JP2006176636A - Organic and inorganic composite material and method for producing the same - Google Patents

Organic and inorganic composite material and method for producing the same Download PDF

Info

Publication number
JP2006176636A
JP2006176636A JP2004371053A JP2004371053A JP2006176636A JP 2006176636 A JP2006176636 A JP 2006176636A JP 2004371053 A JP2004371053 A JP 2004371053A JP 2004371053 A JP2004371053 A JP 2004371053A JP 2006176636 A JP2006176636 A JP 2006176636A
Authority
JP
Japan
Prior art keywords
organic
inorganic
aluminum oxide
fine particles
inorganic composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004371053A
Other languages
Japanese (ja)
Other versions
JP4715194B2 (en
Inventor
Michiya Nakajima
道也 中嶋
Toshihiro Ebine
俊裕 海老根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2004371053A priority Critical patent/JP4715194B2/en
Publication of JP2006176636A publication Critical patent/JP2006176636A/en
Application granted granted Critical
Publication of JP4715194B2 publication Critical patent/JP4715194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new organic and inorganic composite material in which aluminum oxide fine particles exist in an organic component while holding thickness in the minor axis direction of ≤5 nm without agglomerate each other with their platy surfaces, and a method for producing the organic and inorganic composite material easily by reacting in a short period of time at a room temperature under normal pressure by using inexpensive inorganic raw materials. <P>SOLUTION: This organic and inorganic composite material comprises at least one kind of organic polymer, selected from the group consisting of a polyurethane and a polyurea, and aluminum oxide fine particles with ≤5 nm minor axis diameter and ≥3 aspect ratio. It is obtained by bringing an organic solution, in which a kind of compound selected from the group consisting of a dichloroformate compound and a phosgene-based compound is dissolved in an organic solvent, into contact with an aqueous solution, in which an alkali aluminate and a diamine are dissolved in water, and reacting them. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ポリウレタンまたはポリ尿素と短軸径5nm以下、アスペクト比3以上の酸化アルミニウム微粒子とを有する有機無機複合体及びその製造方法に関する。   The present invention relates to an organic-inorganic composite having polyurethane or polyurea and aluminum oxide fine particles having a minor axis diameter of 5 nm or less and an aspect ratio of 3 or more, and a method for producing the same.

有機ポリマーがもつ加工性、柔軟性等の特性と、無機物質が持つ諸特性(寸法安定性、耐熱性、耐摩耗性、表面硬度、ガスバリア性)等の特性を付与することを目的として、無機微粒子を有機ポリマー内に複合化する技術が広く検討されている。このとき有機無機複合体中の無機微粒子の形状及び分散状態の形態を制御することができれば、上記の各機能をさらに強化した複合体を提供することができる。例えば、無機微粒子を板状等のアスペクト比を有する形状にすると、該粒子の長手方向への補強効果を、球状微粒子を同じ量だけ含有させた場合よりも強く発現させることができる。また、このような板状微粒子が板側面で連結し、任意の方向にランダムに伸長した構造で有機ポリマーに存在していると、異方性が殆どない状態で有機ポリマーを補強することができる。   For the purpose of imparting properties such as processability and flexibility of organic polymers and various properties of inorganic substances (dimensional stability, heat resistance, wear resistance, surface hardness, gas barrier properties), etc. A technique for compositing fine particles in an organic polymer has been widely studied. At this time, if the shape of the inorganic fine particles and the form of the dispersed state in the organic-inorganic composite can be controlled, it is possible to provide a composite in which the above functions are further enhanced. For example, when the inorganic fine particles are shaped to have a plate-like aspect ratio, the reinforcing effect in the longitudinal direction of the particles can be expressed more strongly than when the same amount of spherical fine particles is contained. In addition, when such plate-like fine particles are connected on the side surface of the plate and are present in the organic polymer in a structure that is randomly extended in any direction, the organic polymer can be reinforced with almost no anisotropy. .

更に、その際の無機微粒子の粒径を極力小さく、無機充填率を高くすることでさらに無機材料の複合化効果を高めることができる。なぜなら無機粒子の粒径が小さいと無機粒子の重量当たりの表面積が大きくなり有機材料と無機材料との界面領域が広くなることで高い補強効果が得られ(面積効果)、また、無機微粒子の充填率が高くなると、当然複合化の効果が大きくなるからである(体積効果)。 Furthermore, the composite effect of the inorganic material can be further enhanced by making the particle size of the inorganic fine particles as small as possible and increasing the inorganic filling rate. This is because when the particle size of the inorganic particles is small, the surface area per weight of the inorganic particles is increased, and the interface region between the organic material and the inorganic material is widened to obtain a high reinforcing effect (area effect). This is because the higher the rate, the greater the effect of compounding (volume effect).

従来より、有機無機複合体を容易に作製する方法の一つとして、溶融混練法が行われてきた。本方法は微粒子状の無機物を溶融した有機成分中に分散機等を用いて強制的に混合するものであるが、本方法では、その製法から推測できるとおり無機粒子がランダムに有機成分中に分散されるのみであり、分散状態を制御することは不可能である。加えて、本方法では表面エネルギーの高い無機微粒子同士の親和性、有機材料と無機材料の非親和性により無機粒子の凝集が混練処理中に進行するため、ナノメートルオーダーの微粒子を高い含有率で分散させることも極めて困難である。また、短軸方向(厚さ方向)に凝集しない、厚さ5nm以下の微粒子は単独ではそもそも存在しえない。 Conventionally, a melt-kneading method has been performed as one method for easily producing an organic-inorganic composite. In this method, finely divided inorganic substances are forcibly mixed in a molten organic component using a disperser or the like. In this method, inorganic particles are randomly dispersed in the organic component as can be inferred from the production method. It is only possible to control the distributed state. In addition, in this method, the aggregation of inorganic particles proceeds during the kneading process due to the affinity between the inorganic fine particles with high surface energy and the non-affinity between the organic material and the inorganic material. It is also very difficult to disperse. Further, fine particles having a thickness of 5 nm or less that do not aggregate in the minor axis direction (thickness direction) cannot exist by themselves.

また、他の方法として、有機ポリマーの共存下で金属アルコキシドを加水分解重縮合反応させて金属酸化物とする、いわゆるゾル−ゲル法を利用し、有機ポリマーに無機微粒子を複合化する方法が数多く知られている。例えば特許文献1にはポリウレタンを有機ポリマーとして用いた有機無機複合体について記載されている。しかしながら本方法では、金属アルコキシドの加水分解とこれに続いて生じる重縮合(無機粒子生成)の反応にそれぞれ長時間を要するため製造効率が極めて低い問題点がある。また、無機粒子生成に時間を要するため、該無機粒子は表面エネルギーが最小になるように球形状で析出するため、補強効果の高い板形状の無機微粒子を有する有機無機複合体を合成することはできない。   As another method, there are many methods of combining inorganic fine particles with an organic polymer using a so-called sol-gel method in which a metal alkoxide is hydrolyzed and polycondensed in the presence of an organic polymer to form a metal oxide. Are known. For example, Patent Document 1 describes an organic-inorganic composite using polyurethane as an organic polymer. However, this method has a problem that the production efficiency is extremely low because the hydrolysis of the metal alkoxide and the subsequent polycondensation (inorganic particle generation) reaction each take a long time. In addition, since it takes time to produce inorganic particles, the inorganic particles are deposited in a spherical shape so that the surface energy is minimized. Therefore, it is possible to synthesize an organic-inorganic composite having plate-shaped inorganic fine particles with a high reinforcing effect. Can not.

一方、板形状の無機材料を有機材料に複合化する方法としては、無機原料として粘土鉱物等の層状物質を用い、該層を有機ポリマー中で薄片化することによりナノオーダーの板状物を有機ポリマー中に複合化させる方法が知られている(例えば、特許文献2及び3参照。)。しかしながら本方法では、有機ポリマーに対する分散性が低く層間の結合も強い粘土鉱物を用いるため、予め粘土層間のカチオンをアルキル基を有する4級アンモニウム塩等でイオン交換(有機変性処理)することで、層状物質の極性と層間結合力を低下させる必要がある。また、このような処理を行なっても、層状物質の全ての層を完全に剥離させることは極めて困難である。そのため、本方法で得られた有機無機複合体の無機成分は、層剥離が不十分な厚さ数十nmの凝集物との混合体が存在し、無機の導入量に比してその効果が十分とはならない。加えて、本方法では無機微粒子の分散状態を制御することは実質的に不可能である。また無機成分の導入量も複合体100質量%に対して、10質量%以上にすると無機成分の分散不良や再凝集が生じやすくなる。更に、有機ポリマーと複合化しやすい層状物質は有機ポリマーとの分散性の観点より層の電荷が低い材料に限られる上、上記の通り有機変性処理を行う必要があるため一般的に高価である問題もある。   On the other hand, as a method of combining a plate-shaped inorganic material with an organic material, a layered material such as clay mineral is used as an inorganic raw material, and the layer is sliced in an organic polymer to form a nano-order plate-shaped material. A method of conjugating in a polymer is known (for example, see Patent Documents 2 and 3). However, in this method, since a clay mineral having a low dispersibility with respect to an organic polymer and a strong bond between layers is used, a cation between the clay layers is previously ion-exchanged (organic modification treatment) with a quaternary ammonium salt having an alkyl group, etc. It is necessary to reduce the polarity of the layered material and the interlayer bonding force. Further, even if such treatment is performed, it is extremely difficult to completely remove all layers of the layered material. Therefore, the inorganic component of the organic-inorganic composite obtained by this method has a mixture with an aggregate with a thickness of several tens of nanometers with insufficient delamination, and the effect is higher than the amount of inorganic introduced. Not enough. In addition, it is substantially impossible to control the dispersion state of the inorganic fine particles by this method. In addition, when the amount of the inorganic component introduced is 10% by mass or more with respect to 100% by mass of the composite, poor dispersion or reaggregation of the inorganic component tends to occur. Furthermore, layered substances that are likely to be complexed with organic polymers are limited to materials having a low layer charge from the viewpoint of dispersibility with organic polymers, and are generally expensive because it is necessary to perform organic modification treatment as described above. There is also.

特開2000−63661JP 2000-63661 A 特開平11−256034JP-A-11-256034 特開平11−131047JP-A-11-131047

本発明の課題は、有機無機複合体において酸化アルミニウム微粒子が、板状の板面同士で凝集することなく、短軸径5nm以下の厚さを維持して有機成分中に存在する新規な有機無機複合体を提供することにある。
また、本発明では該有機無機複合体を安価な無機原料をもちいつつ、常圧室温下の短時間の反応で容易に得ることができる製造方法を提供することにある。
It is an object of the present invention to provide a novel organic / inorganic composite in which an aluminum oxide fine particle is present in an organic component while maintaining a thickness of a minor axis diameter of 5 nm or less without agglomerating between plate-like plate surfaces in an organic-inorganic composite. It is to provide a complex.
Another object of the present invention is to provide a production method capable of easily obtaining the organic-inorganic composite by a short-time reaction at normal pressure and room temperature while using an inexpensive inorganic raw material.

本発明者らは、ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液と、アルミン酸アルカリおよびジアミンを水に溶解した水溶液とを接触させることで重縮合反応を行うことで、1.アルミニウムが三価の価数を有するため酸化アルミニウムが厚さ5nm以下の板形状で析出し、2.析出した板状酸化アルミニウムの上下面でポリマー形成が優先的に生じるため、板状の酸化アルミニウムが板の面同士で凝集することがない、新規な有機無機複合体が簡便に得られることを見出した。 The present inventors contact an organic solution obtained by dissolving one compound selected from the group consisting of a dichloroformate compound and a phosgene compound in an organic solvent and an aqueous solution obtained by dissolving an alkali aluminate and a diamine in water. By performing a polycondensation reaction at 1. 1. Since aluminum has a trivalent valence, aluminum oxide is deposited in a plate shape with a thickness of 5 nm or less. It has been found that since a polymer is formed preferentially on the upper and lower surfaces of the deposited plate-like aluminum oxide, a novel organic-inorganic composite can be easily obtained in which the plate-like aluminum oxide does not aggregate between the plate surfaces. It was.

すなわち本発明は、ポリウレタンおよびポリ尿素からなる群から選ばれる少なくとも1種の有機ポリマーと、酸化アルミニウム微粒子とを有する有機無機複合体であって、前記微粒子が短軸径5nm以下、アスペクト比3以上である有機無機複合体を提供する。 That is, the present invention is an organic-inorganic composite having at least one organic polymer selected from the group consisting of polyurethane and polyurea and aluminum oxide fine particles, wherein the fine particles have a minor axis diameter of 5 nm or less and an aspect ratio of 3 or more. An organic-inorganic composite is provided.

また、本発明は、ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液と、アルミン酸アルカリおよびジアミンを水に溶解した水溶液とを接触、反応させることを特徴とする有機無機複合体の製造方法を提供する。 In addition, the present invention is a method in which an organic solution in which one compound selected from the group consisting of a dichloroformate compound and a phosgene compound is dissolved in an organic solvent and an aqueous solution in which an alkali aluminate and a diamine are dissolved in water are contacted and reacted. A method for producing an organic-inorganic composite is provided.

本発明により、5nm以下の短軸径と、アスペクト比3以上の形状を有する酸化アルミニウム微粒子が、ポリウレタン及び/またはポリ尿素に中に存在する有機無機複合体を提供できる。 The present invention can provide an organic-inorganic composite in which aluminum oxide fine particles having a minor axis diameter of 5 nm or less and an aspect ratio of 3 or more are present in polyurethane and / or polyurea.

また、本発明の製造方法により、前記特徴を有する有機無機複合体を常圧室温下の30分間以下の短い攪拌操作1ステップのみの反応で容易に得ることができる。さらに本発明は板形状を有する無機微粒子の原料として極めて安価なアルミン酸アルカリを用いることができる。   In addition, according to the production method of the present invention, the organic-inorganic composite having the above characteristics can be easily obtained by a reaction of only one short stirring operation for 30 minutes or less at normal pressure and room temperature. Furthermore, in the present invention, an extremely inexpensive alkali aluminate can be used as a raw material for inorganic fine particles having a plate shape.

以下、本発明の有機無機複合体について詳述する。
本発明の、ポリウレタンおよびポリ尿素からなる群から選ばれる有機ポリマーと、酸化アルミニウム微粒子とを有する有機無機複合体であって、前記酸化アルミニウム微粒子が短軸径5nm以下、アスペクト比3以上の形状を有する有機無機複合体は、ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液(A)と、アルミン酸アルカリと、ジアミンとを含有する塩基性の水溶液(B)とを混合攪拌し反応させることにより得ることができる。
Hereinafter, the organic-inorganic composite of the present invention will be described in detail.
An organic-inorganic composite having an organic polymer selected from the group consisting of polyurethane and polyurea and aluminum oxide fine particles of the present invention, wherein the aluminum oxide fine particles have a minor axis diameter of 5 nm or less and an aspect ratio of 3 or more. The organic-inorganic composite has a basic composition containing an organic solution (A) in which one compound selected from the group consisting of a dichloroformate compound and a phosgene compound is dissolved in an organic solvent, an alkali aluminate, and a diamine. It can obtain by mixing and stirring and making it react with aqueous solution (B).

加えてこの方法によると、無機成分比率を10質量%以上と高くすることもでき、その際には酸化アルミニウム微粒子がその長軸方向に連結し、任意の方向にランダムに伸長した構造を持つことで、無機材料の特性を強く発現させた有機無機複合体を提供することができる。 In addition, according to this method, the inorganic component ratio can be increased to 10% by mass or more, and in this case, the aluminum oxide fine particles are connected in the major axis direction and have a structure that is randomly elongated in any direction. Thus, an organic-inorganic composite in which the characteristics of the inorganic material are strongly expressed can be provided.

(水溶液(B)の成分)
本発明の有機無機複合体の合成に用いられる水溶液(B)は水と、無機原料であるアルミン酸アルカリと、ジアミンとから構成される。
(Components of aqueous solution (B))
The aqueous solution (B) used for the synthesis of the organic-inorganic composite of the present invention is composed of water, an alkali aluminate that is an inorganic raw material, and a diamine.

(アルミン酸アルカリ)
本発明での水溶液(B)に使用するアルミン酸アルカリは、XAlO(メタアルミン酸アルカリ)やXAlO(オルトアルミン酸アルカリ)およびこれらの共溶物であり、Xがアルカリ金属であるものが挙げられる。これらの例として、アルミン酸ナトリウム(ソーダ)、アルミン酸カリウム、アルミン酸リチウム等が例示できる。特にアルミン酸ナトリウム、アルミン酸カリウムは水溶性が高いため特に好ましく用いられる。また、これらは水に溶解させて用いるため、液体であっても水和物であっても好適に用いることができる。加えてアルミン酸ナトリウムは土壌改良剤、セメント添加剤等として大量に用いられている極めて安価な材料であり、このような材料を無機成分の原料として用いることも本発明の特徴のひとつである。本発明での、有機溶液(A)中のモノマー(ジクロロホーメート化合物、ホスゲン系化合物)と水溶液(B)中のジアミンとの反応は、ジカルボン酸ハロゲン化物とジアミンとの混合によりポリアミドを合成する反応に比べ反応性がやや低い。そのため前記反応を促進するためには、水に溶解したときに高いpHを示す無機原料を用いることが好ましい。本発明で用いられるアルミン酸アルカリは一般的に水溶時にpH12以上の高いpHを示すため、いずれも好ましく用いられる。
(Alkali aluminate)
The alkali aluminate used for the aqueous solution (B) in the present invention is XAlO 2 (alkali metaaluminate), X 3 AlO 3 (alkali aluminate) or a co-solvent thereof, and X is an alkali metal. Is mentioned. Examples of these include sodium aluminate (soda), potassium aluminate, lithium aluminate and the like. In particular, sodium aluminate and potassium aluminate are particularly preferably used because of their high water solubility. Moreover, since these are used by dissolving in water, they can be suitably used regardless of whether they are liquids or hydrates. In addition, sodium aluminate is an extremely inexpensive material that is used in large quantities as a soil conditioner, a cement additive, and the like, and the use of such a material as a raw material for inorganic components is one of the features of the present invention. In the present invention, the reaction of the monomer (dichloroformate compound, phosgene compound) in the organic solution (A) with the diamine in the aqueous solution (B) synthesizes the polyamide by mixing the dicarboxylic acid halide and the diamine. Reactivity is slightly lower than reaction. Therefore, in order to promote the reaction, it is preferable to use an inorganic raw material that exhibits a high pH when dissolved in water. Since the alkali aluminate used in the present invention generally exhibits a high pH of 12 or more when water is used, any of them is preferably used.

(アルミン酸アルカリの複合体合成に与える作用)
アルミン酸アルカリに含まれるアルカリ金属は、ジアミンとジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物との重合により、ポリウレタンまたはポリ尿素が生成する際に発生する酸の除去剤として作用することで、ポリウレタンまたはポリ尿素の重合反応をさらに促進する。アルカリ金属が除去されたアルミン酸はアルミノール基を経由し、脱水縮合しつつ相互に結合しナノサイズの酸化アルミニウム微粒子を形成する。このとき、モノマーからポリウレタンまたはポリ尿素への重合とアルミン酸アルカリから酸化アルミニウムへの化学変化が並行、且つ相補的に進行するため、片方の生成物が優先的に析出することを抑制し、ナノ微分散構造が形成される。特に、その際、アルミニウムイオンが3価であることに起因し、析出反応が二次元方向に優先的に進行し、二次元構造すなわち板状の酸化アルミニウムが生成すると推定される。
(Action on synthesis of alkali aluminate complex)
An alkali metal contained in alkali aluminate is a remover of acid generated when polyurethane or polyurea is produced by polymerization of diamine with one compound selected from the group consisting of dichloroformate compounds and phosgene compounds. As a result, the polymerization reaction of polyurethane or polyurea is further accelerated. The aluminate from which the alkali metal has been removed passes through the aluminol group and bonds to each other while dehydrating and condensing to form nano-sized aluminum oxide fine particles. At this time, polymerization from the monomer to polyurethane or polyurea and chemical change from alkali aluminate to aluminum oxide proceed in parallel and in a complementary manner, so that one product is prevented from preferentially precipitating, A fine dispersion structure is formed. In particular, at that time, it is presumed that the aluminum ions are trivalent, so that the precipitation reaction proceeds preferentially in the two-dimensional direction, and a two-dimensional structure, that is, a plate-like aluminum oxide is generated.

本反応機構によると、板状の酸化アルミニウムが生成するためには、ポリマー重合の際に発生する酸が必須であり、また逆にポリマー重合を進行させるためには酸除去剤としての作用を有する、アルミン酸アルカリが酸化アルミニウムとなり析出する際に発生する水酸化アルカリが必須である。そのため本反応では、いわゆるボトムアップ型に酸化アルミニウムのナノサイズ板状物が生成し、その周囲、特に酸化アルミニウムの生成反応部である板の上下面にて優先的にポリマーが重合生成するために、本質的に板状物の面同士が凝集した無機粒子が生成しない。そのため、無機微粒子が5nm以下と極めて短軸径の小さい(厚さが薄い)微粒子板状構造として有機ポリマー中に生成される。 According to this reaction mechanism, in order to produce plate-like aluminum oxide, an acid generated during polymer polymerization is essential, and conversely, it has an action as an acid removing agent in order to advance polymer polymerization. The alkali hydroxide generated when the alkali aluminate becomes aluminum oxide and precipitates is essential. Therefore, in this reaction, a nano-sized aluminum oxide plate is formed in a so-called bottom-up type, and the polymer is preferentially polymerized and generated around it, especially the upper and lower surfaces of the plate, which is the aluminum oxide production reaction part. Essentially, inorganic particles in which the surfaces of the plate-like material are aggregated are not generated. Therefore, inorganic fine particles are produced in the organic polymer as a fine particle plate structure having a very short axis diameter (thickness) of 5 nm or less.

加えて本発明では、無機微粒子の含有率を高くすることもできるため、板状の無機微粒子が新たに生成するサイトがすでに生成した無機微粒子の末端部分となる確率が高くなる。そのため、板状のナノ微粒子の末端同士が接続した無機微粒子の連続体を構成させることができる。そのときの連続体の伸長方向は他の決定要因がないため特に決まってはおらず、曲がりくねった状態になりやすい。その結果、複合体をマクロ的に見た場合無機の複合状態に異方性がないものが得られ、無機材料の特性を強く発現させた有機無機複合体を提供することができる。 In addition, in the present invention, since the content of the inorganic fine particles can be increased, the probability that the site where the plate-like inorganic fine particles are newly generated becomes the terminal portion of the already generated inorganic fine particles is increased. Therefore, a continuous body of inorganic fine particles in which the ends of plate-like nano fine particles are connected can be formed. The extension direction of the continuum at that time is not particularly determined because there are no other determinants, and tends to be in a winding state. As a result, when the composite is viewed macroscopically, an inorganic composite state having no anisotropy is obtained, and an organic-inorganic composite that strongly expresses the characteristics of the inorganic material can be provided.

(複合化する無機化合物含有率の制御)
本発明では、有機無機複合体に複合化する酸化アルミニウムを含有する無機化合物の比率を、用いる原料により容易に制御することができる。アルミン酸アルカリの上記化学式のAl/XOの数値が大きいもの、すなわちXに対するAlの量が大きいアルミン酸アルカリを用いることで、複合化する酸化アルミニウムの比率を高めることができる。また反対に、複合化する酸化アルミニウムの比率を低くしたい場合には、Al/XOの数値が小さいものを用いるほかに、水溶液(B)中に導入するアルミン酸アルカリ量を少なくすると同時に重縮合反応時に生じるハロゲン化水素の中和を目的として水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの酸受容体を水溶液(B)に添加してもよい。
(Controlling the content of inorganic compounds to be combined)
In the present invention, the ratio of the inorganic compound containing aluminum oxide to be complexed with the organic-inorganic composite can be easily controlled by the raw material used. By using an alkali aluminate having a large value of Al 2 O 3 / X 2 O in the above chemical formula, that is, an alkali aluminate having a large amount of Al with respect to X, the ratio of aluminum oxide to be compounded can be increased. On the other hand, when it is desired to reduce the ratio of aluminum oxide to be compounded, in addition to using a small value of Al 2 O 3 / X 2 O, the amount of alkali aluminate introduced into the aqueous solution (B) is small. At the same time, an acid acceptor such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate may be added to the aqueous solution (B) for the purpose of neutralizing the hydrogen halide generated during the polycondensation reaction.

本発明では、複合体100質量%に無機化合物含有量には特に制限がない。酸化アルミニウム含有率が数%以下の低い場合でも、5nm以下の厚さで、アスペクト比が3以上の板状の微粒子が、板面方向への凝集体を形成することなく存在するため、他の有機無機複合体に比して無機成分の補強効果が高い。加えて本発明では通常の製造方法では困難な10質量%以上のナノメートルオーダーの無機成分も、無機成分の凝集を生じることなく容易に複合化することができる。この場合、板状無機成分は末端部分でのみ連結し、有機マトリクス内で曲がりくねった状態で複合化されるため、マクロ的には異方性がなく無機的な性質が強く発現した有機無機複合体が得られる。無機含有率の上限には特に制限はないが、市販のアルミン酸アルカリのAl/XOの数値に上限があることや、有機成分の量が少なくなると、有機材料に起因する加工性、柔軟性等の特徴が失われるので、60質量%以下が好ましい。 In the present invention, the inorganic compound content is not particularly limited to 100% by mass of the composite. Even when the aluminum oxide content is as low as several percent or less, plate-like fine particles having a thickness of 5 nm or less and an aspect ratio of 3 or more exist without forming aggregates in the plate surface direction. The reinforcing effect of inorganic components is higher than that of organic-inorganic composites. In addition, in the present invention, an inorganic component of nanometer order of 10% by mass or more, which is difficult by a normal production method, can be easily combined without causing aggregation of the inorganic component. In this case, since the plate-like inorganic component is connected only at the terminal portion and is compounded in a tortuous state within the organic matrix, the organic-inorganic composite has a macroscopic anisotropy and strong inorganic properties. Is obtained. There is no particular restriction on the upper limit of the inorganic content, and that there is an upper limit to a number of Al 2 O 3 / X 2 O commercial alkali aluminate, the amount of the organic components is reduced, due to the organic material processing 60% by mass or less is preferable because characteristics such as property and flexibility are lost.

(ジアミン)
水溶液(B)中のジアミンとしては、有機溶液(A)中の各モノマーと反応し、有機ポリマーを生成するものであれば特に制限なく用いることができる。具体的には、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタンなどの脂肪族ジアミン;m−キシリレンジアミン、p−キシリレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、2,3−ジアミノナフタレンなどの芳香族ジアミン;あるいは芳香環の水素をハロゲン原子、ニトロ基、またはアルキル基などで置換した芳香族ジアミンなどが例として挙げられる。これらは単独で、または2種以上を組み合わせて用いてもよい。
(Diamine)
The diamine in the aqueous solution (B) can be used without particular limitation as long as it reacts with each monomer in the organic solution (A) to produce an organic polymer. Specifically, aliphatic diamines such as 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane; m-xylylenediamine , P-xylylenediamine, m-phenylenediamine, p-phenylenediamine, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,3-diaminonaphthalene, and other aromatic diamines; Examples include aromatic diamines substituted with atoms, nitro groups, alkyl groups, and the like. These may be used alone or in combination of two or more.

(酸化アルミニウム以外の無機成分の導入)
本発明では、水溶液(B)に溶解状態で共存できる他のアルカリ金属複合酸化物(例えば、亜鉛酸アルカリ、スズ酸アルカリ、マンガン酸アルカリ、モリブデン酸アルカリ、タングステン酸アルカリ、ニオブ酸アルカリ、アンチモン酸アルカリ等)をさらに水溶液(B)に溶解させることで、無機微粒子の成分に酸化アルミニウム以外の金属酸化物を酸化アルミニウム単独の複合体と同様の形状を有する範囲内で他の金属酸化物を導入しても良い。本方法により、無機成分の粒子形状や複合化状態が酸化アルミニウム単独の複合体と大差ない、有機無機複合体を提供することもできる。
(Introduction of inorganic components other than aluminum oxide)
In the present invention, other alkali metal complex oxides (for example, alkali zincate, alkali stannate, alkali manganate, alkali molybdate, alkali tungstate, alkali niobate, antimonic acid, which can coexist in the aqueous solution (B) in the dissolved state. (Alkali, etc.) is further dissolved in the aqueous solution (B), and other metal oxides are introduced into the inorganic fine particle component within the range having the same shape as the complex of aluminum oxide alone. You may do it. This method can also provide an organic-inorganic composite in which the particle shape and composite state of the inorganic component are not significantly different from those of a composite of aluminum oxide alone.

(有機溶液(A)の成分)
本発明で有機無機複合体の合成に用いられる有機溶液(A)は、ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物とこれを溶解させる有機溶媒より構成される。
(Components of organic solution (A))
The organic solution (A) used for the synthesis of the organic-inorganic complex in the present invention is composed of one compound selected from the group consisting of a dichloroformate compound and a phosgene compound and an organic solvent for dissolving the compound.

(ジクロロホーメート化合物)
有機溶液(A)中のジクロロホーメート化合物としては、例えば、1,2−エタンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール等の脂肪族ジオール類の水酸基を全てホスゲン化処理によりクロロホーメート化したもの;レゾルシン(1,3−ジヒドロキシベンゼン)、ヒドロキノン(1,4−ジヒドロキシベンゼン)、1,6−ジヒドロキシナフタレン、2,2’−ビフェノール、ビスフェノールS、ビスフェノールA、テトラメチルビフェノール等、1個または2個以上の芳香環に水酸基を2個持つ2価フェノール類の水酸基を全てホスゲン化処理によりクロロホーメート化したものが挙げられる。これらは単独で、または2種以上を組み合わせて使用することができる。
(Dichloroformate compound)
Examples of the dichloroformate compound in the organic solution (A) include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and 1,8-octanediol. All the hydroxyl groups of aliphatic diols such as chlorogenated by phosgenation treatment; resorcin (1,3-dihydroxybenzene), hydroquinone (1,4-dihydroxybenzene), 1,6-dihydroxynaphthalene, 2, 2'-biphenol, bisphenol S, bisphenol A, tetramethylbiphenol, etc., all of the hydroxyl groups of dihydric phenols having two hydroxyl groups on one or more aromatic rings are chlorogenated by phosgenation treatment Can be mentioned. These can be used alone or in combination of two or more.

(ホスゲン系化合物)
有機溶液(A)中のホスゲン系化合物としては、例えばホスゲン、ジホスゲンおよびトリホスゲンを挙げることができる。これらは単独で、または両種を組み合わせて使用することができる。
本発明においては、有機溶液(A)中のモノマーを選択することにより、複合体のマトリクスである有機ポリマーの種類を変えることができる。モノマーとしてジクロロホーメート化合物を用いた場合はポリウレタンを、ホスゲン系化合物を用いた場合にはポリ尿素を、水溶液(B)中のジアミンとの反応によって得ることができる。
(Phosgene compounds)
Examples of the phosgene compound in the organic solution (A) include phosgene, diphosgene and triphosgene. These may be used alone or in combination of both species.
In the present invention, by selecting a monomer in the organic solution (A), the type of the organic polymer that is the matrix of the complex can be changed. When a dichloroformate compound is used as a monomer, polyurethane can be obtained, and when a phosgene compound is used, polyurea can be obtained by reaction with a diamine in the aqueous solution (B).

(有機溶液(A)に用いる有機溶媒)
本発明での有機溶液(A)に用いる有機溶媒としては上記の有機溶液(A)中の各種モノマーやジアミンとは反応せず、有機溶液(A)中の各種モノマーを溶解させるものであれば特に制限なく用いることができる。このうち水と非相溶の有機溶媒としてはトルエン、キシレン等の芳香族炭化水素類、n−ヘキサン等の脂肪族炭化水素類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、シクロヘキサン等の脂環式炭化水素類を挙げることができる。また、水と相溶する有機溶媒としては、テトラヒドロフラン等のエーテル類、メチルケトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸プロピル等の酢酸アルキルなどを代表的な例として挙げることができる。
(Organic solvent used for organic solution (A))
As an organic solvent used in the organic solution (A) in the present invention, any solvent that does not react with the various monomers and diamines in the organic solution (A) and dissolves the various monomers in the organic solution (A) can be used. It can be used without particular limitation. Among these, organic solvents incompatible with water include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as n-hexane, halogenated hydrocarbons such as chloroform and methylene chloride, and fats such as cyclohexane. Cyclic hydrocarbons can be mentioned. Representative examples of the organic solvent compatible with water include ethers such as tetrahydrofuran, ketones such as methyl ketone and methyl ethyl ketone, and alkyl acetates such as ethyl acetate and propyl acetate.

有機溶液(A)中のモノマー濃度、および水溶液(B)中のジアミン濃度は、重縮合反応が十分に進行すれば特に制限されないが、各々のモノマー同士を良好に接触させる観点から、0.01〜3モル/Lの濃度範囲、特に0.05〜1モル/Lが好ましい。   The monomer concentration in the organic solution (A) and the diamine concentration in the aqueous solution (B) are not particularly limited as long as the polycondensation reaction proceeds sufficiently, but from the viewpoint of bringing each monomer into good contact, 0.01 A concentration range of ˜3 mol / L, particularly 0.05 to 1 mol / L is preferred.

(有機無機複合体の製造装置)
複合体の製造に用いられる製造装置としては、有機溶液(A)と水溶液(B)とを良好に接触させることができる装置であればとくに限定されず、連続式、バッチ式のいずれの方式でも可能である。しかしながら、重縮合反応には数分〜30分の時間を要するため、十分な反応時間を確保するためバッチ式攪拌装置を用いることが好ましい。バッチ式の装置としては、有機溶液(A)と水溶液(B)との接触を良好に行わせる必要があるので、プロペラ状翼、マックスブレンド翼、ファウドラー翼等を持つような汎用の攪拌装置を用いることができる。
(Organic / inorganic composite production equipment)
The production apparatus used for production of the composite is not particularly limited as long as it is an apparatus that can satisfactorily contact the organic solution (A) and the aqueous solution (B). Is possible. However, since the polycondensation reaction takes several minutes to 30 minutes, it is preferable to use a batch type stirring device in order to ensure a sufficient reaction time. As a batch-type device, it is necessary to make good contact between the organic solution (A) and the aqueous solution (B). Therefore, a general-purpose stirring device having a propeller blade, a Max blend blade, a Faudler blade, etc. Can be used.

有機溶液(A)中のモノマーと水溶液(B)中のジアミンとの重縮合反応は、例えば−10〜50℃の常温付近の温度範囲で十分に進行する。したがって、有機溶液(A)と水溶液(B)とを接触させる温度は、−10〜50℃の常温付近の温度範囲とされる。この際、加圧、減圧も必要としない。また、重縮合反応は、用いるモノマー種や反応装置にもよるが、通常30分以下で完結する。   The polycondensation reaction between the monomer in the organic solution (A) and the diamine in the aqueous solution (B) proceeds sufficiently in a temperature range of, for example, −10 to 50 ° C. near room temperature. Therefore, the temperature at which the organic solution (A) and the aqueous solution (B) are brought into contact with each other is set to a temperature range of about −10 to 50 ° C. near room temperature. At this time, neither pressurization nor decompression is required. The polycondensation reaction is usually completed in 30 minutes or less, depending on the type of monomer used and the reaction apparatus.

(有機無機複合体の用途)
本発明により得られた有機無機複合体は、補強成分となる無機微粒子はアスペクト比を有する板状である上に粒径が極めて小さく且つ含有率も高くできるため、ポリマーに混練、分散させることによりポリマーの補強剤として用いることができる。この場合、球状の微粒子を有する有機無機複合体を用いた場合に比べて温度変化等に対する寸法安定性、各種機械強度の補強効果を高くできる特徴がある。また、該複合体は有機成分に起因する加工性を有するため加圧成型することができ、各種構造材として用いることもできる。また、該複合体は高い無機分率と有機成分が有する極性基により、極性溶媒を多量(複合体の自重に対して10倍以上)に保持する、極性溶媒吸収体としても用いることができる。また、特に極性溶媒が電解液である場合は、電解液を保持した電池セパレータ、キャパシタのセパレータ、エレクトロクロミック型表示素子のセパレータ等の電気化学ディバイスとしても用いることができる。
(Use of organic-inorganic composite)
In the organic-inorganic composite obtained by the present invention, the inorganic fine particles as the reinforcing component are plate-like having an aspect ratio, and the particle size can be extremely small and the content can be increased. It can be used as a reinforcing agent for polymers. In this case, the dimensional stability against temperature change and the effect of reinforcing various mechanical strengths can be enhanced as compared with the case of using an organic-inorganic composite having spherical fine particles. Further, since the composite has processability due to organic components, it can be pressure-molded and can be used as various structural materials. Further, the composite can also be used as a polar solvent absorber that holds a large amount of polar solvent (10 times or more with respect to the weight of the composite) due to the high inorganic fraction and the polar group of the organic component. In particular, when the polar solvent is an electrolyte, it can also be used as an electrochemical device such as a battery separator holding the electrolyte, a capacitor separator, or an electrochromic display element separator.

特に有機ポリマー成分がポリ尿素である場合には、各種原料として極めて広範囲にて用いられるホスゲンを使用して合成できるため、ホスゲンを使用可能な設備さえ有していれば安価に製造することができる。また、上記用途のうち、特に極性溶媒吸収体や、電解液保持体として用いる場合には、極性基である尿素結合が全複合体重量に対して多量に存在するため、極性溶媒の保持量を特に高くすることができ、好適に用いることができる。   In particular, when the organic polymer component is polyurea, it can be synthesized using phosgene, which is used in a very wide range as various raw materials. . In addition, among the above uses, particularly when used as a polar solvent absorber or an electrolyte solution holder, a large amount of the urea bond, which is a polar group, is present with respect to the total complex weight. It can be made particularly high and can be used suitably.

以下に実施例を用いて本発明を更に具体的に説明する。特に断らない限り、「部」は「質量部」を表す。   Hereinafter, the present invention will be described more specifically with reference to examples. Unless otherwise specified, “part” means “part by mass”.

(実施例1:酸化アルミニウム/ポリ尿素複合体の合成1)
イオン交換水38.5部に1,4−ジアミノブタン1.21部、浅田化学(株)製アルミン酸ナトリウム粉末P−100(Al,54質量%、NaO,36質量%)2.43部を加え、25℃で15分間攪拌し、均質透明な水溶液(B)を得た。室温下でこの水溶液(B)を300mlセパラフラスコ中に仕込み、アンカー翼を用いて毎分300回転で攪拌しながら、トリホスゲン1.34部をトルエン44.4部に溶解させた有機溶液(A)を20秒かけて滴下した。攪拌開始後5分後より白色綿状物が徐々に析出しだした。15分以降は生成量に増加は見られなかったため、攪拌開始後25分で合成操作を終了した。この操作で得られた白色生成物が分散した液を、直径90mmのヌッチェを用い目開き4μmのろ紙上で減圧濾過した。ヌッチェ上の生成物をメタノール100部に分散させスターラーで30分間攪拌し減圧濾過することで洗浄処理を行った。引き続き同様な洗浄操作を蒸留水100部を用いて行い減圧濾過することで、白色の酸化アルミニウム/ポリ尿素複合体のウエットケーキを得た。
(Example 1: Synthesis 1 of aluminum oxide / polyurea complex)
1,4-diaminobutane 1.21 parts in ion-exchanged water 38.5 parts, sodium aluminate powder P-100 manufactured by Asada Chemical Co., Ltd. (Al 2 O 3 , 54 mass%, Na 2 O, 36 mass%) 2.43 parts were added, and the mixture was stirred at 25 ° C. for 15 minutes to obtain a homogeneous transparent aqueous solution (B). An organic solution (A) in which 1.34 parts of triphosgene was dissolved in 44.4 parts of toluene while the aqueous solution (B) was charged into a 300 ml Separa flask at room temperature and stirred at 300 revolutions per minute using an anchor blade. Was added dropwise over 20 seconds. From 5 minutes after the start of stirring, a white cotton-like product gradually started to precipitate. Since no increase was observed in the production amount after 15 minutes, the synthesis operation was completed 25 minutes after the start of stirring. The liquid in which the white product obtained by this operation was dispersed was filtered under reduced pressure on a filter paper having an opening of 4 μm using a Nutsche having a diameter of 90 mm. The product on Nutsche was dispersed in 100 parts of methanol, stirred for 30 minutes with a stirrer, and filtered under reduced pressure for washing treatment. Subsequently, a similar washing operation was performed using 100 parts of distilled water, followed by filtration under reduced pressure to obtain a wet cake of a white aluminum oxide / polyurea complex.

(実施例2:酸化アルミニウム、ポリアミド複合体の合成2)
実施例1の水溶液(B)で用いたアルミン酸ナトリウムを浅田化学(株)製アルミン酸ナトリウム溶液#2019(Al,20質量%、NaO,19質量%)4.60部に、用いたジアミンを1,6−ジアミノヘキサン1.53部に、用いたイオン交換水の量を45.5部に変更した以外は実施例1に記載した方法と同様にして、白色の有機無機複合体ウエットケーキを得た。
(Example 2: Synthesis 2 of aluminum oxide and polyamide composite)
The sodium aluminate used in the aqueous solution (B) of Example 1 was added to 4.60 parts of sodium aluminate solution # 2019 (Al 2 O 3 , 20% by mass, Na 2 O, 19% by mass) manufactured by Asada Chemical Co., Ltd. In the same manner as described in Example 1, except that the diamine used was changed to 1.53 parts of 1,6-diaminohexane and the amount of ion-exchanged water used was changed to 45.5 parts. A composite wet cake was obtained.

(実施例3:酸化アルミニウム/ポリウレタン複合体の合成)
(ジクロロホーメート化合物の合成)
1.4−ブタンジオール2.583部にトリホスゲン2.835部を加え常温下で30分間攪拌することで、トリホスゲンを完全に溶解させた。さらにトリホスゲンを3.000g加え常温で30分間攪拌することで、粘調な淡黄色の透明液体を得た。該液体を攪拌しつつ0.02MPaで3時間減圧処理することで、残存した過剰のトリホスゲン及び、ジオールがホスゲン系化合物によりクロロホーメート化する際に発生する塩化水素を除去した。以上の操作により、1.4−ブタンジオールの両末端をクロロホーメート化した、ブタン−ビス−クロルギ酸エステルを得た。
(Example 3: Synthesis of aluminum oxide / polyurethane composite)
(Synthesis of dichloroformate compound)
Triphosgene 2.835 parts was added to 2.583 parts of 1.4-butanediol and stirred for 30 minutes at room temperature to completely dissolve the triphosgene. Further, 3.000 g of triphosgene was added and stirred at room temperature for 30 minutes to obtain a viscous light yellow transparent liquid. The liquid was subjected to vacuum treatment at 0.02 MPa for 3 hours while stirring to remove the remaining excess triphosgene and hydrogen chloride generated when the diol was chloroformated with the phosgene compound. By the above operation, butane-bis-chloroformate ester in which both ends of 1.4-butanediol were chloroformated was obtained.

(酸化アルミニウム/ポリウレタン複合体の合成)
有機溶液(A)として、ブタン−ビス−クロルギ酸エステル2.924部にトルエン44.4部を溶解させたものを用いた以外は、実施例1に記載した方法と同様にして、白色の酸化アルミニウム/ポリウレタン複合体のウエットケーキを得た。
(Synthesis of aluminum oxide / polyurethane composite)
As the organic solution (A), white oxidation was performed in the same manner as described in Example 1, except that 2.924 parts of butane-bis-chloroformate was dissolved in 44.4 parts of toluene. A wet cake of an aluminum / polyurethane composite was obtained.

(比較例1)
(比較例1:溶融混練法により作成した酸化アルミニウム/ポリ尿素複合体)
(酸化アルミニウムを含まないポリ尿素の合成)
水溶液(B)中のアルミン酸ナトリウムの替わりに水酸化ナトリウム1.247部を用いた以外は実施例1と同様な方法で合成をおこなうことで、無機成分を一切含まないポリ尿素ウエットケーキを得た。得られたポリ尿素ウエットケーキを120℃で2時間乾燥させ、乾燥ポリ尿素を得た。このようにして得られたポリ尿素10部と平均粒径100nmの酸化アルミニウム粉末5.0部とを、ツバコー製小型2軸押し出し機MP2015中で200℃で溶融混練することで、ペレット状の有機無機複合体を得た。混練操作に先立つ原料仕込み操作は、酸化アルミニウムの粒径が極めて小さいことによる粉体の飛散が生じやすく極めて困難であった。
(Comparative Example 1)
(Comparative Example 1: Aluminum oxide / polyurea composite prepared by melt kneading method)
(Synthesis of polyurea containing no aluminum oxide)
A polyurea wet cake containing no inorganic components is obtained by synthesis in the same manner as in Example 1 except that 1.247 parts of sodium hydroxide is used instead of sodium aluminate in the aqueous solution (B). It was. The obtained polyurea wet cake was dried at 120 ° C. for 2 hours to obtain a dried polyurea. 10 parts of polyurea thus obtained and 5.0 parts of aluminum oxide powder having an average particle diameter of 100 nm were melt-kneaded at 200 ° C. in a small twin screw extruder MP2015 made by Tsubako, thereby forming a pellet-like organic material. An inorganic composite was obtained. The raw material charging operation prior to the kneading operation is very difficult because powder scattering due to the extremely small particle size of aluminum oxide is likely to occur.

<各種複合体の材料特性の評価>
上記操作で得られた複合体について、以下の項目の測定行い、得られた結果を表1に示した。
<Evaluation of material properties of various composites>
The composite obtained by the above operation was measured for the following items, and the results obtained are shown in Table 1.

(1)無機化合物含有率(灰分)の測定法:
各材料に含まれる無機化合物の含有率の測定法は以下の通りである。
各材料を120℃で2時間空気中で絶乾させることで、乾燥複合体を得た。これを精秤(複合体質量)したのち、空気中、600℃で3時間焼成し、有機ポリマー成分を完全に焼失させ、焼成後の質量を測定し灰分質量(=酸化アルミニウム質量)とした。下式により酸化アルミニウム含有率を算出した。
酸化アルミニウム含有率(質量%)=(灰分質量/複合体質量)×100
実施例1〜3で得られた複合体では焼成により有機ポリマーを除去しても、焼成前の形状を維持したのに対し、比較例1で得られた複合体では、原型を留めていなかった。
(1) Measuring method of inorganic compound content (ash content):
The measuring method of the content rate of the inorganic compound contained in each material is as follows.
Each material was completely dried in air at 120 ° C. for 2 hours to obtain a dry composite. This was precisely weighed (composite mass) and then calcined in air at 600 ° C. for 3 hours to completely burn off the organic polymer component, and the mass after firing was measured to obtain the ash mass (= aluminum oxide mass). The aluminum oxide content was calculated from the following formula.
Aluminum oxide content (mass%) = (mass ash / composite mass) × 100
In the composites obtained in Examples 1 to 3, even when the organic polymer was removed by firing, the shape before firing was maintained, whereas in the composite obtained in Comparative Example 1, the prototype was not retained. .

(2)複合体中の無機化合物の粒径測定および分散状態の観察:
複合体を170℃、20MPa/cm2 の条件で2時間熱プレスを行い、厚さ約1mmの複合体からなる薄片を得た。これをマイクロトームを用いて厚さ75nmの超薄切片とした。得られた切片を日本電子社製透過型電子顕微鏡「JEM−200CX」にて観察した。実施例1および3では酸化アルミニウムは短軸径5nm以下でかつ一定以上のアスペクト比を有する直線状(断面が直線状であるため、無機微粒子は板状であると考えられる。の暗色の像として、明るい有機ポリマー中に存在しているのが観察された。その際、大多数の酸化アルミニウム微粒子は板の側面で他の微粒子と連結構造を有していた。一方、板の面同士が凝集した粒子は見られなかった。また実施例2は実施例1,3に比べて無機成分の含有率が低いことに起因して、短軸径5nm以下の酸化アルミニウムの粒子同士が独立した分散状態で存在したのが観察された。しかし一部の粒子については実施例1,3と同様に板側面で他の微粒子と連結構造を有しているものもあった。一方、比較例1では、酸化アルミニウムの大部分の粒子が凝集体を作り、1μm以上の粗大粒子としてポリマー中に存在していることが観察された。図1は、実施例1で合成した酸化アルミニウム/ポリ尿素複合体の透過型電子顕微鏡写真である。
(2) Measurement of particle size of inorganic compound in composite and observation of dispersion state:
The composite was hot-pressed for 2 hours under conditions of 170 ° C. and 20 MPa / cm 2 to obtain a flake made of the composite having a thickness of about 1 mm. This was made into an ultrathin section having a thickness of 75 nm using a microtome. The obtained section was observed with a transmission electron microscope “JEM-200CX” manufactured by JEOL Ltd. In Examples 1 and 3, aluminum oxide has a short axis diameter of 5 nm or less and a linear shape having an aspect ratio of a certain level or more (since the cross section is linear, the inorganic fine particles are considered to be plate-like. As a dark image) The majority of the aluminum oxide particles had a connecting structure with other particles on the side of the plate, while the surfaces of the plate were agglomerated. In Example 2, aluminum oxide particles having a minor axis diameter of 5 nm or less were dispersed independently because the content of the inorganic component was lower than in Examples 1 and 3. However, some of the particles had a connecting structure with other fine particles on the side of the plate as in Examples 1 and 3. On the other hand, in Comparative Example 1, Most grains of aluminum oxide Were observed to form aggregates and exist in the polymer as coarse particles of 1 μm or more, and is a transmission electron micrograph of the aluminum oxide / polyurea composite synthesized in Example 1. FIG. .

引き続き、TEM写真から以下の項目について測定を行った。
1.平均短軸径:無機化合物粒子の短軸の長さをそれぞれ測定し、100個の粒子の平均値を本測定値とした。
2.粒子平均アスペクト比:無機化合物粒子の長軸と短軸の長さをそれぞれ測定し、長軸/短軸の数値を粒子毎に算出し、100個の粒子の平均値を本測定値とした。
また、これらに加えて測定を行った粒子の最大短軸径(厚さ)と、粒子最小アスペクト比と、更に無機微粒子の板側面での連結構造の有無についても表1に記載した。
Subsequently, the following items were measured from the TEM photograph.
1. Average minor axis diameter: The length of the minor axis of each inorganic compound particle was measured, and the average value of 100 particles was defined as the measured value.
2. Particle average aspect ratio: The lengths of the major axis and minor axis of the inorganic compound particles were measured, the numerical values of the major axis / minor axis were calculated for each particle, and the average value of 100 particles was taken as the actual measurement value.
In addition to these, Table 1 also shows the maximum minor axis diameter (thickness) of the measured particles, the minimum particle aspect ratio, and the presence or absence of a connecting structure on the side surface of the inorganic fine particles.

以上の測定によって得られた各実施例及び比較例有機無機複合体の各種物性、及びTEM写真からの測定結果について表1にまとめた。 The various physical properties of each Example and Comparative Example organic-inorganic composite obtained by the above measurement and the measurement results from the TEM photograph are summarized in Table 1.

Figure 2006176636
Figure 2006176636

表1で示された通り、比較例1では平均粒径100nmの酸化アルミニウム粉末を使用したにもかかわらず、混練の工程で酸化アルミニウム成分の凝集が生じ、ナノメートルオーダーの複合を行うことができなかった。また、その形状も不定形の粒子塊状物であり、板状等に制御することはできなかった。一方、本発明により酸化アルミニウム微粒子を、観察したすべての粒子の短軸径が5nm以下、アスペクト比が3以上の形状を有した(つまり凝集物がない)板状のナノメートルオーダー微粒子を有する有機無機複合体を得ることができた。加えて、実施例1、3では40質量%以上の高い含有率で板状酸化アルミニウム微粒子を含有し、且つその微粒子の板側面(長軸方向に)連結した構造を有した。該含有率が少なかった実施例2においても類似な構造を一部に有した。
また本発明では、以上の特徴を持つ有機無機複合体を、安価なアルミン酸ナトリウムを無機成分の原料として用い、常温常圧下で30分以下の短時間の操作で得ることができた。
As shown in Table 1, in Comparative Example 1, although aluminum oxide powder having an average particle size of 100 nm was used, aggregation of the aluminum oxide component occurred in the kneading process, and nanometer order composites could be performed. There wasn't. Moreover, the shape is also an indeterminate particle lump, and could not be controlled to a plate shape or the like. On the other hand, the aluminum oxide fine particles according to the present invention are organic particles having plate-like nanometer order fine particles having a shape with a minor axis diameter of 5 nm or less and an aspect ratio of 3 or more (that is, no aggregates). An inorganic composite could be obtained. In addition, Examples 1 and 3 had a structure in which the plate-like aluminum oxide fine particles were contained at a high content of 40% by mass or more and were connected to the plate side surface (in the long axis direction). Even in Example 2 where the content was low, a similar structure was partially included.
Further, in the present invention, an organic-inorganic composite having the above characteristics can be obtained by using an inexpensive sodium aluminate as a raw material for an inorganic component by a short operation of 30 minutes or less under normal temperature and pressure.

実施例1で合成した酸化アルミニウム/ポリ尿素複合体の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of the aluminum oxide / polyurea composite synthesized in Example 1. FIG.

Claims (4)

ポリウレタンおよびポリ尿素からなる群から選ばれる少なくとも1種の有機ポリマーと、酸化アルミニウム微粒子とを有する有機無機複合体であって、前記酸化アルミニウム微粒子が短軸径5nm以下、アスペクト比3以上である有機無機複合体。 An organic-inorganic composite having at least one organic polymer selected from the group consisting of polyurethane and polyurea and aluminum oxide fine particles, wherein the aluminum oxide fine particles have a minor axis diameter of 5 nm or less and an aspect ratio of 3 or more. Inorganic composite. 前記酸化アルミニウム微粒子が長軸方向に連結した構造を有する請求項1に記載の有機無機複合体。 The organic-inorganic composite according to claim 1, wherein the aluminum oxide fine particles have a structure in which the fine particles are connected in the major axis direction. 前記複合体100質量%中の酸化アルミニウム微粒子の含有率が10〜60質量%である請求項1または2記載の有機無機複合体。 The organic-inorganic composite according to claim 1 or 2, wherein the content of aluminum oxide fine particles in 100% by mass of the composite is 10 to 60% by mass. ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液(A)と、アルミン酸アルカリおよびジアミンを水に溶解した水溶液(B)とを接触、反応させることを特徴とする請求項1〜3のいずれか一項に記載の有機無機複合体の製造方法。
An organic solution (A) in which one compound selected from the group consisting of a dichloroformate compound and a phosgene compound is dissolved in an organic solvent and an aqueous solution (B) in which an alkali aluminate and a diamine are dissolved in water are contacted and reacted. The manufacturing method of the organic inorganic composite as described in any one of Claims 1-3 characterized by the above-mentioned.
JP2004371053A 2004-12-22 2004-12-22 Method for producing organic-inorganic composite Active JP4715194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004371053A JP4715194B2 (en) 2004-12-22 2004-12-22 Method for producing organic-inorganic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371053A JP4715194B2 (en) 2004-12-22 2004-12-22 Method for producing organic-inorganic composite

Publications (2)

Publication Number Publication Date
JP2006176636A true JP2006176636A (en) 2006-07-06
JP4715194B2 JP4715194B2 (en) 2011-07-06

Family

ID=36731033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371053A Active JP4715194B2 (en) 2004-12-22 2004-12-22 Method for producing organic-inorganic composite

Country Status (1)

Country Link
JP (1) JP4715194B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005896A (en) * 2002-03-20 2004-01-08 Hitachi Maxell Ltd Magnetic tape and magnetic tape cartridge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005896A (en) * 2002-03-20 2004-01-08 Hitachi Maxell Ltd Magnetic tape and magnetic tape cartridge

Also Published As

Publication number Publication date
JP4715194B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP6299559B2 (en) Heat ray shielding particles, heat ray shielding particle dispersion, heat ray shielding particle dispersion, heat ray shielding particle dispersion combined transparent base material, infrared absorbing transparent base material, method for producing heat ray shielding particles
Mallakpour et al. Ultrasonic-assisted fabrication and characterization of PVC-SiO2 nanocomposites having bovine serum albumin as a bio coupling agent
Ambilkar et al. In situ zirconia: A superior reinforcing filler for high-performance nitrile rubber composites
TWI276669B (en) Process for production of titanium dioxide pigment and resin compositions containing the pigment
JP6179015B2 (en) Granules, method for producing the same, and property modifying material
JP4715194B2 (en) Method for producing organic-inorganic composite
JP4074916B2 (en) Organic-inorganic composite and method for producing the same
JP4406834B2 (en) Method for producing composite of organic polymer and glass and composite
JP5877745B2 (en) Composite metal hydroxide particles and resin composition containing the same
JP4565329B2 (en) Organic-inorganic composite and method for producing the same
TWI334429B (en) Organic-inorganic complex material and production method thereof
JP2008179711A (en) Method for producing organic-inorganic composite material and organic-inorganic composite material
JP2009292885A (en) Production method of organic-inorganic composite material and organic-inorganic composite material
JP2009227771A (en) Method for producing organic-inorganic composite
JP4245082B2 (en) Method for producing organic-inorganic composite
JP2006037004A (en) Organic and inorganic composite material and method for producing the same
Li et al. The effect of copper (II) on the thermal and mechanical properties of poly (vinyl alcohol)/silica hybrid
JP2005154684A (en) Process for producing composite of organic polymer and metal compound, and composite
JP2005200605A (en) Method for producing composite of organic polymer and metal compound, and composite
Motaung Effect of metal oxide nano-particles on the properties and degradation behaviour of polycarbonate and poly (methyl methacrylate)
Baskaran et al. Effect of Nano Zinc Oxide on Mechanical and Thermal Properties of Unsaturated Polyester/Nano Zinc Oxide Composites
JP2005068311A (en) Method for producing hybrid of organic polymer with metallic compound and hybrid
JP5874357B2 (en) Resin composition, resin kneaded material and molded article
Gkika et al. Nanomaterials and Their Properties: Thermal Analysis, Physical, Mechanical and Chemical Properties
JP2009209280A (en) Method for producing organic-inorganic composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R150 Certificate of patent or registration of utility model

Ref document number: 4715194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250