JP2006177135A - Joint structure for antiseismic reinforcement - Google Patents

Joint structure for antiseismic reinforcement Download PDF

Info

Publication number
JP2006177135A
JP2006177135A JP2005083022A JP2005083022A JP2006177135A JP 2006177135 A JP2006177135 A JP 2006177135A JP 2005083022 A JP2005083022 A JP 2005083022A JP 2005083022 A JP2005083022 A JP 2005083022A JP 2006177135 A JP2006177135 A JP 2006177135A
Authority
JP
Japan
Prior art keywords
joint
structural
joining
plate
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005083022A
Other languages
Japanese (ja)
Other versions
JP4649250B2 (en
Inventor
Yasushi Ichikawa
Eiichiro Saeki
Akira Wada
英一郎 佐伯
章 和田
康 市川
Original Assignee
Nippon Steel Corp
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004342469 priority Critical
Application filed by Nippon Steel Corp, 新日本製鐵株式会社 filed Critical Nippon Steel Corp
Priority to JP2005083022A priority patent/JP4649250B2/en
Publication of JP2006177135A publication Critical patent/JP2006177135A/en
Application granted granted Critical
Publication of JP4649250B2 publication Critical patent/JP4649250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, or groups of buildings, or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake, extreme climate
    • E04H9/02Buildings, or groups of buildings, or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake, extreme climate withstanding earthquake or sinking of ground
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, or groups of buildings, or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake, extreme climate
    • E04H9/02Buildings, or groups of buildings, or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake, extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices

Abstract

<P>PROBLEM TO BE SOLVED: To assure a large bearing force of an antiseismic reinforcing member by mounting a movable restraining member on a concrete slab, of which the restraining member bears a horizontal force by the shearing force separately from a joint metal which is not attached to a slab face so that only the shearing force may be mainly applied to the slab face and a column face. <P>SOLUTION: The joint metal 5 for joining the antiseismic reinforcing member 4 like a brace is mounted on an intersecting part of the column 1 and a beam 2. A first joint plate 6 of the joint metal 5 is joined to the column 1 by a fixing means like high-strength bolts 12. A second joint plate 7 is not joined to the concrete slab 3 on the beam. The movable restraining member 14 resisting the horizontal force applied to the non-fixed side and transmitting the force to the concrete slab 3 as the shearing force is fixed to the concrete slab 3 by a fixing means like an adhesive agent 15. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、構造部材への耐震補強用部材の接合構造に関する。   The present invention relates to a structure for joining a seismic reinforcement member to a structural member.
構造物の耐震補強のためにブレース等の耐震補強用部材を柱梁の交差部に接合する耐震補強工法が実施されている。   A seismic reinforcement method for joining seismic reinforcement members such as braces to the intersections of column beams has been implemented for seismic reinforcement of structures.
構造物が鉄骨構造の場合は、ブレース等の耐震補強用部材を柱梁の交差部に接合する接合金具を現場溶接により接合していた。   When the structure is a steel frame structure, a joint fitting for joining a seismic reinforcement member such as a brace to a crossing portion of the column beam is joined by field welding.
また、構造物が鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造の場合、耐震補強用部材を設置していたために鉄骨枠組を据付けて行っていた。   In addition, when the structure is a reinforced concrete structure or a steel reinforced concrete structure, since the members for seismic reinforcement were installed, the steel frame was installed.
また、前記のほかにも耐震補強用部材の接合のための発明がなされている。 特開平10−184031号公報(以下、「従来例1」という。)には、鉄筋コンクリート構造または鉄骨鉄筋コンクリート構造の柱に耐震補強用部材を接合するための断面凸状の鋼板からなる接合金具を高強度繊維シートで固定する構成が開示されている。   In addition to the above, inventions for joining seismic reinforcement members have been made. Japanese Patent Laid-Open No. 10-184031 (hereinafter referred to as “conventional example 1”) discloses a high-strength metal fitting made of a steel plate having a convex cross section for joining a seismic reinforcement member to a column of a reinforced concrete structure or a steel reinforced concrete structure. The structure fixed with a strength fiber sheet is disclosed.
特開平10−317684号公報(以下、「従来例2」という。)には、梁に貫通孔を形成し、耐震補強用部材をその貫通孔の挿入したピンにより接合する構成が開示されている。   Japanese Laid-Open Patent Publication No. 10-317684 (hereinafter referred to as “conventional example 2”) discloses a configuration in which a through hole is formed in a beam and an earthquake-resistant reinforcing member is joined by a pin having the through hole inserted therein. .
特開平9−279858号公報(以下、「従来例3」という。)には、梁に貫通孔を形成し、その貫通孔を介して耐震補強用部材の接合台座をPC鋼棒で固定する構成が開示されている。   Japanese Patent Laid-Open No. 9-279858 (hereinafter referred to as “conventional example 3”) has a structure in which a through hole is formed in a beam and a joining base of a member for seismic reinforcement is fixed with a PC steel rod through the through hole. Is disclosed.
特開平11−50690号公報(以下、「従来例4」という。)には、鉄筋コンクリート構造の柱梁に耐震補強用部材を接合する接合金具をアンカーボルトを介して固定する構成が開示されている。   Japanese Patent Application Laid-Open No. 11-50690 (hereinafter referred to as “conventional example 4”) discloses a configuration in which a joint fitting for joining a seismic reinforcing member to a column beam having a reinforced concrete structure is fixed via an anchor bolt. .
しかし、鉄骨構造の場合の現場溶接による接合では、無理な姿勢での現場溶接のため溶接強度の信頼性が低下し、現場溶接のため溶接箇所周囲の養生が必要であり、梁上にコンクリートスラブが設置されている場合はそれを除去するハツリ作業を必要とし、ハツリ作業に伴い騒音が発生するので、既存の構造物の場合、居付き工事ができず、工事期間が長くなるという問題を有していた。   However, in the case of steel-framed joining by field welding, the welding strength is reduced due to the field welding in an unreasonable posture, and curing around the welding point is necessary for field welding, and the concrete slab is placed on the beam. If it is installed, it will be necessary to remove the chip, and noise will be generated along with the chipping work. Was.
また、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造の場合は、限られたスペースでの鉄骨枠組の据付工事が必要であり、工事期間が長期化するという問題が発生する。   In the case of a reinforced concrete structure or a steel-framed reinforced concrete structure, installation work of a steel frame in a limited space is required, which causes a problem that the construction period is prolonged.
さらに、鉄骨鉄筋構造では、内部の鉄筋が邪魔になり、長いアンカーを施工することができないという問題が発生する。   Furthermore, in a steel-steel rebar structure, a problem arises that the internal rebar is in the way and a long anchor cannot be constructed.
従来例1では、高強度繊維シートを用いなければならず高コストになるという問題が発生する。   In Conventional Example 1, a problem arises in that a high-strength fiber sheet must be used, resulting in high costs.
従来例2では、作業範囲が隣室までおよび、独立柱でしか適用できないという問題が発生する。   In Conventional Example 2, there is a problem that the work range can be applied only up to the adjacent room and with independent columns.
従来例3では、梁を貫通してPC鋼棒で接合するので、スラブコンクリートへの穴明け作業を必要とし、騒音、振動が発生し、PC鋼棒の張力に対するコンクリート強度を必要とするという問題が発生する。   In Conventional Example 3, the beam is penetrated and joined with a PC steel rod, so drilling work in slab concrete is required, noise and vibration are generated, and the concrete strength against the tension of the PC steel rod is required. Occurs.
従来例4では、コンクリート厚が厚くないと適用できないという問題が発生する。   In Conventional Example 4, there is a problem that it cannot be applied unless the concrete thickness is thick.
耐震補強としてブレースを取り付ける従来工法には、現場溶接により接合する鉄骨造と、鉄骨枠組みを据付けた後にブレースを接合する方法等があるが、何れも施工が困難であり、騒音、粉塵などの問題がある。
特開平10−184031号公報 特開平10−318674号公報 特開平9−279858号公報 特開平10−184031号公報
Conventional methods of attaching braces for seismic reinforcement include steel structures that are joined by on-site welding, and methods of joining braces after installing a steel frame, but both are difficult to implement and have problems such as noise and dust. There is.
Japanese Patent Laid-Open No. 10-184031 Japanese Patent Laid-Open No. 10-318674 JP-A-9-279858 Japanese Patent Laid-Open No. 10-184031
本発明者は、特願2003−63217号(未公開)をもって、従来例1〜3の耐震補強用接合構造のもつ問題点を解決し、補強工事が短期間ででき、コストが安く、工事区域を限定でき工事区域以外のスペースを使用可能とし、耐久性の高い耐震補強用接合構造を提案した。   The present inventor solved the problems of the joint structures for anti-seismic reinforcement of Conventional Examples 1 to 3 with Japanese Patent Application No. 2003-63217 (unpublished), the reinforcement work can be done in a short period of time, the cost is low, and the construction area It was possible to use a space other than the construction area, and a highly durable seismic reinforcement joint structure was proposed.
この先願発明では、騒音、粉塵の問題は解決できたが、接合金具をスラブコンクリートに固定的に接合しているため、ブレース等の耐震補強用部材の引張力が接合金具を介してコンクリートスラブにせん断力と同時に引張力として作用するため、この引張力が、コンクリートスラブを局部的に破壊するため、大きな耐力が確保できなかった。   In this prior application invention, the problem of noise and dust could be solved, but since the joining bracket is fixedly joined to the slab concrete, the tensile force of the seismic reinforcing member such as braces is applied to the concrete slab via the joining bracket. Since it acts as a tensile force at the same time as the shearing force, this tensile force locally destroys the concrete slab, so a large proof stress could not be secured.
本発明は、前記の問題点を解決したもので、接合金具をコンクリートスラブ面に接着させず、接合金具とは別に力を負担するプレート等の移動拘束部材を設けることで、大きなブレース耐力を確保できるようにしたものである。   The present invention solves the above-mentioned problems, and secures a large brace strength by providing a movement restraining member such as a plate that bears a force separately from the joint fitting, without bonding the joint fitting to the concrete slab surface. It is something that can be done.
前記の目的を達成するため、本発明は次のように構成した。   In order to achieve the above object, the present invention is configured as follows.
第1の発明は、異なる2方向に伸びる構造部材の交差部に耐震補強用部材を接合するための接合金具を、その一方の構造部材に対しては接着剤、後施工アンカー、高力ボルト等の固定手段で接合し、他方の構造部材に対しては非固定としたうえ、この非固定側の接合金具の端部に近接又は当接して、該接合金具に作用する力に抵抗する移動拘束部材を構造部材に設けたことを特徴とする。   The first invention is a joint fitting for joining a seismic reinforcement member to an intersection of structural members extending in two different directions, and adhesive, post-construction anchor, high-strength bolt, etc. for one of the structural members It is joined by the fixing means, and the other structural member is not fixed, and the movement restraint that resists the force acting on the joining metal fitting close to or in contact with the end of the non-fixed joining metal fitting The member is provided on the structural member.
第2の発明は、第1の発明において、耐震補強用部材が引張力を受けた場合、前記移動拘束部材を介して接合金具の非固定部に作用する力を構造部材に伝達するように設けたことを特徴とする。   According to a second invention, in the first invention, when the seismic reinforcement member receives a tensile force, the force acting on the non-fixed portion of the joint fitting is transmitted to the structural member via the movement restraining member. It is characterized by that.
第3の発明は、第1の発明において、非固定側の接合金具は、前記移動拘束部材が配置される反対側の端部で構造部材に接触しており、耐震補強用部材が圧縮力を受けた場合は、接合金具に作用する力を構造部材に支圧力として伝達することを特徴とする。   According to a third invention, in the first invention, the non-fixed side fitting is in contact with the structural member at the opposite end where the movement restraining member is disposed, and the seismic reinforcement member exerts compressive force. When received, the force acting on the joint fitting is transmitted to the structural member as a supporting pressure.
第4の発明は、第1〜第3の発明において、前記接合金具を耐震補強用部材と接合するガセットプレートと、それぞれの構造部材への接合のための接合プレートにより構成し、前記移動拘束部材を、接合金具の非固定側の接合プレートの先端に近接または当接して配置し、接着剤により構造部材に固定したベースプレートで構成したことを特徴とする。
第5の発明は、第4の発明において、前記耐震補強用部材の引張力により前記接合金具に作用する水平力を、前記接着剤に負荷されるせん断力により負担する。
According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the movement restraint member comprises a gusset plate for joining the joint fitting to the member for seismic reinforcement, and a joint plate for joining to each structural member. Is formed of a base plate that is disposed close to or in contact with the tip of the joining plate on the non-fixed side of the joint fitting and is fixed to the structural member with an adhesive.
According to a fifth invention, in the fourth invention, a horizontal force acting on the joint fitting by a tensile force of the seismic reinforcement member is borne by a shearing force applied to the adhesive.
第6の発明は、第1〜第3の発明において、前記接合金具を耐震補強用部材と接合するガセットプレートと、それぞれの構造部材への接合のための接合プレートにより構成し、前記移動拘束部材を、接合金具の非固定側の接合プレートの下面に配置され、該接合プレート先端側から構造部材の交差部基端まで延びており接着剤を介して構造部材に固定されたベースプレートと、該ベースプレートの上面で、かつ第2接合プレートの先端に近接して設けられた移動拘束板から構成したことを特徴とする。   6th invention is comprised in the 1st-3rd invention by the gusset plate which joins the said joining metal fitting with the member for earthquake-proof reinforcement, and the joining plate for joining to each structural member, The said movement restraint member The base plate is disposed on the lower surface of the joining plate on the non-fixed side of the joining metal fitting, extends from the joining plate distal end side to the intersection base end of the structural member, and is fixed to the structural member via an adhesive, and the base plate And a movement restraining plate provided in the vicinity of the tip of the second bonding plate.
第7の発明は、第1〜第6の発明において、前記一方の方向に伸びる構造部材が柱であり、前記他方の方向に伸びる構造部材が梁上のコンクリートスラブであり、前記耐震補強用部材がブレースであることを特徴とする   According to a seventh invention, in the first to sixth inventions, the structural member extending in one direction is a column, the structural member extending in the other direction is a concrete slab on a beam, and the member for seismic reinforcement Is a brace
第8の発明は、一方の構造部材が第6の発明に記載の鉄筋コンクリート柱で、他方の構造部材が鉄筋コンクリート梁であり、接合金具の固定手段による接合部を前記鉄筋コンクリート梁に設け、第1〜第7の何れかの発明に記載の接合金具の非固定部と、この非固定部に作用する力に抵抗する移動拘束部材を前記鉄筋コンクリート柱に設けたことを特徴とする。   In an eighth aspect of the invention, one structural member is a reinforced concrete column according to the sixth aspect, the other structural member is a reinforced concrete beam, and a joint portion by means for fixing a joint fitting is provided on the reinforced concrete beam, A non-fixed portion of the joining metal fitting according to any one of the seventh invention and a movement restraining member that resists a force acting on the non-fixed portion are provided on the reinforced concrete column.
第9の発明は、一方の構造部材が第7の発明の鉄筋コンクリート柱で、他方の構造部材が鉄筋コンクリート梁であり、第1の発明〜第7の何れかに記載の接合金具の非固定部と、この非固定部に作用する力に抵抗する移動拘束部材を前記鉄筋コンクリート柱と、前記鉄筋コンクリート梁に設けたことを特徴とする。   According to a ninth invention, one structural member is the reinforced concrete column according to the seventh invention, and the other structural member is a reinforced concrete beam, and the non-fixed portion of the joint fitting according to any one of the first to seventh inventions The movement restraining member that resists the force acting on the non-fixed portion is provided on the reinforced concrete column and the reinforced concrete beam.
第10の発明は、直線状の構造部材に対して2本の耐震補強用部材が互いに異なる方向から接合するための接合金具を、当該構造部材に対しては非固定としたうえ、この接合金具の両端からそれぞれ近接又は当接して当該接合金具に作用する力に抵抗する2つの移動拘束部材を構造部材に設けたことを特徴とする。   According to a tenth aspect of the present invention, a joining bracket for joining two seismic reinforcing members to a linear structural member from different directions is not fixed to the structural member. The structure member is provided with two movement restraining members that are close to or abutting from both ends of the steel plate and resist the force acting on the joint fitting.
第11の発明は、第10の発明において、前記接合金具を耐震補強用部材と接合するガセットプレートと、それぞれの構造部材への接合のための接合プレートにより構成し、前記移動拘束部材は、接合金具の非固定側の接合プレートの先端に近接または当接して配置されるとともに、接着剤を介して前記構造部材に固定されることを特徴とする。   An eleventh aspect of the invention is the tenth aspect of the invention, comprising a gusset plate for joining the joint fitting to a member for seismic reinforcement, and a joint plate for joining to each structural member. The metal plate is disposed close to or in contact with the tip of the joining plate on the non-fixed side of the metal fitting and is fixed to the structural member via an adhesive.
第12の発明は、第11の発明において、前記耐震補強用部材の引張力により前記接合金具に作用する水平力を、前記接着剤に負荷されるせん断力により負担することを特徴とする。   A twelfth invention is characterized in that, in the eleventh invention, a horizontal force acting on the joint fitting by a tensile force of the seismic reinforcement member is borne by a shearing force applied to the adhesive.
本発明によると、2つの構造部材の交差部材に配設する接合金具を、一方の構造部材に対してはせん断力で負担するように接合したことで、構造部材のスラブ面に大きな引張力を作用させないため該コンクリートスラブに高い耐力を確保でき、よって既存建物の梁にスタッドコネクタ等を介して効率よく伝達できる。   According to the present invention, by joining the joint fittings arranged on the intersecting members of the two structural members so as to bear one of the structural members with a shearing force, a large tensile force is applied to the slab surface of the structural member. Since it does not act, high proof stress can be secured to the concrete slab, and therefore, it can be efficiently transmitted to the beam of the existing building via a stud connector or the like.
さらに、鉄骨構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造においては、スラブコンクリートのハツリ工事がなく、構造物を使用しながら耐震補強工事が可能となり補強工事の上下階に影響を与えない。また、コンクリートスラブのハツリ工事が不要になるに加えハツリ後のコンクリート補修も不要となり、工期短縮が図れる。現場溶接接合を用いないので溶接箇所周囲の養生が不要であり、無理な姿勢での現場溶接による溶接強度の信頼性があった従来技術に比べ、確実に耐震補強用部材を接合でき信頼性の高い耐震補強用接合構造となる。   Furthermore, in steel structures, reinforced concrete structures, and steel reinforced concrete structures, there is no slab concrete demolition work, and seismic reinforcement work can be performed while using the structure, so that the upper and lower floors of the reinforcement work are not affected. In addition, the concrete slab is not required to be scraped, and the concrete is not repaired after scraping. Since no on-site welding joint is used, curing around the weld is unnecessary, and it is possible to reliably join the seismic reinforcement members compared to the conventional technology that has reliable welding strength by on-site welding in an unreasonable posture. High joint structure for seismic reinforcement.
また、鉄骨構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造に拘わらず、接合金具のガセットプレートの大きさを、地震時に構造部材の変形に追従できる程度の剛性を有するような大きさとすることにより、地震時の構造部材の変形による接合金具の構造部材からの剥離を防止し耐震性の高い耐震補強用接合構造となる。   Regardless of the steel structure, the reinforced concrete structure, or the steel reinforced concrete structure, the size of the gusset plate of the joint fitting is set to have such a rigidity that it can follow the deformation of the structural member at the time of the earthquake. It is possible to prevent the joining metal member from being peeled off from the structural member due to the deformation of the structural member, and to have a highly seismic reinforcement joining structure.
以下、本発明の実施形態を図を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.
図1、図2に示される実施形態1は、2つの構造部材が交差する例として、角形鋼管からなる柱1とH型鉄骨梁2の上にコンクリートスラブ3が打設された例を示す。ブレース等の耐震補強用部材4を柱1とコンクリートスラブ3の交差部に接合するための接合金具5は、柱1の面に接合される第1接合プレート6とコンクリートスラブ3の上に載置される第2接合プレート7と、第1接合プレート6と第2接合プレート7のそれぞれに対して直交する向きに溶接されるガセットプレート8により構成される。ガセットプレート8には、ブレース等の耐震補強用部材4がスプライスプレート10を介して連結ボルト11により連結される。   Embodiment 1 shown in FIGS. 1 and 2 shows an example in which a concrete slab 3 is placed on a column 1 made of a square steel pipe and an H-shaped steel beam 2 as an example where two structural members intersect. A joint fitting 5 for joining a seismic reinforcement member 4 such as a brace to the intersection of the column 1 and the concrete slab 3 is placed on the first joining plate 6 and the concrete slab 3 joined to the surface of the column 1. And a gusset plate 8 welded in a direction orthogonal to each of the first joining plate 6 and the second joining plate 7. A seismic reinforcement member 4 such as a brace is connected to the gusset plate 8 by a connecting bolt 11 via a splice plate 10.
接合金具5の第1接合プレート6と柱1を複数の高力ボルト12で接合するが、第2接合プレート7はコンクリートスラブ3の上面に対しては載置するだけで固定しない。本来、接合金具5は、地震時等に耐震補強用部材4に作用する引張力を柱1とコンクリートスラブ3を介して梁2に伝達するためのものであるから、柱1とコンクリートスラブ3の両方に固定する必要があり、第2接合プレート7をコンクリートスラブ3に載置しただけでは、耐震補強用部材4からの引張力をコンクリートスラブ3、さらに梁上スタッドボルト21を介して梁2に伝達できない。   Although the 1st joining plate 6 and the pillar 1 of the joining metal fitting 5 are joined by the some high strength volt | bolt 12, the 2nd joining plate 7 is only fixed with respect to the upper surface of the concrete slab 3, and is not fixed. Originally, the joining metal fitting 5 is for transmitting the tensile force acting on the seismic reinforcement member 4 to the beam 2 through the column 1 and the concrete slab 3 in the event of an earthquake or the like. It is necessary to fix to both, and if the second joining plate 7 is merely placed on the concrete slab 3, the tensile force from the seismic reinforcement member 4 is applied to the concrete slab 3 and further to the beam 2 via the beam stud bolt 21. I can't communicate.
そこで、本実施形態1では、耐震補強用部材4の引張力が接合金具5に作用するとき、その引張力は接合金具5を引き上げる方向の垂直分力と横方向に作用する水平分力として作用することに着目し、垂直分力は、第1接合プレート6を高力ボルト12で柱1に固定することで該柱1に伝達する一方、第2接合プレート7に作用する水平分力は、これに抵抗する部材をコンクリートスラブ3に設けることで、コンクリートスラブ3と梁上スタッドボルト21を介して梁2に軸力として伝達できるように構成したものである。   Therefore, in the first embodiment, when the tensile force of the seismic reinforcement member 4 acts on the joint fitting 5, the tensile force acts as a vertical component force in the direction of pulling up the joint fitting 5 and a horizontal component force acting in the lateral direction. The vertical component force is transmitted to the column 1 by fixing the first joining plate 6 to the column 1 with the high-strength bolt 12 while the horizontal component force acting on the second joining plate 7 is By providing a member that resists this to the concrete slab 3, it can be transmitted as an axial force to the beam 2 via the concrete slab 3 and the stud bolt 21 on the beam.
すなわち実施形態1では、第2接合プレート7の先端部13に近接または当接して鋼板プレートからなる移動拘束部材14をコンクリートスラブ3の上面に固着している。移動拘束部材14は、所定の厚みと大きさ(面積)を有する矩形の鋼板プレートからなり、エポキシ樹脂系接着剤などの接着剤15でコンクリートスラブ3の上面に固定されている。移動拘束部材14の端部16で第2接合プレート7の先端部13に作用する水平力を受け止めるため、第2接合プレート7と移動拘束部材14の端面同士は同一レベルに設置するのが好ましいが、接着剤15の厚さ分だけ高さに差が生じるので図示のように金属板からなるスペーサ17を移動拘束部材14の端部16の下面に固着している。   That is, in the first embodiment, the movement restraining member 14 made of a steel plate is fixed to the upper surface of the concrete slab 3 in proximity to or in contact with the distal end portion 13 of the second joining plate 7. The movement restraining member 14 is a rectangular steel plate having a predetermined thickness and size (area), and is fixed to the upper surface of the concrete slab 3 with an adhesive 15 such as an epoxy resin adhesive. In order to receive the horizontal force acting on the distal end portion 13 of the second joining plate 7 at the end portion 16 of the movement restraining member 14, it is preferable that the end faces of the second joining plate 7 and the movement restraining member 14 are installed at the same level. Since the height is different by the thickness of the adhesive 15, the spacer 17 made of a metal plate is fixed to the lower surface of the end 16 of the movement restraining member 14 as shown in the figure.
したがって、地震時にブレース等からなる耐震補強用部材4に作用する引張力により、接合金具5の第1接合プレート6と第2接合プレート7に垂直力と水平力が作用し、垂直力は高力ボルト12接合により第1接合プレート6を介して柱1で受ける一方、第2接合プレート7に作用する水平力は、移動拘束部材14で受け、さらに移動拘束部材14から接着剤15を介してコンクリートスラブ3と梁上スタッドボルト21を介して梁2に軸力として伝わり、該コンクリートスラブ3によって受けられる。また、この接着剤15には、かかる水平力に基づくせん断力が作用することになる。   Therefore, a vertical force and a horizontal force act on the first joining plate 6 and the second joining plate 7 of the joint metal fitting 5 due to the tensile force acting on the seismic reinforcement member 4 made of braces or the like during an earthquake, and the vertical force is high. The horizontal force acting on the second joining plate 7 is received by the movement restraining member 14 while being received by the pillar 1 via the first joining plate 6 by the bolt 12 joining, and further, the concrete is passed from the movement restraining member 14 via the adhesive 15. It is transmitted as an axial force to the beam 2 via the slab 3 and the stud bolt 21 on the beam, and is received by the concrete slab 3. Further, a shearing force based on the horizontal force acts on the adhesive 15.
また、第2接合プレート7に水平力が作用するとき、第1接合プレート6を高力ボルト12で柱1に固定していることにより、該ボルト固定部を回転中心とした上向きのモーメントが第2接合プレート7の先端部13に作用するので、その上向きの力を抑えるため、コンクリートスラブ3に打設した後施工アンカー19をスペーサ17を貫通して移動拘束部材14の先端16の上面から突出させたうえナット18で定着している。   Further, when a horizontal force is applied to the second joining plate 7, the first joining plate 6 is fixed to the column 1 with the high-strength bolts 12, so that an upward moment with the bolt fixing portion as the center of rotation is increased. 2 Since it acts on the tip portion 13 of the joining plate 7, in order to suppress the upward force, the post-installed anchor 19 that has been placed on the concrete slab 3 passes through the spacer 17 and protrudes from the upper surface of the tip 16 of the movement restraining member 14. In addition, it is fixed by the nut 18.
後施工アンカー19は、コンクリートスラブ3に孔を削孔し、その孔に例えば2液混合固定性の液体を別々に収容したカプセルを収容し、ボルトを挿入してカプセルを破壊し、2液を混合固化させコンクリートスラブ3にボルトを固定するケミカルアンカー、ボルトにより先端を拡開してコンクリートスラブ3に固定する機械式アンカー等である。   The post-installed anchor 19 cuts a hole in the concrete slab 3, and stores, for example, a capsule containing separately two liquid mixture fixability liquids, inserts a bolt to break the capsule, They are a chemical anchor that mixes and solidifies and fixes the bolt to the concrete slab 3, a mechanical anchor that expands the tip with the bolt and fixes it to the concrete slab 3, and the like.
したがって、第2接合プレート7の先端部13に作用する上向きの力により移動拘束部材14の先端16がめくれ上がる不具合を後施工アンカー19で確実に阻止できる。さらに、移動拘束部材14の先端16に作用する上向きの力による該移動拘束部材14の先端16が局部的に曲がるのを防止するため、移動拘束部材14の先端16近くの上面に補剛リブ20を設ける。補剛リブ20の高さや幅や数は剛性確保の必要から設定するのがよい。   Therefore, the post-construction anchor 19 can reliably prevent the tip 16 of the movement restraining member 14 from turning up due to the upward force acting on the tip 13 of the second joining plate 7. Further, in order to prevent the distal end 16 of the movement restraining member 14 from bending locally due to an upward force acting on the distal end 16 of the movement restraining member 14, the stiffening rib 20 is provided on the upper surface near the distal end 16 of the movement restraining member 14. Is provided. The height, width, and number of the stiffening ribs 20 are preferably set to ensure rigidity.
前記のとおり実施形態1の耐震補強用接合構造によると、耐震補強用部材4の引張力により接合金具5に掛る水平力をコンクリートスラブ3の軸力で受けることができ、接着剤15のせん断力で受けることができる。したがって、コンクリートスラブ3には従来の接合構造のように局部的な引張力がコンクリートに作用せず、コンクリートスラブ3が破損する不具合を解消できる。   As described above, according to the seismic reinforcement joint structure of the first embodiment, the horizontal force applied to the joint fitting 5 by the tensile force of the seismic reinforcement member 4 can be received by the axial force of the concrete slab 3, and the shearing force of the adhesive 15 Can be received at. Accordingly, the local tensile force does not act on the concrete slab 3 as in the conventional joint structure, and the problem that the concrete slab 3 is damaged can be solved.
さらに、耐震補強用部材4には圧縮力が作用する場合があるが、実施形態1において、接合金具5は、移動拘束部材14が配置される反対側の端部では構造部材(つまり柱1)に接触しているので、耐震補強用部材4が圧縮力を受けた場合は、接合金具5に作用する力を構造部材(柱1)に支圧力として伝達することができる。   Further, although the compressive force may act on the seismic reinforcement member 4, in the first embodiment, the joint fitting 5 is a structural member (that is, the column 1) at the opposite end where the movement restraining member 14 is disposed. Therefore, when the seismic reinforcement member 4 receives a compressive force, the force acting on the joint fitting 5 can be transmitted to the structural member (column 1) as a supporting pressure.
図3、図4は本発明の実施形態2を示す。この実施形態2では、移動拘束部材14が、接合金具5の非固定側である第2接合プレート7の下面側に配置されており、かつ接合プレートの先端部13側から柱梁の交差部基端まで延びており、接着剤15を介してコンクリートスラブ3に固定されたベースプレート22と、該ベースプレート22の上面で、かつ第2接合プレート7の先端部13に近接して設けられた移動拘束板23から構成されている。また、第2接合プレート7の上向きのモーメントを負担する移動拘束板23によってベースプレート22が持ち上がるのを防止するため、該移動拘束板23の近傍において、該ベースプレート22の上面に突出する後施工アンカー19の上部にナット18を螺合している。その他の構成は実施形態1と同じである。   3 and 4 show Embodiment 2 of the present invention. In the second embodiment, the movement restraining member 14 is disposed on the lower surface side of the second joining plate 7 that is the non-fixed side of the joining metal fitting 5 and the crossing base of the column beam from the distal end portion 13 side of the joining plate. A base plate 22 that extends to the end and is fixed to the concrete slab 3 via an adhesive 15, and a movement restraint plate that is provided on the upper surface of the base plate 22 and in the vicinity of the distal end portion 13 of the second joining plate 7. 23. Further, in order to prevent the base plate 22 from being lifted by the movement restraint plate 23 that bears the upward moment of the second joining plate 7, a post-installed anchor 19 that protrudes from the upper surface of the base plate 22 in the vicinity of the movement restraint plate 23. A nut 18 is screwed onto the top of the nut. Other configurations are the same as those of the first embodiment.
実施形態2によると、実施形態1と同様に耐震補強用部材4の引張力により接合金具5に作用する水平力をコンクリートスラブ3の軸力で負担することができ、接着剤15のせん断力で負担することができる。したがって、耐震補強用部材4の引張力が、コンクリートに局部的な引張力として作用せず、コンクリートスラブ3が破損する不具合を解消できる。   According to the second embodiment, the horizontal force acting on the joint fitting 5 can be borne by the axial force of the concrete slab 3 by the tensile force of the seismic reinforcement member 4 as in the first embodiment. Can bear. Therefore, the tensile force of the seismic reinforcement member 4 does not act as a local tensile force on the concrete, and the problem that the concrete slab 3 is damaged can be solved.
図5、図6は実施形態3を示し、図7、図8実施形態4を示し、図9〜図11は実施形態5を示す。各実施形態3〜5は、実施形態1、2の耐震補強用接合構造を鉄筋コンクリート構造物に適用した例を示す。実施形態3、4では、接合金具5の柱1とコンクリートスラブ3に対する固定、非固定の接合構造を、実施形態1、2と反対に設けている。また、図5、図6の実施形態3では実施形態1の非接合構造を適用し、図5、図6の実施形態4では実施形態2の非接合構造を適用している。   5 and 6 show the third embodiment, FIG. 7 and FIG. 8 show the fourth embodiment, and FIGS. 9 to 11 show the fifth embodiment. Each of Embodiments 3 to 5 shows an example in which the joint structure for seismic reinforcement of Embodiments 1 and 2 is applied to a reinforced concrete structure. In the third and fourth embodiments, a fixed and non-fixed joint structure for the column 1 of the joint fitting 5 and the concrete slab 3 is provided opposite to the first and second embodiments. Further, the non-joining structure of the first embodiment is applied in the third embodiment of FIGS. 5 and 6, and the non-joining structure of the second embodiment is applied in the fourth embodiment of FIGS. 5 and 6.
すなわち、図5、図6の実施形態3では、接合金具5の第2接合プレート7が鉄筋コンクリート梁24またはコンクリートスラブ3にケミカルアンカーなどの後施工アンカー26で接合されている。また、接合金具5の第1接合プレート6が鉄筋コンクリート柱25における側面に非固定で配置されており、かつ実施形態1と同じ補剛リブ20を有する移動拘束部材14が接着剤15で鉄筋コンクリート柱25に接合されている。   That is, in the third embodiment shown in FIGS. 5 and 6, the second joining plate 7 of the joint fitting 5 is joined to the reinforced concrete beam 24 or the concrete slab 3 by the post-installed anchor 26 such as a chemical anchor. Further, the first restraining plate 6 of the joining metal fitting 5 is arranged in a non-fixed manner on the side surface of the reinforced concrete column 25 and the movement restraining member 14 having the same stiffening rib 20 as in the first embodiment is the adhesive 15 with the reinforced concrete column 25. It is joined to.
実施形態3によると、耐震補強用部材4の引張力により接合金具5に作用する垂直力を第1接合プレート6を介して、鉄筋コンクリート柱25に接合した移動拘束部材14で負担することができる。したがって、鉄筋コンクリート柱25のコンクリートには局部的な引張力が作用せず、コンクリートが破損する不具合を解消できる。   According to the third embodiment, the vertical force acting on the joint fitting 5 due to the tensile force of the seismic reinforcement member 4 can be borne by the movement restraining member 14 joined to the reinforced concrete column 25 via the first joint plate 6. Therefore, the local tensile force does not act on the concrete of the reinforced concrete column 25, and the problem that the concrete is damaged can be solved.
図7、図8の実施形態4では、接合金具5の第2接合プレート7が鉄筋コンクリート梁24または、コンクリートスラブ3にケミカルアンカーなどの後施工アンカー26で接合されている。また、接合金具5の第1接合プレート6が鉄筋コンクリート柱25における側面に非固定で配置されている。すなわち、実施形態2と同じベースプレート22が該第1接合プレート6の裏面に配置され、かつ先端部16側から柱梁の交差部基端まで延びており接着剤15を介して鉄筋コンクリート柱25に固定されており、該ベースプレート22の上面で、かつ第1接合プレート6の先端部16に近接して移動拘束板23が設けられている。また、第1接合プレート6に作用する横方向の力を移動拘束板23が受け、それによってベースプレート22に局部的に柱から離れる方向に力が掛るのを防止するため、移動拘束板23の近傍において、該ベースプレート22の上面に突出する後施工アンカー19の先端部にナット18を螺合している。   In Embodiment 4 of FIG. 7, FIG. 8, the 2nd joining plate 7 of the joining metal fitting 5 is joined to the reinforced concrete beam 24 or the concrete slab 3 with the post-installation anchors 26, such as a chemical anchor. Moreover, the 1st joining plate 6 of the joining metal fitting 5 is arrange | positioned at the side surface in the reinforced concrete pillar 25 unfixed. That is, the same base plate 22 as that of the second embodiment is disposed on the back surface of the first joining plate 6 and extends from the distal end portion 16 side to the base end of the crossing portion of the column beam and is fixed to the reinforced concrete column 25 via the adhesive 15. A movement restraining plate 23 is provided on the upper surface of the base plate 22 and in the vicinity of the front end portion 16 of the first joining plate 6. Further, in order to prevent the movement restraining plate 23 from receiving a lateral force acting on the first joining plate 6 and thereby applying a force to the base plate 22 in a direction away from the column locally, The nut 18 is screwed onto the tip of the post-installed anchor 19 projecting from the upper surface of the base plate 22.
実施形態4によると、耐震補強用部材4の引張力により接合金具5に作用する垂直力を第1接合プレート6を介して、鉄筋コンクリート柱25に接合した移動拘束部材23で負担することができる。したがって、鉄筋コンクリート柱25のコンクリートには局部的な引張力が作用せず、コンクリートが破損する不具合を解消できる。   According to the fourth embodiment, the vertical force acting on the joint fitting 5 by the tensile force of the seismic reinforcement member 4 can be borne by the movement restraining member 23 joined to the reinforced concrete column 25 via the first joint plate 6. Therefore, the local tensile force does not act on the concrete of the reinforced concrete column 25, and the problem that the concrete is damaged can be solved.
図9〜図11は実施形態5を示を示す。実施形態5では鉄筋コンクリート柱1と鉄筋コンクリート梁24からなる鉄筋コンクリート構造物において、耐震補強用構造の接合金具5の固定手段が、柱1と梁24の両方に対して非固定の接合構造とした例を示す。すなわち、接合金具5の第1接合プレート6と第2接合プレート7が鉄筋コンクリート柱25の側面とコンクリートスラブ3の上面に非固定で配置されている。第1接合プレート6と鉄筋コンクリート柱25の非固定接合構造は図5に示す実施形態3と同じである。すなわち、第1接合プレート6の先端に当接又は近接してスペーサ17が配置されると共に、接着剤15を介して配置された補強リブ20付きの移動拘束部材14が、スペーサ17を貫通する後施工アンカー19とナット18により鉄筋コンクリート柱25に取り付けられている。第2接合プレート7も前記と同様でその先端に当接又は近接してスペーサ17が配置されると共に、接着剤15を介して配置された補強リブ20付きの移動拘束部材14がスペーサ17を貫通する後施工アンカー19とナット18によりコンクリートスラブ3に固着されている。   9 to 11 show the fifth embodiment. In the fifth embodiment, in the reinforced concrete structure composed of the reinforced concrete column 1 and the reinforced concrete beam 24, the fixing means for the joining metal fitting 5 of the seismic reinforcement structure is an unfixed joint structure with respect to both the column 1 and the beam 24. Show. That is, the 1st joining plate 6 and the 2nd joining plate 7 of the joining metal fitting 5 are arrange | positioned non-fixed by the side surface of the reinforced concrete pillar 25, and the upper surface of the concrete slab 3. As shown in FIG. The non-fixed joint structure between the first joint plate 6 and the reinforced concrete column 25 is the same as that of the third embodiment shown in FIG. That is, after the spacer 17 is disposed in contact with or close to the tip of the first bonding plate 6 and the movement restraining member 14 with the reinforcing rib 20 disposed through the adhesive 15 passes through the spacer 17. The construction anchor 19 and the nut 18 are attached to the reinforced concrete column 25. The second joining plate 7 is also in the same manner as described above, and a spacer 17 is disposed in contact with or close to the tip thereof, and the movement restraining member 14 with the reinforcing rib 20 disposed through the adhesive 15 penetrates the spacer 17. The post-construction anchor 19 and the nut 18 are fixed to the concrete slab 3.
実施形態5によると、地震時にブレース等からなる耐震補強用部材4に作用する引張力により、接合金具5の第1接合プレート6と第2接合プレート7に垂直力と水平力が作用し、このとき垂直力と水平力の両方が第1接合プレート6と第1接合プレート7を介して、それぞれ鉄筋コンクリート柱25とコンクリートスラブ3に設けた移動拘束部材14で受け、さらに移動拘束部材14から接着剤15を介して鉄筋コンクリート柱25とコンクリートスラブ3に軸力として伝わり、接着剤15にせん断力が作用し、該鉄筋コンクリート柱25とコンクリートスラブ3によって受けられる。したがって、鉄筋コンクリート柱25とコンクリートスラブ3のコンクリートには局部的な引張力が作用せず、コンクリートが破損する不具合を解消できる。   According to the fifth embodiment, a vertical force and a horizontal force act on the first joint plate 6 and the second joint plate 7 of the joint metal fitting 5 due to the tensile force acting on the seismic reinforcement member 4 made of braces or the like during an earthquake. Sometimes, both vertical force and horizontal force are received by the movement restraining member 14 provided on the reinforced concrete column 25 and the concrete slab 3 via the first joining plate 6 and the first joining plate 7 respectively, and the adhesive from the movement restraining member 14. 15 is transmitted as an axial force to the reinforced concrete column 25 and the concrete slab 3 through 15, and a shearing force acts on the adhesive 15 and is received by the reinforced concrete column 25 and the concrete slab 3. Therefore, the local tensile force does not act on the concrete of the reinforced concrete column 25 and the concrete slab 3, and the problem that the concrete is damaged can be solved.
次に、本発明を適用した構造部材への耐震補強用部材の接合構造における実施形態6につき説明をする。この実施形態6において、上記実施形態1〜5と同一の構成要素、部材に関しては、同一の番号を付すことにより、以下での説明を省略する。   Next, a sixth embodiment of the joint structure of the seismic reinforcement member to the structural member to which the present invention is applied will be described. In the sixth embodiment, the same components and members as those in the first to fifth embodiments are denoted by the same reference numerals, and the following description is omitted.
実施形態6としての耐震補強用部材の接合構造41は、図12に示すように、所定の間隔をおいて立ち上げられた柱1と、複数立設されたこの柱1の間において架け渡される梁2とからなる鉄骨構造39において、柱1と梁2とが直交する直交点40aから右斜め下方に向けて配設される耐震補強用部材4aと、柱1と梁2とが直交する直交点40bから左斜め下方に向けて配設される耐震補強用部材4bとを接合するものである。   As shown in FIG. 12, the joint structure 41 for seismic reinforcing members as the sixth embodiment is bridged between the pillars 1 raised at a predetermined interval and the pillars 1 standing plurally. In the steel structure 39 composed of the beam 2, the seismic reinforcement member 4 a disposed obliquely downward to the right from the orthogonal point 40 a where the column 1 and the beam 2 are orthogonal to each other, and the orthogonality where the column 1 and the beam 2 are orthogonal to each other. The seismic reinforcement member 4b disposed diagonally downward to the left from the point 40b is joined.
この鉄骨構造39において、地震時等において梁2が図12に示すL方向へ向けて変位した場合には、この耐震補強用部材4aには引張力が負荷されることになり、また、耐震補強用部材4bには圧縮力が負荷されることになる。その結果、この接合構造41には、耐震補強用部材4aによりP方向の力が負荷され、また耐震補強用部材4bによりR方向の力が負荷されることになる。P方向の力とR方向の力をそれぞれ水平方向、垂直方向に分解すると、垂直方向の力は、方向が反対になり打ち消されるため、接合構造41には水平方向の力が作用することになる。   In the steel structure 39, when the beam 2 is displaced in the L direction shown in FIG. 12 in the event of an earthquake or the like, a tensile force is applied to the seismic reinforcement member 4a. A compressive force is applied to the member 4b. As a result, a force in the P direction is applied to the joint structure 41 by the seismic reinforcing member 4a, and a force in the R direction is applied by the seismic reinforcing member 4b. When the force in the P direction and the force in the R direction are respectively decomposed in the horizontal direction and the vertical direction, the forces in the vertical direction are reversed and cancel each other, so that the horizontal force acts on the joint structure 41. .
同様に、この鉄骨構造39において、地震時等において梁2が図12に示すM方向へ向けて変位した場合には、この耐震補強用部材4aには圧縮力が負荷されることになり、また、耐震補強用部材4bには引張力が負荷されることになる。その結果、この接合構造41には、耐震補強用部材4aによりQ方向の力が負荷されることになり、また耐震補強用部材4bによりS方向の力が負荷されることになる。L方向へ変位した場合と同様に鉛直方向の力は打ち消され、接合構造41には水平方向の力が作用することになる。   Similarly, in the steel structure 39, when the beam 2 is displaced in the M direction shown in FIG. 12 in the event of an earthquake or the like, a compressive force is applied to the seismic reinforcement member 4a. A tensile force is applied to the seismic reinforcement member 4b. As a result, a force in the Q direction is applied to the joint structure 41 by the seismic reinforcing member 4a, and a force in the S direction is applied by the seismic reinforcing member 4b. As in the case of displacement in the L direction, the force in the vertical direction is canceled out, and the force in the horizontal direction acts on the joint structure 41.
図13は、この接合構造41の詳細な構成を示している。この接合構造41は、コンクリートスラブ3の上に載置される接合プレート47と、接合プレート47に対して直交する向きに溶接されるガセットプレート8により構成される。このガセットプレート8には、耐震補強用部材4aがスプライスプレート10を介して連結ボルト11により連結され、耐震補強用部材4bがスプライスプレート10を介して連結ボルト11により連結される。ちなみに、このガセットプレート8はそれぞれ両脇を図示しないリブによりガイドされた状態で立設されてなる。   FIG. 13 shows a detailed configuration of the joint structure 41. The joint structure 41 includes a joint plate 47 placed on the concrete slab 3 and a gusset plate 8 welded in a direction orthogonal to the joint plate 47. The gusset plate 8 is connected to the seismic reinforcing member 4 a via the splice plate 10 by the connecting bolt 11, and the seismic reinforcing member 4 b is connected to the gusset plate 8 via the splice plate 10. Incidentally, the gusset plate 8 is erected in a state where both sides are guided by ribs (not shown).
接合プレート47の先端部13a,13bには、それぞれ鋼板プレートからなる移動拘束部材14が近接又は当接されることになる。移動拘束部材14は、エポキシ樹脂系接着剤などの接着剤15を介してコンクリートスラブ3の上面に固定されている。   The movement restraining member 14 made of a steel plate plate is brought close to or brought into contact with the front end portions 13a and 13b of the joining plate 47, respectively. The movement restraining member 14 is fixed to the upper surface of the concrete slab 3 via an adhesive 15 such as an epoxy resin adhesive.
即ち、この接合プレート47は、その先端部13a,13bを介して両端から移動拘束部材14が近接又は当接されて固定された状態とされている。なお、この接合プレート47に水平力が作用した場合には、上述の如き上向きのモーメントが移動拘束部材先端に作用するため、これを抑えるべく、コンクリートスラブ3に打設した後施工アンカー19を移動拘束部材14の先端16の上面から突出させ、ナット18で定着させる。   That is, the joining plate 47 is in a state in which the movement restraining member 14 is approached or abutted from both ends via the front end portions 13a and 13b and fixed. When a horizontal force is applied to the joining plate 47, an upward moment as described above acts on the distal end of the movement restraining member, so that the construction anchor 19 is moved after being placed on the concrete slab 3 to suppress this. The restraining member 14 is protruded from the upper surface of the tip 16 and fixed with a nut 18.
上述の如き構成からなる接合構造41に対して、例えば梁2におけるL方向への変位に基づき、耐震補強用部材4aを介して引張力Pが負荷された場合には、この接合構造41においてこの引張力Pは、図13に示すように、そのx方向の力の成分としてのPxと、そのy方向の力の成分としてのPyに分解することができる。同様に、梁2におけるL方向への変位に基づき、耐震補強用部材4bを介して圧縮力Rが負荷された場合には、この接合構造41においてこの圧縮力Rは、そのx方向の力の成分としてのRxと、そのy方向の力の成分としてのRyに分解することができる。   When the tensile force P is applied to the joint structure 41 having the above-described configuration through the seismic reinforcement member 4a based on the displacement in the L direction of the beam 2, for example, As shown in FIG. 13, the tensile force P can be decomposed into Px as a component of force in the x direction and Py as a component of force in the y direction. Similarly, when a compressive force R is applied via the seismic reinforcement member 4b based on the displacement of the beam 2 in the L direction, the compressive force R of the joint structure 41 is equal to the force in the x direction. It can be decomposed into Rx as a component and Ry as a component of force in the y direction.
その結果、この接合構造41に負荷されたPyと、Ryは、互いに打ち消し合うことになる。また、この接合構造41に負荷されたPxと、Rxは、互いに強め合うことになる。即ち、梁2がL方向に変位した場合には、このPxとRxとを重ね合わせた水平力が、先端部13aを介して移動拘束部材14へ作用することになる。この移動拘束部材14は、接着剤15によりコンクリートスラブ3に固定されているため、水平力をスラブ面へのせん断力で負担させ、コンクリートスラブ3から梁上スタッドを通じて梁への軸力として流すことができる。   As a result, Py and Ry loaded on the joint structure 41 cancel each other. Further, Px and Rx loaded on the joint structure 41 strengthen each other. That is, when the beam 2 is displaced in the L direction, a horizontal force obtained by superimposing the Px and Rx acts on the movement restraining member 14 via the tip portion 13a. Since the movement restraining member 14 is fixed to the concrete slab 3 by the adhesive 15, the horizontal force is borne by the shearing force to the slab surface, and flows from the concrete slab 3 as an axial force to the beam through the stud on the beam. Can do.
従って、コンクリートスラブ3には従来の接合構造のように局部的な引張力が作用することなく、コンクリートスラブ3が破損する不具合を解消できる。   Therefore, the local slab 3 is not affected by the local tensile force acting on the concrete slab 3 as in the conventional joint structure, and the problem that the concrete slab 3 is damaged can be solved.
また、上述の如き構成からなる接合構造41に対して、例えば梁2におけるM方向への変位に基づき、耐震補強用部材4bを介して引張力Sが負荷された場合には、この接合構造41においてこの引張力Sは、図13に示すように、そのx方向の力の成分としての引張応力Sxと、そのy方向の力の成分としての引張応力Syに分解することができる。同様に、梁2におけるM方向への変位に基づき、耐震補強用部材4aを介して圧縮力Qが負荷された場合には、この接合構造41においてこの圧縮力Qは、そのx方向の力の成分としての圧縮力Qxと、そのy方向の力の成分としての圧縮力Qyに分解することができる。 In addition, when the tensile force S is applied to the joint structure 41 having the above-described configuration, for example, based on the displacement in the M direction in the beam 2 via the seismic reinforcement member 4b, the joint structure 41 is provided. As shown in FIG. 13, this tensile force S can be decomposed into a tensile stress Sx as a component of force in the x direction and a tensile stress Sy as a component of force in the y direction. Similarly, when a compressive force Q is applied via the seismic reinforcement member 4a based on the displacement of the beam 2 in the M direction, the compressive force Q in the joint structure 41 is the force in the x direction. It can be decomposed into a compression force Qx as a component and a compression force Qy as a component of the force in the y direction.
その結果、この接合構造41に負荷されたSyと、Qyは、互いに打ち消し合うことになる。また、この接合構造41に負荷されたSxと、Qxは、互いに強め合うことになる。即ち、梁2がM方向に変位した場合には、このSxとQxとを重ね合わせた水平力が、先端部13bを介して移動拘束部材14へ作用することになる。この移動拘束部材14は、接着剤15によりコンクリートスラブ3に固定されているため、水平力をスラブ面へのせん断力で負担させ、コンクリートスラブ3から梁上スタッドを通じて梁への軸力として流すことができる。   As a result, Sy and Qy loaded on the joint structure 41 cancel each other. In addition, Sx and Qx loaded on the joint structure 41 strengthen each other. That is, when the beam 2 is displaced in the M direction, the horizontal force obtained by superimposing the Sx and Qx acts on the movement restraining member 14 via the tip portion 13b. Since the movement restraining member 14 is fixed to the concrete slab 3 by the adhesive 15, the horizontal force is borne by the shearing force to the slab surface, and flows from the concrete slab 3 as an axial force to the beam through the stud on the beam. Can do.
従って、コンクリートスラブ3には従来の接合構造のように局部的な引張力が作用することなく、コンクリートスラブ3が破損する不具合を解消できる。   Therefore, the local slab 3 is not affected by the local tensile force acting on the concrete slab 3 as in the conventional joint structure, and the problem that the concrete slab 3 is damaged can be solved.
なお、この接合構造41の各構成は、耐震用補強部材4a、4bのコンクリートスラブ3に対する角度が互いに同一の場合、直線Vを介して左右線対称となるように形成させることが望ましい。また、この耐震用補強部材4a,4bのコンクリートスラブ3に対する角度が互いに異なる場合には、直線Vを介して左右線対称に形成させることなく、例えば、移動拘束部材14の長さを互いに異ならせるようにしてもよい。これにより、接着剤15が担うことができるせん断力の大きさを左右共に最適化させることが可能となるからである。   In addition, when each angle of the seismic reinforcing members 4a and 4b with respect to the concrete slab 3 is the same as each other, it is desirable that each structure of the joint structure 41 be formed so as to be symmetrical with respect to the left and right lines via the straight line V. Further, when the angles of the seismic reinforcement members 4a and 4b with respect to the concrete slab 3 are different from each other, for example, the lengths of the movement restraining members 14 are made different from each other without being formed symmetrically with respect to the left and right lines via the straight line V. You may do it. This is because the magnitude of the shearing force that can be carried by the adhesive 15 can be optimized on both the left and right sides.
なお、この実施形態6は、上述した構成に限定されるものではなく、例えば図14に示すように、移動拘束部材14を接合プレート47の下面側に配置させ、接着剤15を介してコンクリートスラブ3に固定させたベースプレート22と、該ベースプレート22の上面で、かつ接合プレート47の先端部13a,bに近接させた移動拘束板23を備えるようにしてもよい。これらの構成の詳細は、実施形態2の記載を引用することにより、ここでの説明を省略する。   In addition, this Embodiment 6 is not limited to the structure mentioned above, For example, as shown in FIG. 14, the movement restraint member 14 is arrange | positioned on the lower surface side of the joining plate 47, and a concrete slab is passed through the adhesive agent 15. As shown in FIG. 3 and a base plate 22 fixed to the base plate 22 and a movement restraining plate 23 on the upper surface of the base plate 22 and close to the tip portions 13a and 13b of the joining plate 47 may be provided. Details of these configurations are omitted here by citing the description of the second embodiment.
この図14に示す構成においても、同様に耐震補強用部材4の引張応力や圧縮応力により接合金具41に作用する水平力を接着剤15に作用するせん断力で担うことが可能となる。したがって、耐震補強用部材4の引張力が局部的な力として作用することがなくなり、ひいてはコンクリートスラブ3が破損する不具合を解消することが可能となる。   Also in the configuration shown in FIG. 14, the horizontal force acting on the joint fitting 41 due to the tensile stress or the compressive stress of the seismic reinforcement member 4 can be similarly carried by the shearing force acting on the adhesive 15. Therefore, the tensile force of the seismic reinforcement member 4 does not act as a local force, and it is possible to solve the problem that the concrete slab 3 is damaged.
なお、上述した実施形態6では、あくまで鉄骨構造39における梁2に打設されるコンクリートスラブ3に対して適用される場合を例にとり説明をしたが、かかる場合に限定されるものではなく、いかなる直線状の構造部材に配設されるものであってもよい。   In the above-described sixth embodiment, the case where the present invention is applied to the concrete slab 3 placed on the beam 2 in the steel structure 39 has been described as an example. It may be arranged on a linear structural member.
また、上述した実施形態6では、あくまで鉄骨構造39に適用される場合を例にとり説明をしたが、かかる場合に限定されるものではなく、例えばRC構造に適用してもよいことは勿論である。   In the above-described sixth embodiment, the case where the present invention is applied to the steel structure 39 has been described as an example. However, the present invention is not limited to this case, and may be applied to, for example, an RC structure. .
[実施形態の作用]
本発明によると、2つの構造部材の交差部材に配設する接合金具を、一方の構造部材に対してはせん断力で負担するように接合したことで、構造部材のスラブ面に大きな引張力を作用させないため既存建物の梁上スタッドコネクタに効率よく伝達でき、該コンクリートスラブに高い耐力を確保できる。
[Operation of the embodiment]
According to the present invention, by joining the joint fittings arranged on the intersecting members of the two structural members so as to bear one of the structural members with a shearing force, a large tensile force is applied to the slab surface of the structural member. Since it does not act, it can transmit efficiently to the stud connector on the beam of the existing building, and high proof stress can be secured to this concrete slab.
さらに、鉄骨構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造においては、スラブコンクリートのハツリ工事がなく、構造物を使用しながら耐震補強工事が可能となり補強工事の上下階に影響を与えない。また、コンクリートスラブのハツリ工事が不要になるに加えハツリ後のコンクリート補修も不要となり、ケレン作業ですむため工期短縮が図れる。現場溶接接合を用いないので無理な姿勢での現場溶接による溶接強度の信頼性があった従来技術に比べ、確実に耐震補強用部材を接合でき信頼性の高い耐震補強用接合構造となる。   Furthermore, in steel structures, reinforced concrete structures, and steel reinforced concrete structures, there is no slab concrete demolition work, and seismic reinforcement work can be performed while using the structure, so that the upper and lower floors of the reinforcement work are not affected. In addition, it eliminates the need for slabs for concrete slabs, and also eliminates the need for concrete repairs after smashing. Compared to the prior art, which does not use on-site welding joints and has reliable welding strength due to in-situ welding in an unreasonable posture, the seismic reinforcing member can be reliably joined to provide a highly reliable joint structure for earthquake-proof reinforcement.
また、鉄骨構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造に拘わらず、接合金具のガセットプレートの大きさを、地震時に構造部材の変形に追従できる程度の剛性を有するような大きさとすることにより、地震時の構造部材の変形による接合金具の構造部材からの剥離を防止し耐震性の高い耐震補強用接合構造となる。   Regardless of the steel structure, the reinforced concrete structure, or the steel reinforced concrete structure, the size of the gusset plate of the joint fitting is set to have such a rigidity that it can follow the deformation of the structural member at the time of the earthquake. It is possible to prevent the joining metal member from being peeled off from the structural member due to the deformation of the structural member, and to have a highly seismic reinforcement joining structure.
また、鉄骨構造、鉄筋コンクリート構造、鉄骨鉄筋コンクリート構造に拘わらず、接合金具のガセットプレートの大きさを、地震時に構造部材の変形に追従できる程度の剛性を有するような大きさとすることにより、地震時の構造部材の変形による接合金具の構造部材からの剥離を防止し耐震性の高い耐震補強用接合構造となる。   Regardless of the steel structure, the reinforced concrete structure, or the steel reinforced concrete structure, the size of the gusset plate of the joint fitting is set to have such a rigidity that it can follow the deformation of the structural member at the time of the earthquake. It is possible to prevent the joining metal member from being peeled off from the structural member due to the deformation of the structural member, and to have a highly seismic reinforcement joining structure.
なお、上述した実施の形態では、ずれ止めとして梁上スタッドボルト21が鉄骨梁2に設けられている場合を例にとり説明をしたが、かかる場合に限定されるものではなく、例えば、溶接等、いかなるずれ止め手段により代替されていてもよい。かかる場合には、上記梁上スタッドボルト21の記載が、そのままずれ止め手段に適用されることになる。   In the above-described embodiment, the case where the stud bolt 21 on the beam is provided on the steel beam 2 as an example has been described. However, the present invention is not limited to such a case. Any displacement prevention means may be substituted. In such a case, the description of the stud bolt 21 on the beam is applied as it is to the slip prevention means.
(a)は、本発明の実施形態1を示す断面図である。(A) is sectional drawing which shows Embodiment 1 of this invention. (a)、(b)は、図1のA−A断面図とB−B断面図、(c)は、図2(a)のC−C断面図である。(A), (b) is AA sectional drawing and BB sectional drawing of FIG. 1, (c) is CC sectional drawing of Fig.2 (a). 本発明の実施形態2を示す断面図である。It is sectional drawing which shows Embodiment 2 of this invention. (a)、(b)は、図3のD−D断面図とE−E断面図である。(A), (b) is DD sectional drawing and EE sectional drawing of FIG. 本発明の実施形態3を示す断面図である。It is sectional drawing which shows Embodiment 3 of this invention. (a)、(b)は、図5のF−F断面図とG−G断面図である。(A), (b) is FF sectional drawing of FIG. 5, and GG sectional drawing. 本発明の実施形態4を示す断面図である。It is sectional drawing which shows Embodiment 4 of this invention. (a)、(b)は、図7のH−H断面図とI−I断面図である。(A), (b) is HH sectional drawing and II sectional drawing of FIG. 本発明の実施形態5を示す断面図である。It is sectional drawing which shows Embodiment 5 of this invention. 図9のJ−J断面図である。It is JJ sectional drawing of FIG. 図9のK−K断面図である。It is KK sectional drawing of FIG. 実施形態6としての耐震補強用部材の接合構造を示す図である。It is a figure which shows the joining structure of the member for earthquake-proof reinforcement as Embodiment 6. FIG. 実施形態6としての耐震補強用部材の接合構造の詳細につき説明するための図である。It is a figure for demonstrating about the detail of the joining structure of the member for earthquake-proof reinforcement as Embodiment 6. FIG. 実施形態6としての耐震補強用部材の接合構造の詳細につき説明するための他の図である。It is another figure for demonstrating about the detail of the joining structure of the member for earthquake-proof reinforcement as Embodiment 6. FIG.
符号の説明Explanation of symbols
1 柱
2 鉄骨梁
3 コンクリートスラブ
4 耐震補強用部材(ブレース)
5 接合金具
6 第1接合プレート
7 第2接合プレート
8 ガセットプレート
10 スプライスプレート
11 連結ボルト
12 高力ボルト
13 先端部
14 移動拘束部材
15 接着剤
16 先端部
17 スペーサ
18 ナット
19 後施工アンカー
20 補剛リブ
21 梁上スタッドボルト
22 ベースプレート
23 移動拘束板
24 鉄筋コンクリート梁
25 鉄筋コンクリート柱
26 後施工アンカー
39 鉄骨構造
40 直交点
41 接合構造
1 Column 2 Steel beam 3 Concrete slab 4 Seismic reinforcement member (brace)
5 Joint metal fitting 6 First joint plate 7 Second joint plate 8 Gusset plate 10 Splice plate 11 Connecting bolt 12 High-strength bolt 13 Tip part 14 Movement restraint member 15 Adhesive 16 Tip part 17 Spacer 18 Nut 19 Post-installed anchor 20 Stiffening Rib 21 Stud bolt 22 on beam Base plate 23 Movement restraint plate 24 Reinforced concrete beam 25 Reinforced concrete column 26 Post-installed anchor 39 Steel structure 40 Orthogonal point 41 Joint structure

Claims (12)

  1. 異なる2方向に伸びる構造部材の交差部に耐震補強用部材を接合するための接合金具を、その一方の構造部材に対しては接着剤、後施工アンカー、高力ボルト等の固定手段で接合し、他方の構造部材に対しては非固定としたうえ、この非固定側の接合金具の端部に近接又は当接して、該接合金具に作用する力に抵抗する移動拘束部材を構造部材に設けたことを特徴とする耐震補強用接合構造。   A joint fitting for joining a seismic reinforcement member to an intersection of structural members extending in two different directions is joined to one of the structural members by fixing means such as an adhesive, a post-construction anchor, a high strength bolt, etc. The structural member is provided with a movement restraining member that is not fixed to the other structural member and is close to or in contact with the end portion of the non-fixed-side joint fitting to resist the force acting on the joint fitting. A joint structure for seismic reinforcement characterized by
  2. 請求項1において、耐震補強用部材が引張力を受けた場合、前記移動拘束部材を介して接合金具の非固定部に作用する力を構造部材に伝達するように設けたことを特徴とする耐震補強用接合構造。   2. The earthquake resistance according to claim 1, wherein when the seismic reinforcement member receives a tensile force, a force acting on a non-fixed portion of the joint fitting is transmitted to the structural member via the movement restraining member. Reinforced joint structure.
  3. 請求項1において、非固定側の接合金具は、前記移動拘束部材が配置される反対側の端部で構造部材に接触しており、耐震補強用部材が圧縮力を受けた場合は、接合金具に作用する力を構造部材に支圧力として伝達することを特徴とする耐震補強用接合構造。   The non-fixed-side joining metal fitting according to claim 1, wherein the non-fixed joining metal fitting is in contact with the structural member at the opposite end where the movement restraining member is disposed, and the seismic reinforcement member receives a compressive force. A joint structure for seismic reinforcement that transmits a force acting on the structure member as a supporting pressure.
  4. 前記接合金具を耐震補強用部材と接合するガセットプレートと、それぞれの構造部材への接合のための接合プレートにより構成し、前記移動拘束部材を、接合金具の非固定側の接合プレートの先端に近接または当接して配置し、接着剤により構造部材に固定したベースプレートで構成したことを特徴とする請求項1〜3の何れか1項に記載の耐震補強用接合構造。   The joint fitting is composed of a gusset plate for joining the seismic reinforcement member and a joint plate for joining to each structural member, and the movement restraining member is close to the tip of the joint plate on the non-fixed side of the joint fitting. The seismic reinforcing joint structure according to any one of claims 1 to 3, wherein the joint structure is configured by a base plate disposed in contact with and fixed to a structural member by an adhesive.
  5. 前記耐震補強用部材の引張力により前記接合金具に作用する水平力を、前記接着剤に負荷されるせん断力により負担すること
    を特徴とする請求項4記載の耐震補強用接合構造。
    The joint structure for seismic reinforcement according to claim 4, wherein a horizontal force acting on the joint metal by a tensile force of the seismic reinforcement member is borne by a shearing force applied to the adhesive.
  6. 前記接合金具を耐震補強用部材と接合するガセットプレートと、それぞれの構造部材への接合のための接合プレートにより構成し、前記移動拘束部材を、接合金具の非固定側の接合プレートの下面に配置され、該接合プレート先端側から構造部材の交差部基端まで延びており接着剤を介して構造部材に固定されたベースプレートと、該ベースプレートの上面で、かつ第2接合プレートの先端に近接して設けられた移動拘束板から構成したことを特徴とする請求項1〜3の何れか1項に記載の耐震補強用接合構造。   The joint fitting is composed of a gusset plate that joins the seismic reinforcement member, and a joint plate for joining to each structural member, and the movement restraining member is arranged on the lower surface of the joint plate on the non-fixed side of the joint fitting A base plate that extends from the distal end side of the joining plate to the proximal end of the crossing portion of the structural member and is fixed to the structural member via an adhesive; an upper surface of the base plate; and in proximity to the distal end of the second joining plate The joint structure for earthquake-proof reinforcement according to any one of claims 1 to 3, wherein the joint structure is composed of a provided movement restraining plate.
  7. 前記一方の方向に伸びる構造部材が柱であり、前記他方の方向に伸びる構造部材が梁上のコンクリートスラブであり、前記耐震補強用部材がブレースであることを特徴とする請求項1〜6の何れか1項記載の耐震補強用接合構造。   The structural member extending in the one direction is a column, the structural member extending in the other direction is a concrete slab on a beam, and the seismic reinforcement member is a brace. The joint structure for earthquake-proof reinforcement according to any one of the above items.
  8. 一方の構造部材が請求項7記載の鉄筋コンクリート柱で、他方の構造部材が鉄筋コンクリート梁であり、接合金具の固定手段による接合部を前記鉄筋コンクリート梁に設け、請求項1〜7の何れか1項に記載の接合金具の非固定部と、この非固定部に作用する力に抵抗する移動拘束部材を前記鉄筋コンクリート柱に設けたことを特徴とする耐震補強用接合構造。   8. One of the structural members is a reinforced concrete column according to claim 7, the other structural member is a reinforced concrete beam, and a joint portion by a fixing means of a joint fitting is provided on the reinforced concrete beam, A non-fixed portion of the joint metal fitting described above and a movement restraining member that resists a force acting on the non-fixed portion is provided on the reinforced concrete column.
  9. 一方の構造部材が請求項7記載の鉄筋コンクリート柱で、他方の構造部材が鉄筋コンクリート梁であり、請求項1〜7の何れか1項に記載の接合金具の非固定部と、この非固定部に作用する力に抵抗する移動拘束部材を前記鉄筋コンクリート柱と、前記鉄筋コンクリート梁に設けたことを特徴とする耐震補強用接合構造。   One structural member is a reinforced concrete column according to claim 7, and the other structural member is a reinforced concrete beam, and the non-fixed portion of the joint fitting according to any one of claims 1 to 7, and the non-fixed portion A joint structure for earthquake-proof reinforcement, characterized in that a movement restraining member that resists an acting force is provided on the reinforced concrete column and the reinforced concrete beam.
  10. 直線状の構造部材に対して2本の耐震補強用部材が互いに異なる方向から接合するための接合金具を、当該構造部材に対しては非固定としたうえ、この接合金具の両端からそれぞれ近接又は当接して当該接合金具に作用する力に抵抗する2つの移動拘束部材を構造部材に設けたことを特徴とする耐震補強用接合構造。   A joint fitting for joining the two seismic reinforcement members to the linear structural member from different directions is not fixed to the structural member, 2. A joint structure for seismic reinforcement, wherein two structural members that are in contact with each other and resist a force acting on the joint fitting are provided on the structural member.
  11. 前記接合金具を耐震補強用部材と接合するガセットプレートと、それぞれの構造部材への接合のための接合プレートにより構成し、
    前記移動拘束部材は、接合金具の非固定側の接合プレートの先端に近接または当接して配置されるとともに、接着剤を介して前記構造部材に固定されること
    を特徴とする請求項10記載の耐震補強用接合構造。
    A gusset plate for joining the joint fitting to the member for seismic reinforcement, and a joint plate for joining to each structural member,
    The said movement restraining member is fixed to the said structural member through an adhesive agent while being arrange | positioned in proximity | contact or contact | abutting to the front-end | tip of the joining plate of the non-fixed side of a joining metal fitting. Seismic reinforcement joint structure.
  12. 前記耐震補強用部材の引張力により前記接合金具に作用する水平力を、前記接着剤に負荷されるせん断力により負担すること
    を特徴とする請求項11記載の耐震補強用接合構造。
    The joint structure for earthquake-resistant reinforcement according to claim 11, wherein a horizontal force acting on the joint metal by a tensile force of the earthquake-resistant reinforcement member is borne by a shearing force applied to the adhesive.
JP2005083022A 2004-11-26 2005-03-23 Seismic reinforcement joint structure Active JP4649250B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004342469 2004-11-26
JP2005083022A JP4649250B2 (en) 2004-11-26 2005-03-23 Seismic reinforcement joint structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005083022A JP4649250B2 (en) 2004-11-26 2005-03-23 Seismic reinforcement joint structure
US11/280,239 US7784226B2 (en) 2004-11-26 2005-11-17 Joint structure for antiseismic reinforcement

Publications (2)

Publication Number Publication Date
JP2006177135A true JP2006177135A (en) 2006-07-06
JP4649250B2 JP4649250B2 (en) 2011-03-09

Family

ID=36566125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083022A Active JP4649250B2 (en) 2004-11-26 2005-03-23 Seismic reinforcement joint structure

Country Status (2)

Country Link
US (1) US7784226B2 (en)
JP (1) JP4649250B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068295A (en) * 2007-09-14 2009-04-02 Nippon Steel Engineering Co Ltd Elevated structure
JP2012036602A (en) * 2010-08-05 2012-02-23 Kumagai Gumi Co Ltd Structure of attaching part for attaching diagonal material to building column
CN102966182A (en) * 2012-11-01 2013-03-13 上海蓝科钢结构技术开发有限责任公司 Concrete member and steel support H-shaped embedded connection joint
JP2014088657A (en) * 2012-10-29 2014-05-15 Daiwa House Industry Co Ltd Buckling restraining brace and aseismatic reinforcing structure using the same
JP2016216901A (en) * 2015-05-14 2016-12-22 株式会社竹中工務店 Brace installing structure
KR20180116009A (en) * 2017-04-14 2018-10-24 서울시립대학교 산학협력단 Buckling-Restrained Member and reinforcing method of non-welded to improve seismic performance of steel building using thereof

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044483B2 (en) * 2003-04-25 2008-02-06 新日本製鐵株式会社 Bonding structure of structures using gusset plates and buildings
JP4649360B2 (en) * 2006-04-07 2011-03-09 新日本製鐵株式会社 Seismic joint structure and construction method thereof
US8365476B2 (en) * 2007-12-28 2013-02-05 Seismic Structural Design Associates, Inc. Braced frame force distribution connection
CN102174837A (en) * 2008-09-03 2011-09-07 蔡崇兴 Energy dissipation diagonal bracing device
CN102191821B (en) * 2008-09-03 2014-03-19 蔡崇兴 Energy dissipation diagonal bracing device
CN103620128B (en) * 2011-02-14 2017-06-30 康斯坦丁·舒海巴 Separate type gusset plate is connected
AU2012221627B2 (en) * 2011-02-23 2015-09-24 Nippon Steel Corporation Connecting fitting, bearing wall provided with same, and building using same
US9010047B2 (en) * 2011-07-05 2015-04-21 City University Of Hong Kong Construction structure and method of making thereof
US9021755B2 (en) 2011-07-05 2015-05-05 City University Of Hong Kong Method of making use of surface nanocrystallization for building reinforced construction structure
US8578670B2 (en) * 2011-07-05 2013-11-12 City University Of Hong Kong Construction structure and method of making thereof
CN103452188B (en) * 2012-04-25 2015-07-08 株式会社Drb东一 Steel frame structure using u-shaped composite beam
TWI499707B (en) * 2012-05-15 2015-09-11 Univ Nat Taiwan Science Tech A joint structure which lateral deformation is restrained
NZ708580A (en) 2012-11-30 2017-10-27 Mitek Holdings Inc Gusset plate connection of beam to column
US9506239B2 (en) 2012-11-30 2016-11-29 Mitek Holdings, Inc. Gusset plate connection in bearing of beam to column
CN105386520A (en) * 2015-11-16 2016-03-09 重庆市彭洲混凝土有限公司 Concrete beam column joint
CN105839968B (en) * 2016-05-19 2019-03-15 华南理工大学 A kind of connecting node plate with sliding end plate for anti-buckling support
US10179991B2 (en) 2016-10-03 2019-01-15 Mitek Holdings, Inc. Forming column assemblies for moment resisting bi-axial beam-to-column joint connections

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324134A (en) * 1998-05-20 1999-11-26 Shimizu Corp Building frame structure
JP2004270319A (en) * 2003-03-10 2004-09-30 Nippon Steel Corp Antiseismic reinforcing joint structure

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691712A (en) * 1969-05-13 1972-09-19 Monsanto Co Damping system
US3793790A (en) * 1972-05-02 1974-02-26 Butler Manufacturing Co Frame construction with yieldable knee brace connection
US4441289A (en) * 1980-05-07 1984-04-10 Takenaka Komuten Co., Ltd. Earthquake-resistant reinforcement structure for an existing building with compression braces or tension braces
US4409765A (en) * 1980-06-24 1983-10-18 Pall Avtar S Earth-quake proof building construction
US5076536A (en) * 1987-02-12 1991-12-31 Fitzgerald Leonard R Concrete form supporting bracket
FR2609745A1 (en) * 1987-01-19 1988-07-22 Outinord St Amand Handling device for shuttering panels intended for the formwork of concrete shells
JPH0447115B2 (en) * 1987-12-25 1992-08-03 Takenaka Komuten Co
JP2513296B2 (en) * 1989-02-07 1996-07-03 鹿島建設株式会社 Active damping system with variable stiffness and variable damping mechanism
JP2513295B2 (en) * 1989-02-07 1996-07-03 鹿島建設株式会社 Active damping system with variable damping mechanism
US5845438A (en) * 1995-05-22 1998-12-08 Haskell; Gregg O. Building damper apparatus
US5630298A (en) * 1995-09-05 1997-05-20 National Science Council Shear link energy absorber
US6318032B2 (en) * 1996-04-10 2001-11-20 Charles J. Mackarvich Longitudinal stabilizer for a premanufactured building
JPH09279858A (en) 1996-04-12 1997-10-28 De-P Kensetsu Kogyo Kk Earthquake-resistant reinforcing structure of existing building
JPH10184031A (en) 1996-12-24 1998-07-14 Taisei Corp Method of earthquake-proof reinforcing for already constructed pillar beam construction
JPH10317684A (en) 1997-05-14 1998-12-02 Taisei Corp Fixing method of earthquake-resisting reinforcing brace
JPH1150690A (en) 1997-08-06 1999-02-23 Shimizu Corp Vibration control reinforcing mechanism
JP2000179616A (en) * 1998-12-11 2000-06-27 Daido Metal Co Ltd Sliding member
JP3684337B2 (en) * 2001-06-14 2005-08-17 新日本製鐵株式会社 Joint structure of steel column and steel beam
JP2003049558A (en) * 2001-08-07 2003-02-21 Kazuhiko Kasai Vibration control stud
US7225588B2 (en) * 2003-07-08 2007-06-05 Nippon Steel Corporation Damping brace and structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11324134A (en) * 1998-05-20 1999-11-26 Shimizu Corp Building frame structure
JP2004270319A (en) * 2003-03-10 2004-09-30 Nippon Steel Corp Antiseismic reinforcing joint structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068295A (en) * 2007-09-14 2009-04-02 Nippon Steel Engineering Co Ltd Elevated structure
JP2012036602A (en) * 2010-08-05 2012-02-23 Kumagai Gumi Co Ltd Structure of attaching part for attaching diagonal material to building column
JP2014088657A (en) * 2012-10-29 2014-05-15 Daiwa House Industry Co Ltd Buckling restraining brace and aseismatic reinforcing structure using the same
CN102966182A (en) * 2012-11-01 2013-03-13 上海蓝科钢结构技术开发有限责任公司 Concrete member and steel support H-shaped embedded connection joint
CN102966182B (en) * 2012-11-01 2016-03-30 上海蓝科建筑减震科技股份有限公司 A kind of concrete component and the pre-buried connected node of bracing members H type
JP2016216901A (en) * 2015-05-14 2016-12-22 株式会社竹中工務店 Brace installing structure
KR20180116009A (en) * 2017-04-14 2018-10-24 서울시립대학교 산학협력단 Buckling-Restrained Member and reinforcing method of non-welded to improve seismic performance of steel building using thereof
KR101953016B1 (en) * 2017-04-14 2019-02-27 서울시립대학교 산학협력단 Buckling-Restrained Member and reinforcing method of non-welded to improve seismic performance of steel building using thereof

Also Published As

Publication number Publication date
JP4649250B2 (en) 2011-03-09
US20060112652A1 (en) 2006-06-01
US7784226B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
WO2017026113A1 (en) Column and beam connection structure and method
JP4044483B2 (en) Bonding structure of structures using gusset plates and buildings
KR100618113B1 (en) H-shape Beam-Column Connection Detail and Method using Divided Split Tee in Weak Axis of H-shape Column
JP2008025125A (en) Column unit and construction method for building using it
AU6270898A (en) Moment-resistant structure, sustainer, and method of construction
JP2645365B2 (en) Beam-column joint
JP5069534B2 (en) Outer shell reinforcement structure of existing building
WO2006038620A1 (en) Joined part structure of pedestal and method of joining pedestal
JP4625540B1 (en) Hybrid jaw and column beam connection structure using the hybrid jaw
JP2005139623A (en) Reinforcing beam and unit building with the reinforcing beam
JP2008297720A (en) Non-damage self-centering type base-isolation and seismic-control mechanism intended for steel bridge
KR101453407B1 (en) Non-welding type seismic reinforcing method for column using key hole type bolt jointed double C-type steels
JP5205130B2 (en) Method for constructing a concrete structure in which a PC member and a concrete member are joined, and a method for constructing a structure comprising a joint and a beam
JP5249522B2 (en) Column reinforcement structure
JP5946041B2 (en) Column beam connection structure, column beam connection method, and precast concrete stigma member
JP4649360B2 (en) Seismic joint structure and construction method thereof
WO1998036134A1 (en) Joint for steel structure, and combining structure using the same joints for steel structure
US7784226B2 (en) Joint structure for antiseismic reinforcement
JP3621947B1 (en) Structural column-beam joint structure
JP2000144905A (en) Mixed structural beam
JP4034006B2 (en) Vibration energy absorbing device for tension structure and construction method thereof
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP4805619B2 (en) Damper system
JP4080945B2 (en) Beam-column joint structure of building, building and joining method
KR100609184B1 (en) Joint Structure of Precast Concrete Beam and Column Unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4649250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250