JP2006176813A - Film deposition system - Google Patents

Film deposition system Download PDF

Info

Publication number
JP2006176813A
JP2006176813A JP2004369699A JP2004369699A JP2006176813A JP 2006176813 A JP2006176813 A JP 2006176813A JP 2004369699 A JP2004369699 A JP 2004369699A JP 2004369699 A JP2004369699 A JP 2004369699A JP 2006176813 A JP2006176813 A JP 2006176813A
Authority
JP
Japan
Prior art keywords
vapor deposition
forming apparatus
film thickness
film forming
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004369699A
Other languages
Japanese (ja)
Inventor
Masahiro Yokota
昌広 横田
Yusuke Kasahara
佑介 笠原
Osamu Yamazaki
修 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004369699A priority Critical patent/JP2006176813A/en
Publication of JP2006176813A publication Critical patent/JP2006176813A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film deposition system where a vapor deposition material can be film-deposited into a uniform film thickness. <P>SOLUTION: The film deposition system 30 has a plurality of rectangular, cylindrical partition members 23 arranged in parallel along the longitudinal direction L of vapor deposition sources 22 orthogonal to a scanning direction S. The opening part of each partition member 23 is provided with a shielding member 31 having a hexagonal opening 32. In each opening 32 of the shielding member 31, the adjoining sides are bent to the outside. In this way, the vapor deposition regions projected on the face 21a to be vapor-deposited are partially superimposed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、被蒸着部材の平らな被蒸着面に蒸着材を成膜する成膜装置に係り、例えば、平面型表示装置の前面基板内面にメタルバック或いはゲッタを成膜する成膜装置に関する。   The present invention relates to a film forming apparatus that forms a deposition material on a flat deposition surface of a member to be deposited, for example, a film deposition apparatus that forms a metal back or getter on the inner surface of a front substrate of a flat display device.

近年、偏平な平面パネル構造の真空外囲器を有する平面型表示装置として、フィールドエミッションディスプレイ(FED)や、表面伝導型の電子放出素子を備えた表示装置(SED)等が知られている。   In recent years, a field emission display (FED), a display device (SED) having a surface conduction electron-emitting device, and the like are known as a flat display device having a flat envelope having a flat panel structure.

FEDやSEDの真空外囲器は、スペーサを介して所定の間隔を置いて対向配置された前面基板および背面基板を矩形枠状の側壁で周縁部を互いに接合し、内部を真空にして形成される。   FED and SED vacuum envelopes are formed by joining the front and back substrates facing each other with a predetermined spacing through spacers and joining the peripheral edges to each other with rectangular frame-shaped side walls, and making the inside vacuum. The

前面基板の内面には3色の蛍光体層とこれを覆うメタルバックが形成され、背面基板の内面には蛍光体層を励起発光させる電子放出源として蛍光体層の画素毎に対応した多数の電子放出素子が配置されている。また、真空外囲器内部の高真空を維持するため、前面基板の内面にゲッタ膜を形成することもある。   A phosphor layer of three colors and a metal back covering the phosphor layer are formed on the inner surface of the front substrate, and a large number of phosphor layers corresponding to each pixel of the phosphor layer as an electron emission source for exciting and emitting the phosphor layer on the inner surface of the rear substrate. An electron-emitting device is disposed. Further, in order to maintain a high vacuum inside the vacuum envelope, a getter film may be formed on the inner surface of the front substrate.

上記構造の表示装置を駆動する際には、蛍光体層に電子放出素子に対して数kVの高電圧を印加し、画像信号に応じて個々の電子放出素子から選択的に電子ビームを放出させ、放出させた電子ビームを高電圧によって加速させ、対応する蛍光体層に照射させる。これにより、多数の蛍光体層が選択的に励起発光されて画像信号に応じたカラー画像が表示される(例えば、特許文献1参照。)。   When driving the display device having the above structure, a high voltage of several kV is applied to the phosphor layer with respect to the electron-emitting device, and an electron beam is selectively emitted from each electron-emitting device according to an image signal. The emitted electron beam is accelerated by a high voltage to irradiate the corresponding phosphor layer. As a result, a number of phosphor layers are selectively excited to emit light, and a color image corresponding to the image signal is displayed (see, for example, Patent Document 1).

上記表示装置で良質な画像を表示するためには、蛍光体層上に成膜されるメタルバックあるいはゲッタの膜厚をできるだけ均一な膜厚に成膜する必要がある。つまり、蛍光体層を発光させるための電子ビームが、メタルバックあるいはゲッタを通過する際、その膜厚によって透過能が変化するため、輝度ムラを抑制するためにはメタルバック或いはゲッタの膜厚を均一にする必要がある。反面、膜厚が不均一になると、メタルバック或いはゲッタが比較的厚く成膜された領域では電子ビームの透過能が落ちて暗くなり、逆に膜厚が比較的薄い領域では明るくなる。   In order to display a high-quality image with the display device, it is necessary to form a metal back or getter formed on the phosphor layer so as to be as uniform as possible. That is, when the electron beam for causing the phosphor layer to emit light passes through the metal back or getter, the transmittance changes depending on the film thickness. Therefore, in order to suppress luminance unevenness, the film thickness of the metal back or getter is reduced. It needs to be uniform. On the other hand, when the film thickness is non-uniform, the electron beam transmittance is lowered and darkened in the region where the metal back or getter is formed relatively thick, and conversely, the region becomes bright in the region where the film thickness is relatively thin.

理想的には、平均輝度に対する輝度ムラのばらつき範囲を5%以下にすることが望ましく、この理想範囲をメタルバックの膜厚分布に置き換えて考えると、膜厚の平均値をTave、とし、膜厚の最大値をTmaxとし、最小値をTminとした場合、膜厚のばらつき(Tmax−Tmin/Tave)は10%以内であることが望ましい。   Ideally, it is desirable that the variation range of the luminance unevenness with respect to the average luminance is 5% or less. When this ideal range is replaced with the film thickness distribution of the metal back, the average value of the film thickness is Tave, When the maximum value of thickness is Tmax and the minimum value is Tmin, the variation in film thickness (Tmax−Tmin / Tave) is preferably within 10%.

しかしながら、メタルバックを従来の成膜装置で形成した場合、上述した膜厚のばらつきを20%程度に抑えるのが限界であり、これ以上膜厚均一性を向上させようとすると、例えば蒸着源の数を大幅に増やさなければならず、価格的にも信頼性の観点からも量産に耐え得るものではなかった。
特開2002−184331号公報
However, when the metal back is formed by a conventional film forming apparatus, it is the limit to suppress the above-described variation in film thickness to about 20%. The number had to be increased significantly, and it was not able to withstand mass production from the viewpoint of price and reliability.
JP 2002-184331 A

この発明の目的は、蒸着材の膜厚を均一に成膜できる成膜装置を提供することにある。   An object of the present invention is to provide a film forming apparatus capable of forming a film of a vapor deposition material uniformly.

上記目的を達成するため、この発明の成膜装置は、平らな被蒸着面を有する被蒸着部材と上記被蒸着面に離間対向して並設された複数の蒸着源とを上記複数の蒸着源の並び方向と交差する走査方向に相対的に移動させ、上記被蒸着面に蒸着材を成膜する装置であって、上記複数の蒸着源からそれぞれ拡散する蒸着材が隣接する蒸着源間で干渉しないように区画する複数の筒状の区画部材と、上記各蒸着源から離間した上記各区画部材の上記被蒸着面に対向する開口部にそれぞれ設けられ、上記被蒸着面に蒸着材が蒸着される蒸着領域の形状を規定する形状の開口を有する複数の遮蔽部材と、を有し、上記複数の区画部材および複数の遮蔽部材は、上記被蒸着部材と複数の蒸着源を上記走査方向に相対的に移動させて上記被蒸着面に蒸着材を成膜する際、上記複数の蒸着領域が上記被蒸着面で少なくとも部分的に重なり合う構造に設計されていることを特徴とする。   In order to achieve the above object, a film forming apparatus according to the present invention includes: a plurality of vapor deposition sources each having a vapor deposition member having a flat vapor deposition surface and a plurality of vapor deposition sources arranged in parallel and spaced apart from the vapor deposition surface; An apparatus for depositing a deposition material on the deposition surface by moving relative to a scanning direction intersecting with the alignment direction of the plurality of deposition sources, wherein the deposition materials diffusing from the plurality of deposition sources interfere with each other between adjacent deposition sources. A plurality of cylindrical partition members that are partitioned so as not to be disposed, and openings that face the deposition surface of the partition members that are spaced apart from the deposition sources, and the deposition material is deposited on the deposition surface. A plurality of shielding members each having an opening having a shape that defines a shape of the vapor deposition region, wherein the plurality of partition members and the plurality of shielding members are configured so that the deposition target member and the plurality of deposition sources are relative to each other in the scanning direction. To form a deposition material on the deposition surface. When, characterized in that said plurality of vapor deposition zones are designed to at least partially overlapping structure above the evaporation surface.

上記発明によると、被蒸着部材と複数の蒸着源を相対的に移動させ、各蒸着源から拡散させた蒸着材を被蒸着面で部分的に重なるように成膜する。   According to the above invention, the vapor deposition member and the plurality of vapor deposition sources are relatively moved, and the vapor deposition material diffused from each vapor deposition source is formed so as to partially overlap the vapor deposition surface.

この発明の蒸着装置は、上記のような構成および作用を有しているので、蒸着材の膜厚を均一に成膜できる。   Since the vapor deposition apparatus according to the present invention has the above-described configuration and action, the film thickness of the vapor deposition material can be uniformly formed.

以下、図面を参照しながら、この発明の実施の形態について詳細に説明する。始めに、本発明の実施の形態に係る成膜装置(後に詳述する)を用いて製造される表示装置の一例として、SEDについて説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, an SED will be described as an example of a display device manufactured using a film forming apparatus (described in detail later) according to an embodiment of the present invention.

図1ないし図3に示すように、SED1は、それぞれ矩形状の1〜2mmのガラス板からなる前面基板2(被蒸着部材)および背面基板4を備え、これらの基板はスペーサ8を介して約1.0〜2.0mmの隙間をおいて対向配置されている。そして、前面基板2および背面基板4は、周囲を矩形枠状の側壁6を介して接合され、内部が真空の真空外囲器10を構成している。   As shown in FIG. 1 to FIG. 3, the SED 1 includes a front substrate 2 (deposition member) and a rear substrate 4 each made of a rectangular glass plate having a rectangular shape of 1 to 2 mm. They are arranged opposite each other with a gap of 1.0 to 2.0 mm. The front substrate 2 and the back substrate 4 are joined together via a rectangular frame-shaped side wall 6 to constitute a vacuum envelope 10 whose inside is a vacuum.

前面基板2の内面(被蒸着面)には画像を表示する蛍光体スクリーン12が形成されている。この蛍光体スクリーン12は、赤、青、緑の蛍光体層R、G、B、および遮光層11を並べ、蛍光体層をメタルバック14で覆う構成としている。蛍光体層R、G、Bはストライプ状あるいはドット状に形成され、メタルバック14はアルミニウム等(蒸着材)の金属薄膜から形成されている。   A phosphor screen 12 for displaying an image is formed on the inner surface (deposition surface) of the front substrate 2. The phosphor screen 12 has a configuration in which red, blue, and green phosphor layers R, G, and B and a light shielding layer 11 are arranged and the phosphor layer is covered with a metal back 14. The phosphor layers R, G, and B are formed in stripes or dots, and the metal back 14 is formed of a metal thin film such as aluminum (evaporation material).

背面基板4の内面には、蛍光体層R、G、Bを励起発光させるための電子ビームを放出する多数の表面伝導型の電子放出素子16が設けられている。これらの電子放出素子16は、画素毎に対応して複数列および複数行に配列され、図示しない電子放出部、この電子放出部に電圧を印加する一対の素子電極等で構成されている。また、背面基板4の内面上には、各電子放出素子16に駆動電圧を与えるための多数本の配線18がマトリックス状に設けられ、その端部は真空外囲器10の外部に引き出されている。   On the inner surface of the back substrate 4, a number of surface conduction electron-emitting devices 16 that emit an electron beam for exciting and emitting the phosphor layers R, G, and B are provided. These electron-emitting devices 16 are arranged in a plurality of columns and a plurality of rows corresponding to each pixel, and are configured by an electron-emitting unit (not shown) and a pair of device electrodes for applying a voltage to the electron-emitting unit. Further, on the inner surface of the back substrate 4, a large number of wirings 18 for applying a driving voltage to the respective electron-emitting devices 16 are provided in a matrix shape, and end portions thereof are drawn out of the vacuum envelope 10. Yes.

なお、これら前面基板2と背面基板4は、真空雰囲気中で脱ガス焼成後に周縁部同士を封着されて真空外囲器10を形成するが、封着に先立ち真空雰囲気中で前面基板2の内面全域にバリウム等(蒸着材)によるゲッタを成膜し、パネル化後の高真空を維持できるようにしている。   The front substrate 2 and the rear substrate 4 are degassed and fired in a vacuum atmosphere, and the peripheral portions are sealed together to form a vacuum envelope 10. Prior to sealing, the front substrate 2 and the rear substrate 4 are sealed in the vacuum atmosphere. A getter made of barium or the like (evaporation material) is formed over the entire inner surface so that a high vacuum can be maintained after the paneling.

上記SED1において、画像を表示する場合、配線18を介して電子放出素子16の素子電極間に電圧を与え、任意の電子放出素子16の電子放出部から電子ビームを放出するとともに、蛍光体スクリーン12に印加したアノード電圧により電子ビームを加速して蛍光体スクリーン12に照射する。これにより、所望の蛍光体層R、G、Bが励起発光し、画像を表示する。   In the SED 1, when an image is displayed, a voltage is applied between the element electrodes of the electron-emitting device 16 through the wiring 18 to emit an electron beam from an electron-emitting portion of the arbitrary electron-emitting device 16 and the phosphor screen 12. The electron beam is accelerated by the anode voltage applied to the phosphor screen 12 to irradiate the phosphor screen 12. As a result, the desired phosphor layers R, G, and B are excited to emit light and display an image.

ここで、上述したメタルバック14のソフトフラッシュ構造について、図4を参照して説明する。図4には、メタルバック14を蛍光体層R、G、B(画素)毎に複数の島状の領域14aに分断した構造を示してある。なお、ここでは、図示を明瞭化するため、各領域14aや画素R、G、Bの基板2に対する大きさは実際の比率とは異なる。また、図4では各画素をそれぞれ覆う島状の領域14aにメタルバック14を分断した例を示したが、複数個の画素を覆う複数の領域にメタルバック14を分断しても良い。いずれにしても、本実施の形態では、メタルバック14が複数の小さい領域14aに分断され、これら複数の領域14aが高抵抗部材14bで接続された構成となっている。   Here, the soft flash structure of the metal back 14 described above will be described with reference to FIG. FIG. 4 shows a structure in which the metal back 14 is divided into a plurality of island-like regions 14a for each of the phosphor layers R, G, and B (pixels). Here, in order to clarify the illustration, the sizes of the regions 14a and the pixels R, G, and B with respect to the substrate 2 are different from the actual ratio. Further, although FIG. 4 shows an example in which the metal back 14 is divided into island-shaped regions 14a covering the respective pixels, the metal back 14 may be divided into a plurality of regions covering a plurality of pixels. In any case, in the present embodiment, the metal back 14 is divided into a plurality of small regions 14a, and the plurality of regions 14a are connected by a high resistance member 14b.

各領域14a間の高抵抗部材14bの抵抗は高いほうが放電電流を抑制できるが、一方で画像表示用の電子ビーム電流によるアノード電圧降下を生じてしまう。高抵抗部材14bの最適抵抗値については、放電電流抑制効果が分断の構成や分断間の耐圧特性にもよるため一律に言及することはできないが、概ね1kΩ〜10MΩの値である。メタルバック14をこのようなソフトフラッシュ構造とすることにより、放電が生じてもメタルバック14が小さな領域14aに分断されているため、放電電流を制限して放電によるダメージを抑制することができる。   The higher the resistance of the high resistance member 14b between the regions 14a, the more the discharge current can be suppressed. On the other hand, an anode voltage drop is caused by the electron beam current for image display. The optimum resistance value of the high-resistance member 14b cannot be uniformly mentioned because the discharge current suppressing effect depends on the structure of the division and the withstand voltage characteristics between the divisions, but is generally a value of 1 kΩ to 10 MΩ. By making the metal back 14 have such a soft flash structure, even if a discharge occurs, the metal back 14 is divided into small regions 14a. Therefore, it is possible to limit the discharge current and suppress damage caused by the discharge.

次に、上記メタルバック14を前面基板2の内面に成膜する一般的な成膜装置20の一例について、図5乃至図7を参照して説明する。なお、上述したソフトフラッシュ構造のメタルバック14の成膜には、例えばリブ等のマスク部材を用いるが、ここでは平らな基板21の被蒸着面21aに蒸着材を成膜する成膜装置20について説明する。言い換えると、以下に説明する成膜装置は、平らな被蒸着面を有するいかなる部材にも適用できる。また、以下の説明では、成膜装置の成膜雰囲気をE−3Pa台の真空とした。   Next, an example of a general film forming apparatus 20 for forming the metal back 14 on the inner surface of the front substrate 2 will be described with reference to FIGS. Note that a mask member such as a rib is used for film formation of the metal flash 14 having the soft flash structure described above. Here, the film formation apparatus 20 for forming a vapor deposition material on the vapor deposition surface 21a of the flat substrate 21 is used. explain. In other words, the film forming apparatus described below can be applied to any member having a flat deposition surface. In the following description, the film forming atmosphere of the film forming apparatus is a vacuum of E-3 Pa level.

図5に示すように、成膜装置20は、略水平な面内で図中矢印L方向(並び方向)に360mmの一定間隔で離間して一列に並設された5つの蒸着源22を有する。各蒸着源22は、エレクトロンビーム蒸着源であり、ハースに入れられた蒸着材であるAlに電子ビームを照射し、この電子ビーム電力によりAl材を発熱させて蒸発させるものである。   As shown in FIG. 5, the film forming apparatus 20 has five vapor deposition sources 22 arranged in parallel in a line at a regular interval of 360 mm in the direction of arrow L (alignment direction) in the drawing within a substantially horizontal plane. . Each deposition source 22 is an electron beam deposition source, which irradiates Al, which is a deposition material placed in a hearth, with an electron beam, and heats and evaporates the Al material by the electron beam power.

各蒸着源22の図中上方には、それぞれ、拡散する蒸着材が隣接する蒸着源22間で干渉しないように区画するための矩形筒状の区画部材23が設けられている。ここでは、5つの区画部材23の側面をつなげて矢印L方向に密着させて並設した。また、図では筒状に示してあるが、実際には蒸着源から放出されるガスによる圧力上昇を防ぐために側面には基板21側には飛散しないひさしをつけた開口を設けている。また、各区画部材23は、対応する蒸着源22から離間した端部に矩形の開口部23aを有し、略水平面に沿って配置された基板21に所定距離離間して各開口部23aが対向するように配置されている。なお、基板21は、蒸着源22から650mm離れた略水平面に沿って配置される。   Above each vapor deposition source 22 in the figure, a rectangular cylindrical partition member 23 is provided for partitioning the vapor deposition material to diffuse so as not to interfere between adjacent vapor deposition sources 22. Here, the side surfaces of the five partition members 23 are connected and closely arranged in the arrow L direction. In addition, although shown in a cylindrical shape in the figure, in practice, in order to prevent an increase in pressure due to the gas released from the vapor deposition source, an opening with an eaves that does not scatter on the substrate 21 side is provided on the side surface. In addition, each partition member 23 has a rectangular opening 23a at an end away from the corresponding vapor deposition source 22, and the openings 23a are opposed to each other by a predetermined distance from the substrate 21 arranged along a substantially horizontal plane. Are arranged to be. The substrate 21 is disposed along a substantially horizontal plane that is 650 mm away from the vapor deposition source 22.

より詳細には、各区画部材23は、矢印L方向に延びた長辺(360mm)、および図中矢印S方向(走査方向)に延びた短辺(131.0mm)を有する開口部23aを有し、基板21に向かう高さが627.7mmの4枚の側壁を有する。また、基板21は、矢印L方向に延びた長辺21b(1400mm)、および矢印S方向に延びた短辺21c(800mm)を有する。さらに、各開口部23aと基板21の被蒸着面21aとの間の距離は、22.3mmとなっており、5つの開口部23aが基板21の長手方向に並ぶように配置される。   More specifically, each partition member 23 has an opening 23a having a long side (360 mm) extending in the arrow L direction and a short side (131.0 mm) extending in the arrow S direction (scanning direction) in the drawing. In addition, four side walls having a height of 627.7 mm toward the substrate 21 are provided. The substrate 21 has a long side 21b (1400 mm) extending in the arrow L direction and a short side 21c (800 mm) extending in the arrow S direction. Further, the distance between each opening 23 a and the deposition surface 21 a of the substrate 21 is 22.3 mm, and the five openings 23 a are arranged in the longitudinal direction of the substrate 21.

そして、基板21と蒸着源22(および区画部材23)とを矢印S方向に相対的に一定速度で移動させ、ここでは基板21だけを矢印S方向に一定速度で移動(スキャン)させ、各蒸着源22から拡散する蒸着材を各区画部材23の開口部23aを介して基板21の被蒸着面21aに蒸着させて蒸着材を被蒸着面21aに成膜する。   Then, the substrate 21 and the vapor deposition source 22 (and the partition member 23) are moved at a relatively constant speed in the direction of the arrow S. Here, only the substrate 21 is moved (scanned) at the constant speed in the direction of the arrow S, and each vapor deposition is performed. The vapor deposition material diffusing from the source 22 is vapor-deposited on the vapor deposition surface 21a of the substrate 21 through the opening 23a of each partition member 23 to form the vapor deposition material on the vapor deposition surface 21a.

このとき、各区画部材23は、対応する蒸着源22から蒸着材が被蒸着面21aに照射される入射角度を、被蒸着面21aに対して垂直な方向に対し±20°以内に制限するように機能する。このように、被蒸着面21aに対する蒸着材の入射角度を制限することにより、蒸着材の拡散角度に依存した膜厚の分布をできるだけ均一にできる。また、上述したリブ等のマスク部材を用いる場合、蒸着材の照射角度をできるだけ垂直に近付けることができ、リブの側面で蒸着材がつながる不具合を防止できる。   At this time, each partition member 23 limits the incident angle at which the vapor deposition material is applied to the vapor deposition surface 21a from the corresponding vapor deposition source 22 within ± 20 ° with respect to the direction perpendicular to the vapor deposition surface 21a. To work. Thus, by limiting the incident angle of the vapor deposition material with respect to the deposition surface 21a, the distribution of the film thickness depending on the diffusion angle of the vapor deposition material can be made as uniform as possible. Moreover, when using mask members, such as the rib mentioned above, the irradiation angle of a vapor deposition material can be brought close as vertical as possible, and the malfunction which a vapor deposition material connects with the side surface of a rib can be prevented.

また、各区画部材23の開口部23aの形状は、基板21を矢印S方向にスキャンしていない状態で、基板21の被蒸着面21aに蒸着(投影)される蒸着材の領域(以下、蒸着領域と称する)の形状を規定する。ここでは、各開口部23aの形状が矩形(360×131.0mm)であるため、被蒸着面21aに投影される蒸着領域の形状も開口形状と相似の矩形状となる。つまり、蒸着材が蒸着源22から拡散し、且つ各区画部材23の開口部23aが基板21の被蒸着面21aに対して22.3mm離間しているため、被蒸着面21a上に投影される蒸着領域は、隣接する蒸着領域同士が部分的に重なることになる。   Further, the shape of the opening 23a of each partition member 23 is a region of a vapor deposition material (hereinafter, vapor deposition) that is vapor deposited (projected) on the vapor deposition surface 21a of the substrate 21 in a state where the substrate 21 is not scanned in the arrow S direction. Shape). Here, since the shape of each opening part 23a is a rectangle (360 * 131.0 mm), the shape of the vapor deposition area | region projected on the to-be-deposited surface 21a also becomes a rectangular shape similar to opening shape. That is, the vapor deposition material diffuses from the vapor deposition source 22, and the opening 23a of each partition member 23 is spaced 22.3 mm from the vapor deposition surface 21a of the substrate 21, and is thus projected onto the vapor deposition surface 21a. In the vapor deposition region, adjacent vapor deposition regions partially overlap each other.

図6には、基板21の矢印S方向中央に5つの開口部23aが対向する位置で基板21を停止させ、各蒸着源22から蒸着材を拡散させて被蒸着面21aに蒸着材を成膜したときの蒸着材の膜厚分布を示してある。また、図7には、図6の膜厚分布を矢印S方向に積分した値を示すグラフを示してある。   In FIG. 6, the substrate 21 is stopped at a position where the five openings 23a face the center of the substrate 21 in the direction of arrow S, and the deposition material is diffused from each deposition source 22 to form the deposition material on the deposition surface 21a. The film thickness distribution of the vapor deposition material is shown. FIG. 7 is a graph showing values obtained by integrating the film thickness distribution of FIG. 6 in the arrow S direction.

これによると、隣接した蒸着領域同士が重なった部分の膜厚が他の部分と比較して大幅に厚くなっているのが分かる。このような蒸着源22の並び方向(矢印L方向)に沿った膜厚分布は、基板21をスキャンして被蒸着面21a全面に成膜した場合、スキャン方向に沿った複数本のすじムラとして現れる。つまり、蒸着材の膜厚が厚くなった部分では他の部分と比較して電子ビームが通過する際のエネルギー損失が大きくなって輝度が低くなり、黒っぽいすじムラとして見える。   According to this, it turns out that the film thickness of the part which adjacent vapor deposition area | regions overlapped is significantly thick compared with another part. Such a film thickness distribution along the direction in which the vapor deposition sources 22 are arranged (the direction of the arrow L) indicates that when the substrate 21 is scanned to form a film on the entire vapor deposition surface 21a, a plurality of stripe irregularities along the scan direction. appear. That is, in the portion where the film thickness of the vapor deposition material is thicker, the energy loss when the electron beam passes is larger than that in the other portions, the luminance is lowered, and it appears as black streak unevenness.

このようなすじムラを防止するため、蒸着材の拡散角度を考慮して一回り小さくした矩形の開口を有する遮蔽部材を各開口部23aに設けたり、各区画部材23を矢印L方向に離間させて隣接する開口部23aを離間させたりすることにより、隣接する蒸着領域の重なりを無くす方法が考えられる。しかし、このような方法を採用しても、被蒸着面21a上で隣接する蒸着領域の境界部分で蒸着領域をうまくつなげることは難しく、機械的な誤差等により蒸着材が部分的に重なる部位や蒸着材の膜厚が不十分な部位が生じてしまう。   In order to prevent such streak unevenness, a shielding member having a rectangular opening that is slightly reduced in consideration of the diffusion angle of the vapor deposition material is provided in each opening 23a, or each partition member 23 is separated in the direction of arrow L. For example, a method of eliminating the overlap of the adjacent vapor deposition regions by separating the adjacent openings 23a can be considered. However, even if such a method is adopted, it is difficult to successfully connect the vapor deposition regions at the boundary portions of the adjacent vapor deposition regions on the deposition surface 21a, and the portions where the vapor deposition materials partially overlap due to mechanical errors or the like. The site | part with insufficient film thickness of a vapor deposition material will arise.

このため、本実施の形態では、蒸着材の重なりを相殺できる形状の開口を有する遮蔽部材を各区画部材23の開口部23aに設け、上述したすじムラの問題を解消するようにした。なお、ここでは、特別な形状の開口を有する遮蔽部材を各区画部材23の開口部23aに設けることですじムラを解消する場合について説明するが、基板21の被蒸着面21aにおける蒸着領域の形状をコントロール可能な他の方法を採用しても良い。例えば、区画部材自体を形状加工しても良く、その断面形状をコントロールすれば良い。   For this reason, in this Embodiment, the shielding member which has an opening of the shape which can cancel the overlap of a vapor deposition material was provided in the opening part 23a of each division member 23, and it was made to eliminate the problem of the above-mentioned stripe unevenness. Here, the case where the unevenness is eliminated by providing a shielding member having an opening of a special shape in the opening 23a of each partition member 23 will be described. However, the shape of the vapor deposition region on the vapor deposition surface 21a of the substrate 21 is described. You may employ | adopt the other method which can control. For example, the partition member itself may be processed and its cross-sectional shape may be controlled.

以下、この発明の第1の実施の形態に係る成膜装置30について、図8乃至図11を参照して説明する。なお、この成膜装置30は、6角形の開口32を有する遮蔽部材31を各区画部材23の開口部23aに設けたこと、および各区画部材23の矢印S方向に沿った幅が異なる(本実施の形態では403.7mm)こと以外、上述した成膜装置20と略同じ構造を有するため、上述した成膜装置20と同様に機能する構成要素については同一符号を付してその詳細な説明を省略する。   A film forming apparatus 30 according to the first embodiment of the present invention will be described below with reference to FIGS. In this film forming apparatus 30, the shielding member 31 having a hexagonal opening 32 is provided in the opening 23a of each partition member 23, and the width of each partition member 23 along the arrow S direction is different (this book). (In the embodiment, 403.7 mm), the component having substantially the same structure as the above-described film forming apparatus 20, the same reference numerals are given to components that function in the same manner as the above-described film forming apparatus 20, and the detailed description thereof is given. Is omitted.

図8および図9に示すように、各区画部材23の開口部23aには、それぞれ6角形の開口32を有する板状の遮蔽部材31が設けられている。遮蔽部材31は、必ずしも各開口部23aごとに別々に設ける必要はなく、5つの開口部23aを同時に覆う1枚板によって形成しても良い。   As shown in FIGS. 8 and 9, a plate-shaped shielding member 31 having a hexagonal opening 32 is provided in the opening 23 a of each partition member 23. The shielding member 31 is not necessarily provided separately for each opening 23a, and may be formed by a single plate that simultaneously covers the five openings 23a.

本実施の形態の遮蔽部材31の6角形の開口32は、図9に示すように、矢印L方向に沿った幅が蒸着源22のピッチと同じ360mmで、矢印S方向に沿った幅が307.1mmで、矢印L方向両端辺が外側に突出するようにくの字に折り曲げられている。折り曲げられた傾斜辺の矢印L方向に沿った幅は86.1mmである。   As shown in FIG. 9, the hexagonal opening 32 of the shielding member 31 of the present embodiment has a width along the arrow L direction of 360 mm which is the same as the pitch of the vapor deposition source 22 and a width along the arrow S direction of 307. .1 mm, and bent in a U shape so that both ends of the arrow L direction protrude outward. The width along the arrow L direction of the bent inclined side is 86.1 mm.

図10には、基板21の矢印S方向中央に5つの開口部23aが対向する位置で基板21を停止させ、各蒸着源22から蒸着材を拡散させて上述した遮蔽部材31の開口32を介して被蒸着面21aに蒸着材を成膜したときの蒸着材の膜厚分布を示してある。また、図11には、図10の膜厚分布を矢印S方向に積分した値を示すグラフを示してある。   In FIG. 10, the substrate 21 is stopped at a position where the five openings 23 a face the center in the arrow S direction of the substrate 21, and the vapor deposition material is diffused from each vapor deposition source 22 to pass through the opening 32 of the shielding member 31 described above. The film thickness distribution of the vapor deposition material when the vapor deposition material is formed on the deposition surface 21a is shown. FIG. 11 is a graph showing values obtained by integrating the film thickness distribution of FIG. 10 in the arrow S direction.

これによると、本実施の形態においても、基板21と蒸着源22を相対的に移動させていない状態で、被蒸着面21aで隣接した蒸着領域同士が部分的に重なっているのが分かる。これにより機械的なずれが生じても境界領域に大きなすじムラが発生するのを抑制することができる。   According to this, also in the present embodiment, it can be seen that the vapor deposition regions adjacent to each other on the vapor deposition surface 21a partially overlap with each other in a state where the substrate 21 and the vapor deposition source 22 are not relatively moved. As a result, even if a mechanical shift occurs, it is possible to suppress the occurrence of large stripe unevenness in the boundary region.

より詳細には、本実施の形態では、隣接した蒸着領域が被蒸着面21aで重なる部位の面積といずれの蒸着領域も存在しない部位の面積が各蒸着領域の矢印S方向に沿った長さ(本実施の形態では407.3mm)の範囲内で略等しくなる形状に各蒸着領域が形成されるように、各遮蔽部材31の開口32の形状や区画部材23の基板21に対する位置などを設計している。言い換えると、遮蔽部材31の開口32の形状は6角形に限らず、上述した条件を満たす形状であればいかなる形状であっても良いことになる。しかしながら、蒸着材の被蒸着面21aに対する入射角度に依存して膜厚が分布することを考慮すると、遮蔽部材31の開口32の形状は円形に近いことが望ましく、本実施の形態のように、6角形にすることが有効である。   More specifically, in the present embodiment, the area of the portion where the adjacent vapor deposition regions overlap with the vapor deposition surface 21a and the area of the portion where no vapor deposition region exists are the lengths along the arrow S direction of each vapor deposition region ( In this embodiment, the shape of the opening 32 of each shielding member 31 and the position of the partition member 23 with respect to the substrate 21 are designed so that the respective vapor deposition regions are formed in substantially the same shape within the range of 407.3 mm). ing. In other words, the shape of the opening 32 of the shielding member 31 is not limited to a hexagon, and may be any shape as long as the shape satisfies the above-described conditions. However, considering that the film thickness is distributed depending on the incident angle of the vapor deposition material with respect to the deposition surface 21a, it is desirable that the shape of the opening 32 of the shielding member 31 is close to a circle, as in the present embodiment. It is effective to use a hexagon.

しかして、本実施の形態の成膜装置30を用いて被蒸着面21aに蒸着材を成膜すると、被蒸着面21a全面に成膜される蒸着材の膜厚に関し、隣接する蒸着領域同士が重なる部位の膜厚が蒸着領域同士が重ならない部位の膜厚と略同じ膜厚になる。言い換えると、各遮蔽部材31の開口32の形状は、被蒸着面21a全面に成膜される蒸着材の膜厚に関し、蒸着領域同士が重なる部位の膜厚を矢印S方向に積分した値と、蒸着領域が重ならない部位の膜厚を矢印S方向に積分した値と、が略等しくなる形状に設計されており、この開口形状を採用することで蒸着材の膜厚を均一にできる。また、本実施の形態によると、遮蔽部材31の機械的な位置ずれのマージンを確保することができ、位置ずれを生じた場合であってもずじムラを目立たなくできる。   Therefore, when the deposition material is deposited on the deposition surface 21a using the deposition apparatus 30 of the present embodiment, adjacent deposition regions are related to the thickness of the deposition material deposited on the entire deposition surface 21a. The thickness of the overlapping portion is substantially the same as the thickness of the portion where the vapor deposition regions do not overlap. In other words, the shape of the opening 32 of each shielding member 31 is the value obtained by integrating the film thickness of the portion where the vapor deposition regions overlap with each other with respect to the film thickness of the vapor deposition material deposited on the entire surface to be vapor-deposited 21a, It is designed to have a shape in which the value obtained by integrating the film thickness of the portion where the vapor deposition regions do not overlap with each other in the direction of the arrow S is substantially equal. By adopting this opening shape, the film thickness of the vapor deposition material can be made uniform. In addition, according to the present embodiment, a margin for mechanical displacement of the shielding member 31 can be ensured, and even when the displacement occurs, the unevenness of the stripe can be made inconspicuous.

なお、上述した第1の実施の形態では、各遮蔽部材31の開口32の形状を6角形としたが、上述した条件を満たす種々の形状の開口を有する遮蔽部材を採用することができる。   In the first embodiment described above, the shape of the opening 32 of each shielding member 31 is hexagonal, but shielding members having various shapes of openings that satisfy the above-described conditions can be employed.

図12および図13には、上述した第1の実施の形態の変形例を示してある。図12には、隣接する区画部材23の開口部23aに設けられる遮蔽部材31の2つの開口34を示してある。また、図13には、この2つの開口34を介して被蒸着面21aに蒸着される蒸着材の領域を示してある。   12 and 13 show a modification of the above-described first embodiment. FIG. 12 shows two openings 34 of the shielding member 31 provided in the opening 23 a of the adjacent partition member 23. FIG. 13 shows a region of the vapor deposition material deposited on the deposition target surface 21a through the two openings 34.

これによると、遮蔽部材の開口34は、区画部材23の並び方向両端が外側に突出するように湾曲した形状を有する。この変形例においても、被蒸着面21aで蒸着領域が重なる部位の面積と蒸着領域が存在しない部位の面積が蒸着領域の矢印S方向に沿った長さの範囲内で略等しくなるような開口形状にされている。つまり、このような開口形状を有する遮蔽部材を採用しても、上述した第1の実施の形態と同様の効果を奏することができ、蒸着材の膜厚を均一にできる。   According to this, the opening 34 of the shielding member has a curved shape so that both ends of the partition members 23 in the arrangement direction protrude outward. Also in this modified example, an opening shape in which the area of the portion where the vapor deposition region overlaps on the deposition surface 21a and the area of the portion where the vapor deposition region does not exist are substantially equal within the length range along the arrow S direction of the vapor deposition region. Has been. That is, even if the shielding member having such an opening shape is employed, the same effect as that of the first embodiment described above can be obtained, and the film thickness of the vapor deposition material can be made uniform.

ところで、上述した実施の形態では、隣接した蒸着領域の境界部分におけるすじムラの問題を解消することができるが、被蒸着面21a全面における膜厚のばらつきは、十分に満足のいくレベルに達していない。例えば、図11を見ると、各開口32の中央で膜厚が最も厚く、隣接する開口32間で膜厚が最も薄くなっており、蒸着源22の並び方向に沿った膜厚分布が不均一となっている。図11に示す例では、被蒸着面21a全面における膜厚の平均値に対する膜厚最大値と膜厚最小値との差分の割合(すなわち膜厚のばらつき)は20%程度であり膜厚均一性が十分であるとは言えない。   By the way, in the embodiment described above, the problem of streak unevenness at the boundary between adjacent vapor deposition regions can be solved, but the variation in film thickness over the entire vapor deposition surface 21a has reached a sufficiently satisfactory level. Absent. For example, referring to FIG. 11, the film thickness is the thickest at the center of each opening 32, the film thickness is the thinnest between adjacent openings 32, and the film thickness distribution along the direction in which the vapor deposition sources 22 are arranged is nonuniform. It has become. In the example shown in FIG. 11, the ratio of the difference between the maximum film thickness value and the minimum film thickness value with respect to the average value of the film thickness over the entire deposition surface 21a (that is, the variation in film thickness) is about 20%. Is not enough.

つまり、蒸着源22から拡散する蒸着材の被蒸着面21aにおける入射角度に依存して走査方向と直交する矢印L方向に沿った膜厚分布が不均一になることが知られており、この不均一な膜厚分布により輝度ムラを生じることが知られている。つまり、基板21の被蒸着面21aに垂直な軸に対する傾斜角度をΦとした場合、cosΦの2〜3乗程度でΦが大きくなるにつれて膜厚が薄くなっていく。よって、この矢印L方向に沿った膜厚分布を許容レベルまで均一化するため、上述した遮蔽部材の開口形状にさらなる改良を加えた。   That is, it is known that the film thickness distribution along the arrow L direction perpendicular to the scanning direction becomes non-uniform depending on the incident angle of the vapor deposition material diffused from the vapor deposition source 22 on the vapor deposition surface 21a. It is known that uneven brightness occurs due to a uniform film thickness distribution. That is, assuming that the tilt angle with respect to the axis perpendicular to the deposition surface 21a of the substrate 21 is Φ, the film thickness is reduced as Φ is increased by about 2 to the third power of cos Φ. Therefore, in order to make the film thickness distribution along the arrow L direction uniform to an allowable level, the above-described opening shape of the shielding member is further improved.

以下、改良を加えた開口形状を有する遮蔽部材を備えたこの発明の第2の実施の形態に係る成膜装置40について、図14乃至図17を参照して説明する。なお、ここでも、上述した第1の実施の形態の成膜装置30と同様に機能する構成要素には同一符号を付してその詳細な説明を省略する。   Hereinafter, a film forming apparatus 40 according to a second embodiment of the present invention provided with a shielding member having an improved opening shape will be described with reference to FIGS. In this case as well, components that function in the same manner as the film forming apparatus 30 of the first embodiment described above are assigned the same reference numerals, and detailed descriptions thereof are omitted.

図14および図15に示すように、本実施の形態における成膜装置40に組み込まれた遮蔽部材の開口41は、上述した第1の実施の形態の開口32と比較して矢印S方向の幅が狭くされ、矢印S方向両端辺が内側に凹むようにくの字に折り曲げられている。この端辺の形状は、上述したcosΦ則の逆数に従ってS方向開口幅をとるように工夫されていればよく、くの字に限らず緩やかに湾曲していても良く、矢印S方向両端辺のうち少なくとも1辺が矢印L方向中央で幅が狭くなっていれば良い。   As shown in FIGS. 14 and 15, the opening 41 of the shielding member incorporated in the film forming apparatus 40 in the present embodiment has a width in the arrow S direction as compared with the opening 32 of the first embodiment described above. Is narrowed, and is bent into a square shape so that both ends of the arrow S direction are recessed inward. The shape of this edge is only required to be devised to take the S-direction opening width according to the reciprocal of the above-mentioned cosΦ rule, and is not limited to the square shape but may be gently curved. Of these, at least one side should be narrow in the center in the arrow L direction.

より詳細には、遮蔽部材の開口41は、図15に示すように、矢印L方向の幅が蒸着源22のピッチと同じ360mmに設計され、矢印S方向の幅が131.0mmに設計され、矢印L方向中央の矢印S方向に沿った幅が94.3mmに設計されている。   More specifically, as shown in FIG. 15, the opening 41 of the shielding member is designed so that the width in the arrow L direction is 360 mm, which is the same as the pitch of the vapor deposition source 22, and the width in the arrow S direction is 131.0 mm. The width along the arrow S direction at the center of the arrow L direction is designed to be 94.3 mm.

図16には、基板21の矢印S方向中央に5つの開口部23aが対向する位置で基板21を停止させ、各蒸着源22から蒸着材を拡散させて上述した遮蔽部材の開口41を介して被蒸着面21aに蒸着材を成膜したときの蒸着材の膜厚分布を示してある。また、図17には、図16の膜厚分布を矢印S方向に積分した値を示すグラフを示してある。   In FIG. 16, the substrate 21 is stopped at the position where the five openings 23 a face the center of the substrate 21 in the direction of arrow S, and the vapor deposition material is diffused from each vapor deposition source 22 to pass through the above-described opening 41 of the shielding member. The film thickness distribution of the vapor deposition material when the vapor deposition material is formed on the deposition surface 21a is shown. FIG. 17 is a graph showing values obtained by integrating the film thickness distribution of FIG. 16 in the arrow S direction.

これによると、図11で説明した第1の実施の形態の膜厚分布と比較して、矢印L方向に沿った膜厚分布の変動が小さくなっているのが分かる。つまり、本実施の形態のように、開口41の矢印L方向に沿った幅を中央で狭くなるように設計することで、蒸着材の照射角度に依存した膜厚分布のばらつきを相殺でき、被蒸着面21a全面に関して蒸着材の膜厚をより均一にすることができた。   According to this, it can be seen that the fluctuation of the film thickness distribution along the arrow L direction is smaller than the film thickness distribution of the first embodiment described in FIG. That is, by designing the width of the opening 41 along the arrow L direction to be narrow at the center as in the present embodiment, variations in the film thickness distribution depending on the irradiation angle of the vapor deposition material can be offset, and The film thickness of the vapor deposition material could be made more uniform over the entire vapor deposition surface 21a.

具体的には、本実施の形態の開口形状を有する遮蔽部材を用いた場合、蒸着材の被蒸着面21aに対する入射角度を最大で16°程度にでき、膜厚平均値に対する膜厚最大値と膜厚最小値の差分の割合を5%以内にすることができた。しかし、遮蔽部材の開口形状を更に詳細に略楕円弧状に湾曲させることで、膜厚均一性をさらに向上させることも可能である。   Specifically, when the shielding member having the opening shape of the present embodiment is used, the incident angle with respect to the deposition surface 21a of the vapor deposition material can be about 16 ° at the maximum, and the film thickness maximum value with respect to the film thickness average value The ratio of the difference in the minimum film thickness could be within 5%. However, it is possible to further improve the film thickness uniformity by curving the opening shape of the shielding member in more detail in a substantially elliptical arc shape.

なお、この発明は、上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、上述した実施の形態に示される全構成要素から幾つかの構成要素を削除しても良い。更に、異なる実施の形態に亘る構成要素を適宜組み合わせても良い。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above-described embodiments. For example, you may delete some components from all the components shown by embodiment mentioned above. Furthermore, you may combine the component covering different embodiment suitably.

この発明の実施の形態に係るSEDの真空外囲器を示す外観斜視図。1 is an external perspective view showing a vacuum envelope of an SED according to an embodiment of the present invention. 図1の真空外囲器を線II−IIに沿って切断した断面斜視図。FIG. 2 is a cross-sectional perspective view of the vacuum envelope of FIG. 1 cut along line II-II. 図2の断面を部分的に拡大して示す部分拡大断面図。The partial expanded sectional view which expands and shows the cross section of FIG. 2 partially. 前面基板内面の蛍光体スクリーンのメタルバックを島状に分断した状態を示す模式図。The schematic diagram which shows the state which divided | segmented the metal back of the phosphor screen of a front substrate inner surface into island shape. メタルバックを形成するための一般的な成膜装置の一例を示す概略図。Schematic which shows an example of the general film-forming apparatus for forming a metal back. 図5の成膜装置で被蒸着面に蒸着材を蒸着した場合における蒸着源の並び方向に沿った蒸着材の膜厚分布を示す図。The figure which shows the film thickness distribution of the vapor deposition material along the arrangement direction of a vapor deposition source at the time of vapor-depositing a vapor deposition material on a to-be-deposited surface with the film-forming apparatus of FIG. 図6の膜厚分布を走査方向に積分した値を示すグラフ。The graph which shows the value which integrated the film thickness distribution of FIG. 6 in the scanning direction. この発明の第1の実施の形態に係る成膜装置の要部の構成を示す概略図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the structure of the principal part of the film-forming apparatus which concerns on 1st Embodiment of this invention. 図8の成膜装置に組み込まれた遮蔽部材の開口形状を示す図。The figure which shows the opening shape of the shielding member integrated in the film-forming apparatus of FIG. 図8の成膜装置で被蒸着面に蒸着材を蒸着した場合における蒸着源の並び方向に沿った蒸着材の膜厚分布を示す図。The figure which shows the film thickness distribution of the vapor deposition material along the arrangement direction of a vapor deposition source at the time of vapor-depositing a vapor deposition material on the to-be-deposited surface with the film-forming apparatus of FIG. 図10の膜厚分布を走査方向に積分した値を示すグラフ。The graph which shows the value which integrated the film thickness distribution of FIG. 10 in the scanning direction. 第1の実施の形態の変形例に係る遮蔽部材の開口形状を示す図。The figure which shows the opening shape of the shielding member which concerns on the modification of 1st Embodiment. 図12の開口形状を有する遮蔽部材を用いて被蒸着面に蒸着材を蒸着した状態を示す図。The figure which shows the state which vapor-deposited the vapor deposition material on the to-be-deposited surface using the shielding member which has the opening shape of FIG. この発明の第2の実施の形態に係る成膜装置の要部の構成を示す概略図。Schematic which shows the structure of the principal part of the film-forming apparatus which concerns on 2nd Embodiment of this invention. 図14の成膜装置に組み込まれた遮蔽部材の開口形状を示す図。The figure which shows the opening shape of the shielding member integrated in the film-forming apparatus of FIG. 図14の成膜装置で被蒸着面に蒸着材を蒸着した場合における蒸着源の並び方向に沿った蒸着材の膜厚分布を示す図。The figure which shows the film thickness distribution of the vapor deposition material along the row direction of a vapor deposition source at the time of vapor-depositing a vapor deposition material on a to-be-deposited surface with the film-forming apparatus of FIG. 図16の膜厚分布を走査方向に積分した値を示すグラフ。The graph which shows the value which integrated the film thickness distribution of FIG. 16 in the scanning direction.

符号の説明Explanation of symbols

1…SED、2…前面基板、4…背面基板、6…側壁、8…スペーサ、10…真空外囲器、12…蛍光体スクリーン、14…メタルバック、16…電子放出素子、18…配線、21…基板、21a…被蒸着面、22…蒸着源、23…区画部材、23a…開口部、30、40…成膜装置、31…遮蔽部材、32、34、41…開口、L…並び方向、S…走査方向、R、G、B…蛍光体層。   DESCRIPTION OF SYMBOLS 1 ... SED, 2 ... Front substrate, 4 ... Back substrate, 6 ... Side wall, 8 ... Spacer, 10 ... Vacuum envelope, 12 ... Phosphor screen, 14 ... Metal back, 16 ... Electron emission element, 18 ... Wiring, DESCRIPTION OF SYMBOLS 21 ... Substrate, 21a ... Deposition surface, 22 ... Deposition source, 23 ... Partition member, 23a ... Opening part, 30, 40 ... Film-forming apparatus, 31 ... Shielding member, 32, 34, 41 ... Opening, L ... Arrangement direction , S: scanning direction, R, G, B: phosphor layers.

Claims (8)

平らな被蒸着面を有する被蒸着部材と上記被蒸着面に離間対向して並設された複数の蒸着源とを上記複数の蒸着源の並び方向と交差する走査方向に相対的に移動させ、上記被蒸着面に蒸着材を成膜する成膜装置において、
上記複数の蒸着源からそれぞれ拡散する蒸着材が隣接する蒸着源間で干渉しないように区画する複数の筒状の区画部材と、
上記各蒸着源から離間した上記各区画部材の上記被蒸着面に対向する開口部にそれぞれ設けられ、上記被蒸着面に蒸着材が蒸着される蒸着領域の形状を規定する形状の開口を有する複数の遮蔽部材と、を有し、
上記複数の区画部材および複数の遮蔽部材は、上記被蒸着部材と複数の蒸着源を上記走査方向に相対的に移動させて上記被蒸着面に蒸着材を成膜する際、上記複数の蒸着領域が上記被蒸着面で少なくとも部分的に重なり合う構造に設計されていることを特徴とする成膜装置。
Relatively moving a vapor deposition member having a flat vapor deposition surface and a plurality of vapor deposition sources arranged in parallel to be spaced apart from the vapor deposition surface in a scanning direction intersecting the alignment direction of the vapor deposition sources, In the film forming apparatus for forming a vapor deposition material on the deposition surface,
A plurality of cylindrical partition members that partition so that the vapor deposition material diffusing from each of the plurality of vapor deposition sources does not interfere between adjacent vapor deposition sources,
A plurality of openings each having a shape that defines a shape of a vapor deposition region in which a vapor deposition material is vapor-deposited on the surface to be vapor-deposited, each provided in an opening facing the surface to be vapor-deposited of each partition member spaced from each vapor deposition source. And a shielding member
The plurality of partition members and the plurality of shielding members are formed by depositing a deposition material on the deposition surface by moving the deposition target member and the plurality of deposition sources relative to each other in the scanning direction. Is formed into a structure that at least partially overlaps with the deposition surface.
上記複数の遮蔽部材は、上記被蒸着面に成膜される蒸着材の膜厚に関し、上記蒸着領域同士が重なる部位の膜厚が上記蒸着領域同士が重ならない部位の膜厚と略同じ膜厚になる開口形状を有することを特徴とする請求項1に記載の成膜装置。   The plurality of shielding members are related to the film thickness of the vapor deposition material formed on the deposition surface, and the film thickness of the part where the vapor deposition areas overlap is substantially the same as the film thickness of the part where the vapor deposition areas do not overlap. The film forming apparatus according to claim 1, wherein the film forming apparatus has an opening shape. 上記複数の遮蔽部材の開口は、上記被蒸着部材と複数の蒸着源を相対的に走査しない状態で隣接する蒸着領域が重なる部位の面積といずれの蒸着領域も存在しない部位の面積が上記蒸着領域の上記走査方向に沿った長さの範囲内で略等しくなる形状に形成されていることを特徴とする請求項2に記載の成膜装置。   The openings of the plurality of shielding members have an area of a portion where adjacent vapor deposition regions overlap each other without relatively scanning the vapor deposition target member and a plurality of vapor deposition sources, and an area of a portion where no vapor deposition region exists. The film forming apparatus according to claim 2, wherein the film forming apparatus is formed in a shape that is substantially equal within a range of a length along the scanning direction. 上記各遮蔽部材の開口は、該遮蔽部材の並び方向両端辺が外側に突出するように湾曲した形状を有することを特徴とする請求項3に記載の成膜装置。   The film forming apparatus according to claim 3, wherein the opening of each shielding member has a curved shape so that both ends of the shielding member in the arrangement direction protrude outward. 上記各遮蔽部材の開口は、該遮蔽部材の並び方向両端辺が外側に突出するように折り曲げられた形状を有することを特徴とする請求項3に記載の成膜装置。   The film forming apparatus according to claim 3, wherein the opening of each shielding member has a shape bent so that both ends of the shielding member in the arrangement direction protrude outward. 上記複数の遮蔽部材は、上記被蒸着面に成膜される蒸着材の膜厚に関し、上記蒸着領域同士が重なる部位の膜厚を上記走査方向に積分した値と、上記蒸着領域が重ならない部位の膜厚を上記走査方向に積分した値と、が略等しくなる開口形状を有することを特徴とする請求項1に記載の成膜装置。   The plurality of shielding members include a value obtained by integrating a film thickness of a portion where the vapor deposition regions overlap each other with respect to the film thickness of the vapor deposition material formed on the deposition surface, and a portion where the vapor deposition regions do not overlap with each other. The film forming apparatus according to claim 1, wherein the film forming apparatus has an opening shape that is substantially equal to a value obtained by integrating the film thickness in the scanning direction. 上記各遮蔽部材の開口は、蒸着材の拡散角度に依存した上記並び方向に沿った膜厚の分布を均一化するように、上記走査方向両端辺のうち少なくとも一方の端辺が内側に凹まされていることを特徴とする請求項1乃至請求項6のいずれか1項に記載の成膜装置。   The openings of the respective shielding members are recessed inward at least one of the two ends in the scanning direction so as to uniformize the film thickness distribution along the alignment direction depending on the diffusion angle of the vapor deposition material. The film forming apparatus according to claim 1, wherein the film forming apparatus is provided. 上記成膜時における雰囲気がE−3Pa台の真空であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the atmosphere during the film formation is a vacuum of E-3 Pa level.
JP2004369699A 2004-12-21 2004-12-21 Film deposition system Pending JP2006176813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004369699A JP2006176813A (en) 2004-12-21 2004-12-21 Film deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369699A JP2006176813A (en) 2004-12-21 2004-12-21 Film deposition system

Publications (1)

Publication Number Publication Date
JP2006176813A true JP2006176813A (en) 2006-07-06

Family

ID=36731182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369699A Pending JP2006176813A (en) 2004-12-21 2004-12-21 Film deposition system

Country Status (1)

Country Link
JP (1) JP2006176813A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227359A (en) * 2006-01-27 2007-09-06 Canon Inc Vapor deposition device and deposition method
JP2010150662A (en) * 2008-12-18 2010-07-08 Veeco Instruments Inc Linear deposition source
JP2011146377A (en) * 2010-01-14 2011-07-28 Samsung Mobile Display Co Ltd Thin film deposition device, method of manufacturing organic light-emitting display device using the same, and organic light-emitting display device manufactured by the same method
KR101450339B1 (en) 2006-11-16 2014-10-14 미츠비시 쥬고교 가부시키가이샤 Evaporation source and vacuum evaporator using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227359A (en) * 2006-01-27 2007-09-06 Canon Inc Vapor deposition device and deposition method
KR101450339B1 (en) 2006-11-16 2014-10-14 미츠비시 쥬고교 가부시키가이샤 Evaporation source and vacuum evaporator using the same
JP2010150662A (en) * 2008-12-18 2010-07-08 Veeco Instruments Inc Linear deposition source
JP2011146377A (en) * 2010-01-14 2011-07-28 Samsung Mobile Display Co Ltd Thin film deposition device, method of manufacturing organic light-emitting display device using the same, and organic light-emitting display device manufactured by the same method

Similar Documents

Publication Publication Date Title
JP2008159449A (en) Display device
US20060232517A1 (en) Plasma display panel
JP2006310098A (en) Plasma tubing array
JP2006176813A (en) Film deposition system
JP2006019282A (en) Electron emission element and its manufacturing method
US7012371B2 (en) Plasma display panel structure with shielding layer
JP2005166631A (en) Flat display element and its manufacturing method
JP2007134084A (en) Image display device and its manufacturing method
JPH05342992A (en) Plane discharge type plasma display panel
JP2006286605A (en) Electron emission device and electron emission display device
JP4741223B2 (en) Electron emitter
WO2006030835A1 (en) Image display device
JP2007087649A (en) Image display device, front panel for image display device, its manufacturing method and transfer film
JP2006120422A (en) Display and manufacturing method thereof
JP2577361Y2 (en) Electron emitting device and image display device using the electron emitting device
KR101023140B1 (en) Flat Panel Display
JP2006100176A (en) Flat surface display device
KR20070046184A (en) Image display device and method for manufacturing the same
JP2006093024A (en) Image display device and its manufacturing method
JP2006012503A (en) Image display device and its manufacturing method
KR100788538B1 (en) Plasma display panel and Plasma display device
KR100739622B1 (en) Shadow Mask for Cathode Ray Tube
JP2006107924A (en) Display
US20060138934A1 (en) Image display apparatus
JP2008181867A (en) Image display device