degree summer device based on day and night electric power peak regulation
CN107200372B (en) Seawater desalination system and method
CN211116438U (en) Power generation and refrigeration combined cycle system based on ocean temperature difference energy
CN202501677U (en) Steam compression refrigeration device driven by organic Rankine cycle
Koroly et al. Exergoeconomic optimization of solar heat pump systems of heat supply
US20120227425A1 (en) Solar turbo pump - hybrid heating-air conditioning and method of operation
JP2012225313A (en) Device using constant volume heater
CN102191958A (en) Low-temperature air source generating device
CN112178961B (en) Electricity generation, heat supply, refrigeration and water taking combined system and method based on chemical heat storage
WO2017031240A1 (en) Solar turbo pump hybrid heating air conditioning and method of operation
CN202081927U (en) Low-temperature Rankine double-circulation power generation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11862823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11862823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP