JP2009227771A - Method for producing organic-inorganic composite - Google Patents
Method for producing organic-inorganic composite Download PDFInfo
- Publication number
- JP2009227771A JP2009227771A JP2008073420A JP2008073420A JP2009227771A JP 2009227771 A JP2009227771 A JP 2009227771A JP 2008073420 A JP2008073420 A JP 2008073420A JP 2008073420 A JP2008073420 A JP 2008073420A JP 2009227771 A JP2009227771 A JP 2009227771A
- Authority
- JP
- Japan
- Prior art keywords
- inorganic
- organic
- organic solvent
- metal
- diamine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ポリアミド、ポリ尿素、ポリウレタンをマトリクスポリマーとする有機無機複合体の製造方法に関する。 The present invention relates to a method for producing an organic-inorganic composite using polyamide, polyurea, and polyurethane as a matrix polymer.
有機ポリマーがもつ加工性、柔軟性等の特性と、無機材料が持つ耐熱性、耐摩耗性等、表面硬度等の特性を付与することを目的として、無機微粒子を有機ポリマー内に分散、複合化することにより有機無機複合体を作り出す検討が広く行われている。
例えば、無機材料固有の特性を生かすような有機無機複合体の設計は、極力小さい粒径の無機微粒子を高い充填率で複合化することで、より高い複合化効果を期待することができる。粒径が小さいほど無機微粒子の重量当たりの表面積が大きくなり、有機ポリマーと無機材料との界面領域が広くなるためである。更に、無機微粒子の充填率が高くなると、無機材料の特性を強く出せることとなる。
Dispersed and compounded inorganic fine particles in organic polymer for the purpose of imparting properties such as processability and flexibility of organic polymer and heat hardness and wear resistance of inorganic material such as surface hardness. Thus, studies for producing organic-inorganic composites have been widely conducted.
For example, the design of an organic-inorganic composite that takes advantage of the properties unique to inorganic materials can be expected to have a higher composite effect by combining inorganic fine particles having a particle size as small as possible with a high filling rate. This is because the smaller the particle size, the larger the surface area per weight of the inorganic fine particles, and the wider the interface region between the organic polymer and the inorganic material. Furthermore, when the filling rate of the inorganic fine particles is increased, the characteristics of the inorganic material can be enhanced.
ポリアミド、ポリ尿素、ポリウレタン等のポリマーをマトリクスポリマーとしナノサイズの無機微粒子を高い充填率で含む有機無機複合体を合成することができる例が開示されている。例えば特許文献1には水にジアミンと珪酸アルカリを溶解させた水溶液を、有機溶媒に溶解させたジカルボン酸ハライドを反応させる方法によるシリカとポリアミドの有機無機複合体の製造方法が記載されている。また特許文献2には、水にジアミンとアルカリ金属含有の複合酸化物類を溶解させた水溶液を、有機溶媒に溶解させたジカルボン酸ハライドやジクロロホーメート化合物、ホスゲン系化合物と反応させる方法による金属酸化物とポリアミド、ポリ尿素、ポリウレタン等有機無機複合体の製造方法が記載されている。
これらの方法は皆、ジアミンの水溶液と、ジカルボン酸ハライド等の有機溶液とを界面重縮合法により反応させる方法であり、従って原料であるジアミンは完全に水に溶解させる必要がある。
An example is disclosed in which an organic-inorganic composite containing nano-sized inorganic fine particles at a high filling rate using a polymer such as polyamide, polyurea, or polyurethane as a matrix polymer is disclosed. For example, Patent Document 1 describes a method for producing an organic-inorganic composite of silica and polyamide by a method in which an aqueous solution obtained by dissolving diamine and alkali silicate in water is reacted with a dicarboxylic acid halide dissolved in an organic solvent. Patent Document 2 discloses a metal obtained by a method in which an aqueous solution in which a diamine and an alkali metal-containing composite oxide are dissolved in water is reacted with a dicarboxylic acid halide, a dichloroformate compound, or a phosgene compound dissolved in an organic solvent. A method for producing an organic-inorganic composite such as an oxide and polyamide, polyurea, or polyurethane is described.
These methods are all methods in which an aqueous solution of diamine and an organic solution such as dicarboxylic acid halide are reacted by an interfacial polycondensation method, and therefore, the diamine as a raw material must be completely dissolved in water.
例えば特許文献2の段落0022には、ジアミンの例としてフェニレンジアミン、ジアミノナフタレン等の芳香族ジアミンが記載されている。しかしながら芳香族ジアミンは、水に対する溶解度が著しく低い化合物が多いため、前記方法ではポリマー重合に必要なモノマーを十分に合成系内に供給できない上、水中のモノマー濃度が低くなるため反応が思うように進行せず、得られる有機無機複合体の有機成分の分子量が非常に低いという問題があった。複数の芳香環部位を持つジアミンを原料とするポリアミドは高い耐熱性を有しエンジニアリングプラスチックとして需要の高いポリマーであるが、該ポリマーをマトリクスとする有機無機複合体は、前記方法では所望するものを得ることができない。 For example, paragraph 0022 of Patent Document 2 describes aromatic diamines such as phenylenediamine and diaminonaphthalene as examples of diamines. However, since aromatic diamines have many compounds with extremely low solubility in water, the above method cannot sufficiently supply the monomers necessary for polymer polymerization into the synthesis system, and the reaction is expected because the monomer concentration in water is low. There was a problem that the molecular weight of the organic component of the obtained organic-inorganic composite did not proceed and the molecular weight was very low. Polyamides made from diamines having a plurality of aromatic ring sites are polymers with high heat resistance and high demand as engineering plastics, but organic-inorganic composites using such polymers as a matrix are those desired in the above method. Can't get.
また、前記方法は、ポリマー原料を水溶液と有機溶液とに分けて存在させ、両溶液を接触させることでポリマー合成と無機析出とを開始する反応である。そのため、ポリマー合成反応速度と無機析出速度とが近い場合には、ポリマー中に無機成分が微粒径で分散されるが、双方の反応速度が異なる場合には、反応速度の速い成分の固体化が進行することで、微粒径での複合化がうまくいかずに、析出する無機が粗大化する問題があった。特に無機析出速度が速すぎる場合、あるいはポリマー合成速度が遅すぎる場合はこの問題が顕著となる。しかしながら前記方法では、これらの反応速度をコントロールするには、使用する無機材料とポリマー原料とを上手く組み合わせる以外に有効な方法がなく、得られる有機無機複合体の組成は限定されるものとなる。 Moreover, the said method is reaction which starts a polymer synthesis | combination and inorganic precipitation by making a polymer raw material exist separately in aqueous solution and an organic solution, and making both solutions contact. Therefore, when the polymer synthesis reaction rate is close to the inorganic precipitation rate, the inorganic component is dispersed with a fine particle size in the polymer, but when both reaction rates are different, solidification of the component with a fast reaction rate is achieved. As a result of the progress of the above, there was a problem that the composite with a fine particle size was not successful and the deposited inorganic material was coarsened. In particular, when the inorganic precipitation rate is too high, or the polymer synthesis rate is too low, this problem becomes significant. However, in the above-described method, there is no effective method for controlling these reaction rates other than the successful combination of the inorganic material and the polymer raw material to be used, and the composition of the obtained organic-inorganic composite is limited.
一方、ポリアミドを融点以上で無機粒子をエクストリューダ等で溶融混練する手法も知られている。しかしながらナノサイズの無機粒子を溶融混練する方法は、混練中に2次凝集を生じる上、芳香族ポリアミドの場合には融点が350℃以上と高い構造が多く混練温度が非常に高くなり、溶融混練が困難、且つ仮に溶融混練が可能であっても製造に多量のエネルギーを必要とする問題があった。
本発明が解決しようとする課題は、ポリアミド、ポリ尿素、ポリウレタン等のポリマーをマトリクスとし、無機成分を好ましくは100nm以下の粒径で分散させた有機無機複合体を、モノマー原料や無機原料の組み合わせを限定することなく、且つ簡便に得る方法を提供することにある。 The problem to be solved by the present invention is to combine an organic-inorganic composite in which a polymer such as polyamide, polyurea, or polyurethane is used as a matrix and an inorganic component is dispersed with a particle diameter of preferably 100 nm or less, and a combination of monomer raw materials and inorganic raw materials. It is providing the method of obtaining easily without limiting.
本発明者は、ジカルボン酸ハライド等とジアミンとを、各々が未反応または殆ど反応が進まない状態で有機溶媒中に共存させて均一な有機溶剤溶液とし、更に該有機溶剤溶液を加温することで、ジカルボン酸ハライド等とジアミンとの反応をある程度進行させオリゴマー化(予備重合)した後、金属酸化物、金属水酸化物及び金属炭酸化物からなる群から選ばれる少なくとも1つのアルカリ金属を含む2つ以上の金属元素を有する金属化合物や、珪酸アルカリを含有する水溶液と混合させることで、前記課題を解決できることを見出した。
ジカルボン酸ハライド等とジアミンとを予めオリゴマー化しておくことで、無機析出反応が進行しすぎることを防ぎ、その後両溶液を接触させた後の両反応速度を(見た目)ほぼ一定化させることによりそれぞれの反応終点時間を近づけることが可能となる。またオリゴマー鎖により、無機成分の粗大析出を防ぐことが可能となる。
The inventor makes a dicarboxylic acid halide or the like and a diamine coexist in an organic solvent in a state in which each of them is unreacted or hardly undergoes reaction to form a uniform organic solvent solution, and further heats the organic solvent solution. And 2) containing at least one alkali metal selected from the group consisting of metal oxides, metal hydroxides and metal carbonates after proceeding to some extent by the reaction of dicarboxylic acid halide and the like with diamine to oligomerize (preliminary polymerization). It has been found that the above problem can be solved by mixing with a metal compound having two or more metal elements or an aqueous solution containing an alkali silicate.
By pre-oligomerizing dicarboxylic acid halide and diamine with diamine in advance, it is possible to prevent the inorganic precipitation reaction from proceeding too much, and then to make both reaction rates after contacting both solutions (appearance) substantially constant, respectively. It is possible to approach the reaction end time of. In addition, the oligomer chain can prevent coarse precipitation of inorganic components.
即ち本発明は、ジカルボン酸ハライド、ジクロロホーメート化合物、ホスゲン系化合物からなる群から選ばれる少なくとも1種のモノマー(a)及びジアミン(b)を含有する、有機溶剤溶液(1)と、金属酸化物、金属水酸化物及び金属炭酸化物からなる群から選ばれる少なくとも1つのアルカリ金属を含む2つ以上の金属元素を有する金属化合物(c−1)、珪酸アルカリ(c−2)を含有する水溶液(2)とを、前記有機溶剤溶液(1)を加温することで前記モノマー(a)と前記ジアミン(b)とを一部反応させた後に混合し、前記有機溶剤溶液(1)と前記水溶液(2)とを、少なくとも一部が相溶した状態に保ち又は分離した状態で共存させ、モノマー(a)とジアミン(b)との反応をさらに進行させると同時に無機成分を析出させる有機無機複合体の製造方法を提供する。 That is, the present invention relates to an organic solvent solution (1) containing at least one monomer (a) and diamine (b) selected from the group consisting of a dicarboxylic acid halide, a dichloroformate compound, and a phosgene compound, and a metal oxide. An aqueous solution containing a metal compound (c-1) having two or more metal elements containing at least one alkali metal selected from the group consisting of a product, a metal hydroxide and a metal carbonate, and an alkali silicate (c-2) (2) is mixed after the monomer (a) and the diamine (b) are partially reacted by heating the organic solvent solution (1), and the organic solvent solution (1) and the The aqueous solution (2) is allowed to coexist in a state where it is at least partially compatible or separated, and the reaction between the monomer (a) and the diamine (b) is further advanced, and at the same time, the inorganic component is precipitated. Provided is a method for producing an organic-inorganic composite.
本発明により、芳香族ジアミンを原料とするポリアミド、ポリ尿素、ポリウレタン等の耐熱性が高いポリマーをマトリクスポリマーとし、該マトリクスポリマー中に無機成分が100nm以下の微小な粒径で分散した有機無機複合体を、簡便に得ることができる。
本発明においては、モノマー原料や無機原料の組み合わせを限定することがないので、様々な組み合わせの有機無機複合体を得ることが可能となる。また、本発明の製造方法は、汎用の攪拌装置を用いて常温常圧下、短時間の1ステップで行うことが可能である。
更に本発明の製法方法は、水に難溶な芳香族ジアミンを原料とする有機無機複合体も簡便に得ることが可能である。
According to the present invention, an organic-inorganic composite in which a polymer having high heat resistance such as polyamide, polyurea, polyurethane and the like using aromatic diamine as a raw material is used as a matrix polymer, and inorganic components are dispersed in the matrix polymer with a minute particle size of 100 nm or less. The body can be easily obtained.
In the present invention, the combination of monomer raw materials and inorganic raw materials is not limited, so that various combinations of organic-inorganic composites can be obtained. In addition, the production method of the present invention can be performed in one step in a short time at room temperature and normal pressure using a general-purpose stirrer.
Furthermore, the production method of the present invention can easily obtain an organic-inorganic composite using an aromatic diamine hardly soluble in water as a raw material.
(有機溶剤溶液(1))
本発明で使用する有機溶剤溶液(1)は、ジカルボン酸ハライド、ジクロロホーメート化合物、ホスゲン系化合物からなる群から選ばれる少なくとも1種のモノマー(a)とジアミンと有機溶剤とを含有する。
(Organic solvent solution (1))
The organic solvent solution (1) used in the present invention contains at least one monomer (a) selected from the group consisting of a dicarboxylic acid halide, a dichloroformate compound, and a phosgene compound, a diamine, and an organic solvent.
(モノマー(a) ジカルボン酸ハライド)
前記ジカルボン酸ハライドとしては、コハク酸、アジピン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸の酸ハロゲン化物、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸の酸ハロゲン化物、あるいはこれら芳香環の水素をハロゲン原子、ニトロ基、アルキル基などで置換した芳香族ジカルボン酸の酸ハロゲン化物や、2,6−ナフタレンジカルボン酸ジクロライド、1,5−ナフタレンジカルボン酸ジクロライド等複数の芳香環からなるジカルボン酸の酸ハロゲン化物などが例として挙げられ、これらは単独で、または2種以上を組み合わせて使用することができる。なかでも芳香族ジカルボン酸のハロゲン化物は、ジアミンとの反応性が脂肪族ジカルボン酸のハロゲン化物よりも低く、ジアミンと共に有機溶媒に溶解させた状態で長時間保持しやすいので特に好ましく用いられる。
(Monomer (a) Dicarboxylic acid halide)
Examples of the dicarboxylic acid halide include an acid halide of an aliphatic dicarboxylic acid such as succinic acid, adipic acid, azelaic acid, and sebacic acid, an acid halide of an aromatic dicarboxylic acid such as isophthalic acid and terephthalic acid, or an aromatic ring of these aromatic rings. Dicarboxylic acids composed of a plurality of aromatic rings such as acid halides of aromatic dicarboxylic acids in which hydrogen is substituted with halogen atoms, nitro groups, alkyl groups, 2,6-naphthalenedicarboxylic acid dichlorides, 1,5-naphthalenedicarboxylic acid dichlorides, etc. Examples of the acid halides may be used singly or in combination of two or more. Of these, halides of aromatic dicarboxylic acids are particularly preferably used because they have a lower reactivity with diamines than halides of aliphatic dicarboxylic acids and can be easily retained in a state dissolved in an organic solvent together with diamines.
(モノマー(a) ジクロロホーメート化合物)
前記ジクロロホーメート化合物としては、1,2−エタンジオ−ル、1,3−プロパンジオ−ル、1,4−ブタンジオ−ル、1,6−ヘキサンジオ−ル、1,8−オクタンジオ−ル等の脂肪族ジオ−ル類、1個または2個以上の芳香環に水酸基を2個持つレゾルシン(1,3−ジヒドロキシベンゼン)、ヒドロキノン(1,4−ジヒドロキシベンゼン)、1,6−ジヒドロキシナフタレン、2,2’−ビフェノ−ル、ビスフェノ−ルS、ビスフェノ−ルA、テトラメチルビフェノ−ル等の2価フェノ−ル類の水酸基を全てホスゲン化処理によりクロロホーメート化したものを挙げることができる。これらは単独で、または2種以上を組み合わせて使用することができる。中でも、芳香環を有する化合物が、ジアミンとの反応性が脂肪族の化合物よりも低く、ジアミンと共に有機溶媒に溶解させた状態で長時間保持しやすいので特に好ましく用いられる。
(Monomer (a) Dichloroformate compound)
Examples of the dichloroformate compound include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, and the like. Aliphatic diols, resorcin (1,3-dihydroxybenzene), hydroquinone (1,4-dihydroxybenzene), 1,6-dihydroxynaphthalene, having two hydroxyl groups in one or more aromatic rings, , 2'-biphenol, bisphenol S, bisphenol A, tetramethylbiphenol and the like, all hydroxyl groups of divalent phenols are chlorogenated by phosgenation treatment. . These can be used alone or in combination of two or more. Among them, a compound having an aromatic ring is particularly preferably used because it has a lower reactivity with a diamine than an aliphatic compound and can be easily retained in a state dissolved in an organic solvent together with the diamine.
(モノマー(a) ホスゲン系化合物)
前記ホスゲン系化合物としてはホスゲン、ジホスゲン及びトリホスゲンを挙げることができる。これらは単独で、または2種以上を組み合わせて使用することができる。また、前記ジカルボン酸ハライドや前記ジクロロホーメート化合物とを組み合わせて用いても良い。
(Monomer (a) Phosgene compound)
Examples of the phosgene compound include phosgene, diphosgene and triphosgene. These can be used alone or in combination of two or more. Further, the dicarboxylic acid halide or the dichloroformate compound may be used in combination.
前記モノマー(a)としてジカルボン酸ハロゲン化物を用いた場合は、得られる有機無機複合体のマトリクスポリマーはポリアミドとなる。またジクロロホーメート化合物を用いた場合は、得られる有機無機複合体のマトリクスポリマーはポリウレタンとなる。またホスゲン系化合物を用いた場合は、得られる有機無機複合体のマトリクスポリマーはポリ尿素となる。 When a dicarboxylic acid halide is used as the monomer (a), the matrix polymer of the obtained organic-inorganic composite is polyamide. When a dichloroformate compound is used, the resulting organic / inorganic composite matrix polymer is polyurethane. When a phosgene compound is used, the resulting organic / inorganic composite matrix polymer is polyurea.
(ジアミン(b))
本発明で使用するジアミン(b)は、後述の有機溶剤に一定以上溶解させることができれば特に限定はないが、芳香族ジアミンが本発明の効果を最も発揮できることから好ましい。具体的にはメタフェニレンジアミン、パラフェニレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、クロロフェニレンジアミン、2,5−ジメチル−1,4−フェニレンジアミン等の一つの芳香環を有するジアミン、トルイレンジアミン、4,4´−ジアミノジフェニルメタン、4,4´−ジアミノジフェニルエ−テル、4,4´−ジアミノジフェニルスルフォン、4,4´−チオジアニリン、4,4´−ジアミノベンズアニリド、1,5−ナフチレンジアミン、1,6−ナフチレンジアミン等の芳香環を複数有するジアミン等があげられる。これらの芳香族ジアミンをモノマーとするポリマーは耐熱性が高い等基本特性に優れるものが多く、且つ、水に対する溶解性が低いために前記特許文献に示した方法では所望のポリマーが得られることが困難であるが、本願の方法であれば容易にポリマー化することができる。特に、本発明においては、水に対する20℃での溶解度が5質量%以下であるジアミン(b)でも効率よく反応させることができ好ましい。
(Diamine (b))
The diamine (b) used in the present invention is not particularly limited as long as it can be dissolved in a later-described organic solvent in a certain amount or more, but an aromatic diamine is preferable because the effects of the present invention can be exhibited most. Specifically, diamine having one aromatic ring such as metaphenylenediamine, paraphenylenediamine, metaxylylenediamine, paraxylylenediamine, chlorophenylenediamine, 2,5-dimethyl-1,4-phenylenediamine, and toluylene diene Amine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, 4,4'-thiodianiline, 4,4'-diaminobenzanilide, 1,5- Examples thereof include diamines having a plurality of aromatic rings such as naphthylenediamine and 1,6-naphthylenediamine. Many of these aromatic diamine monomers are excellent in basic properties such as high heat resistance, and because they have low solubility in water, the method shown in the above-mentioned patent document can provide a desired polymer. Although difficult, the method of the present application can be easily polymerized. In particular, in the present invention, diamine (b) having a solubility in water at 20 ° C. of 5% by mass or less is preferable because it can be efficiently reacted.
また、前記例示したジアミンに限らず、有機溶媒中で前記モノマー(a)と安定に共存できるジアミンであれば使用することが可能である。例えば、含側鎖脂肪族ジアミン、脂環族ジアミンが挙げられる。含側鎖脂肪族ジアミンとしては1,2−ジアミノプロパン、2−メチル−1,5−ジアミノペンタン、トリメチルヘキサメチレンジアミン等が例示できる。また、脂環族ジアミンとしては1,3−シクロヘキサンジアミン、1,4−シクロヘキサンジアミン、イソホロンジアミン、4,4´−ジアミノジシクロヘキサンメタン等が例示できる。一方、直鎖脂肪族ジアミンのように反応性の高いジアミンは、有機溶媒中で前記モノマー(a)と安定に共存させることができない場合がある。 Moreover, it is possible to use not only the illustrated diamine but also any diamine that can stably coexist with the monomer (a) in an organic solvent. Examples include side chain aliphatic diamines and alicyclic diamines. Examples of the side chain aliphatic diamine include 1,2-diaminopropane, 2-methyl-1,5-diaminopentane, and trimethylhexamethylenediamine. Examples of the alicyclic diamine include 1,3-cyclohexane diamine, 1,4-cyclohexane diamine, isophorone diamine, and 4,4′-diaminodicyclohexane methane. On the other hand, a highly reactive diamine such as a linear aliphatic diamine may not be able to stably coexist with the monomer (a) in an organic solvent.
本発明で、特に好ましく使用できるジアミン(b)の指標として、ジアミンの第一及び第二の解離段の酸解離定数(pKa)を用いることができる。ジアミンのpKaが高いと溶液中での塩基性が高いため、ジアミン自身が酸除去剤として作用し、前記前記有機溶剤溶液(1)単独でポリマーの合成反応が進行してしまう恐れがある。そのため、ジアミン(b)のpKaは第一、第二の両方の解離段とも7以下、特に好ましくは5以下である。ほぼ全ての全芳香族ジアミンの解離定数はこの範囲内に存在する。 In the present invention, the acid dissociation constant (pKa) of the first and second dissociation stages of diamine can be used as an index of diamine (b) that can be particularly preferably used. If the pKa of the diamine is high, the basicity in the solution is high, so that the diamine itself acts as an acid remover and the organic solvent solution (1) alone may cause a polymer synthesis reaction. Therefore, the pKa of diamine (b) is 7 or less, particularly preferably 5 or less, in both the first and second dissociation stages. The dissociation constants of almost all wholly aromatic diamines are within this range.
(有機溶剤)
本発明では、ポリアミド、ポリウレタン、ポリ尿素等のマトリクスポリマーが合成反応に伴い析出することで、同時に析出する無機成分をナノ粒径で保持することにより無機微粒子化を達成している。従って、本発明で使用する有機溶剤は、前記モノマー(a)と前記ジアミン(b)とを反応させずに溶解させることができると同時に、合成されたポリマーに対する溶解度は低いものが好ましい。一方、ポリアミドやポリウレタンやポリ尿素は構造により有機溶剤に対する溶解性は大きく異なることから、得られるポリマーの溶解性までを加味して適宜選択することが好ましい。また、珪酸アルカリ(c−2)等の脱酸剤としての機能を持つ材料が無い状況でモノマー(a)とジアミン(b)とを一定量反応させる必要があるため、重合反応を阻害しうるプロトン性溶媒以外の溶媒であることが好ましい。なかでも、含窒素の酸受容性の非プロトン性溶媒は予備重合の進行を一定量進行させることが出来るために好ましい。本発明で用いられる有機溶剤の具体的な例としては、トルエン、キシレン等の芳香族炭化水素類、n−ヘキサン等の脂肪族炭化水素類、テトラヒドロフラン、ジメチルエ−テル、ジエチルエ−テル、ジブチルエ−テル、アニソ−ル等のエ−テル類、アセトン、2−ブタノン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸プロピル、酢酸ブチル等の酢酸アルキル、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、n−メチルピロリドン、N−N−ジメチルアセトアミド、ジメチルホルムアミド等の含窒素系有機溶媒、炭酸プロピレン、ジメチルスルホキシド等を例示することができる。これらは、モノマー(a)とジアミン(b)とを良好に溶解させるために複数を組み合わせて用いても良い。
(Organic solvent)
In the present invention, matrix polymers such as polyamide, polyurethane, polyurea, and the like are precipitated during the synthesis reaction, so that inorganic fine particles are achieved by maintaining the inorganic components that are simultaneously precipitated at the nano particle size. Therefore, it is preferable that the organic solvent used in the present invention can be dissolved without reacting the monomer (a) and the diamine (b), and at the same time, has low solubility in the synthesized polymer. On the other hand, polyamides, polyurethanes, and polyureas vary greatly in solubility in organic solvents depending on their structures, and therefore it is preferable to select them appropriately in consideration of the solubility of the resulting polymer. Further, since it is necessary to react a certain amount of the monomer (a) and the diamine (b) in a situation where there is no material having a function as a deoxidizer such as alkali silicate (c-2), the polymerization reaction may be inhibited. A solvent other than the protic solvent is preferred. Of these, a nitrogen-containing acid-accepting aprotic solvent is preferred because it allows a certain amount of prepolymerization to proceed. Specific examples of the organic solvent used in the present invention include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as n-hexane, tetrahydrofuran, dimethyl ether, diethyl ether, and dibutyl ether. Ethers such as anisole, ketones such as acetone, 2-butanone and cyclohexanone, alkyl acetates such as ethyl acetate, propyl acetate and butyl acetate, halogenated hydrocarbons such as chloroform and methylene chloride, n- Examples thereof include nitrogen-containing organic solvents such as methyl pyrrolidone, NN-dimethylacetamide, dimethylformamide, propylene carbonate, dimethyl sulfoxide and the like. A plurality of these may be used in combination in order to dissolve the monomer (a) and the diamine (b) satisfactorily.
(モノマー濃度)
有機溶剤溶液(1)中の前記モノマー(a)と前記ジアミン(b)のモノマー濃度としては、重合反応が十分に進行すれば特に制限されないが、各々のモノマー同士を良好に接触させる観点から、各々0.01〜3モル/Lの濃度範囲、特に0.05〜1モル/Lが好ましい。
(Monomer concentration)
The monomer concentration of the monomer (a) and the diamine (b) in the organic solvent solution (1) is not particularly limited as long as the polymerization reaction proceeds sufficiently, but from the viewpoint of bringing the monomers into good contact with each other, A concentration range of 0.01 to 3 mol / L, particularly 0.05 to 1 mol / L is preferred.
(予備重合条件)
前記有機溶剤溶液(1)は、前記モノマー(a)やジアミン(b)を配合するときから冷却しておくことが好ましい。冷却温度は常温以下が好ましく、−30〜15℃程度が好ましい。モノマーの種類、組み合わせによっては、モノマー(a)やジアミン(b)の混合と同時にオリゴマー合成に伴う発熱が生じる場合がある。温度制御を行わない場合一旦発熱により合成系内の温度上昇が生じると反応の制御ができなくなり一気に分子量が上がることもあり得るので、こうした状態を防ぐためにも冷却の実施が好ましい。
(Preliminary polymerization conditions)
The organic solvent solution (1) is preferably cooled from the time when the monomer (a) or diamine (b) is blended. The cooling temperature is preferably room temperature or lower, and preferably about −30 to 15 ° C. Depending on the type and combination of the monomers, heat may be generated due to oligomer synthesis simultaneously with the mixing of the monomer (a) and the diamine (b). When temperature control is not performed, once the temperature in the synthesis system rises due to heat generation, the reaction cannot be controlled and the molecular weight may increase at once. Therefore, cooling is preferably performed to prevent such a state.
前記冷却した有機溶剤溶液(1)をゆっくりと加温して、前記モノマー(a)と前記ジアミン(b)とを一部反応(以後予備重合反応と称する)させ、オリゴマー化させる。このときの昇温速度は特に限定はないが、あまり急激な加温は反応速度を必要以上に促進させるので、具体的には1〜20℃/分位が好ましい。また、加温(反応温度)は25〜60℃の範囲が好ましい。加温が25℃未満であると重合反応が十分に進行しないのでオリゴマーとならず本発明の効果がでにくくなるおそれがある。一方加温が60℃を超えると、重合反応が進行しすぎてポリマーとなってしまい、以後の無機析出反応において無機成分を微粒化状態で複合化しにくくなるおそれがある。このときの加温保持時間は、30分〜3時間が、予備重合の状態と製造速度とのバランスが取れるために好ましいが、これらの加温温度や加温保持時間は、使用するモノマーの種類や組み合わせにより適宜調整してもよい。
一方、該予備重合反応により発生したハロゲン化水素は、有機溶剤溶液(1)中に蓄積され、更なる重合によるポリマー化を防ぐ効果を有するので、これによってもオリゴマー状態で維持することができる。
The cooled organic solvent solution (1) is slowly heated, and the monomer (a) and the diamine (b) are partially reacted (hereinafter referred to as prepolymerization reaction) to be oligomerized. The rate of temperature increase at this time is not particularly limited, but since too rapid heating promotes the reaction rate more than necessary, specifically 1 to 20 ° C./min is preferable. The heating (reaction temperature) is preferably in the range of 25-60 ° C. If the heating is less than 25 ° C., the polymerization reaction does not proceed sufficiently, so that it does not become an oligomer and the effects of the present invention may be difficult to achieve. On the other hand, if the heating exceeds 60 ° C., the polymerization reaction proceeds too much to become a polymer, and it may be difficult to complex the inorganic component in the atomized state in the subsequent inorganic precipitation reaction. The warming holding time at this time is preferably 30 minutes to 3 hours in order to balance the prepolymerization state and the production rate, but these warming temperatures and warming holding times are the types of monomers used. Or may be adjusted as appropriate depending on the combination.
On the other hand, the hydrogen halide generated by the prepolymerization reaction is accumulated in the organic solvent solution (1) and has an effect of preventing polymerization by further polymerization, so that it can be maintained in an oligomer state.
また、一般に有機溶剤中での重縮合の脱酸剤として用いる材料をポリマー合成に必要とされる量よりも少量機溶剤溶液(1)中に添加する方法によっても、オリゴマー化が可能である。脱酸剤は添加量に応じて重縮合反応が生じるので、これにより分子を調整することが可能となる。脱酸剤としては塩化カルシウム、塩化マグネシウム、水酸化カルシウム、水酸化マグネシウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の塩基性無機化合物や、トリメチルアミン、トリエチルアミン、トリブチルアミン、ピリジン等のアミン系化合物があげられる。
脱酸剤の添加量としては、原料とするモノマー種にもよるが、一般に通常のポリマー合成に必要とする量の1〜30%の範囲内適宜調整することが好ましい。また、脱酸剤を、前記加温による予備重合法と併用しても良い。
In addition, oligomerization is also possible by a method in which a material used as a deoxidizer for polycondensation in an organic solvent is added to the solvent solution (1) in a smaller amount than that required for polymer synthesis. Since a polycondensation reaction occurs depending on the amount of the deoxidizer added, it is possible to adjust the molecule. Deoxidizers include basic inorganic compounds such as calcium chloride, magnesium chloride, calcium hydroxide, magnesium hydroxide, lithium hydroxide, sodium hydroxide and potassium hydroxide, and amines such as trimethylamine, triethylamine, tributylamine and pyridine. Compounds.
The addition amount of the deoxidizer depends on the monomer species used as a raw material, but generally it is preferably adjusted appropriately within a range of 1 to 30% of the amount required for normal polymer synthesis. In addition, a deoxidizer may be used in combination with the prepolymerization method by heating.
また、分子量の目安としては、重合度に換算して、繰り返し単位数nの平均値が1〜15程度までオリゴマー化していることが好ましい。
nが1未満であると予備重合反応が不十分であるため、無機粒子を微粒化する効果が不十分となるおそれがある。一方nが15より大きいと、前記有機溶剤(1)中に重合物が析出しやすくなり、以後の無機析出反応において無機粒子を微粒径で分散できなくなるおそれがある。分子量範囲としては使用するモノマーの種類により変化するが、およそ数平均分子量に換算して400〜5000の範囲が好ましい。
Moreover, as a standard of molecular weight, it is preferable that the average value of the number of repeating units n is oligomerized to about 1 to 15 in terms of the degree of polymerization.
When n is less than 1, since the prepolymerization reaction is insufficient, the effect of atomizing the inorganic particles may be insufficient. On the other hand, when n is larger than 15, the polymer is likely to be precipitated in the organic solvent (1), and the inorganic particles may not be dispersed with a fine particle size in the subsequent inorganic precipitation reaction. The molecular weight range varies depending on the type of monomer used, but is preferably in the range of 400 to 5000 in terms of number average molecular weight.
(水溶液(2))
本発明における有機無機複合体の無機成分の原料は、無機化合物のアルカリ金属塩である。具体的には、金属酸化物、金属水酸化物及び金属炭酸化物からなる群から選ばれる少なくとも1つのアルカリ金属を含む2つ以上の金属元素を有する金属化合物(c−1)(以下金属化合物(c−1)と略す)、又は珪酸アルカリ(c−2)が、入手が容易であり安価であり好ましい。金属化合物(c−1)を原料とした場合はアルカリ金属以外の金属元素を有する金属化合物が析出し、珪酸アルカリ(c−2)を原料とした場合はシリカ(酸化ケイ素)が析出する。(以下、「金属化合物(c−1)又は珪酸アルカリ(c−2)」を略して、「化合物(c)」とする場合がある)
(Aqueous solution (2))
The raw material of the inorganic component of the organic-inorganic composite in the present invention is an alkali metal salt of an inorganic compound. Specifically, a metal compound (c-1) having two or more metal elements containing at least one alkali metal selected from the group consisting of metal oxide, metal hydroxide and metal carbonate (hereinafter referred to as metal compound ( c-1)) or alkali silicate (c-2) is preferred because it is readily available and inexpensive. When the metal compound (c-1) is used as a raw material, a metal compound having a metal element other than an alkali metal is precipitated. When an alkali silicate (c-2) is used as a raw material, silica (silicon oxide) is precipitated. (Hereinafter, “metal compound (c-1) or alkali silicate (c-2)” may be abbreviated as “compound (c)”).
(金属化合物(c−1))
本発明で使用する金属化合物(c−1)は、具体的には、下記一般式(1)で表される。
(Metal compound (c-1))
The metal compound (c-1) used in the present invention is specifically represented by the following general formula (1).
前記一般式(1)において、Aはアルカリ金属元素を表し、Mはアルカリ金属以外の金属元素を表し、Bは酸素原子、カルボキシ基、またはヒドロキシ基を表す。x、y、及びzは各々独立してA、MとBの結合を可能とする数である。(複合酸化物系の無機材料には不定比化合物(例えばNa1.6Al0.9O2.8 のような類が多いために、xyzともに整数とも小数とも定義できない。そのため、安定して存在しえる数を指す。)
前記一般式(1)で表される化合物は、水に完全または一部溶解し塩基性を示すものが好ましい。且つ、析出する金属化合物が、水に殆どまたは全く溶解しない化合物であることが好ましい。
In the general formula (1), A represents an alkali metal element, M represents a metal element other than an alkali metal, and B represents an oxygen atom, a carboxy group, or a hydroxy group. x, y, and z are numbers that allow A, M, and B to be combined independently. (Since there are many non-stoichiometric compounds (for example, Na 1.6 Al 0.9 O 2.8 ) in complex oxide-based inorganic materials, neither xyz can be defined as an integer or a decimal. Therefore, it indicates a number that can exist stably. .)
The compound represented by the general formula (1) is preferably a compound that is completely or partially dissolved in water and exhibits basicity. And it is preferable that the metal compound which precipitates is a compound which hardly melt | dissolves in water.
前記一般式(1)におけるBが酸素原子である化合物としては、例えば、亜鉛酸ナトリウム、アルミン酸ナトリウム、亜クロム酸ナトリウム、モリブデン酸ナトリウム、スズ酸ナトリウム、タンタル酸ナトリウム、亜テルル酸ナトリウム、チタン酸ナトリウム、バナジン酸ナトリウム、タングステン酸ナトリウム、ジルコン酸ナトリウム等のナトリウム複合酸化物や、亜鉛酸カリウム、アルミン酸カリウム、亜クロム酸カリウム、モリブデン酸カリウム、スズ酸カリウム、マンガン酸カリウム、タンタル酸カリウム、亜テルル酸カリウム、鉄酸カリウム、バナジン酸カリウム、タングステン酸カリウム、金酸カリウム、銀酸カリウム、ジルコン酸カリウム等のカリウム複合酸化物、アルミン酸リチウム、モリブデン酸リチウム、スズ酸リチウム、マンガン酸リチウム、タンタル酸リチウム、チタン酸リチウム、バナジン酸リチウム、タングステン酸リチウム、ジルコン酸リチウム等のリチウム複合酸化物のほかルビジウム複合酸化物が挙げられる。 Examples of the compound in which B in the general formula (1) is an oxygen atom include sodium zincate, sodium aluminate, sodium chromite, sodium molybdate, sodium stannate, sodium tantalate, sodium tellurite, titanium. Sodium complex oxides such as sodium oxide, sodium vanadate, sodium tungstate, sodium zirconate, potassium zincate, potassium aluminate, potassium chromite, potassium molybdate, potassium stannate, potassium manganate, potassium tantalate , Potassium tellurite, potassium ferrate, potassium vanadate, potassium tungstate, potassium goldate, potassium silverate, potassium zirconate, etc., potassium aluminate, lithium aluminate, lithium molybdate, lithium stannate , Lithium manganate, lithium tantalite, lithium titanate, lithium vanadate, lithium tungstate, in addition rubidium compound oxide of the lithium composite oxide of lithium zirconate and the like.
前記一般式(1)におけるBがカルボキシ基及びヒドロキシ基の両方を含む金属化合物(c−1)としては、例えば、炭酸亜鉛カリウム、炭酸ニッケルカリウム、炭酸ジルコニウムカリウム、炭酸コバルトカリウム、炭酸スズカリウム等が挙げられる。
前記金属化合物(c−1)は、水に溶解させて用いるために水和物であっても良い。また、各々を単独でまたは2種以上を組み合わせて使用することもできる。
Examples of the metal compound (c-1) in which B in the general formula (1) includes both a carboxy group and a hydroxy group include zinc carbonate potassium, nickel carbonate potassium, potassium zirconium carbonate, cobalt carbonate potassium, and tin carbonate potassium. Is mentioned.
The metal compound (c-1) may be a hydrate in order to be dissolved in water. Moreover, each can also be used individually or in combination of 2 or more types.
前記金属化合物(c−1)の中でも、特に、アルミン酸アルカリ、スズ酸アルカリ、亜鉛酸アルカリ、炭酸ジルコニウムアルカリが特に好ましく用いられる。これらの金属化合物は、水溶性が高く溶解させた際の塩基性が強いため、前記マトリクスとなるポリマーの縮重合反応を進行させやすい。中でもアルミン酸アルカリは特に水溶性が高い上安価であるため最も好ましく用いられる。 Among the metal compounds (c-1), alkali aluminate, alkali stannate, alkali zincate, and alkali zirconium carbonate are particularly preferably used. Since these metal compounds have high water solubility and strong basicity when dissolved, the polycondensation reaction of the polymer serving as the matrix tends to proceed. Of these, alkali aluminates are most preferably used because they are particularly water-soluble and inexpensive.
(珪酸アルカリ(c−2))
本発明で使用する珪酸アルカリ(c−2)は、例えば、珪酸ナトリウム(水ガラス)1号、2号、3号、4号が例となるM2O・nSiO2の組成式で、Mがアルカリ金属、nの平均値が1.8〜4のものが挙げられる。また、nの平均値が1.8以下でありMがナトリウムであるオルト珪酸ナトリウムやメタ珪酸ナトリウム、前記の珪酸ナトリウムのナトリウムが他のアルカリ金属に変更された、珪酸リチウム、珪酸カリウム、珪酸ルビジウム等も用いることができる。
(Alkali silicate (c-2))
The alkali silicate (c-2) used in the present invention is a composition formula of M 2 O · nSiO 2 in which sodium silicate (water glass) No. 1, No. 2, No. 3, No. 4 is an example, and M is Alkali metals, those having an average value of n of 1.8 to 4 can be mentioned. Further, sodium orthosilicate or sodium metasilicate whose average value of n is 1.8 or less and M is sodium, or sodium silicate is changed to another alkali metal, lithium silicate, potassium silicate, rubidium silicate. Etc. can also be used.
(水溶液(2)の溶媒)
前記化合物(c)は、水に溶解させ水溶液(2)として使用する。また、前記有機溶剤溶液との反応を相溶した状態で行う場合には、アセトンやテトラヒドロフラン、N―メチルピロリドン等の極性有機溶剤を水溶液(2)の30質量%程度を上限にして混合し、溶解度を調節してもよい。極性有機溶媒の添加は水溶液(2)の凝固防止にも効果がある。また、水溶液(2)には有機ポリマーの合成を促進するために、水酸化アルカリ、炭酸アルカリ等の塩基性物質を溶解させてもよい。また、有機溶剤溶液(1)との混合性を高めるために界面活性剤等の添加剤を含有していても良い。さらに、水に膨潤、分散時にアルカリ性を呈する粘土鉱物(アルカリ含有粘土等)を一部混合することで、ポリマー合成の促進と粘土成分の複合化とを行っても差し支えない。
(Solvent of aqueous solution (2))
The compound (c) is dissolved in water and used as an aqueous solution (2). When the reaction with the organic solvent solution is carried out in a compatible state, a polar organic solvent such as acetone, tetrahydrofuran or N-methylpyrrolidone is mixed up to about 30% by mass of the aqueous solution (2), Solubility may be adjusted. The addition of the polar organic solvent is also effective for preventing the aqueous solution (2) from solidifying. Moreover, in order to accelerate | stimulate the synthesis | combination of an organic polymer, you may dissolve basic substances, such as an alkali hydroxide and an alkali carbonate, in aqueous solution (2). Moreover, in order to improve mixing property with the organic solvent solution (1), additives such as a surfactant may be contained. Furthermore, polymer synthesis may be promoted and clay components may be combined by partially mixing clay minerals (alkali-containing clay, etc.) that exhibit alkalinity when swollen and dispersed in water.
複数の無機成分(なお、本発明において「無機成分」とは、本発明の有機無機複合体の製造方法によって析出したアルカリ金属を含まない無機化合物を指す。また前記化合物(c)を原料として得た無機成分は「無機成分(c)」とする。)を有機無機複合体に含有させたい場合には、前記金属化合物(c−1)、又は前記珪酸アルカリ(c−2)を併用しても良い。ただし該組み合わせによっては、水溶液(2)中で無機成分(c)がゲル化したり析出したりする場合があり無機成分(c)を微粒子状態で複合化できなくなる場合があるので特にその組み合わせには注意を要する。 Plural inorganic components (in the present invention, “inorganic component” refers to an inorganic compound not containing an alkali metal deposited by the method for producing an organic-inorganic composite of the present invention. Further, the compound (c) is obtained as a raw material. Inorganic component is referred to as “inorganic component (c)”) in the organic-inorganic composite, the metal compound (c-1) or the alkali silicate (c-2) is used in combination. Also good. However, depending on the combination, the inorganic component (c) may gel or precipitate in the aqueous solution (2), and the inorganic component (c) may not be able to be combined in a fine particle state. Need attention.
(無機化合物その他の成分 金属化合物(c−3))
前記水溶液(2)に、塩基性水溶液に溶解し且つ中性溶液では析出する金属化合物(c−3)を添加することにより、有機無機複合体の無機成分を多様化して更なる機能を付与できる方法がある。この方法は、前記ポリマーの合成反応に伴い、水溶液のpHが塩基性から中性に変化することを利用する。即ち、ポリマー生成反応初期では水溶液が塩基性であるために、析出する無機成分は前記無機成分(c)のみであり金属化合物(c−3)は溶解状態のままであるが、有機無機複合化反応が進み水溶液が中性に近づくと、金属化合物(c−3)は析出する。このように金属化合物(c−3)は前記化合物(c)とは異なり、そのままの組成で複合化される。従って得られる有機無機複合体は、ポリマーマトリックス中に無機成分(c)が均一に分散し、その最外表面の無機主成分上に金属化合物(c−3)が担持的に存在する構造を有する。
(Inorganic compound and other components, metal compound (c-3))
By adding the metal compound (c-3) that dissolves in the basic aqueous solution and precipitates in the neutral aqueous solution to the aqueous solution (2), the inorganic component of the organic-inorganic composite can be diversified and further functions can be imparted. There is a way. This method utilizes the fact that the pH of the aqueous solution changes from basic to neutral as the polymer is synthesized. That is, since the aqueous solution is basic at the initial stage of the polymer formation reaction, the inorganic component to be precipitated is only the inorganic component (c), and the metal compound (c-3) remains in a dissolved state. As the reaction proceeds and the aqueous solution approaches neutrality, the metal compound (c-3) precipitates. Thus, unlike the compound (c), the metal compound (c-3) is compounded with the composition as it is. Therefore, the obtained organic-inorganic composite has a structure in which the inorganic component (c) is uniformly dispersed in the polymer matrix and the metal compound (c-3) is supported on the inorganic main component on the outermost surface. .
本発明で使用する金属化合物(c−3)の塩基性溶液への溶解量は、pH13の常温下の塩基性溶液に100mg/L以上が目安となる。
この量よりも溶解量が小さいと、金属化合物が持つ機能を十分に発揮させうる量を該複合体上に微粒子状に担持することができない。
また、本発明に用いる金属化合物(c−3)の中性溶液への溶解量は、pH6〜8の常温下の中性水溶液に30mg/L以下が目安となる。この量よりも溶解量が大きい場合には、該複合体の合成後のろ過や水洗の工程で金属化合物が流出し、担持効率が低くなり、目的とする担持量が得られにくくなる場合がある。
The amount of the metal compound (c-3) used in the present invention dissolved in the basic solution is 100 mg / L or more in a basic solution at a normal temperature of pH 13.
If the dissolved amount is smaller than this amount, the amount capable of sufficiently exerting the function of the metal compound cannot be supported in the form of fine particles on the composite.
In addition, the amount of the metal compound (c-3) used in the present invention dissolved in the neutral solution is 30 mg / L or less in a neutral aqueous solution at room temperature of pH 6-8. If the amount of dissolution is larger than this amount, the metal compound may flow out in the filtration or water washing steps after synthesis of the complex, resulting in low loading efficiency and difficulty in obtaining the desired loading amount. .
本発明で使用する金属化合物(c−3)の金属種は、上記の溶解特性を示す化合物を有するものであればいずれの金属も用いることができる。リチウム、マグネシウム、カルシウム等のアルカリ金属やアルカリ土類金属、チタン、マンガン、鉄、コバルト、ニッケル、銅、銀、金、モリブデン、タングステン、パラジウム、ルテニウムなどの遷移金属、アルミニウム、亜鉛、インジウム、スズ、鉛、アンチモン等の典型金属を例示することができる。中でも、周期表第3〜第12族の遷移金属元素又は周期表第13〜16族の典型金属元素の物が好ましく使用される。また、金属元素が2種以上含まれる複合化合物を用いることもできる。また、化合物種としては上記溶解特性を満たすものであれば酸化物、ハロゲン化物、水酸化物や、各種金属のシュウ酸塩、炭酸塩、リン酸塩、過塩素酸塩等を制限なく用いることができる。そのため、本発明では極めて多種多様の金属酸化物を容易に担持することができる。 As the metal species of the metal compound (c-3) used in the present invention, any metal can be used as long as it has a compound exhibiting the above-described solubility characteristics. Alkali metals and alkaline earth metals such as lithium, magnesium and calcium, transition metals such as titanium, manganese, iron, cobalt, nickel, copper, silver, gold, molybdenum, tungsten, palladium and ruthenium, aluminum, zinc, indium and tin Typical metals such as lead, antimony and the like can be exemplified. Among them, a transition metal element belonging to Group 3 to Group 12 of the periodic table or a typical metal element belonging to Groups 13 to 16 of the periodic table is preferably used. A composite compound containing two or more metal elements can also be used. In addition, as long as the compound species satisfies the above-mentioned solubility characteristics, oxides, halides, hydroxides, oxalates, carbonates, phosphates, perchlorates, etc. of various metals can be used without limitation. Can do. Therefore, in the present invention, a very wide variety of metal oxides can be easily supported.
本発明で使用する金属化合物(c−3)として、好適に用いられる金属化合物を例示すると、リン酸リチウム、水酸化マグネシウム等のアルカリ金属やアルカリ土類金属化合物、酸化タングステン(VI)、酸化バナジウム(V)、酸化コバルト(II) 、水酸化コバルト(II) 、シュウ酸コバルト(II)、酸化ニオブ(II)、水酸化鉄(II)、酸化ニオブ(V)、酸化モリブデン(VI)、水酸化マンガン(II)、酸化金(III)、水酸化金(III)、ヨウ素酸銀(I)、炭酸銀(I)、酸化銀(I)、硫化銀(I)、酸化銅(I)、水酸化銅(II)、塩基性炭酸銅(II)、酸化銅(II)、リン酸銅(II)、シュウ酸銅(II)、酸化レニウム(VI)、水酸化パラジウム(II)、水酸化ルテニウム(IV)等の遷移金属化合物、酸化スズ(II)、水酸化スズ(II)、水酸化アルミニウム、リン酸アルミニウム、水酸化インジウム(III)、シュウ酸ニッケル(II)、酸化亜鉛(II)、水酸化亜鉛(II)、シュウ酸亜鉛(II)、酸化アンチモン(III)、酸化ガリウム(III)、酸化鉛(II) 、酸化鉛(IV)、リン酸鉛(II)、 水酸化鉛(II)等の典型金属化合物が挙げられる。これら金属化合物は水に溶解させて用いるため、水和物であっても良い。これらは単独で、または2種以上を組み合わせて使用することができる。 Examples of metal compounds that can be suitably used as the metal compound (c-3) used in the present invention include alkali metals and alkaline earth metal compounds such as lithium phosphate and magnesium hydroxide, tungsten (VI) oxide, and vanadium oxide. (V), cobalt oxide (II), cobalt hydroxide (II), cobalt oxalate (II), niobium oxide (II), iron hydroxide (II), niobium oxide (V), molybdenum oxide (VI), water Manganese oxide (II), gold oxide (III), gold hydroxide (III), silver iodate (I), silver carbonate (I), silver oxide (I), silver sulfide (I), copper oxide (I), Copper hydroxide (II), basic copper carbonate (II), copper oxide (II), copper phosphate (II), copper oxalate (II), rhenium oxide (VI), palladium hydroxide (II), hydroxide Transition metal compounds such as ruthenium (IV), tin oxide (II), tin hydroxide (II), aluminum hydroxide, phosphorus Aluminum oxide, indium (III) hydroxide, nickel (II) oxalate, zinc (II) oxide, zinc (II) hydroxide, zinc (II) oxalate, antimony (III) oxide, gallium (III) oxide, oxidation Typical metal compounds such as lead (II), lead (IV) oxide, lead (II) phosphate, lead (II) hydroxide are listed. Since these metal compounds are dissolved in water and used, they may be hydrates. These can be used alone or in combination of two or more.
(製造方法)
本発明の有機無機複合体の製造方法は、前述のモノマー(a)及びジアミン(b)を含有し、その一部を予備重合させた有機溶剤溶液(1)と、前述の化合物(c)を含有する水溶液(2)とを、少なくとも一部が相溶した状態に保ち又は分離した状態で共存させることでモノマー(a)とジアミン(b)とを反応させると同時に無機成分を析出させることが特徴である。これにより、モノマー(a)とジアミン(b)とのポリマー重合反応速度と、無機成分の析出速度を見かけ上ほぼ一定化させることによりそれぞれの反応終点時間を近づけることが可能となり、両成分がよく分散しあい、無機粒径がより小さい有機無機複合体を合成することができる。
本発明の製造方法は、特に、反応性の低いポリマー種と無機析出反応の速い無機原料との組み合わせた有機無機複合体を得る場合等に効果的である。
反応性の低いポリマー種としては、例えば、全芳香族ジカルボン酸ハライド、全芳香族ジクロロホーメート化合物、ホスゲン系化合物等があげられる。また、析出反応の速い無機原料としては、酸化スズや酸化ジルコニウム等のゾルゲル反応速度が速い材料があげられる。
金属化合物(c−1)、珪酸アルカリ(c−2)に含まれるアルカリ金属化合物により、前記モノマー(a)とジアミン(b)との間の脱酸(脱ハロゲン化水素)を伴う重縮合反応が促進され、ポリアミド、ポリウレタンやポリ尿素のポリマーが生じる。
(Production method)
The method for producing an organic-inorganic composite of the present invention comprises an organic solvent solution (1) containing the aforementioned monomer (a) and diamine (b) and prepolymerized part thereof, and the aforementioned compound (c). Maintaining at least a part of the aqueous solution (2) to be contained or coexisting it in a separated state to react the monomer (a) and the diamine (b) and at the same time precipitate the inorganic component. It is a feature. This makes it possible to bring the reaction end points closer to each other by making the polymer polymerization reaction rate of the monomer (a) and the diamine (b) and the precipitation rate of the inorganic component almost constant, and both components are good. It is possible to synthesize organic-inorganic composites that are dispersed and have a smaller inorganic particle size.
The production method of the present invention is particularly effective when obtaining an organic-inorganic composite in which a polymer species having low reactivity and an inorganic raw material having a fast inorganic precipitation reaction are combined.
Examples of the polymer species having low reactivity include wholly aromatic dicarboxylic acid halides, wholly aromatic dichloroformate compounds, and phosgene compounds. In addition, examples of the inorganic material having a fast precipitation reaction include materials having a high sol-gel reaction rate such as tin oxide and zirconium oxide.
Polycondensation reaction involving deoxidation (dehydrohalogenation) between the monomer (a) and the diamine (b) by the alkali metal compound contained in the metal compound (c-1) and the alkali silicate (c-2) Is promoted to produce polyamide, polyurethane and polyurea polymers.
一方、ポリマーの重縮合により発生したハロゲン化水素は(前述の、前記モノマー(a)とジアミン(b)との予備重合により発生したハロゲン化水素も含め)、無機原料中のアルカリ金属化合物と反応し、NaCl等のハロゲン化アルカリが発生する。こうして、ハロゲン化水素が合成系内に蓄積することなく、重合反応は次々と進行し有機成分はポリマー化することができる。一方、発生したハロゲン化アルカリは合成系中の水や洗浄工程での水に溶解することで、合成系外に排出される。 On the other hand, the hydrogen halide generated by the polycondensation of the polymer (including the hydrogen halide generated by the prepolymerization of the monomer (a) and the diamine (b) described above) reacts with the alkali metal compound in the inorganic raw material. Then, an alkali halide such as NaCl is generated. Thus, the polymerization reaction proceeds one after another without accumulating hydrogen halide in the synthesis system, and the organic component can be polymerized. On the other hand, the generated alkali halide is discharged out of the synthesis system by dissolving in water in the synthesis system or in the washing process.
(無機成分の析出反応)
一方、アルカリ金属が抜けた前記金属化合物(c−1)や前記珪酸アルカリ(c−2)は水や有機溶剤に対する溶解性が著しく低下するので、無機成分として析出する。例えば珪酸ナトリウムを使用した場合では、前記脱酸反応時に、−Si−ONaがシラノール基(−Si−OH)となる。生成したシラノール基が複数会合して脱水重縮合反応を生じて(−Si−O−Si−)の結合が生成する。このゾルゲル反応によりシリカが固体化して析出する。金属化合物(c−1)としてスズ酸ナトリウムを使用した場合は、酸化スズが、アルミン酸ナトリウムを使用した場合は酸化アルミニウムが生成する。
(Precipitation reaction of inorganic components)
On the other hand, the metal compound (c-1) and the alkali silicate (c-2) from which the alkali metal has been released are remarkably reduced in solubility in water and organic solvents, and thus precipitate as inorganic components. For example, when sodium silicate is used, -Si-ONa becomes a silanol group (-Si-OH) during the deoxidation reaction. A plurality of the generated silanol groups associate to cause a dehydration polycondensation reaction to form a (—Si—O—Si—) bond. Silica is solidified and precipitated by this sol-gel reaction. Tin oxide is produced when sodium stannate is used as the metal compound (c-1), and aluminum oxide is produced when sodium aluminate is used.
前記ポリマーの合成反応と無機化合物の析出反応は、それぞれの反応がもう一方の反応を促進する作用を持つ。従って、どちらか一方の反応のみが一方的に生じることはなくほぼ同時に進行するものと考えられる。ポリマーが合成しながら同時に無機化合物を析出させるので、該ポリマー中に微細な無機化合物を均一に分散させた複合体を、簡易な合成操作で得ることができる。 The synthesis reaction of the polymer and the precipitation reaction of the inorganic compound each have an action of promoting the other reaction. Therefore, it is considered that only one of the reactions does not occur unilaterally and proceeds almost simultaneously. Since the inorganic compound is simultaneously deposited while the polymer is synthesized, a composite in which the fine inorganic compound is uniformly dispersed in the polymer can be obtained by a simple synthesis operation.
(有機溶剤溶液(1)と水溶液(2)の共存方法)
前記有機溶剤溶液(1)と前記水溶液(2)とを、少なくとも一部が相溶した状態に保ち又は分離した状態で共存させるには、有機溶剤溶液(1)と水溶液(2)とが接触する環境があれば特に限定はなく、通常は、攪拌翼を有する1つの反応釜に前記有機溶剤溶液(1)と前記水溶液(2)とを同時に仕込めばよい。反応温度は有機溶剤溶液(1)の加温後温度付近が好ましく具体的には25℃〜60℃の範囲が望ましい。また、加圧や減圧は特に必要としない。有機無機複合体の合成反応は、用いるモノマー種や反応装置、スケールにもよるが、通常60分以下の短時間で完結する。
(Method for coexistence of organic solvent solution (1) and aqueous solution (2))
In order for the organic solvent solution (1) and the aqueous solution (2) to coexist in a state where at least a part thereof is compatible or separated, the organic solvent solution (1) and the aqueous solution (2) are in contact with each other. The organic solvent solution (1) and the aqueous solution (2) may be charged simultaneously in one reaction kettle having a stirring blade. The reaction temperature is preferably in the vicinity of the temperature after heating the organic solvent solution (1), and specifically in the range of 25 ° C to 60 ° C. Further, pressurization and decompression are not particularly required. The organic-inorganic composite synthesis reaction is usually completed in a short time of 60 minutes or less, depending on the type of monomer used, the reaction apparatus, and the scale.
(製造装置)
本発明で用いる製造装置としては、有機溶剤溶液(1)と前記水溶液(2)とを良好に接触反応させることができる製造装置であればとくに限定されず連続式、バッチ式のいずれの方式でも可能であるが、接触反応時間を調整でき、温度制御も容易である観点からはバッチ式がより好ましい。連続式の具体的な装置としては大平洋機工株式会社製「ファインフローミルFM−15型」、同社製「スパイラルピンミキサSPM−15型」、あるいは、インダク・マシネンバウ・ゲーエムベー(INDAG Machinenbaugmb)社製「ダイナミックミキサDLM/S215型」などが挙げられる。また、バッチ式の場合は有機溶液と水溶液の接触を良好に行わせる必要があるので、アンカー翼やマックスブレンド翼やファウドラ−翼等の攪拌力が強い攪拌装置を用いるのが好ましい。
(Manufacturing equipment)
The production apparatus used in the present invention is not particularly limited as long as the production apparatus can satisfactorily contact and react the organic solvent solution (1) and the aqueous solution (2). Although it is possible, the batch method is more preferable from the viewpoint that the contact reaction time can be adjusted and the temperature control is easy. Specific equipment for continuous operation is “Fine Flow Mill FM-15” manufactured by Taihei Koki Co., Ltd., “Spiral Pin Mixer SPM-15” manufactured by the same company, or INDAG Machinenbaugmb. "Dynamic mixer DLM / S215 type" etc. are mentioned. In the case of the batch type, since it is necessary to satisfactorily contact the organic solution and the aqueous solution, it is preferable to use a stirrer having a strong stirring force such as an anchor blade, a Max blend blade, or a Foudra blade.
(有機無機複合体の無機成分)
本発明の製造方法により得られる有機無機複合体の無機成分は、使用する金属化合物(c−1)や珪酸アルカリ(c−2)により得られる形状、性質が異なるので、目的に応じて適宜選択すればよい。例えば、金属化合物(c−1)を用いた場合には、無機成分は、酸化アルミニウム(アルミナ)、酸化スズ、酸化亜鉛、酸化ジルコニウムの金属酸化物類が得られ、該金属酸化物の原料であるアルミン酸アルカリ、スズ酸アルカリ、亜鉛酸アルカリ、炭酸ジルコニウムアルカリは安価である。また珪酸アルカリ(c−2)を使用した場合には無機成分としてシリカが得られ、無機粒径の小さい有機無機複合体が得られる。また本発明の製造方法は、得られる無機成分の粒径が小さいことも特徴の1つであり、平均粒径が100nm以下の有機無機複合体を得ることができる。
(Inorganic component of organic-inorganic composite)
The inorganic component of the organic-inorganic composite obtained by the production method of the present invention is appropriately selected according to the purpose because the shape and properties obtained by the metal compound (c-1) and alkali silicate (c-2) used are different. do it. For example, when the metal compound (c-1) is used, the inorganic components are obtained as metal oxides such as aluminum oxide (alumina), tin oxide, zinc oxide, and zirconium oxide. Certain alkali aluminates, alkali stannates, alkali zincates and alkali alkali carbonates are inexpensive. When alkali silicate (c-2) is used, silica is obtained as an inorganic component, and an organic-inorganic composite having a small inorganic particle size is obtained. The production method of the present invention is also characterized in that the obtained inorganic component has a small particle size, and an organic-inorganic composite having an average particle size of 100 nm or less can be obtained.
(有機無機複合体全量100質量%に対する無機主成分の含有率)
本発明で得られる有機無機複合体の、金属化合物(c−1)あるいは珪酸アルカリ(c−2)に由来する無機主成分は、無機材料が持つ耐熱性、耐摩耗性等、表面硬度、放熱特性等の特性を付与する。更に金属化合物(c−3)を併用する場合には、該金属化合物(c−3)を担持する役割も有する。
従って、該無機主成分の有機無機複合体全量100質量%に対する含有率は一定以上であることが好ましく、好ましくは10〜80質量%であり、更に好ましくは20〜70質量%であり、最も好ましくは30〜60質量%である。該含有率が多くなりすぎると、シ−ト化や積層板等への加工性、あるいは他の樹脂への混練性が損なわれる場合がある。
(Content of inorganic main component based on 100% by mass of organic-inorganic composite)
The inorganic main component derived from the metal compound (c-1) or alkali silicate (c-2) in the organic-inorganic composite obtained in the present invention is the heat resistance, wear resistance, etc., surface hardness, heat dissipation, etc. possessed by the inorganic material. A characteristic such as a characteristic is given. Further, when the metal compound (c-3) is used in combination, it also has a role of supporting the metal compound (c-3).
Therefore, the content of the inorganic main component with respect to 100% by mass of the total amount of the organic-inorganic composite is preferably a certain value or more, preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and most preferably. Is 30 to 60% by mass. If the content is too high, sheeting, processability to laminates, etc., or kneadability to other resins may be impaired.
一方、前記金属化合物(c−1)や珪酸アルカリ(c−2)と、前記金属化合物(c−3)を併用する場合、前記金属化合物(c−3)は合成の反応機構より、得られる有機無機複合体の最外表面の無機主成分上に担持的に存在する。従って前記金属化合物(c−3)量は前記無機主成分よりも少ない量が現実的である。具体的には、有機無機複合体全量100質量%に対して最大量15質量%程度担持されているのが好ましい。金属化合物(c−3)はナノサイズで担持されている結果がでているため担持効果が高く、用途によっては0.01質量%以上担持すれば機能する。特に好ましい範囲は0.1質量%〜10質量%である。金属化合物(c−3)の担持量は前記水溶液(2)への溶解量が支配する。例えば担持量を増やしたい場合には、使用する金属化合物(c−3)として水への溶解度の高い金属を選択し、多量に水溶液(2)中に溶解させて有機無機複合体の合成を行えばよい。 On the other hand, when the metal compound (c-1) or the alkali silicate (c-2) and the metal compound (c-3) are used in combination, the metal compound (c-3) is obtained from a reaction mechanism of synthesis. It exists in a supportive manner on the inorganic main component on the outermost surface of the organic-inorganic composite. Therefore, the amount of the metal compound (c-3) is practically less than the inorganic main component. Specifically, it is preferable that a maximum amount of about 15% by mass is supported with respect to 100% by mass of the total amount of the organic-inorganic composite. Since the metal compound (c-3) is supported in a nano size, the supporting effect is high. Depending on the application, the metal compound (c-3) functions if supported by 0.01% by mass or more. A particularly preferable range is 0.1 mass% to 10 mass%. The amount of the metal compound (c-3) supported is governed by the amount dissolved in the aqueous solution (2). For example, in order to increase the loading amount, a metal having high solubility in water is selected as the metal compound (c-3) to be used, and a large amount is dissolved in the aqueous solution (2) to synthesize an organic-inorganic composite. Just do it.
以下に具体例をもって本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with specific examples, but the present invention is not limited thereto.
実施例1〜7に、無機成分1成分系を含有する有機無機複合体の製造法を示す。
(実施例1)
(ポリアミド/酸化アルミニウム複合体の合成法−1)
N−N−ジメチルアセトアミド19gを有機溶剤として、本有機溶剤にモノマー(a)のジカルボン酸ハライドとしてテレフタル酸クロライド2.84gを50cm3の三口フラスコにいれ窒素気流下室温でアンカー翼により攪拌し溶解したのち、フラスコ外周を氷水により0℃に冷却した。次に、0℃に予め冷却したN−N−ジメチルアセトアミド19gにジアミン(b)として4,4―チオジアニリン3.133gを溶解した有機溶剤を前記の三口フラスコに添加した。有機溶媒溶液(1−1)はジカルボン酸ハライドとジアミンとを同時に溶解させたが析出物等のポリマー化を示す現象は見られなかった。
前記有機溶媒溶液(1−1)を攪拌しつつ30℃まで2℃/分の昇温速度で加温を行いこの温度状態を保持したまま150rpmの回転速度で1時間攪拌をおこなったが、合成反応物と見られる析出物は発生しなかった。この状態で0.1gの液をサンプリングして、後述の(測定1)の方法で分子量分布を測定したところ、有機溶剤溶液(1−1)は分子量約1500にピークを持つオリゴマー(繰り返し単位換算でn=約4)となっていることが解った。次に、イオン交換水35gに金属化合物(c−1)として浅田化学工業(株)製粉末アルミン酸ナトリウムP−100の2.504gを入れ常温下で10分間攪拌することにより透明淡黄色の水溶液(2−1)を得た。
この水溶液(2−1)を10秒間かけて前記三口フラスコ中に滴下した。水溶液(2−1)の滴下に伴い淡黄色析出物が徐々に析出した。水溶液の滴下が終了した時点で攪拌回転数を200rpmに上げ、温度制御を維持した状態で30分間攪拌を継続することで粉末状複合体を含有するスラリーを得た。
Examples 1 to 7 show a method for producing an organic-inorganic composite containing an inorganic component monocomponent system.
Example 1
(Synthesis Method of Polyamide / Aluminum Oxide Composite-1)
Using 19 g of NN-dimethylacetamide as the organic solvent, 2.84 g of terephthalic acid chloride as the dicarboxylic acid halide of monomer (a) was placed in this organic solvent in a 50 cm 3 three-necked flask and dissolved by stirring with an anchor blade at room temperature in a nitrogen stream. After that, the outer periphery of the flask was cooled to 0 ° C. with ice water. Next, an organic solvent in which 3.133 g of 4,4-thiodianiline as a diamine (b) was dissolved in 19 g of NN-dimethylacetamide preliminarily cooled to 0 ° C. was added to the three-necked flask. In the organic solvent solution (1-1), dicarboxylic acid halide and diamine were dissolved at the same time, but a phenomenon showing polymerization of precipitates and the like was not observed.
While stirring the organic solvent solution (1-1) at a heating rate of 2 ° C./min up to 30 ° C., stirring was performed for 1 hour at a rotational speed of 150 rpm while maintaining this temperature state. No precipitate that appeared to be a reaction product was generated. In this state, 0.1 g of liquid was sampled, and molecular weight distribution was measured by the method described later (Measurement 1). As a result, the organic solvent solution (1-1) was an oligomer having a peak at a molecular weight of about 1500 (recurring unit conversion). N = about 4). Next, 2.504 g of powdered sodium aluminate P-100 manufactured by Asada Chemical Industry Co., Ltd. was added as a metal compound (c-1) to 35 g of ion-exchanged water, and stirred at room temperature for 10 minutes to obtain a transparent light yellow aqueous solution. (2-1) was obtained.
This aqueous solution (2-1) was dropped into the three-necked flask over 10 seconds. As the aqueous solution (2-1) was added dropwise, a pale yellow precipitate gradually precipitated. When the dropping of the aqueous solution was completed, the stirring rotation speed was increased to 200 rpm, and stirring was continued for 30 minutes while maintaining the temperature control to obtain a slurry containing a powdery composite.
(複合体の洗浄処理)
このスラリーを95mmφのヌッチェ上に目開き4μmの濾紙を設置し0.015MPaで減圧濾過することによりペースト状の含液有機無機複合体を得た。この粉体をメタノール200g中に分散させ常温下で30分間攪拌することによりメタノール洗浄を行いその分散液を、上記と同様な方法で濾過することで含メタノール有機無機複合体を得た。これを引き続き蒸留水250g中に分散させ常温下で30分間攪拌することにより水洗浄を行いその分散液を、上記と同様な方法で濾過することで含水有機無機複合体を得た。これを150℃で5時間熱風乾燥することにより、乾燥有機無機複合体を得た。
(Cleaning process of complex)
The slurry was placed on a 95 mmφ Nutsche filter paper having a mesh size of 4 μm and filtered under reduced pressure at 0.015 MPa to obtain a paste-like liquid-containing organic-inorganic composite. This powder was dispersed in 200 g of methanol and stirred at room temperature for 30 minutes to wash with methanol, and the dispersion was filtered by the same method as above to obtain a methanol-containing organic-inorganic composite. This was subsequently dispersed in 250 g of distilled water, washed with water by stirring for 30 minutes at room temperature, and the dispersion was filtered by the same method as above to obtain a water-containing organic-inorganic composite. This was dried with hot air at 150 ° C. for 5 hours to obtain a dry organic-inorganic composite.
(実施例2)
(ポリアミド/酸化アルミニウム複合体の合成法−2)
N−メチルピロリドン19gを有機溶媒として本有機溶剤にモノマー(a)としてテレフタル酸クロライド2.84gを50cm3の三口フラスコにいれ窒素気流下室温で攪拌し溶解したのち、フラスコ外周を氷水により0℃に冷却した。次に、0℃に予め冷却してN−メチルピロリドン19gにジアミン(b)としてパラフェニレンジアミン1.514gを溶解した有機溶剤を前記三口フラスコに添加して攪拌を続け有機溶媒溶液(1−2)を得た。有機溶媒溶液(1−2)はジカルボン酸ハライドとジアミンとを同時に溶解させているがこの組み合わせに於いても析出物等の発生は見られなかった。
この有機溶媒溶液(1−2)を攪拌しつつ30℃まで2℃/分の昇温速度で加温を行いこの温度状態を保持したまま150rpmの回転速度で1時間攪拌(予備反応)をおこなったが、合成反応物と見られる析出物は発生しなかった。
次に、実施例1と同様な水溶液(2−2)を用い、同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Example 2)
(Synthesis Method of Polyamide / Aluminum Oxide Composite-2)
19 g of N-methylpyrrolidone as an organic solvent and 2.84 g of terephthalic acid chloride as a monomer (a) in this organic solvent were placed in a 50 cm 3 three-necked flask and dissolved by stirring at room temperature in a nitrogen stream. Cooled to. Next, an organic solvent in which 1.514 g of paraphenylenediamine as diamine (b) was dissolved in 19 g of N-methylpyrrolidone in advance by cooling to 0 ° C. was added to the three-necked flask, and the stirring was continued. ) In the organic solvent solution (1-2), dicarboxylic acid halide and diamine were dissolved at the same time, but no precipitates or the like were observed even in this combination.
While stirring this organic solvent solution (1-2) up to 30 ° C. at a heating rate of 2 ° C./min, stirring (preliminary reaction) was performed for 1 hour at a rotational speed of 150 rpm while maintaining this temperature state. However, no precipitate that was seen as a synthetic reaction product was generated.
Next, an organic-inorganic composite was obtained by performing the same synthesis operation, washing treatment, and drying treatment using the same aqueous solution (2-2) as in Example 1.
(実施例3)
(ポリアミド/酸化ジルコニウム複合体の合成法)
水溶液(2−3)としてイオン交換水30gに金属化合物(c−1)として日本軽金属(株)製炭酸ジルコニウムカリウム水溶液「ジルメル1000」の9.189gを入れ常温下で10分間攪拌することにより得た無色透明の水溶液を用いた以外は実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Example 3)
(Synthesis method of polyamide / zirconium oxide composite)
Obtained by adding 9.189 g of a zirconium carbonate carbonate aqueous solution “Zirmel 1000” manufactured by Nippon Light Metal Co., Ltd. as a metal compound (c-1) to 30 g of ion-exchanged water as an aqueous solution (2-3) and stirring at room temperature for 10 minutes. An organic-inorganic composite was obtained by performing the same synthetic operation, washing treatment and drying treatment as in Example 1 except that a colorless and transparent aqueous solution was used.
(実施例4)
(ポリアミド/シリカ複合体の合成法)
水溶液(2−4)としてイオン交換水30gに珪酸アルカリ(c−2)として水ガラス(珪酸ナトリウム)3号9.737gを入れ常温下で10分間攪拌することにより得た無色透明の水溶液を用いた以外は実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
Example 4
(Synthesis method of polyamide / silica composite)
A colorless and transparent aqueous solution obtained by adding 9.737 g of water glass (sodium silicate) No. 3 as alkali silicate (c-2) to 30 g of ion-exchanged water as an aqueous solution (2-4) and stirring for 10 minutes at room temperature is used. An organic-inorganic composite was obtained by performing the same synthetic operation, washing treatment, and drying treatment as in Example 1 except that.
(実施例5)
(ポリアミド/酸化スズ複合体の合成法)
水溶液(2−5)としてイオン交換水40gに金属化合物(c−1)としてスズ酸ナトリウム・3水和物(Na2SnO3・3H2O)3.450gを入れ常温下で10分間攪拌することにより得た無色透明の水溶液を用いた以外は実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Example 5)
(Synthesis method of polyamide / tin oxide composite)
Add 3.450 g of sodium stannate trihydrate (Na 2 SnO 3 .3H 2 O) as a metal compound (c-1) to 40 g of ion-exchanged water as an aqueous solution (2-5) and stir at room temperature for 10 minutes. An organic-inorganic composite was obtained by performing the same synthetic operation, washing treatment and drying treatment as in Example 1 except that the colorless and transparent aqueous solution obtained was used.
(実施例6)
(ポリ尿素/酸化アルミニウムの合成法)
トルエン19gを有機溶剤として、本有機溶剤にモノマー(a)としてホスゲン系化合物であるトリホスゲン1.435gを50cm3の三口フラスコにいれ窒素気流下で冷却水を用いて15℃に冷却しつつ攪拌し溶解した。次に、4,4−ジアミノジフェニルメタン3.104gをトルエンに溶解した有機溶剤を15℃に冷却した後三口フラスコに添加して攪拌を続け有機溶媒溶液(1−6)を得た。有機溶媒溶液(1−6)はホスゲン系化合物とジアミンとを同時に溶解させているが析出物等の発生は見られなかった。次にこの有機溶媒溶液(1−6)を攪拌しつつ55℃まで2℃/分の昇温速度で加温を行いこの温度状態を保持したまま150rpmの回転速度で1時間攪拌(予備反応)をおこなったが、合成反応物と見られる析出物は発生しなかった。次に、実施例1と同様な水溶液(2−6)を用い、同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Example 6)
(Synthesis method of polyurea / aluminum oxide)
Using 19 g of toluene as an organic solvent, 1.435 g of triphosgene as a phosgene compound as a monomer (a) in this organic solvent was placed in a 50 cm 3 three-necked flask and stirred while cooling to 15 ° C. using cooling water in a nitrogen stream. Dissolved. Next, an organic solvent in which 3.104 g of 4,4-diaminodiphenylmethane was dissolved in toluene was cooled to 15 ° C. and then added to a three-necked flask, and stirring was continued to obtain an organic solvent solution (1-6). In the organic solvent solution (1-6), the phosgene compound and the diamine were simultaneously dissolved, but no generation of precipitates was observed. Next, the organic solvent solution (1-6) was heated to 55 ° C. at a heating rate of 2 ° C./min while stirring and stirred for 1 hour at a rotational speed of 150 rpm while maintaining this temperature state (preliminary reaction). However, no precipitate that was seen as a synthetic reaction product was generated. Next, using the same aqueous solution (2-6) as in Example 1, the same synthesis operation, washing treatment, and drying treatment were performed to obtain an organic-inorganic composite.
(実施例7)
(ポリウレタン/シリカ複合体の合成法)
アセトン18gを有機溶剤として、本有機溶剤にモノマー(a)としてクロロホーメート化合物である、2,2−ビス(4−クロロホーメロキシルフェニル)プロパン4.943gを50cm3の三口フラスコにいれ窒素気流下室温で攪拌し溶解したのち、フラスコ外周を冷却水により15℃に冷却した。次に、パラフェニレンジアミン1.514gをアセトン18gに溶解した有機溶剤を15℃に冷却した後、三口フラスコに添加して攪拌を続け有機溶媒溶液(1−7)を得た。有機溶媒溶液(1−7)はクロロホーメート化合物とジアミンとを同時に溶解させているが析出物等の発生は見られなかった。次にこの有機溶媒溶液(1−7)を攪拌しつつ45℃まで2℃/分の昇温速度で加温を行いこの温度状態を保持したまま150rpmの回転速度で1時間攪拌(予備反応)をおこなったが、合成反応物と見られる析出物は発生しなかった。次に、イオン交換水30gに珪酸ナトリウム(c−2)として水ガラス1号5.138gを入れ常温下で10分間攪拌することにより均一な水溶液(2−7)を得た。三口フラスコ中の有機溶媒溶液(1−1)を攪拌翼用いて150rpmで攪拌しつつ、水溶液(2−7)を10秒間で滴下した。水溶液(2−7)の滴下に伴い析出物が徐々に析出した。水溶液の滴下が終了した時点で攪拌回転数を200rpに上げこの状態で30分間攪拌を継続することで淡黄色の粉末状複合体を含有するスラリーを得た。この後、実施例1と同様な洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Example 7)
(Synthesis of polyurethane / silica composite)
18 g of acetone was used as an organic solvent, and 4.943 g of 2,2-bis (4-chloroformoxylphenyl) propane, which is a chloroformate compound as a monomer (a), was added to this organic solvent in a 50 cm 3 three-necked flask. After stirring and dissolving at room temperature under an air stream, the outer periphery of the flask was cooled to 15 ° C. with cooling water. Next, an organic solvent in which 1.514 g of paraphenylenediamine was dissolved in 18 g of acetone was cooled to 15 ° C., and then added to a three-necked flask, and stirring was continued to obtain an organic solvent solution (1-7). In the organic solvent solution (1-7), the chloroformate compound and the diamine were simultaneously dissolved, but no generation of precipitates or the like was observed. Next, this organic solvent solution (1-7) was heated to 45 ° C. at a rate of 2 ° C./min while stirring, and stirred for 1 hour at a rotational speed of 150 rpm while maintaining this temperature state (preliminary reaction). However, no precipitate that was seen as a synthetic reaction product was generated. Next, 5.138 g of water glass No. 1 as sodium silicate (c-2) was added to 30 g of ion-exchanged water and stirred at room temperature for 10 minutes to obtain a uniform aqueous solution (2-7). While stirring the organic solvent solution (1-1) in the three-necked flask at 150 rpm using a stirring blade, the aqueous solution (2-7) was added dropwise over 10 seconds. As the aqueous solution (2-7) was added dropwise, the precipitate gradually precipitated. When the dropping of the aqueous solution was completed, the stirring rotation speed was increased to 200 rp, and stirring was continued for 30 minutes in this state to obtain a slurry containing a light yellow powdery composite. Then, the organic inorganic composite was obtained by performing the washing | cleaning process and drying process similar to Example 1. FIG.
実施例8〜9に、無機成分2成分を含有する有機無機複合体の製造法を示す。
(実施例8)
(ポリアミド/酸化アルミニウム/水酸化亜鉛複合体の合成法:実施例1への無機第2成分の担持)
実施例1で用いたのと同一の組成の0℃冷却した有機溶剤溶液(1−8)を調整した。実施例1と同様な昇温速度で加温し30℃下での攪拌操作を1時間行うことで有機溶剤溶液(1−8)中モノマーの予備重合反応を行った。次に、イオン交換水35gに金属化合物(c−1)として浅田化学工業(株)製粉末アルミン酸ナトリウムP−100の2.504gを入れ常温下で10分間攪拌することにより得た透明淡黄色の水溶液に、金属化合物(c−3)として水酸化亜鉛0.126gを入れ室温で20分間攪拌することで均一透明な水溶液(2−8)とした。これらを用いた以外は実施例1と同様な合成操作により有機無機複合体スラリーを得た。本実施例に関しては得られた複合体スラリーを濾別した際に発生した濾過液を回収し150℃、5時間熱風乾燥を行い、残留した粉末を後述の蛍光X線測定に供した。これ以外は実施例1と同様な、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
Examples 8 to 9 show a method for producing an organic-inorganic composite containing two inorganic components.
(Example 8)
(Synthesis Method of Polyamide / Aluminum Oxide / Zinc Hydroxide Composite: Supporting Inorganic Second Component in Example 1)
An organic solvent solution (1-8) cooled at 0 ° C. having the same composition as that used in Example 1 was prepared. The monomer was prepolymerized in the organic solvent solution (1-8) by heating at the same rate of temperature increase as in Example 1 and stirring at 30 ° C. for 1 hour. Next, 2.504 g of powdered sodium aluminate P-100 manufactured by Asada Chemical Industry Co., Ltd. as a metal compound (c-1) was added to 35 g of ion-exchanged water, and the mixture was stirred at room temperature for 10 minutes. Into this aqueous solution, 0.126 g of zinc hydroxide as a metal compound (c-3) was added and stirred at room temperature for 20 minutes to obtain a uniform transparent aqueous solution (2-8). An organic-inorganic composite slurry was obtained by the same synthetic operation as in Example 1 except that these were used. In this example, the filtrate generated when the obtained composite slurry was filtered off was collected and dried with hot air at 150 ° C. for 5 hours, and the remaining powder was subjected to fluorescent X-ray measurement described later. Other than this, the organic-inorganic composite was obtained by performing the washing | cleaning process and the drying process similar to Example 1. FIG.
(実施例9)
(ポリアミド/シリカ/酸化タングステン複合体の合成法:実施例4への無機第2成分の担持)
実施例1で用いたのと同一の組成の0℃冷却した有機溶剤溶液(1−9)を調整した後、実施例1と同様な加熱による予備重合を行った。次にイオン交換水30gに珪酸アルカリ(c−9)として水ガラス(珪酸ナトリウム)3号を9.737gを入れ常温下で10分間攪拌することにより得た無色透明の水溶液を60℃に加温し金属化合物(c−3)として酸化タングステン0.126gを入れ室温で20分間攪拌することで均一透明な水溶液を得た。これを0℃にまで冷却し、水溶液(2−9)とした。これらを用いた以外は実施例9と同様な合成操作、濾液回収、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
Example 9
(Synthesis Method of Polyamide / Silica / Tungsten Oxide Composite: Supporting Inorganic Second Component in Example 4)
After preparing an organic solvent solution (1-9) cooled at 0 ° C. having the same composition as that used in Example 1, prepolymerization by heating similar to Example 1 was performed. Next, 9.737 g of water glass (sodium silicate) No. 3 as alkali silicate (c-9) was added to 30 g of ion-exchanged water, and the colorless and transparent aqueous solution obtained by stirring for 10 minutes at room temperature was heated to 60 ° C. Then, 0.126 g of tungsten oxide was added as a metal compound (c-3) and stirred at room temperature for 20 minutes to obtain a uniform transparent aqueous solution. This was cooled to 0 degreeC and it was set as the aqueous solution (2-9). An organic-inorganic composite was obtained by performing the same synthetic operation, filtrate recovery, washing treatment, and drying treatment as in Example 9 except that these were used.
(比較例1:溶融混練法による有機無機複合体の作製、実施例2の比較に相当)
樹脂溶融混練装置である、ラボプラストミルCタイプ、KF−15ミキサー((株)東洋精機製作所社製)を用いて以下の条件で溶融混練法により全芳香族ポリアミド粉末と酸化アルミニウム(アルミナ)微粒子とを混練する試験を行った。本比較例は実施例2の比較試験に相当する組成である。
加熱温度350℃(ミキサー使用可能最高温度)に加熱した混練室にミキサー回転数10rpmで混練刃を回転させつつ、混合試験物:ケブラー(芳香族ポリアミド)樹脂粉末8.0g、ナノアルミナ微粒子(シーアイ化成製、平均粒径31nm)2.0gをドライブレンドし導入したが、ケブラーの融点が加熱温度よりも遥かに高い500℃以上であるため、樹脂が溶融せず溶融混練操作自体が不可能であった。また、ケブラーの熱分解点は450℃と融点より低いため仮により高温で混練できる装置があったとしても、溶融混練操作で本ポリマー成分を持つ有機無機複合体を作製することは不可能であると結論づけた。
(Comparative Example 1: Preparation of organic-inorganic composite by melt-kneading method, equivalent to comparison of Example 2)
Totally aromatic polyamide powder and aluminum oxide (alumina) fine particles by a melt kneading method under the following conditions using a lab plast mill C type, KF-15 mixer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), which is a resin melt kneading apparatus. And a kneading test. This comparative example has a composition corresponding to the comparative test of Example 2.
Mixing specimen: 8.0 g of Kevlar (aromatic polyamide) resin powder, nano-alumina fine particles (CAI) while rotating the kneading blade at a mixer rotation speed of 10 rpm in a kneading chamber heated to a heating temperature of 350 ° C. (maximum temperature at which the mixer can be used) Chemical blend, average particle size 31nm) 2.0g was dry blended and introduced, but because Kevlar's melting point is 500 ° C or higher, much higher than the heating temperature, the resin does not melt and the melt kneading operation itself is impossible. there were. In addition, since the thermal decomposition point of Kevlar is lower than the melting point of 450 ° C., it is impossible to produce an organic-inorganic composite having the present polymer component by melt kneading operation even if there is an apparatus capable of kneading at a higher temperature. It was concluded.
(参考例1:実施例1対応実験)
(加熱予備重合を行わない ポリアミド/酸化アルミニウム複合体の合成法)
実施例1と同様な組成の有機溶剤溶液である0℃冷却した有機溶剤溶液(1−S1)を得て、ただちに0.1gの液をサンプリングし、後述(測定1)の方法で分子量分布を測定に供した。次に、予め準備した実施例1と同一の組成の水溶液を0℃に冷却した水溶液(2−S1)を用い、これらの原料溶液を用いた以外は実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。尚、有機溶剤溶液(1−S1)中には、分子量分布測定の結果分子量300以上の材料は検出されず、オリゴマー化反応は進行していないことが判った。
(Reference Example 1: Experiment corresponding to Example 1)
(Synthesis method of polyamide / aluminum oxide composite without preheating polymerization)
An organic solvent solution (1-S1) cooled at 0 ° C., which is an organic solvent solution having the same composition as in Example 1, was obtained, and 0.1 g of the liquid was sampled immediately, and the molecular weight distribution was determined by the method described later (Measurement 1). It used for the measurement. Next, an aqueous solution (2-S1) in which an aqueous solution having the same composition as that of Example 1 prepared in advance was cooled to 0 ° C., and these raw material solutions were used. The organic-inorganic composite was obtained by performing a drying process. In the organic solvent solution (1-S1), as a result of molecular weight distribution measurement, a material having a molecular weight of 300 or more was not detected, and it was found that the oligomerization reaction did not proceed.
(参考例2:実施例2対応実験)
(加熱予備重合を行わないポリアミド/酸化アルミニウム複合体の合成法)
実施例2と同様の組成の0℃冷却した有機溶剤溶液(1−S2)を得た後、参考例1と同様に加温処理を行わなかった。次に、予め準備した実施例2と同一の組成の水溶液を得た後0℃に冷却した水溶液(2−S2)を用い、これらの原料溶液を用いた以外は実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Reference Example 2: Experiment corresponding to Example 2)
(Synthesis method of polyamide / aluminum oxide composite without preheating polymerization)
After obtaining an organic solvent solution (1-S2) cooled at 0 ° C. having the same composition as in Example 2, the heating treatment was not performed as in Reference Example 1. Next, a synthetic operation similar to that in Example 1 was performed except that an aqueous solution (2-S2) prepared in advance and then cooled to 0 ° C. was used, and that these raw material solutions were used. The organic-inorganic composite was obtained by performing washing treatment and drying treatment.
(参考例3:実施例3対応実験)
(加熱予備重合を行わないポリアミド/酸化ジルコニウム複合体の合成法)
実施例3と同様の組成の0℃冷却した有機溶剤溶液(1−S3)を得た。これと、予め準備した実施例3と同一の組成の水溶液を得た後0℃に冷却した水溶液(2−S3)とを用い実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Reference Example 3: Experiment corresponding to Example 3)
(Synthesis of polyamide / zirconium oxide composite without preheating polymerization)
An organic solvent solution (1-S3) cooled at 0 ° C. having the same composition as in Example 3 was obtained. Using this and an aqueous solution (2-S3) prepared in advance and cooled to 0 ° C. after obtaining an aqueous solution having the same composition as in Example 3, the same synthesis operation, washing treatment, and drying treatment as in Example 1 are performed. Thus, an organic-inorganic composite was obtained.
(参考例4:実施例4対応実験)
(加熱予備重合を行わないポリアミド/シリカ複合体の合成法)
実施例4と同様の組成の0℃冷却した有機溶剤溶液(1−S4)を得た。これと、予め準備した実施例4と同一の組成の水溶液を得た後0℃に冷却した水溶液(2−S4)とを用い実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Reference Example 4: Experiment corresponding to Example 4)
(Synthesis method of polyamide / silica composite without preheating polymerization)
An organic solvent solution (1-S4) cooled to 0 ° C. having the same composition as in Example 4 was obtained. Using this and an aqueous solution (2-S4) prepared in advance and cooled to 0 ° C. after obtaining an aqueous solution having the same composition as in Example 4, the same synthesis operation, washing treatment and drying treatment as in Example 1 are performed. Thus, an organic-inorganic composite was obtained.
(実施例5:実施例5対応実験)
(加熱予備重合を行わないポリアミド/酸化スズ複合体の合成法)
実施例5と同様の組成の0℃冷却した有機溶剤溶液(1−S5)を得た。これと、予め準備した実施例5と同一の組成の水溶液を得た後0℃に冷却した水溶液(2−S5)とを用い実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Example 5: Experiment corresponding to Example 5)
(Synthesis method of polyamide / tin oxide composite without preheating polymerization)
An organic solvent solution (1-S5) cooled at 0 ° C. having the same composition as in Example 5 was obtained. Using this and an aqueous solution (2-S5) prepared in advance and cooled to 0 ° C. after obtaining an aqueous solution having the same composition as in Example 5, the same synthesis operation, washing treatment, and drying treatment as in Example 1 are performed. Thus, an organic-inorganic composite was obtained.
(参考例6:実施例6対応実験)
(加熱予備重合を行わないポリ尿素/酸化アルミニウムの合成法)
実施例6と同様の組成の0℃冷却した有機溶剤溶液(1−S6)を得た。これと、予め準備した実施例6と同一の組成の水溶液を得た後0℃に冷却した水溶液(2−S6)とを用い実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Reference Example 6: Experiment corresponding to Example 6)
(Synthesis of polyurea / aluminum oxide without preheating polymerization)
An organic solvent solution (1-S6) cooled to 0 ° C. having the same composition as in Example 6 was obtained. Using this and an aqueous solution (2-S6) prepared in advance and cooled to 0 ° C. after obtaining an aqueous solution having the same composition as in Example 6, the same synthesis operation, washing treatment and drying treatment as in Example 1 are performed. Thus, an organic-inorganic composite was obtained.
(参考例7:実施例7対応実験)
(加熱予備重合を行わないポリウレタン/シリカ複合体の合成法)
実施例7と同様の組成の0℃冷却した有機溶剤溶液(1−S7)を得た。これと、予め準備した実施例7と同一の組成の水溶液を得た後0℃に冷却した水溶液(2−S7)とを用い実施例1と同様な合成操作、洗浄処理、乾燥処理を行うことで有機無機複合体を得た。
(Reference Example 7: Experiment corresponding to Example 7)
(Synthesis method of polyurethane / silica composite without preheating polymerization)
An organic solvent solution (1-S7) cooled to 0 ° C. having the same composition as in Example 7 was obtained. Using this and an aqueous solution (2-S7) prepared in advance and cooled to 0 ° C. after obtaining an aqueous solution having the same composition as in Example 7, the same synthesis operation, washing treatment and drying treatment as in Example 1 are performed. Thus, an organic-inorganic composite was obtained.
(測定1)有機溶剤溶液(1)中材料の分子量測定
実施例1及び比較例1で水溶液(2)を混合する直前に採取した0.1gの有機溶剤溶液(1)をN−N−ジメチルアセトアミド30gで希釈した。これを分子量分布測定装置(GPC)である日本ウオーターズTYPE2487及び2414検出器にN−N−ジメチルアセトアミドを溶媒として導入することによりポリスチレン換算分子量分布の測定を行った。
(Measurement 1) Measurement of molecular weight of material in organic solvent solution (1) 0.1 g of organic solvent solution (1) collected immediately before mixing aqueous solution (2) in Example 1 and Comparative Example 1 was added to NN-dimethyl. Diluted with 30 g of acetamide. The molecular weight distribution of polystyrene was measured by introducing NN-dimethylacetamide as a solvent into Nippon Waters TYPE 2487 and 2414 detectors, which are molecular weight distribution measuring devices (GPC).
次に、上記各実施例、参考例で得られた有機無機複合体について以下の項目の測定、試験を行なった。尚、各比較例については評価に供することが出来る試料は得られなかった。 Next, the following items were measured and tested for the organic-inorganic composites obtained in the above Examples and Reference Examples. In addition, about each comparative example, the sample which can be used for evaluation was not obtained.
(測定2)無機化合物の含有率の測定法
有機無機複合体を絶乾後に精秤(複合体質量)し、これを空気中、600℃で2時間焼成しポリマー成分を完全に焼失させ、焼成後の質量を測定し灰分質量とした。下式により灰分含有率を算出した。
(Measurement 2) Method for Measuring Content of Inorganic Compound The organic-inorganic composite was completely dried and then precisely weighed (composite mass), and this was baked in air at 600 ° C. for 2 hours to completely burn out the polymer component, and then baked The latter mass was measured and used as the ash mass. The ash content was calculated from the following formula.
この時、金属化合物(c−3)は後述の濾液中の金属化合物(c−3)由来の金属化合物の分析により収率がほぼ100%であることより複合体中の存在量は金属化合物(c−3)の量より既知である。従って、 At this time, the amount of the metal compound (c-3) present in the complex is about 100% from the analysis of the metal compound derived from the metal compound (c-3) in the filtrate described later. It is known from the amount of c-3). Therefore,
(測定3)無機成分の検証
(蛍光X線での測定)
有機無機複合体粉末約1gを開口部が直径10mmの測定用ホルダ−にセットし測定用試料とした。該試料を理化学電気工業株式会社製蛍光X線分析装置「ZSX100e」を用いて全元素分析を行った。得られた全元素分析の結果を用い、測定用試料の試料データ(与えたデータは、試料形状;フィルム、補正成分;セルロース、実測した試料の面積当たりの質量値)を装置に与えることにより、FP法(Fundamental Parameter法;試料の均一性、表面平滑性を仮定し装置内の定数を用いて補正を行い成分の定量を行う方法)にて該複合体中の元素存在割合を算出した。
(Measurement 3) Verification of inorganic components (measurement with fluorescent X-rays)
About 1 g of the organic-inorganic composite powder was set in a measurement holder having an opening of 10 mm in diameter, and used as a measurement sample. The sample was subjected to total elemental analysis using a fluorescent X-ray analyzer “ZSX100e” manufactured by RIKEN ELECTRIC CO., LTD. Using the results of the total elemental analysis obtained, the sample data of the sample for measurement (the data given is sample shape; film, correction component; cellulose, mass value per area of the measured sample) is given to the apparatus, The element presence ratio in the complex was calculated by the FP method (Fundamental Parameter method; a method in which the uniformity of the sample and surface smoothness are assumed, and correction is performed using constants in the apparatus to quantify the components).
いずれの実施例で得られた有機無機複合体も、金属化合物(c−1)、珪酸アルカリ(c−2)に由来する無機元素(アルミン酸ナトリウムの場合はアルミニウム、炭酸ジルコニウムカリウムの場合はジルコニウム、スズ酸ナトリウムの場合はスズ、珪酸ナトリウム(水ガラス)の場合はケイ素)が検出され、目的とする無機化合物の複合化がされていることが示された。また、実施例8、9では金属化合物(c−3)由来の金属(Zn、W)も検出された。いずれの実施例で得られた試料でも、本方法で得られた金属化合物(c−3)の量は、0.1質量%の誤差範囲内で水溶液(2)への金属化合物(c−3)の仕込み量から算出した予測値と一致した。
一方、無機原料である金属化合物(c−1)、珪酸アルカリ(c−2)に由来するアルカリ金属元素(珪酸ナトリウム、アルミン酸ナトリウム、スズ酸ナトリウムの場合はナトリウム、炭酸ジルコニウムカリウムの場合はカリウム)は、痕跡程度しか検出されなかった。従って、(測定2)の無機化合物微粒子の測定方法で得られた灰分(すなわち無機物質)はアルカリ金属を実質的に含有しておらず、本発明では金属化合物(c−1)、珪酸アルカリ(c−2)からのアルカリ金属除去及び固体化反応が予測された反応機構の通り行われていることが明らかとなった。
加えて、実施例8、9の濾過液の乾燥物からは、反応副生成物であるNaClのほかはFe等の不純物元素のみが検出され、金属化合物(c−3)に相当する金属元素は検出されなかった。このことから、金属化合物(c−3)は本複合体の合成操作により、複合体上に担持したことが明らかとなった。
The organic-inorganic composite obtained in any of the examples is also composed of a metal compound (c-1), an inorganic element derived from alkali silicate (c-2) (aluminum in the case of sodium aluminate, zirconium in the case of potassium zirconium carbonate). In the case of sodium stannate, tin was detected, and in the case of sodium silicate (water glass), silicon) was detected, indicating that the target inorganic compound was complexed. In Examples 8 and 9, metal (Zn, W) derived from the metal compound (c-3) was also detected. In the samples obtained in any of the examples, the amount of the metal compound (c-3) obtained by this method was within the error range of 0.1% by mass to the aqueous solution (2) (c-3). ) And the predicted value calculated from the charged amount.
On the other hand, metal compound (c-1) which is an inorganic raw material, alkali metal element derived from alkali silicate (c-2) (sodium in the case of sodium silicate, sodium aluminate and sodium stannate, potassium in the case of potassium zirconium carbonate) ) Was detected only to the extent of traces. Therefore, the ash (that is, the inorganic substance) obtained by the measurement method of the inorganic compound fine particles of (Measurement 2) does not substantially contain an alkali metal. In the present invention, the metal compound (c-1), the alkali silicate ( It was revealed that the alkali metal removal and solidification reaction from c-2) was performed according to the predicted reaction mechanism.
In addition, from the dried products of the filtrates of Examples 8 and 9, only impurity elements such as Fe were detected in addition to NaCl as a reaction by-product, and the metal elements corresponding to the metal compound (c-3) were Not detected. From this, it became clear that the metal compound (c-3) was supported on the composite by the synthesis operation of the composite.
(測定4)ポリマー成分の検証
(フ−リエ変換型赤外分光分析:FT−IRの測定)
得られた有機無機複合体の粉末をKBr粉末と混合粉砕した試料を作製しKBrディスク法により、FT−IR(日本分光(株)製FT/IR−550)による測定を行った。
いずれの実施例でも、目標とするポリマーに相当する吸収ピーク(例えばポリアミドでは1800cm−1付近のC=O伸縮振動、1540cm−1付近のN−H伸縮に相当するピーク)が明確に現れ、有機成分の合成が良好に行われていることが確認できた。
(Measurement 4) Verification of polymer components (Fliers conversion type infrared spectroscopic analysis: measurement of FT-IR)
A sample obtained by mixing and pulverizing powder of the obtained organic-inorganic composite with KBr powder was prepared, and measurement was performed by FT-IR (FT / IR-550 manufactured by JASCO Corporation) by the KBr disk method.
In any of the examples, an absorption peak corresponding to the target polymer (for example, a peak corresponding to C═O stretching vibration near 1800 cm −1 and N—H stretching near 1540 cm −1 in polyamide) appears clearly. It was confirmed that the components were well synthesized.
(透過型電子顕微鏡(TEM)観察および元素マッピング)
有機無機複合体を170℃、20MPa/cm2の条件で2時間熱プレスを行い、厚さ約1mmの有機無機複合体からなる薄片を得た。これを収束イオンビーム装置を用いて厚さ75nmの超薄切片とした。得られた切片をTEM観察と同時にEDS元素分析による元素マッピングが可能なエネルギーフィルターTEMである「JEM−2010EFE」(日本電子株式会社製)を用いて、各々50万倍のTEM写真をベースにして元素マッピングを行った。マッピングにより示された元素種類より実施例1〜8については無機主成分の確認を行った。また、実施例9、10では無機主成分と金属化合物(c−3)とを判別した。本元素マッピングにより後述(測定4)の無機主成分の測定、金属化合物(c−3)の粒径測定及び、後述(測定5)の金属化合物(c−3)の無機主成分への担持状態の観察を行った。
(Transmission electron microscope (TEM) observation and element mapping)
The organic-inorganic composite was hot-pressed for 2 hours under the conditions of 170 ° C. and 20 MPa / cm 2 to obtain a flake made of an organic-inorganic composite having a thickness of about 1 mm. This was made into an ultrathin slice having a thickness of 75 nm using a focused ion beam apparatus. Based on TEM photographs of 500,000 times each, using “JEM-2010EFE” (manufactured by JEOL Ltd.), which is an energy filter TEM capable of elemental mapping by EDS elemental analysis simultaneously with TEM observation of the obtained sections. Elemental mapping was performed. The inorganic main component was confirmed about Examples 1-8 from the element kind shown by mapping. In Examples 9 and 10, the inorganic main component and the metal compound (c-3) were distinguished. By this element mapping, the measurement of the inorganic main component described later (Measurement 4), the particle size measurement of the metal compound (c-3), and the supported state of the metal compound (c-3) described later (Measurement 5) on the inorganic main component Was observed.
(測定5)無機主成分の粒径測定
無機主成分、又は金属化合物(c−3)の粒径は、TEM写真より100個の粒径を測定し、その平均値を平均粒径とした。尚、粒子形状により粒径の測定方法を下記の通りに行った。
粒子が略球状の場合:任意の1辺の長さをその粒子の粒径とした。無機主成分が酸化ジルコニウム、酸化スズ、シリカの場合と、実施例8、9の金属化合物(c−3)は、この方法により測定した。
粒子が2以上のアスペクト比を持つ粒子の場合:粒子の長軸と短軸の長さをそれぞれ測定し、(長軸+短軸)/2の数値をその粒子の粒径とした。無機主成分が酸化アルミニウムの場合は、この方法で測定した。
(Measurement 5) Measurement of particle size of inorganic main component The particle size of the inorganic main component or metal compound (c-3) was determined by measuring 100 particle sizes from a TEM photograph, and taking the average value as the average particle size. In addition, the measuring method of the particle size was performed as follows according to the particle shape.
When the particles are substantially spherical: The length of an arbitrary side is defined as the particle size of the particles. When the inorganic main component was zirconium oxide, tin oxide or silica, and the metal compounds (c-3) of Examples 8 and 9 were measured by this method.
When the particles have an aspect ratio of 2 or more: The lengths of the major axis and minor axis of the particle were measured, and the value of (major axis + minor axis) / 2 was defined as the particle diameter of the particle. When the inorganic main component was aluminum oxide, it was measured by this method.
(測定6)金属化合物(c−3)の表面での凝集物の有無の確認
各実施例及び、比較例での有機無機複合体粒子に炭素を10nmの厚さで蒸着して得た試料を、日立社製電解放射型走査電子顕微鏡「SEM−EDX」を用いて金属化合物(c−3)を対象とした元素マッピングを行い、担持させた金属の分散状態を測定した。なお、本測定法での金属の大きさの分解能は1μmである。1μm以上の粗大な粒子が生じていた場合は凝集物有り、なければ凝集物無しとした。
(Measurement 6) Confirmation of presence or absence of aggregates on the surface of the metal compound (c-3) Samples obtained by vapor-depositing carbon with a thickness of 10 nm on the organic-inorganic composite particles in each Example and Comparative Example Then, elemental mapping for the metal compound (c-3) was performed using an electrolytic emission scanning electron microscope “SEM-EDX” manufactured by Hitachi, and the dispersion state of the supported metal was measured. The resolution of the metal size in this measurement method is 1 μm. When coarse particles of 1 μm or more were produced, there was an agglomerate, and there was no agglomerate if there was.
以下、表1に実施例1〜7の結果を、表2に実施例8〜9の、表3には参考例1〜7の上記の測定結果をまとめた。 Table 1 summarizes the results of Examples 1 to 7, Table 2 summarizes the results of Examples 8 to 9, and Table 3 summarizes the above measurement results of Reference Examples 1 to 7.
本発明では、25℃以下の温度でジアミンとモノマー(a)を反応が殆ど生じない状態で有機溶媒中に共存させた後、重合反応が一定量のみ進行するように保持しオリゴマー化した後、これらの重合反応を水に溶解させたアルカリ金属を含有する無機原料を添加することにより促進することで、ボトムアップ型に有機無機複合体を合成することができた。また、得られた有機無機複合体は表1に示した通り、(即ち、実施例1〜8で得た有機無機複合体)ポリアミド、ポリ尿素、ポリウレタンに無機化合物が80nm以下のサイズかつ、20質量%以上の高い含有率で分散していた上、無機成分原料由来のアルカリ金属は殆ど検出されなかった。 In the present invention, after allowing the diamine and the monomer (a) to coexist in the organic solvent at a temperature of 25 ° C. or less, the polymerization reaction is held so that only a certain amount proceeds, and oligomerized, By promoting these polymerization reactions by adding an inorganic raw material containing an alkali metal dissolved in water, a bottom-up organic-inorganic composite could be synthesized. Moreover, the obtained organic-inorganic composite was as shown in Table 1 (that is, the organic-inorganic composite obtained in Examples 1 to 8) polyamide, polyurea, polyurethane with an inorganic compound having a size of 80 nm or less, and 20 In addition to being dispersed at a high content of at least mass%, almost no alkali metal derived from inorganic component raw materials was detected.
有機溶剤溶液(1)の加熱による予備重合の効果は、表3に示した各参考例での粒径との比較で明確化できる。いずれの実施例でも参考例に比して無機粒径が小さくすることができた。特に、参考例にて粒径が100nmを超えた無機成分(ZrO2、SnO2)の場合に本予備重合の効果が高かった。ZrO2、SnO2ともSiO2に比べ無機析出反応が早いことが知られており、これらの一方的な凝集を妨げることができたために本発明では微粒化を達成できたと考えられる。また、予備重合の有無による無機含有率の差は殆ど見られなかった。 The effect of the prepolymerization by heating the organic solvent solution (1) can be clarified by comparison with the particle size in each reference example shown in Table 3. In any of the examples, the inorganic particle size could be reduced as compared with the reference example. In particular, the effect of this prepolymerization was high in the case of inorganic components (ZrO 2 , SnO 2 ) whose particle diameter exceeded 100 nm in the reference example. Both ZrO 2 and SnO 2 are known to have a faster inorganic precipitation reaction than SiO 2 , and it is considered that atomization could be achieved in the present invention because these unilateral aggregations could be prevented. Moreover, the difference of the inorganic content rate by the presence or absence of prepolymerization was hardly seen.
本発明で得られた有機無機複合体はプレス成形等の処理で加工が可能であり、各種構造材料として使用することができる。また、得られた有機無機複合体を他の樹脂に溶融混練、添加することにより、該樹脂に対して本複合体中の無機主成分による強度、弾性率、耐衝撃性、電子伝導性、帯電防止特性等の性質を付与することができる。この時、無機粒径が極めて小さいため高い添加効果が期待できる。加えて、無機第二成分である金属化合物(c−3)による触媒特性、抗菌防カビ特性等の少量でも有効に作用しうる機能を同時に付与することもできる。 The organic-inorganic composite obtained in the present invention can be processed by a process such as press molding, and can be used as various structural materials. In addition, the obtained organic-inorganic composite is melt-kneaded and added to another resin, so that the strength, elastic modulus, impact resistance, electron conductivity, charging due to the inorganic main components in the composite are added to the resin. Properties such as prevention properties can be imparted. At this time, since the inorganic particle diameter is extremely small, a high addition effect can be expected. In addition, it is possible to simultaneously impart a function that can act effectively even in a small amount such as catalytic properties and antibacterial / antifungal properties due to the metal compound (c-3) as the inorganic second component.
Claims (4)
金属酸化物、金属水酸化物及び金属炭酸化物からなる群から選ばれる少なくとも1つのアルカリ金属を含む2つ以上の金属元素を有する金属化合物(c−1)、珪酸アルカリ(c−2)を含有する水溶液(2)とを、
前記有機溶剤溶液(1)を加温することで前記モノマー(a)と前記ジアミン(b)とを一部反応させた後に混合し、前記有機溶剤溶液(1)と前記水溶液(2)とを、少なくとも一部が相溶した状態に保ち又は分離した状態で共存させ、モノマー(a)とジアミン(b)との反応をさらに進行させると同時に無機成分を析出させることを特徴とする有機無機複合体の製造方法。 An organic solvent solution (1) containing at least one monomer (a) selected from the group consisting of a dicarboxylic acid halide, a dichloroformate compound, and a phosgene compound, and a diamine (b);
Contains a metal compound (c-1) having two or more metal elements including at least one alkali metal selected from the group consisting of metal oxides, metal hydroxides and metal carbonates, and alkali silicate (c-2) An aqueous solution (2)
The monomer (a) and the diamine (b) are partially reacted by heating the organic solvent solution (1) and then mixed, and the organic solvent solution (1) and the aqueous solution (2) are combined. An organic-inorganic composite characterized in that at least a part thereof is kept in a compatible state or coexisted in a separated state, and the reaction between the monomer (a) and the diamine (b) is further advanced and at the same time, the inorganic component is precipitated. Body manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008073420A JP2009227771A (en) | 2008-03-21 | 2008-03-21 | Method for producing organic-inorganic composite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008073420A JP2009227771A (en) | 2008-03-21 | 2008-03-21 | Method for producing organic-inorganic composite |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009227771A true JP2009227771A (en) | 2009-10-08 |
Family
ID=41243545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008073420A Pending JP2009227771A (en) | 2008-03-21 | 2008-03-21 | Method for producing organic-inorganic composite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009227771A (en) |
-
2008
- 2008-03-21 JP JP2008073420A patent/JP2009227771A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Effects of starch nanocrystal‐graft‐polycaprolactone on mechanical properties of waterborne polyurethane‐based nanocomposites | |
KR100966193B1 (en) | Nano-composite comprising poss and method for manufacturing the same | |
CN104284863B (en) | Manganse Dioxide and the hardenable compositions comprising it | |
JP2010196018A (en) | Production method for polyarylene sulfide resin composition in which metal element-containing nanoparticles are dispersed | |
TWI276669B (en) | Process for production of titanium dioxide pigment and resin compositions containing the pigment | |
JP2010275464A (en) | Method for producing composite of polyarylene sulfide resin with inorganic fine particle | |
JP4074916B2 (en) | Organic-inorganic composite and method for producing the same | |
JP2009227771A (en) | Method for producing organic-inorganic composite | |
Mallakpour et al. | Surface modification of alumina with biosafe molecules: Nanostructure, thermal, and mechanical properties of PVA nanocomposites | |
Patil et al. | Chitosan composites reinforced with nanostructured waste fly ash | |
TWI334429B (en) | Organic-inorganic complex material and production method thereof | |
JP2009209280A (en) | Method for producing organic-inorganic composite material | |
JP2008179711A (en) | Method for producing organic-inorganic composite material and organic-inorganic composite material | |
JP2009292885A (en) | Production method of organic-inorganic composite material and organic-inorganic composite material | |
Liau et al. | PREPARATION AND CHARACTERIZATION OF POLYHYDROXYBUTYRATE/POLYCAPROLACTONE/Mg-Al LAYERED DOUBLE HYDROXIDE NANOCOMPOSITES. | |
JP4245082B2 (en) | Method for producing organic-inorganic composite | |
JP4715194B2 (en) | Method for producing organic-inorganic composite | |
JP4406834B2 (en) | Method for producing composite of organic polymer and glass and composite | |
JP4565329B2 (en) | Organic-inorganic composite and method for producing the same | |
JP2011213786A (en) | Method for producing organic-inorganic composite and organic-inorganic composite | |
JP2005200605A (en) | Method for producing composite of organic polymer and metal compound, and composite | |
JP2005068311A (en) | Method for producing hybrid of organic polymer with metallic compound and hybrid | |
JP2005154684A (en) | Process for producing composite of organic polymer and metal compound, and composite | |
JP2008201986A (en) | Manufacturing process of organic-inorganic composite material and organic-inorganic composite material | |
JP2012067248A (en) | Method for producing organic/inorganic composite material, and organic/inorganic composite material |